15,247 research outputs found

    Robot Swarms in an Uncertain World: Controllable Adaptability

    Full text link
    There is a belief that complexity and chaos are essential for adaptability. But life deals with complexity every moment, without the chaos that engineers fear so, by invoking goal-directed behaviour. Goals can be programmed. That is why living organisms give us hope to achieve adaptability in robots. In this paper a method for the description of a goal-directed, or programmed, behaviour, interacting with uncertainty of environment, is described. We suggest reducing the structural (goals, intentions) and stochastic components (probability to realise the goal) of individual behaviour to random variables with nominal values to apply probabilistic approach. This allowed us to use a Normalized Entropy Index to detect the system state by estimating the contribution of each agent to the group behaviour. The number of possible group states is 27. We argue that adaptation has a limited number of possible paths between these 27 states. Paths and states can be programmed so that after adjustment to any particular case of task and conditions, adaptability will never involve chaos. We suggest the application of the model to operation of robots or other devices in remote and/or dangerous places.Comment: Journal web page & a lot of robotic related papers www.ars-journal.co

    Self-organizing nonlinear output (SONO): A neural network suitable for cloud patch-based rainfall estimation at small scales

    Get PDF
    Accurate measurement of rainfall distribution at various spatial and temporal scales is crucial for hydrological modeling and water resources management. In the literature of satellite rainfall estimation, many efforts have been made to calibrate a statistical relationship (including threshold, linear, or nonlinear) between cloud infrared (IR) brightness temperatures and surface rain rates (RR). In this study, an automated neural network for cloud patch-based rainfall estimation, entitled self-organizing nonlinear output (SONO) model, is developed to account for the high variability of cloud-rainfall processes at geostationary scales (i.e., 4 km and every 30 min). Instead of calibrating only one IR-RR function for all clouds the SONO classifies varied cloud patches into different clusters and then searches a nonlinear IR-RR mapping function for each cluster. This designed feature enables SONO to generate various rain rates at a given brightness temperature and variable rain/no-rain IR thresholds for different cloud types, which overcomes the one-to-one mapping limitation of a single statistical IR-RR function for the full spectrum of cloud-rainfall conditions. In addition, the computational and modeling strengths of neural network enable SONO to cope with the nonlinearity of cloud-rainfall relationships by fusing multisource data sets. Evaluated at various temporal and spatial scales, SONO shows improvements of estimation accuracy, both in rain intensity and in detection of rain/no-rain pixels. Further examination of the SONO adaptability demonstrates its potentiality as an operational satellite rainfall estimation system that uses the passive microwave rainfall observations from low-orbiting satellites to adjust the IR-based rainfall estimates at the resolution of geostationary satellites. Copyright 2005 by the American Geophysical Union

    The Earth as a living planet: human-type diseases in the earthquake preparation process

    Get PDF
    The new field of complex systems supports the view that a number of systems arising from disciplines as diverse as physics, biology, engineering, and economics may have certain quantitative features that are intriguingly similar. The earth is a living planet where many complex systems run perfectly without stopping at all. The earthquake generation is a fundamental sign that the earth is a living planet. Recently, analyses have shown that human-brain-type disease appears during the earthquake generation process. Herein, we show that human-heart-type disease appears during the earthquake preparation of the earthquake process. The investigation is mainly attempted by means of critical phenomena, which have been proposed as the likely paradigm to explain the origins of both heart electric fluctuations and fracture induced electromagnetic fluctuations. We show that a time window of the damage evolution within the heterogeneous Earth's crust and the healthy heart's electrical action present the characteristic features of the critical point of a thermal second order phase transition. A dramatic breakdown of critical characteristics appears in the tail of the fracture process of heterogeneous system and the injury heart's electrical action. Analyses by means of Hurst exponent and wavelet decomposition further support the hypothesis that a dynamical analogy exists between the geological and biological systems under study

    Open circuit voltage and state of charge relationship functional optimization for the working state monitoring of the aerial lithium-ion battery pack.

    Get PDF
    The aerial lithium-ion battery pack works differently from the usual battery packs, the working characteristic of which is intermittent supplement charge and instantaneous large current discharge. An adaptive state of charge estimation method combined with the output voltage tracking strategy is proposed by using the reduced particle - unscented Kalman filter, which is based on the reaction mechanism and experimental characteristic analysis. The improved splice equivalent circuit model is constructed together with its state-space description, in which the operating characteristics can be obtained. The relationship function between the open circuit voltage and the state of charge is analyzed and especially optimized. The feasibility and accuracy characteristics are tested by using the aerial lithium-ion battery pack experimental samples with seven series-connected battery cells. Experimental results show that the state of charge estimation error is less than 2.00%. The proposed method achieves the state of charge estimation accurately for the aerial lithium-ion battery pack, which provides a core avenue for its high-power supply security

    Towards a Smarter organization for a Self-servicing Society

    Full text link
    Traditional social organizations such as those for the management of healthcare are the result of designs that matched well with an operational context considerably different from the one we are experiencing today. The new context reveals all the fragility of our societies. In this paper, a platform is introduced by combining social-oriented communities and complex-event processing concepts: SELFSERV. Its aim is to complement the "old recipes" with smarter forms of social organization based on the self-service paradigm and by exploring culture-specific aspects and technological challenges.Comment: Final version of a paper published in the Proceedings of International Conference on Software Development and Technologies for Enhancing Accessibility and Fighting Info-exclusion (DSAI'16), special track on Emergent Technologies for Ambient Assisted Living (ETAAL

    Middleware Technologies for Cloud of Things - a survey

    Get PDF
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    Middleware Technologies for Cloud of Things - a survey

    Full text link
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    Analyzing laser-plasma interferograms with a Continuous Wavelet Transform Ridge Extraction technique: the method

    Get PDF
    Laser-plasma interferograms are currently analyzed by extracting the phase-shift map with FFT techniques (K.A.Nugent, Applied Optics {\bf 18}, 3101 (1985)). This methodology works well when interferograms are only marginally affected by noise and reduction of fringe visibility, but it can fail in producing accurate phase-shifts maps when dealing with low-quality images. In this paper we will present a novel procedure for the phase-shift map computation which makes an extensive use of the Ridge Extraction in the Continuous Wavelet Transform (CWT) framework. The CWT tool is {\it flexible} because of the wide adaptability of the analyzing basis and it can be very {\it accurate} because of the intrinsic noise reduction in the Ridge Extraction. A comparative analysis of the accuracy performances of the new tool and the FFT-based one shows that the CWT-based tool phase maps are considerably less noisy and it can better resolve local inhomogeneties
    • …
    corecore