1,281 research outputs found

    Advanced Applications of Rapid Prototyping Technology in Modern Engineering

    Get PDF
    Rapid prototyping (RP) technology has been widely known and appreciated due to its flexible and customized manufacturing capabilities. The widely studied RP techniques include stereolithography apparatus (SLA), selective laser sintering (SLS), three-dimensional printing (3DP), fused deposition modeling (FDM), 3D plotting, solid ground curing (SGC), multiphase jet solidification (MJS), laminated object manufacturing (LOM). Different techniques are associated with different materials and/or processing principles and thus are devoted to specific applications. RP technology has no longer been only for prototype building rather has been extended for real industrial manufacturing solutions. Today, the RP technology has contributed to almost all engineering areas that include mechanical, materials, industrial, aerospace, electrical and most recently biomedical engineering. This book aims to present the advanced development of RP technologies in various engineering areas as the solutions to the real world engineering problems

    Software Defined Radio Platform for Cognitive Radio: Design and Hierarchical Management

    Get PDF
    ISBN 978-953-307-274-6Cognitive radio (CR) and/or Software Defined Radio (SDR) inherently require multiband and multi-standard wireless circuit. A SDR is a communications device whose functionality is defined in software. Defining the radio behaviour in software removes the need for hardware alterations during a technology upgrade. A promised open architecture platform for SDR is proposed in this chapter. The platform consists of reconfigurable and reprogrammable hardware platform which provide different standards with a common platform, the SDR software framework which control and manage the whole systems, and the protocol processing software modules which is built on reusable protocol libraries. The main idea here is to have a very flexible platform that enables us to test the validity of the following design approaches: FPGA dynamic partial reconfiguration techniques, parameterization design approach using common operators, hierarchical distributed reconfiguration management

    Electronic System-Level Synthesis Methodologies

    Full text link

    Field Programmable Gate Arrays and Reconfigurable Computing in Automatic Control

    Get PDF
    New combustion engine principles increase the demands on feedback combustion control, at the same time economical considerations currently enforce the usage of low-end control hardware limiting implementation possibilities. Significant development is simultaneously and continuously carried out within the field of Field Programmable Gate Arrays (FPGAs). In recent years FPGAs have developed, from being a device mainly used to implement grids of 'glue-logic' to something of a flexible 'dream device' in cost and performance sensitive applications. It is not solely the development of FPGA devices which has made the FPGA the promising implementation platform it is, development of software tool sets and design methodologies is as important as the device as such. This thesis describes the nature of FPGAs, how they work, which programming environments that are available and which design methodologies that can be used on different levels. Focus is set on implementing control and feedback control on FPGAs in general terms. There are a lot of practical considerations differing between the FPGA environment and the well-known micro-controller environment and those are discussed from the view of the literature available in the different areas. The potential application of FPGAs is described and illustrated with application examples found in the literature, both general applications and control applications are discussed. The intended application is control of internal combustion engines and one FPGA implementation of a modeling algorithm commonly used within automotive control is described and discussed. The intention is to illustrate the usefulness in automotive control applications. Finally a suggestion of a suitable FPGA based automotive-control development environment is treat

    Lessons learned from the design of a mobile multimedia system in the Moby Dick project

    Get PDF
    Recent advances in wireless networking technology and the exponential development of semiconductor technology have engendered a new paradigm of computing, called personal mobile computing or ubiquitous computing. This offers a vision of the future with a much richer and more exciting set of architecture research challenges than extrapolations of the current desktop architectures. In particular, these devices will have limited battery resources, will handle diverse data types, and will operate in environments that are insecure, dynamic and which vary significantly in time and location. The research performed in the MOBY DICK project is about designing such a mobile multimedia system. This paper discusses the approach made in the MOBY DICK project to solve some of these problems, discusses its contributions, and accesses what was learned from the project

    Towards a Common Software/Hardware Methodology for Future Advanced Driver Assistance Systems

    Get PDF
    The European research project DESERVE (DEvelopment platform for Safe and Efficient dRiVE, 2012-2015) had the aim of designing and developing a platform tool to cope with the continuously increasing complexity and the simultaneous need to reduce cost for future embedded Advanced Driver Assistance Systems (ADAS). For this purpose, the DESERVE platform profits from cross-domain software reuse, standardization of automotive software component interfaces, and easy but safety-compliant integration of heterogeneous modules. This enables the development of a new generation of ADAS applications, which challengingly combine different functions, sensors, actuators, hardware platforms, and Human Machine Interfaces (HMI). This book presents the different results of the DESERVE project concerning the ADAS development platform, test case functions, and validation and evaluation of different approaches. The reader is invited to substantiate the content of this book with the deliverables published during the DESERVE project. Technical topics discussed in this book include:Modern ADAS development platforms;Design space exploration;Driving modelling;Video-based and Radar-based ADAS functions;HMI for ADAS;Vehicle-hardware-in-the-loop validation system
    • 

    corecore