20 research outputs found

    Dendrites and conformal symmetry

    Full text link
    Progress toward characterization of structural and biophysical properties of neural dendrites together with recent findings emphasizing their role in neural computation, has propelled growing interest in refining existing theoretical models of electrical propagation in dendrites while advocating novel analytic tools. In this paper we focus on the cable equation describing electric propagation in dendrites with different geometry. When the geometry is cylindrical we show that the cable equation is invariant under the Schr\"odinger group and by using the dendrite parameters, a representation of the Schr\"odinger algebra is provided. Furthermore, when the geometry profile is parabolic we show that the cable equation is equivalent to the Schr\"odinger equation for the 1-dimensional free particle, which is invariant under the Schr\"odinger group. Moreover, we show that there is a family of dendrite geometries for which the cable equation is equivalent to the Schr\"odinger equation for the 1-dimensional conformal quantum mechanics.Comment: 19 page

    Branching dendrites with resonant membrane: a “sum-over-trips” approach

    Get PDF
    Dendrites form the major components of neurons. They are complex branching structures that receive and process thousands of synaptic inputs from other neurons. It is well known that dendritic morphology plays an important role in the function of dendrites. Another important contribution to the response characteristics of a single neuron comes from the intrinsic resonant properties of dendritic membrane. In this paper we combine the effects of dendritic branching and resonant membrane dynamics by generalising the “sum-over-trips” approach (Abbott et al. in Biol Cybernetics 66, 49–60 1991). To illustrate how this formalism can shed light on the role of architecture and resonances in determining neuronal output we consider dual recording and reconstruction data from a rat CA1 hippocampal pyramidal cell. Specifically we explore the way in which an Ih current contributes to a voltage overshoot at the soma

    Travelling waves in a model of quasi-active dendrites with active spines

    Get PDF
    Dendrites, the major components of neurons, have many different types of branching structures and are involved in receiving and integrating thousands of synaptic inputs from other neurons. Dendritic spines with excitable channels can be present in large densities on the dendrites of many cells. The recently proposed Spike-Diffuse-Spike (SDS) model that is described by a system of point hot-spots (with an integrate-and-fire process) embedded throughout a passive tree has been shown to provide a reasonable caricature of a dendritic tree with supra-threshold dynamics. Interestingly, real dendrites equipped with voltage-gated ion channels can exhibit not only supra-threshold responses, but also sub-threshold dynamics. This sub-threshold resonant-like oscillatory behaviour has already been shown to be adequately described by a quasi-active membrane. In this paper we introduce a mathematical model of a branched dendritic tree based upon a generalisation of the SDS model where the active spines are assumed to be distributed along a quasi-active dendritic structure. We demonstrate how solitary and periodic travelling wave solutions can be constructed for both continuous and discrete spine distributions. In both cases the speed of such waves is calculated as a function of system parameters. We also illustrate that the model can be naturally generalised to an arbitrary branched dendritic geometry whilst remaining computationally simple. The spatio-temporal patterns of neuronal activity are shown to be significantly influenced by the properties of the quasi-active membrane. Active (sub- and supra-threshold) properties of dendrites are known to vary considerably among cell types and animal species, and this theoretical framework can be used in studying the combined role of complex dendritic morphologies and active conductances in rich neuronal dynamics

    Democratization in a passive dendritic tree : an analytical investigation

    Get PDF
    One way to achieve amplification of distal synaptic inputs on a dendritic tree is to scale the amplitude and/or duration of the synaptic conductance with its distance from the soma. This is an example of what is often referred to as “dendritic democracy”. Although well studied experimentally, to date this phenomenon has not been thoroughly explored from a mathematical perspective. In this paper we adopt a passive model of a dendritic tree with distributed excitatory synaptic conductances and analyze a number of key measures of democracy. In particular, via moment methods we derive laws for the transport, from synapse to soma, of strength, characteristic time, and dispersion. These laws lead immediately to synaptic scalings that overcome attenuation with distance. We follow this with a Neumann approximation of Green’s representation that readily produces the synaptic scaling that democratizes the peak somatic voltage response. Results are obtained for both idealized geometries and for the more realistic geometry of a rat CA1 pyramidal cell. For each measure of democratization we produce and contrast the synaptic scaling associated with treating the synapse as either a conductance change or a current injection. We find that our respective scalings agree up to a critical distance from the soma and we reveal how this critical distance decreases with decreasing branch radius

    Exact solutions to cable equations in branching neurons with tapering dendrites

    Get PDF
    Neurons are biological cells with uniquely complex dendritic morphologies that are not present in other cell types. Electrical signals in a neuron with branching dendrites can be studied by cable theory which provides a general mathematical modelling framework of spatio-temporal voltage dynamics. Typically such models need to be solved numerically unless the cell membrane is modelled either by passive or quasi-active dynamics, in which cases analytical solutions can be reduced to calculation of the Green's function describing the fundamental input-output relationship in a given morphology. Such analytically tractable models often assume individual dendritic segments to be cylinders. However, it is known that dendritic segments in many types of neurons taper, i.e. their radii decline from proximal to distal ends. Here we consider a generalised form of cable theory which takes into account both branching and tapering structures of dendritic trees. We demonstrate that analytical solutions can be found in compact algebraic forms in an arbitrary branching neuron with a class of tapering dendrites studied earlier in the context of single neuronal cables by Poznanski (Bull. Math. Biol. 53(3):457-467, 1991). We apply this extended framework to a number of simplified neuronal models and contrast their output dynamics in the presence of tapering versus cylindrical segments

    Computational convergence of the path integral for real dendritic morphologies

    Get PDF
    Neurons are characterised by a morphological structure unique amongst biological cells, the core of which is the dendritic tree. The vast number of dendritic geometries, combined with heterogeneous properties of the cell membrane, continue to challenge scientists in predicting neuronal input-output relationships, even in the case of sub-threshold dendritic currents. The Green’s function obtained for a given dendritic geometry provides this functional relationship for passive or quasi-active dendrites and can be constructed by a sum-over-trips approach based on a path integral formalism. In this paper, we introduce a number of efficient algorithms for realisation of the sum-over-trips framework and investigate the convergence of these algorithms on different dendritic geometries. We demonstrate that the convergence of the trip sampling methods strongly depends on dendritic morphology as well as the biophysical properties of the cell membrane. For real morphologies, the number of trips to guarantee a small convergence error might become very large and strongly affect computational efficiency. As an alternative, we introduce a highly-efficient matrix method which can be applied to arbitrary branching structures

    Low-rate firing limit for neurons with axon, soma and dendrites driven by spatially distributed stochastic synapses

    Get PDF
    Analytical forms for neuronal firing rates are important theoretical tools for the analysis of network states. Since the 1960s, the majority of approaches have treated neurons as being electrically compact and therefore isopotential. These approaches have yielded considerable insight into how single-cell properties affect network activity; however, many neuronal classes, such as cortical pyramidal cells, are electrically extended objects. Calculation of the complex flow of electrical activity driven by stochastic spatio-temporal synaptic input streams in these structures has presented a significant analytical challenge. Here we demonstrate that an extension of the level-crossing method of Rice, previously used for compact cells, provides a general framework for approximating the firing rate of neurons with spatial structure. Even for simple models, the analytical approximations derived demonstrate a surprising richness including: independence of the firing rate to the electrotonic length for certain models, but with a form distinct to the point-like leaky integrate-and-fire model; a non-monotonic dependence of the firing rate on the number of dendrites receiving synaptic drive; a significant effect of the axonal and somatic load on the firing rate; and the role that the trigger position on the axon for spike initiation has on firing properties. The approach necessitates only calculating the mean and variances of the non-thresholded voltage and its rate of change in neuronal structures subject to spatio-temporal synaptic fluctuations. The combination of simplicity and generality promises a framework that can be built upon to incorporate increasing levels of biophysical detail and extend beyond the low-rate firing limit treated in this paper

    Neuronal computation on complex dendritic morphologies

    Get PDF
    When we think about neural cells, we immediately recall the wealth of electrical behaviour which, eventually, brings about consciousness. Hidden deep in the frequencies and timings of action potentials, in subthreshold oscillations, and in the cooperation of tens of billions of neurons, are synchronicities and emergent behaviours that result in high-level, system-wide properties such as thought and cognition. However, neurons are even more remarkable for their elaborate morphologies, unique among biological cells. The principal, and most striking, component of neuronal morphologies is the dendritic tree. Despite comprising the vast majority of the surface area and volume of a neuron, dendrites are often neglected in many neuron models, due to their sheer complexity. The vast array of dendritic geometries, combined with heterogeneous properties of the cell membrane, continue to challenge scientists in predicting neuronal input-output relationships, even in the case of subthreshold dendritic currents. In this thesis, we will explore the properties of neuronal dendritic trees, and how they alter and integrate the electrical signals that diffuse along them. After an introduction to neural cell biology and membrane biophysics, we will review Abbott's dendritic path integral in detail, and derive the theoretical convergence of its infinite sum solution. On certain symmetric structures, closed-form solutions will be found; for arbitrary geometries, we will propose algorithms using various heuristics for constructing the solution, and assess their computational convergences on real neuronal morphologies. We will demonstrate how generating terms for the path integral solution in an order that optimises convergence is non-trivial, and how a computationally-significant number of terms is required for reasonable accuracy. We will, however, derive a highly-efficient and accurate algorithm for application to discretised dendritic trees. Finally, a modular method for constructing a solution in the Laplace domain will be developed

    Extracellular potentials from action potentials of anatomically realistic neurons and neuronal populations.

    Get PDF
    Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2005Extracellular potentials due to firing of action potentials are computed around cortical neurons and populations of cortical neurons. These extracellular potentials are calculated as a sum of contributions from ionic currents passing through the cell membrane at various locations using Maxwell's equations in the quasi-static limit. These transmembrane currents are found from simulations of anatomically reconstructed cortical neurons implemented as multi-compartmental models in the simulation tool NEURON. Extracellular signatures of action potentials of single neurons are calculated both in the immediate vicinity of the neuron somas and along vertical axes. For the neuronal populations only vertical axis distributions are considered. The vertical-axis calculations were performed to investigate the contributions of action potential firing to laminar-electrode recordings. Results for high-pass (750 - 3000 Hz) filtered potentials are also given to mimic multi-unit activity (MUA) recordings. Extracellular traces from single neurons and populations (both synchronous and asynchronous) of neurons are shown for three different neuron types: layer 3 pyramid, layer 4 stellate and layer 5 pyramid cell. The layer 3 cell shows a 'closed-field' configuration, while the layer 5 pyramid demonstrates an 'open-field' appearance for singe neuron simulations which is less apparent in population simulations. The layer 4 stellate cell seems to fall somewhere in between the open- and closed-field scenarios. Comparing single neuron and synchronous populations, the amplitudes of the extracellular traces increase as population radii increase, though the shapes are generally similar. Asynchronous populations produce small amplitudes due to a time convolution of various neuron contributions
    corecore