

University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

A Thesis Submitted for the Degree of PhD at the University of Warwick

http://go.warwick.ac.uk/wrap/57056

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to
cite it. Our policy information is available from the repository home page.

http://go.warwick.ac.uk/wrap
http://go.warwick.ac.uk/wrap/57056

www.warwick.ac.uk

AUTHOR: Quentin Caudron DEGREE: Ph.D.

TITLE: Neuronal Computation on
Complex Dendritic Morphologies

DATE OF DEPOSIT: .

I agree that this thesis shall be available in accordance with the regulations
governing the University of Warwick theses.

I agree that the summary of this thesis may be submitted for publication.
I agree that the thesis may be photocopied (single copies for study purposes

only).
Theses with no restriction on photocopying will also be made available to the British

Library for microfilming. The British Library may supply copies to individuals or libraries.
subject to a statement from them that the copy is supplied for non-publishing purposes. All
copies supplied by the British Library will carry the following statement:

“Attention is drawn to the fact that the copyright of this thesis rests with
its author. This copy of the thesis has been supplied on the condition that
anyone who consults it is understood to recognise that its copyright rests with
its author and that no quotation from the thesis and no information derived
from it may be published without the author’s written consent.”

AUTHOR’S SIGNATURE: .

USER’S DECLARATION

1. I undertake not to quote or make use of any information from this thesis
without making acknowledgement to the author.

2. I further undertake to allow no-one else to use this thesis while it is in my
care.

DATE SIGNATURE ADDRESS

. .

. .

. .

. .

. .

Neuronal Computation on

Complex Dendritic Morphologies

by

Quentin Caudron

Thesis

Submitted to the University of Warwick

for the degree of

Doctor of Philosophy

Centre for Complexity Science

December 2012

Contents

Acknowledgements v

Declarations vi

Abstract vii

Chapter 1 Preface 1

1.1 The Brain in Context . 1

1.2 Thesis Outline . 3

Chapter 2 Of Neurons and Dendrites 5

2.1 A Brief History of Neuroscience . 5

2.2 Morphology of Neurons . 7

2.2.1 Soma . 9

2.2.2 Axon . 10

2.2.3 Dendrites . 11

2.2.4 Diversity of Dendrites . 11

2.3 The Biophysics of Excitable Cells . 14

2.3.1 Structure of the Cell Membrane 14

2.3.2 Resting Potential and Equivalent Circuits 16

2.4 Neuronal Communication . 19

2.4.1 Action Potentials . 19

2.4.2 Synapses . 21

2.4.3 Network Connectivity and Structure 23

2.4.4 Plasticity . 25

2.5 The History of Dendritic Physiology and Modelling 26

2.6 Dendritic Computation . 31

2.6.1 Spatiotemporal Filtering . 32

2.6.2 Spines . 33

i

2.6.3 Active Currents . 34

2.6.4 Coincidence Detection . 35

2.6.5 Directional Selectivity . 36

2.6.6 Dendritic Democracy . 37

2.6.7 Computing with Dendrites 37

2.7 Continuous-Space Dendritic Modelling 37

2.7.1 Analytical Approaches to Cable Problems 38

2.8 Conclusions . 44

Chapter 3 Linear Cable Theory and the Dendritic Path Integral 46

3.1 The Linear Cable Equation . 47

3.1.1 A Note on Units . 48

3.1.2 Derivation of the Cable Equation 49

3.1.3 Characteristic Scales . 52

3.1.4 Assumptions . 55

3.2 A Note on Integral Transforms . 57

3.3 Some Concepts in Linear Systems Theory 61

3.4 Steady-State and Time-Dependent Solutions 66

3.4.1 Boundary Conditions for the Single Cable 67

3.4.2 Steady State on a Semi-Infinite Cable 67

3.4.3 Steady State on a Finite Cable with Closed Ends 68

3.4.4 Steady State on a Finite Cable with One Open End 70

3.4.5 General Solution . 72

3.4.6 Alpha Currents . 77

3.4.7 Rectangular Pulse . 79

3.5 The Path Integral for Dendritic Trees 79

3.5.1 Rules for Trip Construction 84

3.5.2 Trip Classes . 87

3.5.3 Theoretical Convergence and Term Ordering 87

3.6 Closed-Form Solutions for Simplified Structures 94

3.6.1 Finite Single Cable . 94

3.6.2 Star Graph Cells . 95

3.7 Conclusions . 101

Chapter 4 Time-Domain Methods 103

4.1 Graph Theory and Algorithms Terminology 104

4.2 The Four Classes Algorithm . 107

4.2.1 Implementation by Cao and Abbott 108

ii

4.3 A Formal Grammar for Paths on Graphs 111

4.3.1 Some Language Theory Terminology 111

4.3.2 The Improved Four Classes Algorithm 112

4.3.3 Application of the Improved Four Classes Algorithm 113

4.4 The Length Priority Algorithm . 117

4.5 Monte Carlo Method . 119

4.5.1 Random Walkers and Diffusion 119

4.5.2 Random Hoppers . 120

4.5.3 Obtaining the Green’s Function Solution 121

4.6 Trip-Grouping Matrix Algorithm . 123

4.6.1 Discretisation of the Dendritic Tree 124

4.6.2 Construction of the Edge-Adjacency Matrix 125

4.6.3 Computing the Path Integral 127

4.6.4 Example Calculation . 128

4.7 Convergence of Time-Domain Methods 130

4.7.1 Morphologies . 130

4.7.2 Implementations . 132

4.7.3 Validation Against Numerics 133

4.7.4 Error of Convergence . 133

4.7.5 Convergence of the Length Priority Methods 135

4.7.6 Convergence of the Monte Carlo Method 138

4.7.7 Convergence of the Trip-Grouping Matrix Algorithm 139

4.7.8 Structural-Electrotonic Properties 140

4.8 Conclusions . 145

Chapter 5 Laplace-Domain Methods 147

5.1 Cable Systems in the Laplace Domain 148

5.1.1 Laplace-Domain Solutions . 149

5.1.2 Boundary Conditions . 149

5.2 Motifs . 150

5.2.1 The Motif Concept . 150

5.2.2 Edge Orientation . 151

5.2.3 Nomenclature : The Set of Motifs 152

5.3 Forward Motif Method . 152

5.3.1 Coefficient Expressions . 153

5.3.2 Motif Matrix Rows . 159

5.3.3 Constructing a Solution . 162

iii

5.4 Conclusions . 166

Chapter 6 Discussion 167

6.1 Conclusions . 167

6.1.1 Contributions . 168

6.2 Further Work . 170

iv

Acknowledgements

During my four years at the Centre for Complexity Science at Warwick, I have

learned a great deal about mathematics, science, and research in general. In the

process, established academics would become colleagues, and colleagues would be-

come friends. Without their aid, support, and encouragement, I would simply not

be where I am today.

First amongst these is my supervisor, Dr. Yulia Timofeeva, who always

guided me with patience and knowledge, while letting me explore the landscape

in my own way. Her expertise and advice have led me to produce work of which I

am genuinely proud, and for this, I am extremely grateful.

To the talented graph theorist and mathematician, Simon Donnelly, I offer

my deepest gratitude. Discussions with you would always bear fruit, the end result

of which is evident in this thesis.

I wish to thank the extremely talented mathematicians, Jamie Harris and

Sam Brand, for many discussions spent poring over blackboards.

My family remain a neverending source of support and motivation. To my

wife, Madi, for her love and for my sanity; to my father, for keeping things in

perspective; to my mother, for always being there; and to my siblings, for being

yourselves; thank you.

v

Declarations

The work in this thesis is a presentation of my original research. Every effort has

been made to credit the authors of the peer-reviewed literature which provide the

foundations upon which this work is built, and the collaborators who contributed

their skill and time in the development of this work.

Parts of the work in Chapter 4 were done in collaboration with Simon Donnelly,

of Edinburgh’s Neuroinformatics Doctoral Training Centre, whose help was funda-

mental to my understanding of aspects of graph theory, and subsequently to my

development of these algorithms; and Sam Brand, of Warwick Complexity, who in-

troduced me to the Feynman-Kac relation between some differential equations and

stochastic processes. This work has been published in the Journal of Mathematical

Neuroscience, as

Q. Caudron, S. R. Donnelly, S. P. C. Brand, and Y. Timofeeva,

Computational convergence of the path integral for real dendritic morphologies,

The Journal of Mathematical Neuroscience, 2 (11), 2012.

The Motif method presented in Chapter 5 was developed in collaboration with Jamie

Harris, of Warwick Complexity, whose insight and experience with Green’s functions

brought us to the idea of motifs on trees.

This thesis has not been submitted for consideration at any other institution.

vi

Abstract

When we think about neural cells, we immediately recall the wealth of elec-

trical behaviour which, eventually, brings about consciousness. Hidden deep in the

frequencies and timings of action potentials, in subthreshold oscillations, and in

the cooperation of tens of billions of neurons, are synchronicities and emergent be-

haviours that result in high-level, system-wide properties such as thought and cogni-

tion. However, neurons are even more remarkable for their elaborate morphologies,

unique among biological cells. The principal, and most striking, component of neu-

ronal morphologies is the dendritic tree.

Despite comprising the vast majority of the surface area and volume of a

neuron, dendrites are often neglected in many neuron models, due to their sheer

complexity. The vast array of dendritic geometries, combined with heterogeneous

properties of the cell membrane, continue to challenge scientists in predicting neu-

ronal input-output relationships, even in the case of subthreshold dendritic currents.

In this thesis, we will explore the properties of neuronal dendritic trees, and

how they filter and integrate the electrical signals that diffuse along them. After

an introduction to neural cell biology and membrane biophysics, we will review

Abbott’s dendritic path integral in detail, and derive the theoretical convergence

of its infinite sum solution. On certain symmetric structures, closed-form solutions

will be found; for arbitrary geometries, we will propose algorithms using various

heuristics for constructing the solution, and assess their computational convergences

on real neuronal morphologies. We will demonstrate how generating terms for the

path integral solution in an order that optimises convergence is non-trivial, and how

vii

a computationally-significant number of terms is required for reasonable accuracy.

We will, however, derive a highly-efficient and accurate algorithm for application to

discretised dendritic trees. Finally, a modular method for constructing a solution in

the Laplace domain will be developed.

viii

Chapter 1

Preface

“ It is the brain which is the messenger to the understanding.

”- Hippocrates

1.1 The Brain in Context

Neuroscience is the interdisciplinary study of the nervous system, from the molecular

biology of the smallest structures in the brain, to the emergent functional proper-

ties of billions of neurons, wired intricately together. The immense scales spanned

by the brain, both in space and time, present a major challenge for neuroscien-

tists. Experiments can be performed at the sub-cellular level, with the help of ever-

developing imaging methods or ultra-sharp electrodes, assessing the dynamics of

ions or molecules within the cell; to the macroscale, where neuroscience seeks to un-

derstand behaviour, memory and consciousness. As such, neuroscience spans a very

large range of spatial scales, as well as a broad spectrum of scientific fields, existing

at the interface between biology, chemistry, physics, computer science, mathematics,

psychology and medicine. Many interdisciplinary approaches are possible, allowing

a number of angles of attack for the modelling of neuronal processes, from mech-

anistic to phenomenological. Many biophysical models, such as the Human Brain

Project [Markram, 2012], attempt to include as much biological realism as is known,

constructing neural circuits in a bottom-up approach, from the molecular level. This

typically comes at a large computational cost, as the system size is scaled up : even

1

running on some of the world’s most powerful computers, the project’s predeces-

sor, the Blue Brain Project [Markram, 2006], had simulated a cortical column of ten

thousand neurons in 2008, and a mesocircuit of only one million neurons by 2011 – a

small fraction of the human brain’s nearly 1011 neurons [Herculano-Houzel, 2009].

In contrast, models focusing on simplification of the biological processes in

favour of mathematical efficiency are able to simulate far larger systems. These ap-

proaches abstract away the biological detail, using functional forms to approximate

the system’s dynamics instead of fully simulating the system. This is exemplified by

Izhikevich’s 2005 simulation, in which a system of 1011 neurons and 1015 synapses –

a system the size of a full human brain – was simulated on the neuronal level, albeit

in far less detail than with biophysical models. The simulation ran over fifty days,

and provided one second of real data. Izhikevich and Edelman’s [2008] later sim-

ulation later reconciled the single neuron, cortical columnar, and large-scale white

matter spatial scales, informed by experimental data; due to the added complexity,

this system only contained one million neurons.

One element brought into Izhikevich’s 2008 simulation which was absent

from his earlier, larger system, was branching dendritic morphology. The inclusion

of spatially-extended dendritic cables introduces a significant computational diffi-

culty : due to their arbitrarily-branching natures, electrical activity on dendritic

trees cannot be solved for explicitly, except in very rare cases. As such, dendrites

are typically modelled discretely in space, and the voltage across their membranes

computed numerically, which can be very slow.

In the following chapters, we address the question of dendritic computation

in the context of passive dendrites. Our aim is to compute the impulse response

kernel for the stimulation of a dendritic tree, which provides a backbone for signal

integration in the brain. Once known, the impulse response kernel can be used

for the rapid evaluation of signals diffusing along complex branching structures, di-

rectly in the time domain. We will review various mathematical methods published

in the literature, and attempt to address potential improvements, especially in terms

of computational efficiency and ease of algorithm implementation. Using analyti-

cal techniques and computational algorithms, then, we will develop novel methods

applicable to linear cable theory problems, focusing largely on the path integral ap-

proach derived by Abbott et al. [1991], and on its computational convergence. We

will demonstrate that the errors in the calculation can be highly unpredictable, and

that it is non-trivial to construct the solution in an efficient manner, whether the

terms be ordered randomly or by heuristic. We also study a method for computing

the solution to cable theory problems in the frequency domain, providing analytical

2

expressions requiring numerical inversion from the frequency domain. These results

all provide a means of computing the impulse response function of a dendritic sys-

tem, providing insight into the dynamics of current flow along the dendritic tree and

allowing the efficient computation of the voltage response anywhere on the tree, as

a result of current input.

1.2 Thesis Outline

Chapter 2

We begin by a short history of the field of neuroscience, from our knowledge of it

in antiquity, and through its major developments in the twentieth century, when

neuronal cable theory was born. We then introduce the general biophysics of the

neuron, focusing on typical morphology and the excitable properties of its cell mem-

brane. We discuss aspects of neuronal communication, including the generation of

action potentials, how synapses transmit signals from one neuron to another, and

some of the possible methods used by neurons to encode information. After a re-

view of the history of dendritic modelling, and of modern literature on methods for

approaching dendritic cable problems, we finish with a few brief examples of where

dendrites may perform computations.

Chapter 3

After a review of important concepts in integral transforms and linear systems, the

linear cable equation is introduced, along with the assumptions made in its deriva-

tion, some of its steady-state solutions, and the general time-dependent solution

on the infinite cable. We then present a summary of Abbott et al.’s [1991] path

integral for dendritic trees, a method for computing the transmembrane voltage

on arbitrary branching structures; we discuss rules for constructing the infinite se-

ries solution and derive a novel proof of its theoretical convergence, making fewer

restrictive assumptions than in the proof provided by Abbott [1992].

Chapter 4

Using Abbott et al.’s [1991] path integral, we construct novel analytical solutions

to the Green’s function for some simple, symmetric branching structures. We then

present our core algorithms for computing the sum-over-trips series solution on ar-

bitrary trees. We begin with methods that use a length-priority heuristic, deriving

3

a language-theoretic approach to constructing the terms in the series as an im-

provement on the algorithm provided by Cao and Abbott [1993], and then using a

k-shortest paths algorithm for efficient implementation. We compare Cao and Ab-

bott’s [1993] Four Classes trip ordering with our Length Priority ordering of terms in

assessing the computational convergences of the algorithms. A Monte Carlo method

is then developed, ordering trips according to a probabilistic heuristic. Finally, we

draw on methods from graph theory to derive an efficient algorithm for grouping

trips by discretised lengths in order to construct the series solution using blocked

terms.

Chapter 5

The methods and algorithms presented in the previous chapter were approaches

to computing the dendritic path integral, a convergent time-domain series solution.

Here, we consider the exact solution to cable theory problems in the Laplace domain,

by constructing a linear system of equations based on graphical motifs. We derive a

forward method which requires the inversion of a motif matrix to obtain the coeffi-

cients of the Laplace-domain solution, which is easily computationally-implemented.

Chapter 6

Finally, we summarise our results and discuss the potential for future developments

and applications, with respect to the proposed algorithms and methods.

4

Chapter 2

Of Neurons and Dendrites

“ Most of the brain consists of “wires” [. . .] The connections as a whole

define the information content of the system.

”- Campbell [1989]

2.1 A Brief History of Neuroscience

The brain is arguably the most complex object in the known universe. At one

time thought to be a continuous mesh of tissue, we now know that the human

brain contains on the order of one hundred billion neurons. For every neuron,

there are ten neuroglia, cells responsible for modulating neurotransmission, amongst

other functions. From this enormous, intricately interconnected network of highly-

nonlinear units, somehow, emerges consciousness, memory and emotion.

For thousands of years, scientists have tried to understand how the brain

functions. The first reference to the brain, in any written text and language, is

found in the Ancient Egyptian medical text, the Edwin Smith Surgical Papyrus,

written around 1500 BCE. It describes the effect of brain trauma on the rest of the

body, recognising that paralysis, contralateral motor control, and sensory perception

can be influenced by brain and spinal cord injury. Later, Hippocrates first described

the brain as the seat of intelligence within the body. From that point, contributions

to our knowledge of brain anatomy came from Herophilus and Galen, and then

during the Renaissance, from Andreas Vesalius, Leonardi da Vinci, René Descartes,

5

and many others. It was with the invention of the microscope, however, and the

pivotal work of Camillo Golgi on his reazione nera, later named the Golgi stain, that

individual neurons were discovered. This brought on the formation of the neural

doctrine, proposed by Santiago Ramón y Cajal, that the brain consists of a large

number of individual functional units, called neurons. Experiments pioneered by

Luigi Galvani developed our knowledge of excitable tissue such as muscle, and in

the late 19th Century, neurons were shown to be electrically excitable and that their

electrical states were correlated with those of their neighbours. As research methods

improved, we learned much of structural and functional neuroanatomy, furthered by

contributions from scientists such as Broca, Wernicke, and Brodmann.

In 1864, Julius Bernstein developed the differential rheotome, an instrument

for the quantitative measurement of the neuronal action potential. Decades later,

he proposed the hypothesis that excitable cells are surrounded by a selectively-

permeable membrane, and explained excitation as an increased permeability to

potassium ions. It was only fifty years later, however, that the first mathemat-

ical description of the action potential was published. Work by Ostwald, Cole,

Curtis, Katz, and many others, culminated in a series of papers by Alan Hodgkin

and Andrew Huxley on a set of nonlinear ordinary differential equations, describing

the initiation and propagation of action potentials; this work earned Hodgkin and

Huxley the Nobel Prize in Physiology or Medicine in 1963. Today, the Hodgkin-

Huxley model – and related conductance-based neural models - are still extensively

used in the modelling and simulation of networks of neurons where biophysical re-

alism is required. Less realistic, the simplest model neuron is arguably Lapicque’s

integrate-and-fire cell, describing neurons as a simple capacitor circuit. Appreci-

ated for its mathematical and computational simplicity, it has also spawned many

variants, such as the leaky integrate-and-fire, as well as nonlinear (quadratic, expo-

nential, adaptive) versions.

All of the aforementioned neuronal models assume that neural cells have no

spatial extent. Whilst a large part of modern work in theoretical neuroscience is

on the network level, with many interconnected neurons, it remains that neurons

are connected by axons and dendrites - long, cable-like branching structures which

carry electrical signals from one neuron to another. The manner in which dendrites

branch dictates how incoming signals are integrated and sent to the soma, and influ-

ences how much impact a presynaptic action potential will have on the postsynaptic

neuron’s membrane potential. The groundbreaking work of Wilfrid Rall, on the ap-

plication of cable theory to neural fibres, is the basis for modern theoretical work on

signal propagation along branching cables. The voltage along a spatially-extended

6

neuronal structure can be calculated or simulated using one of many approaches

derived from Rall’s models and methods, with cable theory at their heart.

Passive cable theory, the linear framework adapted to dendrites by Rall,

allows mathematically-tractable insight to be made regarding the dendrites’ spa-

tiotemporal filtration properties on signal integration. It provides a means to tackle

cable problems for large, complex structures, such as those representative of neu-

ronal morphology, enabling us to replicate or explain experimentally-verified find-

ings. Cable theory models the continuum flow of ions along one-dimensional cables,

according to a set of assumptions regarding the typical dimensions, chemical com-

position, and electrical properties, of dendritic fibres.

Cable theory provides us with the ability to compute the spatiotemporal

filtering properties of a tree’s morphology. This fundamental characteristic can

provide a great deal of information regarding how a particular neuron integrates

electric currents : the impulse response function, which encodes the system’s reaction

to an external stimulus, can tell us the amount of delay or attenuation that a signal

will incur as it diffuses along the dendritic cables. It can aid us in understanding

how a number of signals from different parts of a dendritic tree are integrated and

filtered when they reach the soma. Due to this signal filtration, understanding

the link between dendritic morphology and the signals observed at the soma as a

response to stimulus is essential in the study of neuronal input-output relations.

The manner in which the brain processes information remains a mystery.

In the past, simple computations were attributed to individual neurons; it was

assumed that a network as complex as the brain could produce significant emergent

behaviour, accounting for higher levels of information processing, from perception

to emotion. Incoming signals would be summed, or integrated, and if a threshold

was met, the neuron would fire a spike. By adding dendrites into this picture, we

immediately have available a larger number of computational tools, from nonlinear

summation in active dendrites, to resonance, to delay and linear signal filtration

in passive dendrites [Spruston et al., 1999]. Today, we understand the importance

of dendrites in neuronal computations and the additional dynamics they bring to

communication in the brain. There is therefore a great deal of information to be

found in a neuron’s morphology.

2.2 Morphology of Neurons

Neurons are electrically-excitable nerve cells found in the nervous systems of all Eu-

metazoa – all animals except sponges and other very simple species. These highly-

7

specialised cells process and transmit information between one another and to the

rest of the body, via a complex and elaborate branching network of filamentous neu-

ral processes, the axons and dendrites. The human brain, approximately 1200 cm3

in volume [Cosgrove et al., 2007] and weighing 1.5 kg [Parent and Carpenter, 1995],

contains on the order of 1011 individual neurons [Herculano-Houzel, 2009], each

with an average of 104 connections to other neurons [Drachman, 2005], local or dis-

tal, forming anything from small, sparse clusters to enormous, densely-connected

hypercolumns.

Myelin Sheath

Dendrites

Axon

Soma

Node of Ranvier

Synaptic Terminal

Figure 2.1: A caricatured neuron, showing the key components of neuronal
structure and morphology.

Structurally, neurons show a beautiful range of diversity and morphology, and

there is really no such thing as a “typical” neuron. In general, however, neurons

can be broken down into three parts : a cell body or soma, a long, thin axon,

and a number of branching dendritic trees. They vary considerably in size and

shape between species, area of the brain, and type of neuron. However, what truly

typifies neurons are their dendritic trees. To say that dendrites exhibit diverse

morphologies would be a gross understatement – dendrites may be highly-selective

in their branching, perhaps connecting to only a few specific targets, or may be

dense and space-filling, such as the cerebellar Purkinje cells, which sample from

tens of thousands of parallel fibre axons. Figure 2.1 shows a schematic illustration

8

of a neuron, demonstrating the three parts that generally make up a neuron : the

soma, the axon, and the dendrites.

2.2.1 Soma

Neuronal cell bodies exhibit a great variety of sizes. Some of the largest known

somas belong to the sea slug Aplysia california, and can approach close to 1 mm in

diameter [Gillette, 1991] – although they are usually much more compact. The soma

houses a large number of organelles, such as the nucleus and Nissl granules, which are

important sites for protein synthesis, particularly the synthesis of neurotransmitters.

Other synthesis also largely occurs inside the soma : the sugars and lipids that make

up the intracellular fluid, or cytoplasm, are made here.

Figure 2.2: Scanning electron micrograph of differentiating Purkinje neu-
rons. Once their development is complete, these neurons will become some
of the largest in the brain. Annie Cavanagh, Wellcome Library, London.

Like all biological cells, the soma is enclosed in a cell membrane, a selectively-

permeable barrier through which flows of ions and small molecules are controlled.

The output pole of a neuron, the axon, extrudes from the soma at the axon hillock;

a soma can also support a number of dendritic trees, projecting out from the soma

in a manner similar to the axon. Figure 2.2 shows a scanning electron microscopy

(SEM) image of two developing neurons, with mature somas but incomplete axons

and dendritic trees.

9

2.2.2 Axon

The axon is a long projection that can extend great distances, generally branching

extensively as it meets other neighbouring (or distal) neurons. It connects to the

cell body at the axon hillock, a specialised part of the soma that swells to become

the axon. Its high density of ion channels makes it capable of generating action

potentials, which then propagate down the axon, away from the soma, usually to

other neurons but also to muscle or gland cells. Axons are typically wrapped in

myelin sheaths, composed of an electrically-insulating material which reduces mem-

brane capacitance while increasing its resistance, leading to a smaller loss of current

through the membrane. The small spaces between the myelin sheaths, the nodes of

Ranvier (see Figure 2.1), reveal the uninsulated axonal membrane, which is capable

of high levels of electrical activity. The action potential is continuously regenerated

at these points, where electrical signals are amplified by the triggering of further ac-

tion potentials. Hence, the axon supports the faster saltatory propagation of action

potentials.

Figure 2.3: Confocal micrograph of a Drosophila neuron growing in vitro.
The axon can be seen emerging from the soma at the axon hillock, retaining
a fairly constant diameter as it branches into smaller protrusions. Guy Tear,
Wellcome Library, London.

The axon is typically around 1 µm in diameter and, unlike dendrites, does

not taper. It can reach over one metre long in humans : from the bottom of the

spinal cord to the tip of the toes. The giraffe’s primary afferent axons can even

reach several metres in length. There exist axonless neurons, such as the olfactory

bulb’s granule cells. Figure 2.3 shows a confocal micrograph of the soma and axon

of the neuron of a fruit fly, Drosophila melanogaster.

10

2.2.3 Dendrites

Dendrites are branching filaments that protrude from the soma. They conduct elec-

trochemical signals, delivered by the axons of presynaptic neurons, to the soma,

integrating the input from thousands of connecting neurons, both temporally and

spatially. Their geometrical and synaptic properties are known to strongly influence

the way in which action potentials (and subthreshold signals) are integrated [Vet-

ter et al., 2001; Krichmar et al., 2002; London and Häusser, 2005]. Passive cable

theory can be used to describe the changes in membrane potential at the soma as

a function of dendritic geometry (connectivity, branch lengths and radii). Unlike

axons, the membranes of dendrites are not protected by myelin, and are covered

by ion channels and other transmembrane proteins which may contribute to signal

modulation. A particular aspect of such modulation is dendritic democracy [Magee

and Cook, 2000; Häusser, 2001], whereby a weak input from the distal part of a

dendritic tree can be amplified such that distal dendritic connections contribute as

significantly as proximal connections to the somatic potential. Another phenomenon

seen in dendrites is the support of back-propagation of action potentials initiated at

the soma, depolarising the dendritic tree, and modulating synaptic potentiation or

depression.

Whilst axons can travel extremely long distances in cellular terms, dendrites

tend to branch out in close proximity to the soma. Typical dendrites are rarely

longer than 1 mm in length, and generally taper to much smaller radii towards their

distal ends. The taper of dendritic branches is clear in Figure 2.4, which shows a

micrograph of a group of cells in the cerebellum.

2.2.4 Diversity of Dendrites

The diversity observed in dendritic morphology is staggering. A neuron with no

dendrites, assuming a roughly spherical soma, has very limited surface area onto

which connections can be made. Dendrites are able to significantly increase neuronal

surface area with little cost to volume; 97% of a motor neuron’s surface area is

dendritic [Ulfhake and Kellerth, 1981]. Intuitively, therefore, one source of variation

stems from the fact that dendritic branching patterns can be related to the mode

of connectivity between neurons. For example, Spruston et al. [1999] describe the

density of dendritic branching as varying with the spatial sampling properties of the

tree : from sparse trees that sample from other neurons selectively (Figure 2.5D)

to those that sample extensively by filling the space (Figure 2.5A). Pyramidal cells

(Figure 2.5E) can be placed somewhere in the middle of this scale; their dendrites

11

Figure 2.4: Confocal micrograph of cerebellar Purkinje cells (red). Unlike
those in Figure 2.2, these cells are fully-developed and display the exten-
sive dendritic branching typical of Purkinje cells. Ludovic Collin, Wellcome
Library, London.

often sample selectively from different cortical layers, at a given distance from the

soma, but much less at other distances.

Space-sampling can be directionally uniform, where dendrites radiate in all

directions, such as spinal cells or cerebellar granule cells, or can sample preferentially

in a specific direction, such as in unipolar or bipolar neurons, in those with conical

(mitral cells) or fan-shaped trees (Purkinje cells), in those that sample from a plane

(retinal horizontal cells) or even multiple, parallel planes (amacrine cells) [Spruston

et al., 1999].

Diversity also strongly varies according to the species. Ramón y Cajal argued

that the complexity of dendritic morphologies is correlated with that of the host’s

nervous system : neurons that need to connect to more neurons of different types,

and at an increasing number of different locations, develop more complex geometries.

Moreover, there is a fundamental relation between the structure of a dendritic

tree and the function of the neuron. The tree’s properties, such as its branching

pattern and tapering properties, affect how incoming signals are integrated into the

12

Figure 2.5: A selection of different neurons, demonstrating a wide variety of
dendritic morphologies. A : Purkinje cell; B : granule cell; C : motor neuron;
D : tripolar neuron; E : pyramidal cell; F : chandelier cell; G : spindle neuron;
H : stellate cell. Illustration by Ferris Jabr, based on the work of Ramón y
Cajal. Scientific American, May 2012, reproduced with permission.

soma. The visualisation of an analogous dendritic tree in electronic space is possible

via Zador et al.’s [1995] morphoelectrotonic transform, a mathematical model de-

scribing how the morphology of a dendritic tree influences the attenuation and delay

of a presynaptic signal. Using this mapping, it becomes clear that morphology has

incredible impact on a tree’s signal integration. Work by Vetter et al. [2001] showed

that dendritic morphology is an important component in determining the efficacy

of presynaptic potentials, and how strongly these incoming signals contribute to

somatic voltage. The morphology of the dendrites even affects the neuron’s own

firing pattern [Mainen and Sejnowski, 1996]. The relation between dendritic mor-

phology and computational capability is an important and active field of research in

modern neuroscience. With all neurons having a very similar biophysical make-up

and excitation mechanisms, it is morphology that truly sets them apart from one

another.

13

2.3 The Biophysics of Excitable Cells

2.3.1 Structure of the Cell Membrane

All cells are enclosed and protected by a cell membrane. The fluid outside of the

cell, composed primarily of water with high concentrations of sodium and chloride

ions, is kept isolated from the cell’s internal environment, a collection of organelles

in a potassium-rich solution called the cytosol, by a cell membrane. The cell’s

membrane is composed of an assembly of phospholipids, molecules which consist of

a hydrophilic head and a long, hydrophobic tail. In the presence of polar fluids,

such as the extracellular medium or the cytosol, the hydrophobic tails are forced

to aggregate together, presenting the charged, hydrophilic heads to the fluid which

surrounds them, almost as a shield against the polar water. This self-assembly into

a lipid bilayer, by a process of micellisation, is driven by hydrophobic interactions

between the fluid and the phospholipids. The result is a protective and isolative

membrane, separating the inside of the cell from its external environment. The

compositions of the extra- and intracellular fluids endow them with a high electrical

conductivity. In contrast, the lipid bilayer, which contains no free ions or charge

carriers, acts as an insulator. This enables a potential difference to exist across

the cell membrane, such that the outside of the cell is at a different potential to

its internal environment. The cell’s transmembrane potential is then defined as

Vm(t) = Vi(t) − Ve(t), the difference between the intracellular and extracellular

potentials. When the cell is at rest, the cytosol is at a lower potential than the

extracellular space. A neuron’s resting potential is defined as the voltage across the

lipid bilayer when the neuron is in dynamic equilibrium, and is typically around

Vm = −70 mV, although this depends strongly on the particular neuron.

Small molecules, such as oxygen and water, are able to pass through the

lipid bilayer by passive diffusion, whereas macromolecules are typically unable to

enter or exit the cell due to their larger sizes. The cellular membrane is made selec-

tively permeable to certain macromolecules and ions by a large family of membrane

proteins, which can act as passive diffusion channels. These channel proteins are

typically formed of multiple subunits that span the membrane in a circular arrange-

ment, leaving a pore through which the relevant species may diffuse more rapidly.

Many ion channels have very narrow pores which allow only a certain ionic species

to pass through in single file, although nearly as rapidly as they would move in free

fluid. The simplest ion channels are passive, open pores, and their concentration

along the cellular membrane dictates how readily a specific ion may move down its

electrochemical gradient. In the language of electrical components, these passive

14

channels act as fixed linear resistors, and the membrane can be said to have a spe-

cific membrane resistance, Rm, measured in Ω cm2. Figure 2.6 is an illustration of

a simple ion channel, surrounded by a cell’s lipid bilayer to either side.

Lipid Bilayer

Ion Channel

Figure 2.6: A cross-section of a cell’s membrane, showing the phospholipid
bilayer with an ion channel positioned across it.

Other ion channels are gated, only allowing ions to pass depending on trans-

membrane voltage, chemical or even mechanical signals. Amongst the passive ion

channels, these are essential for correct neuronal function, enabling the rapid volt-

age changes required to generate action potentials. They may be thought of as

state-dependent variable resistors.

While voltage-gated ion channels are able to contribute to the maintenance of

an electrochemical gradient across the cell membrane, active ion pumps are crucial

for establishing this gradient. These membrane proteins actively move ions across

the membrane, against the electrochemical gradient, fuelled by energy sources such

as ATP. They allow the accumulation of high concentrations of certain ions in-

side and outside of the cell. Like passive channels, active ion pumps can also be

voltage-gated or ligand-gated. By using ion pumps and carefully controlling the

permeability of ions across the membrane, a cell is able to maintain a healthy inter-

nal environment, using the concentration gradients and potential difference across

the membrane to drive reactions that are essential to cellular function. These can

be modelled in terms of electrical components by a battery in series with a variable

resistor.

With two conductive fluids separated by an insulating membrane, a capac-

itative element is also introduced to the cell’s electrical behaviour. In fact, with

the membrane only two molecules thick, the specific membrane capacitance can be

relatively high : around Cm = 1 µF cm−2 at typical transmembrane voltages. The

total capacitance, C, is determined by the thickness of the membrane, and in turn

15

determines how much charge, Q, can be built up across the membrane at a given

transmembrane potential, according to Q = CVm.

2.3.2 Resting Potential and Equivalent Circuits

At equilibrium, the cell is said to be at its resting membrane potential, Em, with

each ionic species contributing a weighted average to the potential, according to the

Goldman-Hodgkin-Katz equation :

Em =
∑

x

Ex
Px
P
, (2.1)

where Ex is the resting potential of ionic species x (for example, x can be Na+, Cl−,

Ca2+ or K+), Px is the permeability of ion x, and P =
∑

x Px. Each ion’s resting

potential Ex can be found according to the Nernst equation, which relates ionic

concentrations on either side of the cell membrane to the ion’s electrical charge :

Ex =
RT

z F
ln

(
[x]out

[x]in

)
, (2.2)

where R is the ideal gas constant, T is the temperature in Kelvin, z is the integer

charge of the ion, F is Faraday’s constant and [x] denotes the ionic concentration,

either outside or inside the cell. An ion’s resting potential determines the magnitude

and direction of the ionic current :

Ix = gx(Vm − Ex), (2.3)

where gx is the ion’s conductance, and can be fixed by, or a function of, the mem-

brane’s permeability to that ion, Px. At equilibrium, therefore, the cell is kept at

its resting potential (Vm = Em) by a balanced flow of different ionic currents, deter-

mined by the membrane’s permeability to the specific ions and by the driving force,

Vm−Ex, that they experience due to their own resting potentials. When the concen-

tration of ions either inside or outside the cell changes, whether due to a chemical or

electrical signal, the cell experiences changes in the ionic currents that were keeping

it in dynamic equilibrium. If, say, the extracellular sodium concentration [Na+]out

suddenly increased, then its resting potential, ENa+ , would also increase, leading

to a change in the sodium current. Because sodium is in excess outside the cell in

normal conditions, the net sodium current flows into the cell from the extracellular

medium. In this example, the extracellular sodium concentration has increased, and

the magnitude of this current would then also increase, bringing more sodium into

16

the cell per unit time, and the cell would depolarise (become less negative).

With any change to the cell’s potential, Vm, a capacitative current is also

generated :

IC(t) = Cm
dVm

dt
. (2.4)

The membrane’s capacitance determines how quickly a cell’s potential can change

when a current is presented. Large capacitances result in slowly-changing trans-

membrane potentials. Together with the membrane’s high resistance to transmem-

brane currents, the membrane’s potential can be modelled using a standard resistor-

capacitor (RC) circuit. Modellers and electrophysiologists often use electrical cir-

cuits as an analogy for a neuron’s electrical properties. An equivalent electrical

circuit can be made for the model neuron or for a patch of its membrane, allowing

its dynamics to be studied without having to model the neuron’s individual channels

and their properties. Typically, the equivalent circuits consist of a capacitor and

a number of resistors in parallel. The capacitor is fixed, being determined by the

capacitance of the cell’s lipid bilayer, while the resistors can be fixed (for the passive,

open ion channels such as the leak current) or variable (for voltage-gated or active

channels). A resistor is used for each ionic species that is being modelled, with

the magnitude and direction of the current flowing through the resistor depending

on the resting potentials and permeabilities of each ion, and can be a function of

the neuron’s state. Figure 2.7 shows an equivalent circuit for a simple neuron with

dedicated sodium, potassium and chloride currents due to active ion pumps, where

the transmembrane resistance for each ion is variable.

C
RNa

Extracellular Medium

Cytosol

+ RK+ RCl-

ENa+ EK ECl-+

m

Figure 2.7: An equivalent circuit explicitly modelling the currents due to
sodium, potassium and chloride ions pumped through active channels.

17

Using an equivalent circuit makes it straightforward to model the dynamics of

the model neuron. The membrane’s resistive current can be described using Ohm’s

law :

IR(t) =
V (t)

R
. (2.5)

The capacitative component of the RC circuit modelling the membrane can be

modelled as in (2.4). Kirchhoff’s current law can be used to equate the inward and

outward currents, for the resistive component. Applied to the circuit in Figure 2.7,

Kirchhoff’s current law gives :

Cm
dVm(t)

dt
+
Vm(t)− ENa+

RNa+
− Vm(t)− EK+

RK+

− Vm(t)− ECl−

RCl−
+ Iinj(t) = 0, (2.6)

where Iinj(t) is any current injected directly into the neuron by a transmembrane

microelectrode. The simplest neuronal model, the leaky integrate-and-fire neuron,

also has the simplest equivalent circuit : a capacitor in parallel with a single resistor.

If we set Em = 0 for simplicity, and assume that initially, Vm(0) = 0, then the

equation governing its dynamics is

Cm
dVm(t)

dt
+
Vm(t)

R
+ Iinj(t) = 0, (2.7)

and the time-dependent solution is

Vm(t) = Rm Iinj(t)
(
e−t/τ − 1

)
, (2.8)

where τ = RmCm is the membrane’s time constant. The membrane’s potential

therefore reacts exponentially, with time constant τ , to discontinuous changes in

injected current, Iinj(t). The time constant τ is typically around 10 ms, although,

like the resting potential Em, this is highly dependent on the type of neuron.

RC circuits are linear systems. This important property forms the funda-

mental basis of the work in this thesis, the core of which is dedicated to computing

the impulse response kernel, a function that fully characterises the system’s response

to an injected stimulus. Linearity allows a system to act as a passive filter, altering

the frequency content of an injected signal. In actual fact, there is evidence that

dendritic voltage may depend nonlinearly on transmembrane currents, and that sig-

nals propagating along dendritic trees can be boosted by active processes (for a

review of some of the mechanisms involved, see [Johnston et al., 1996]). Whilst

active conductances like ion pumps are inherently nonlinear systems and contribute

considerably to neuronal input-output relations, it is important to recognise that the

18

Hodgkin-Huxley Izhikevich

25 mV

10 ms

Figure 2.8: The shapes of two action potentials, as simulated by the Hodgkin
and Huxley [1952] conductance-based model (left) and the phenomenological
Izhikevich [2003] model (right).

passive properties of dendritic membranes provide the fundamental core for signal

filtration and integration, and thus remain an essential component in understanding

electrical signalling in neural systems, and provide the underlying mechanisms for

neuronal communication.

2.4 Neuronal Communication

2.4.1 Action Potentials

An action potential is a rapid rise and fall in electrical membrane potential. Also

known as spikes, action potentials are extremely short-lived, typically existing on

the sub-millisecond timescale, and travel at speeds varying from one to one hundred

metres per second down the axon. They are typically considered “all-or-nothing”

events, in that spikes are generated when the transmembrane potential exceeds a

particular threshold, and not otherwise, and that the magnitude of the spike is

independent of the injected current. Whilst the shape of an action potential can be

highly variable depending on cell type, stimulation and environment, the structure

can be generalised, as in Figure 2.8.

Due to the high number of inputs to a given neuron, each connected by noisy

synapses and with signals arriving continuously from different parts of the dendritic

tree, the cell’s membrane potential can display strong fluctuations. Despite this,

action potentials are extremely strong, sharp signals which stand out clearly from

the background when measured close to the soma, as seen in Figure 2.9.

Action potentials are a result of a positive feedback loop between the trans-

membrane potential and ionic permeability. As a response to an increase in the

membrane potential or to chemical stimuli, certain voltage-gated ion channels be-

19

25 mV

20 ms

Figure 2.9: A spike train simulated by the Izhikevich [2003] model, driven
by an Ornstein-Uhlenbeck noise. For this particular parameterisation, this
Izhikevich neuron exhibits a period of bursting as well as phasic spiking.

gin to open, increasing the permeabilities PNa+ and PK+ to sodium and potassium

ions respectively, allowing sodium to flow into the cell while potassium escapes it.

For small perturbations around Em, the inbound sodium current is overwhelmed

by the outbound potassium current, bringing the membrane potential Vm back to-

wards its resting value, Em. However, sufficient depolarisation of the membrane

potential leads to a further increase in sodium permeability as more voltage-gated

sodium channels open. This significantly changes the ion’s resting potential, ENa+ ,

and thus, the membrane’s resting potential, Em. This further affects the membrane

potential, Vm, causing it to rise suddenly.

The positive feedback pushes the membrane potential Vm towards ENa+ , at

which point all sodium channels are open and sodium permeability is at a maximum.

Sodium channels begin to inactivate and close, while further voltage-gated potas-

sium channels open and potassium continues to flow out of the cell, hyperpolarising

the cell. In combination with an influx of calcium ions, potassium permeability

is exceptionally high and the potential Vm is driven past its resting potential Em,

towards that of potassium, EK+ , in an undershoot or afterhyperpolarisation. The

membrane’s potassium permeability returns to its normal values as the membrane

potential tends to Em. At this point, the cell enters a refractory period during

which it cannot fire a spike while its sodium channels are still inactive (as opposed

to simply closed) and will not respond to any stimulus. These channels transition

back to their closed states after about one millisecond, after which another spike

20

may be initiated. This refractory effect is what enables an action potential to be

transmitted in a single direction : the area in front of the action potential contains

closed sodium channels, which can be opened normally, whereas the area behind it

is in a refractory state due to its sodium channels being inactivated.

In conductance-based models, such as that of Hodgkin and Huxley [1952],

action potentials are not generated by a changing resting potential, Em. Individual

ionic resting potentials are considered constants; instead, voltage-dependent gating

variables are used to describe the extent to which ionic channels are open. Then, an

ionic current takes a form modified from that in (2.3). The currents due to sodium

and potassium, respectively, are

INa+ = gNa+ m
3 h (Vm − ENa+)

IK+ = gK+ n4(Vm − EK+),
(2.9)

where m, n, h ∈ (0, 1) are dynamic gating variables which evolve as a function of

the transmembrane potential Vm.

Action potentials are typically initiated at the axon hillock, and then travel

down the axon to the presynaptic boutons, carrying a message to the upstream

component of the synapse. There, the message can be sent to any postsynaptic

neurons by means of a chemical or electrical signal.

2.4.2 Synapses

Synapses are the sites at which neurons exchange signals. Typically directional,

synapses are locations where the membranes of two neurons come into close prox-

imity, allowing either the diffusion of chemical signalling molecules, or the direct flow

of ions, between the membranes. Each of the human brain’s 1011 neurons connect

to other neurons an average of 104 times, although this number varies enormously,

depending on the type of neuron. The vast majority of synapses are chemical in

nature. These consist of a presynaptic bouton, or terminal (see Figure 2.1), directly

opposite a region of the postsynaptic cell that is rich in neurotransmitter receptor

proteins. When the synaptic terminal of the presynaptic neuron receives an action

potential, an influx of calcium is caused through the opening of ion channels in the

terminal’s membrane. This causes an activation of the proteins attached to neuro-

transmitter vesicles inside the synaptic terminal, causing them to dock onto the cell

membrane, and to release their neurotransmitter contents into the space between

the two neurons, the synaptic cleft. The neurotransmitter molecules diffuse across

the space, and bind to receptors on the postsynaptic terminal’s membrane. This

21

causes the membrane permeability to certain ions to change, causing a change in

the postsynaptic neuron’s local transmembrane potential. Depending on the type

of neurotransmitter released, and thus the ion channels opened, the resulting post-

synaptic potential change can be either excitatory (depolarising) or inhibitory (hy-

perpolarising). The reuptake of neurotransmitter back into the presynaptic neuron

by active pumps terminates the signalling process.

Figure 2.10: Scanning electron micrograph of a synapse, with part of the
membrane removed to reveal synaptic vesicles, in orange and blue. MicroAn-
gela, Biological Electron Microscope Facility, Pacific Biomedical Research
Centre, University of Hawaii at Manao.

Chemical synapse behaviour can be modulated by spike activity. Depend-

ing on spike timing, intensity and firing frequency, the quantity of neurotransmitter

released may change, postsynaptic membrane receptors may develop augmented

or reduced sensitivity, and ion channel concentration may be altered [Ho et al.,

2011]. Both positive and negative feedback loops exist, whereby synaptic strength

is controlled on both short and long time scales. For example, synapses may be

potentiated for up to a few minutes, following a stimulation by repetitive pulses, a

phenomenon induced in a form of plasticity called post-tetanic potentiation [Zucker

and Regehr, 2002]; long-term potentiation and depression are the primary mech-

anisms for modulated synaptic strength, occurring over several hours to days in

mammals [Glanzman, 2010]. Spike-time-dependent plasticity is a process whereby

two highly temporally-correlated spikes from different neurons affect the strength

22

of synapses between them [Abbott and Nelson, 2000]. Together, these forms of

synaptic plasticity are thought to be possible underlying mechanisms for memory

and learning in the brain [Elgersma and Silva, 1999]. Figure 2.10 shows a chemical

synapse and vesicles full of neurotransmitter.

Electrical synapses, also called gap junctions, occur less frequently than

chemical synapses, and are predominantly found in the retina and cerebral cor-

tex. Gap junctions consist of a large number of transmembrane proteins which

cross the membrane of two cells, with a channel diameter of typically under 2 nm,

simply forming a pore between two neurons. This allows both ions and smaller

signalling molecules to flow from one cell to the other, bidirectionally. In further

contrast to chemical synapses, gap junctions do not have gain, and hence cannot

amplify a received signal. However, the much smaller distance between neurons, on

the order of 3.5 nm, and the lack of a cascade of events to reconstruct the signal,

mean that gap junctions are much faster synapses than chemical synapses. They

have a typical delay of around 0.2 ms, an order of magnitude shorter than for chem-

ical synapses. The speed at which signals can move through gap junctions means

that they allow many neurons to fire synchronously; they are often found in escape

mechanisms such as in Aplysia’s danger response system, where a large amount of

ink is quickly released. Despite their extreme simplicity, in comparison to chemical

synapses, there is evidence for long-term regulation in gap junctions, such as in

the modulation of retinal sensitivity during light and dark adaptation [Hu et al.,

2010]. Like chemical synapses, the permeability gap junctions can be modulated by

voltage [Mammano, 2006], or by neurotransmitters [Cachope et al., 2007]. In the-

oretical modelling studies, gap junctions have been successfully modelled as time-

and state-dependent ohmic resistors [Baigent et al., 1997].

Synapses, then, are essential to neuronal communication : they are the bridge

between single neurons and the network level. They provide a level of tuneable

control over the extent to which signals are passed between neurons, both linearly

and nonlinearly, and are at the heart of network-level plasticity.

2.4.3 Network Connectivity and Structure

The brain is far from a uniform mesh of neurons. It is composed of a large number

of heterogeneous structures, arranged hierarchically by substructure, and intercon-

nected both locally and distally by projecting axon bundles. The cerebral cortex,

for example, is a sheet-like region of tissue, between two and four millimetres thick,

covering the outermost part of the cerebrum. It is made of up to six horizontal

layers of pyramidal neurons with unmyelinated axons, with layers differentiated by

23

the type of neurons and the destinations of their axons. Cortical columns are formed

vertically by neurons in different layers with near-identical receptive fields, a spatial

region where a stimulus is likely to alter the firing of a neuron.

Neuronal network connectivity can be studied on many scales, the smallest

of which is the network topology of neurons connected by their axons and dendritic

trees in full detail. The structure of dendrites is known to strongly influence neuronal

computation [Mainen and Sejnowski, 1996; Vetter et al., 2001]. The passive prop-

erties of dendrites lead to a spatiotemporal filtration, where any signal is generally

attenuated as a function of distance travelled. It has been speculated that a neuron

may therefore label incoming signals as a function of their delay and shape. Neu-

ronal receptive fields are dictated by dendritic morphology, and the signals received

are filtered by the properties of the dendritic trees. A sparse tree may well carry

a signal more faithfully than a heavily-branching tree such as a Purkinje cell, with

less current diffusing along other branches. In addition to their role in integrating

synaptic inputs via passive cable-like properties, as well as the active qualities that

enable them to regenerate propagating signals, dendritic trees are known to be able

to generate back-propagating action potentials, which cause a depolarising current

to travel up the dendritic tree [Stuart et al., 1997].

Connectivity can also be considered on higher spatial scales. The neocortex,

for example, is arranged in vertical hypercolumns, or groups of approximately 60,000

neurons with nearly identical receptive fields. On yet larger scales, anatomists or-

ganise the brain into structures called nuclei which, typically, operate together in a

functional manner. The brain is divided into large areas such as the frontal, tem-

poral, occipital, and parietal lobes, the cerebellum, the brainstem, and the basal

ganglia, each of which can be further divided into areas with functional similarities.

The posterior part of the frontal lobe, for instance, houses the motor strip, which

produces movement, while the hippocampus is associated with long-term memory

formation. Figure 2.11 shows a magnetic resonance imaging (MRI) scan of a central

coronal section through an adult human brain, with certain anatomical features of

the occipital and temporal lobes labelled.

Despite an average of 104 connections per neuron, each differing in strength

over time, and even with connections being made and destroyed continuously, the

general topology of the brain’s connectivity remains fairly static, except in rare

cases. In examples of traumatic injury, where a region of the brain is damaged

or removed, evidence points towards the reorganisation of connectivity in order to

bypass this region and allocate its tasks to other regions.

24

Figure 2.11: Coronal-section structural MRI scan of the author’s brain,
showing various neuroanatomical areas. With thanks to Tomohiro Ishizu at
the Wellcome Neuroimaging Lab at UCL.

2.4.4 Plasticity

Neuroplasticity is a term used to refer to the structurally dynamic processes in the

brain, where neural pathways are rewired or synapses are strengthed or weakened, in

response to stimuli or environmental changes. On the large scale, cortical remapping

is the massive rewiring of connectivity in the brain, typically in reaction to an injury,

or removal or death of a part of the brain. This is routinely seen in the surgical

treatment of severe epilepsy, for example, where seizures are seen to be localised in a

specific region of the brain and do not otherwise respond to medication. The surgical

removal of the damaged part of the brain can lead to a partial reduction or a complete

elimination of future seizures; it can, however, leave the patient with neurological

issues such as paralysis, impaired vision, or speech and language issues, in varying

levels of severity. Functional recovery of these processes occurs as the brain remaps

its connections to avoid the damaged areas and reform functional networks. The

restriction of this type of plasticity has been shown to reduce recovery of sensory

and motor function [Thallmair et al., 1998].

Plasticity also occurs at synapses, which can be strengthened (postsynaptic

potentiation) or weakened (postsynaptic depression), resulting in a change in the

amplitude of postsynaptic action potentials. Plasticity on this scale is closely associ-

ated with learning and memory. The classic Hebbian theory that “neurons that fire

together, wire together” states that when two neurons fire simultaneously, synapses

25

between them are reinforced. It is used as a basis for explaining associative learning,

where two cells serving related functional roles may be stimulated at the same time.

Synaptic plasticity is typically broken down into short-term and long-term

effects. Short-term synaptic facilitation may arise from an increased number of vesi-

cles present in the presynaptic bouton, or an increased probability of vesicle release,

while short-term synaptic depression can be caused by a depletion in the number

of neurotransmitter vesicles available due to recent excessive spiking. Described as

lasting on the order of several seconds, short-term plasticity is thought to contribute

to temporal filtering of incoming signals, because it is elicited by temporal activity

patterns [Fortune and Rose, 2000].

Plasticity on timescales of hours or days is referred to as long-term plasticity,

and is closely associated with the formation of memories or consolidation of learning.

Long-term potentiation and depression can be explained by the idea of spike-time-

dependent plasticity. Backed by experimental results, spike-time-dependent plastic-

ity leads to the potentiation of a synapse if the presynaptic neuron fired just before

the postsynaptic neuron, and a depression of the synapse if the presynaptic neuron

fired just after. In this way, if the presynaptic neuron was likely to contribute to the

postsynaptic neuron’s excitation, that connection is strengthened, while the influ-

ence of signals that did not cause excitation is reduced. This process can be related

back to the theory of Hebbian learning : if a neuron is downstream (postsynaptic) of

another (presynaptic) neuron, and it fires in response to an incoming action poten-

tial fired by the presynaptic neuron, these can be said to have “fired together”, and

the synapse is potentiated. If the presynaptic neuron fired after the postsynaptic

cell, this may be explained by coincidence rather than the passing of a meaningful

signal, and the depression of the synapse can lead to an increased signal-to-noise

ratio. Compelling evidence for spike-time-dependent plasticity in dendrites is sum-

marised in a recent review by Dan and Poo [2004], where this form of plasticity is

associated with learning and memory.

2.5 The History of Dendritic Physiology and Modelling

The modelling of dendritic cables has its roots in nineteenth-century electrophysi-

ology, when experimentalists such as Matteucci and du Bois-Reymond first began

measuring the electrical currents generated in muscle tissue in the 1840s. The idea

of a core conductor, a long and thin electrically-conducting core surrounded by a

thin, insulating membrane, was first put forward by Matteucci [1863]. The idea

was to be refined by Hermann in a series of publications over the next thirty years,

26

during which Weber, a colleague of Hermann, developed a mathematical treatment

of core conductors [Weber, 1873] which describes the flow of current through a long,

three-dimensional structure. Early testing of core conductor theory was qualita-

tive in nature, until the necessary equipment and preparation methods had been

developed.

Significant progress in microscopy drove advances in physiology and mi-

croanatomy in the 19th Century. It was Theodor Schwann who put forth the idea

of “one universal principle of development for the elementary parts of organisms”

[Schwann, 1839] and hence, the theory that cells form the basic “units” in all living

things, and that new cells are produced from preexisting cells; in spite of this, the

view was not readily accepted with respect to the nervous system due to its anatom-

ical complexity. In 1860, the basic anatomical structures of neurons – the soma, the

axon, and the dendrites – had been described by the German neuroanatomist Otto

Deiters [1860]; however, a mischaracterisation contributed to further evidence for

reticular theory, the preferred theory that the nervous system’s protrusions, the ax-

ons and dendrites, fused together seamlessly to form a continuous reticulum. The

theory was particularly strongly supported by Camillo Golgi, an Italian physician

who had developed a groundbreaking histological staining technique [Golgi, 1873]

which allowed the sparse staining of entire neurons using a silver chromate precipi-

tate.

A young Spanish anatomist, Santiago Ramón y Cajal, discovered the staining

method in 1887 and, instantly attracted to its practicality, began work on improving

it. In 1888, Ramón y Cajal began a systematic histological study of the vertebrate

nervous system that culminated in his challenging of reticular theory in 1894 after a

series of pioneering, radical publications, which were later organised in his magnum

opus, Textura del sistema nervioso del hombre y de los vertebrados [Ramón y Cajal,

1899]. Ramón y Cajal’s work pointed to a theory of individuality of the cells in

the nervous system, where axons terminate freely and that information travels from

the dendrites and the soma, down the axon (the formula of dynamic polarization).

Shortly after German scientist von Waldeyer-Hartz coined the term neuron to denote

the individual cells in Ramón y Cajal’s description, the neuron doctrine was created;

it states that neurons are individual cells which consist of soma, axon and dendrites,

and that they conduct impulses in a directional manner.

The work of Ramón y Cajal was not limited to proposing the neuron doctrine,

a central description that, updated, still stands today, despite some exceptions.

His work with the Golgi stain led to a collection of highly-detailed illustrations of

neural morphology and connectivity. This was the first time that neuroanatomy had

27

Figure 2.12: Neurons stained by the Golgi technique applied to a 200 µm
coronal slice of the rat brain. The stain shows a number of pyramidal cells,
with the rest being glial cells. Image reproduced with thanks to Kyle Ploense,
Department of Psychological and Brain Sciences, University of California at
Santa Barbara.

been revealed in such fine detail, demonstrating the enormous variety in neuronal

morphology, hinting at the functional differences between different neurons.

Meanwhile, in 1855, a series of letters regarding a submarine, transatlantic

telegraph system was presented to the Royal Society. The exchange, initiated by

George Gabriel Stokes, pointed William Thomson towards the work of Michael Fara-

day regarding the bandwidth limitations of the telegraph cable. Thomson promptly

derived the cable equation with application to the transatlantic telegraph, describing

the dynamics of the cable membrane’s voltage as a function of space −∞ < x <∞
and time t ≥ 0 :

kc
∂v

∂t
=
∂2v

∂x2
− hv, (2.10)

where c is the capacitance across the insulation per unit length, k is the resistance

of the cable per unit length, and where h parameterises the leak of current through

imperfect isolation around the cable. Using the ideas of Fourier [1822], Thomson

[1854] provided solutions for both steady-state and transient stimulation of the cable.

The work earned him a knighthood the very next year, and in 1892, he was ennobled

by Queen Victoria, henceforth to be known as Lord Kelvin.

It was Hoorweg [1898], Cremer [1899], and Hermann [1905] who first recog-

28

nised the applicability of Thomson’s cable theory to neuronal core conductors. The

approximation and accompanying simplification of reducing the problem to a one-

dimensional cable proved to be both incredibly important and technically sound

[Pickard, 1971]. Estimates for the membrane capacitance and resistivity were im-

proved upon using new measurement techniques by Curtis and Cole [1938] and by

Cole and Hodgkin [1939] respectively, both in the giant axon of the squid – a very

large axon discovered by John Zachary Young [1936]. The axon’s large diameter (up

to 1 mm) made it possible for experimentalists to insert voltage-clamp electrodes

into the axonal lumen. In their 1946 paper, Hodgkin and Rushton fully derived

the cable equation and estimated the passive cable parameters from a single axon

[Hodgkin and Rushton, 1946]. The next year, Davis and Lorente de Nó [1947] pre-

sented their results on the peroneal nerve of the bullfrog, a nerve bundle comprised

of both myelinated and unmyelinated axons, but were unable to accurately estimate

the parameters of the cable equation due to their recordings being across several

axons with varying radii and levels of myelination. Further papers from Hodgkin

[1947] and Katz [1948] made cable theory for single, unmyelinated axons a concrete

reality. Several important technical achievements were made in the following years :

Marmont [1949] and Cole [1949] developed space-clamping and current-clamping;

Hodgkin and Katz [1949] succeeded in isolating the sodium current from the potas-

sium current; and Hodgkin et al. [1952] were later able to combine voltage-clamping

with space-clamping. These techniques enabled Hodgkin and Huxley [1952] to per-

form their seminal work on characterising the dynamics of the membrane voltage as

a function of these ionic currents – a conductance-based model still in widespread

use today, which explained the initiation and propagation of action potentials in

neuronal cables. This work earned its authors the Nobel Prize in Physiology or

Medicine in 1963.

Core conductor theory and cable theory laid the foundations for the mod-

elling of currents in branching dendritic trees. The work of Hodgkin and Huxley

brought about an increase in electrophysiological recordings, and advances in tech-

nology led to an interest in the axon’s unmyelinated cousins – the dendritic trees.

In 1957, Wilfrid Rall wrote a letter to Science in which he corrected the underesti-

mates in the membrane time constants made by experimentalists during intracellular

recordings with microelectrodes [Coombs et al., 1955; Araki and Otani, 1955; Frank

and Fuortes, 1956; Fatt, 1957]. Rall’s argument, that current injected at the soma is

not confined to the soma, but will escape via the membrane and into the dendrites,

explained why the time constants measured in motoneurons was an underestimate;

he went on to state that taking the cable-like properties of the dendrites into ac-

29

count was essential to correctly estimating the membrane’s time constant. Two

years later, Rall published Branching dendritic trees and motoneuron membrane

resistivity [Rall, 1959], the paper which famously introduced cable theory for den-

drites, in a more familiar form, which we present briefly here, to return to in detail

in Section 3.1 :
∂V (x, t)

∂t
=
λ2

τ

∂2V (x, t)

∂x2
− V (x, t)

τ
, t ≥ 0, (2.11)

where λ is the system’s characteristic length-scale, and τ is the membrane’s time

constant. The theory formulated the relationships between the geometry of the neu-

ron and its electrical properties, such as membrane resistivity and capacitance. Rall

solved for the steady-state membrane potential for cylindrical branches of arbitrary

length and radius, and in 1960, for transient potentials due to injected currents [Rall,

1960]. In 1962, Rall introduces the concept of equivalent cylinders [Rall, 1962a], a

class of dendritic branching pattern that permits a direct mapping from the com-

plete dendritic tree to a single, uniform cylinder; with it, he successfully predicted

the time-course of the transmembrane potential in a model motoneuron of the cat

spinal cord.

Another landmark paper by Rall was published in 1964 : the compartmental

model [Rall, 1964]. By segmenting the dendrites into small, isopotential compart-

ments, each with passive membrane dynamics, it is possible to solve cable theory

problems with a system of ordinary differential equations. Figure 2.13 shows a seg-

ment of nerve cylinder, discretised into isopotential compartments, modelled by the

equivalent circuit below it. This paradigm is still the most widely-used today, being

the core of popular numerical solvers such as NEURON [Carnevale and Hines, 2006]

or GENESIS [Bower and Beeman, 1998]. Based on further work by Rall in the

latter half of the 1960s, Jack and Redman derived analytical solutions to the cable

equation on finite cylinders for a range of injected stimuli and boundary conditions,

using which they suggested a method for estimating the membrane’s time constant

and the cable’s electrotonic length [Jack and Redman, 1971].

Despite significant advances over the past fifty years, there still remain many

open questions regarding dendritic function. Due to their sheer complexity, the

development of generally-applicable methods for understanding the dynamics of

voltage on arbitrary dendritic trees is difficult, and visualisation or interpretation

of the results of applying such methods is nontrivial. How the morphology of a

dendritic tree affects current propagation and, hence, the transmembrane poten-

tial which governs communication and computation in the brain, remains a central

question in modern neuroscience.

30

a

∆x

C m

Rl

Extracellular Medium

m R

V

V

e

i
Cytosol

Figure 2.13: A segment of dendritic fibre, modelled as a uniform, insulated
cable of radius a and compartmentalised into small, isopotential segments
of size ∆x. Underneath, the equivalent circuit which encodes for the passive
dendritic cable. The main components are the membrane capacitance Cm,
the transmembrane resistance Rm and the longitudinal resistance through
the cytosol, Rl. Here, three compartments are shown.

2.6 Dendritic Computation

Arguably the biggest strength and weakness of passive cable theory is, simultane-

ously, the fact that it assumes that the transmembrane potential is a linear function

of current. This simplifying assumption has allowed significant progress in the study

the voltage on dendritic trees, and is correct should the voltage stay far from the neu-

ron’s firing threshold; action potentials are highly-nonlinear events, and they would

not be treated correctly by a linear theory. In addition to this, a growing body

of evidence is demonstrating that dendrites are endowed with active, or nonlinear,

properties [Johnston and Narayanan, 2008], attributed to the voltage-dependent ion

channels that pepper their surfaces. Despite this limitation, the passive component

of current diffusion along dendrites remains the underlying backbone for how current

propagates and is integrated along the dendrites.

The core of this work will explore methods in passive cable theory, which

aims to understand the fundamental core behaviours of diffusing current on branch-

31

ing structures. Nonetheless, it is important to stress that dendrites are not purely

current-integrating devices, but that they demonstrate incredible biological prop-

erties, all essential to the correct functioning of the brain, and all allowing the

dendrites to apply some sort of transformations to the signal – a mechanism for

computation. In this section, we briefly describe some of these properties, with the

aim of demonstrating areas of future work in the field of dendritic dynamics, and,

of course, to expose the potential for computation in dendritic trees.

2.6.1 Spatiotemporal Filtering

An assumption inherent to the modelling of dendrites as core conductors, also

present in dendritic cable theory, is that dendritic fibres behave like poorly-insulated

electrical cables. Any current in a cable will diffuse along it, leading to a “smooth-

ing” of the signal : if we inject a delta pulse of current, after some time, we will

observe a Gaussian (whose width increases with the root of the time spent diffus-

ing). Hence, one property of passive dendritic filtering is the spatial smoothing of

the signal. This also implies that a temporal delay occurs between the time of cur-

rent injection and the point at which the signal is at its maximum, for any distance

greater than zero. The leaky property of the membrane bestows an attenuative

property to the signal’s filtration, as a function of the distance it travels. Passive

dendritic transfer functions show a monotonic decay from zero frequency as in a low-

pass filter, demonstrating that the attenuation is also a function of the frequency of

the signal [London and Häusser, 2005].

As a result of these linear spatiotemporal filtering properties, a signal mea-

sured at any distance from its point of injection will be significantly broader than

the original current injection, and its integral will be smaller due to some current

leaking into the extracellular space. Wilfrid Rall [1964] postulated that this mecha-

nism could be used to perform simple computations, via a “labelling” of the synaptic

inputs as a function of their electrotonic distance from the soma.

With the help of the impulse response function, certain characteristics of

the spatiotemporal filtration that occur in dendritic trees can be brought to light.

Cook et al. [2007] were able to measure the characteristic responses of a dendritic

tree experimentally by injecting long-duration white noise, and then modelled the

tree’s response as a linear filter followed by nonlinear static-gain. Their linear filter,

equivalent to our Green’s function, shows bandpass behaviour induced by the active

properties of the dendritic tree; they compare this with the lowpass behaviour seen

in passive dendrites. Mainen and Sejnowski [1996] showed, through simulation on

reconstructed neocortical neurons, that varying dendritic geometry is sufficient to

32

reproduce the breadth of firing patterns seen in the cortex. Vetter et al. [2001]

demonstrated how the invasion of action potentials from the soma into the dendritic

tree depended strongly on the morphology of the tree, experimentally obtaining

visual representations of the mapping from the tree’s geometry to its electrotonic

properties, similar to the attenograms provided by the morphoelectrotonic transform

due to Zador et al. [1995].

2.6.2 Spines

Dendrites are not simply long, smooth cables. Instead, most are covered in dendritic

spines, protrusions dispersed along the dendrites, many of which have thin necks

and bulbous heads, much like a presynaptic terminal (see Figure 2.1). Potentially

numbering thousands per dendritic tree, dendritic spines serve to receive incoming

connections from the axon terminals of presynaptic neurons. Figure 2.14 shows an

abundance of spines on a dendritic cable, and demonstrates the high concentration of

glutamate receptors on their top surfaces, kept adjacent to the presynaptic terminal

by the shape of the spine [Nimchinsky et al., 2002].

Figure 2.14: A hippocampal neuron expressing the red DsRed protein, with
its GluR1 glutamate receptors tagged with the green fluorescent protein,
GFP. Eduard Korkotian, Weizmann Institute of Science, Israel, with thanks.

The space inside the dendritic spines is full of organelles that play an active

33

role in shaping synaptic plasticity, as well as playing roles in communicating action

potentials to the dendrites. For example, there is evidence to show that diffusional

exchange between spine and dendrite is one hundred times slower than expected

for free diffusion [Sabatini et al., 2002], pointing towards the spine neck providing

a means of isolation between the spine and the dendrite on a timescale closer to

that of biochemical reactions than purely electrical ones. The neck could also act

on faster timescales as a simple Ohmic resistance, which could then be regulated by

the length and breadth of the spine neck [Crick, 1982]. Increasingly, spines are being

thought of as the dynamic, structural backbones which allow both biochemical and

electrical modulation of excitatory synapse strength [Lee et al., 2012].

2.6.3 Active Currents

Should a presynaptic terminal receive an action potential, causing a release of neu-

rotransmitters across the synaptic cleft, a postsynaptic action potential will be ini-

tiated in a postsynaptic dendritic spine. With the density of spines able to approach

ten per micrometre of dendritic cable on some neurons [Koch, 1999], it is easy to

imagine that the current due to this action potential could diffuse along the dendritic

cable and push neighbouring spines over their own voltage thresholds, initiating fur-

ther action potentials [Shepherd et al., 1985]. Because the dendritic action potentials

that make up the active currents in dendrites are strongly nonlinear, they cannot be

treated by passive cable theory. Baer and Rinzel [1991] studied a system of dendritic

cables with a continuous density of spines, assuming that spine head voltage is a

function varying continuously with space as well as time. However, in reality, these

active currents are generated at discrete, separated sites. A discrete “Spike-Diffuse-

Spike” model was therefore proposed by Coombes and Bressloff [2000, 2003], and

extended by Timofeeva et al. [2006], work in which they observe that the propagating

wave is saltatory rather than smooth.

A simpler treatments of active currents was proposed by Koch [1984], who

linearised the currents due to the voltage-gated ion channels in dendritic membranes.

He modelled the membrane in terms of resistances and capacitances, as in passive

cable theory, but also in terms of inductances, a contribution from the linearised

active currents. The behaviour of these quasiactive dendritic cables demonstrated

voltage overshoots in response to step currents; their transfer functions contained a

maximum at non-zero frequencies, exhibiting a bandpass quality which selectively

amplifies signals with a given frequency. Koch was able to numerically invert the

transfer function to obtain the Green’s function, which, in contrast with purely

passive cables, is no longer positive everywhere.

34

The additional behaviour brought on by the active channels present on den-

dritic spines, namely the active propagation and regeneration of action potentials as

they diffuse along the tree, and the oscillations around the overshoots, influence the

potential of dendrites to perform computational operations. The tree can now be

thought of as partially constructed of an excitable medium, with the potential for

propagation failure [Timofeeva et al., 2006] due to channel refractory times; certain

inputs may now be amplified more than others. Dendritic action potentials are free

to travel both up and down the tree, with this backpropagation acting as a positive

feedback loop : if a presynaptic potential is enough to send the neuron over its

threshold and it fires a spike, this can be sent back up into the tree and impact,

via plasticity, the strength of the synapse that received the presynaptic potential

[Magee and Johnston, 1997].

2.6.4 Coincidence Detection

Coincidence detection is a phenomenon particularly important to the auditory and

visual systems. Intra-aural time differences can be used to locate the source of

a sound. Localisation is done by the bipolar coincidence-detector neurons in the

brainstem, each of which receives input from both ears into separate dendritic trees,

and is able to compare the delay between inputs up with an accuracy of 10 - 100 µs

[Agmon-Snir et al., 1998]. When two signals arrive at the soma from different

dendrites, an action potential is fired. However, two signals along the same dendrites

are integrated in a sublinear fashion, and cause only a subthreshold response at the

soma. These neurons therefore demonstrate a maximal response when they receive

inputs from both ears.

An analogy can be drawn between coincidence detection and a multiplication

operation, given binary inputs, or a logical AND operation. This phenomenon was

shown experimentally by Polsky et al. [2004], where evidence of a positive feedback

loop was demonstrated in pyramidal neurons, for synchronous inputs on the same

dendritic branch. The resulting current from NMDA receptor activation would

recruit further NMDA channels, leading to a nonlinear feedback, and hence, to

coincidence detection.

Backpropagation of action potentials plays a role in modulation of synaptic

plasticity, and is mediated by the coincidence detection that occurs at the synapses.

Stuart and Häusser [2001] showed that distal synapses on the apical dendrites of

some pyramidal neurons could trigger a nonlinear amplification of backpropagating

action potentials when paired with incoming synaptic input from a presynaptic

neuron.

35

2.6.5 Directional Selectivity

Neurons need not be bipolar in order to compute the direction in which a signal is

coming from. In the retina, starburst amacrine cells, such as those in Figure 2.15, are

essential to the selective response of the neighbouring retinal ganglion cells. While

the exact mechanism remains uncertain, and despite their symmetry, experimental

evidence points to starburst amacrine cells serving a key element in the computation

of direction in moving stimuli [Yoshida et al., 2001].

Figure 2.15: A retinal starburst amacrine cell from a mouse, imaged by
confocal microscopy. Reproduced from Keeley et al. [2005], with thanks to
Patrick Keeley.

These peculiar cells are one of a small number of neurons that secrete both

an excitatory and an inhibitory neurotrasmitter. They respond more strongly to

signals moving from the soma towards the distal dendrites, rather than signals

moving in the opposite direction [Vaney et al., 2012]. It has recently been shown

that starburst amacrine neurons generate directionally-selective inhibition into the

ganglion cells, with a postulated mechanism having to do with the large area of

overlap between starburst cells and the selective expression of either excitatory or

inhibitory neurotransmitters, based on the direction in which the asymmetry of

connection between the starburst cell and postsynaptic ganglion cells [Taylor and

Smith, 2012].

36

2.6.6 Dendritic Democracy

Due to the significant spatiotemporal filtration that occurs as current diffuses along

dendritic cables, there can be substantial attenuation of a signal from a distal

synapse. In pyramidal cells, simulations have demonstrated a hundred-fold attenu-

ation [Stuart and Spruston, 1998], which leads to the distal dendrites having a far

smaller impact on somatic voltage than proximal dendrites. Häusser [2001] proposes

three possible mechanisms by which “dendritic democracy” could be achieved : am-

plification of distal signals by increased voltage-gated ion channel density or by

scaling the strength of distal synapses, or an increased number of synapses to presy-

naptic neurons at the distal dendrites. Timofeeva et al. [2008] explore a democratic

dendritic system analytically, and find that the scale of a synapse must scale linearly

with distance from the soma at the proximal dendrites, but superlinearly at the dis-

tal dendrites, but that after a threshold distance, there is no scaling of synaptic

strength that can ensure democracy for synaptic input.

2.6.7 Computing with Dendrites

In addition to the aforementioned phenomena, which bestow computational power

upon the brain, there are a plethora of others, from logical operations to signal

segregation, many of which are reviewed in an excellent publication by London and

Häusser [2005]. All of these mechanisms contribute to the functioning of the brain,

to memory, to consciousness. For many, we are still in the very early stages of study,

with little knowledge of how they operate; many others may well still be unknown

to us. In order to develop an understanding of these processes, it is essential that

we have efficient computational and mathematical tools at our disposal – tools that

enable us to directly study the impact of changes in dendritic structure on their

current-integrating properties. In the next section, we review a number of elegant

and powerful approaches that have been developed to date.

2.7 Continuous-Space Dendritic Modelling

By far the most prevalent methods for the explicit spatial modelling of dendritic

trees used today are derivatives of Rall’s [1964] compartmental model. The assump-

tions made by certain geometrical simplifications, such as Rall’s [1962a] equivalent

cylinder simply do not satisfy the majority of dendritic morphologies; with the expo-

nential increase in computing power over the last decades, the major computational

costs associated with the detailed morphological description of a reconstructed den-

37

dritic tree are becoming less significant. It is now possible to model highly-complex

dendritic trees, with thousands of branches, using numerical simulators such as the

aforementioned NEURON and GENESIS packages in short times and to high ac-

curacy, if the number of compartments is large enough. This factor is arguably the

greatest bottleneck in the numerical simulation of large neuronal systems, where

a substantial number of cells is simulated in full spatial extent. Such simulations,

where numerical integration must be performed for an incredible number of differ-

ential equations, remain prohibitively slow. Recent work into the development of

parallelised, high-performance methods to overcome this issue and allow the sim-

ulation of blocks of neural tissue have yielded positive results, with, for example,

the successful simulation of a system of one million neurons, discretised into one

billion compartments [Kozloski and Wagner, 2011]. Despite these strong advances

in efficiency, the authors estimate that it would take approximately one full week of

computing for three seconds of simulated data, on a hypothetical massively-parallel

computer with 107 nodes, for a system the size of the human brain. They sug-

gest that near-realtime simulation of a system this large would require an exaflop

computing system.

In contrast to numerical methods, analytical solutions are exact, and obtain-

ing quantitative results from these equations is immensely more efficient, in terms

of computational performance. In addition, the possibility of obtaining an analyti-

cal solution which can provide mathematical insight into the relationships between

model variables and parameters is highly attractive. The difficulty, however, lies in

the construction of the analytical solution. Dendritic systems are characterised by

asymmetry, inhomogeneous branches and a large number of boundary conditions.

Analytical solutions have been found in the time domain only for passive dendrites;

resonant dendrites can be approached only in the frequency domain. An essen-

tial tool exploited in the construction of analytical solutions for the cable equation

on dendritic systems is the Laplace transform, used as a method of solving par-

tial differential equations. The power afforded by this integral transform is such

that the vast majority of continuous-space modelling methods for cable theory are

Laplace-domain approaches. A number of these methods, able to construct analyt-

ical solutions to the cable equation on trees with arbitrary morphologies, will be

described below.

2.7.1 Analytical Approaches to Cable Problems

Considerable work has gone into developing approaches that allow the algorithmic

construction of an exact, computationally-efficient solution, given a certain dendritic

38

morphology. The vast majority of those published operate from within the Laplace

domain : regardless of the difficulties that arise from inverting this transform, the

potential for algebraic manipulations that it offers are extremely seductive. Here,

we will describe a number of methods for constructing analytical solutions to cable

problems on arbitrarily-branching trees, only one of which operates directly in the

time domain. The various approaches can be broadly categorised according to their

basic mechanism : those based on an influential geometric notation, those which

relax the constraints in Rall’s [1962a] equivalent cylinder, those which evaluate an

infinite sum whose terms must be determined, and those which simply construct a

large system of linear equations.

Graphical Calculus

The first general analytical solution to the cable equation on arbitrarily-branching

trees was provided by Butz and Cowan [1974]. Citing the difficulty in deriving an-

alytical expressions for voltage transients on branching cables, and the enormous

complexity of such expressions when they could be found, Butz and Cowan [1974]

derived a graphical calculus based on a geometric notation. Their method allowed

them to construct solutions to the cable equation in a piecewise manner, by fol-

lowing a set of rules applied to the tree’s morphology. Their method combined the

frequency-domain solutions for the response to stimulus on a finite, non-branching

cable, and for the voltage around a single branching point. By combining these

equations and exploiting symmetries in subgraphs in order to break more complex

structures down into either single cables or branching points, the authors developed

a method which allows the Laplace-domain transmembrane potential to be written

down immediately, for any configuration of stimuli and for any branching tree, in-

cluding those with a higher branching degree than seen in dendrites. They provide

examples of the application of the graphical calculus for branching trees with up to

seven branches, which demonstrate how rapidly the manual construction of a solu-

tion can become complicated, even for small trees. They go on to consider various

boundary conditions and the inclusion of a soma, modelled as a lumped impedance.

However, the solutions provided by this method remain in the Laplace domain, a

notoriously difficult transform to invert numerically. Butz and Cowan [1974] did not

provide details on how to approach inverting their solution into the time domain;

however, they show that, for steady-state solutions (taking the limit as s → 0), an

inverse transform is not required and the algebraic solution is provided immediately

from the Laplace-domain solution.

This difficulty was addressed by Horwitz [1981], who noted that all solutions

39

provided by the Butz and Cowan [1974] calculus can be written as the product of

four functions : one each for the measurement point and the injection point, one

corresponding to the tree’s morphology, and one for the Laplace-transform of the

injected current. Horwitz [1981] notes that, should the tree contain certain symme-

tries, the four functions can be inverted into the time domain analytically, and by

convolution theorem, an integral involving the inversions of the four Laplace-domain

functions can be used to compute the time-domain transmembrane potential. Hor-

witz [1981] calls these inverted functions for symmetrical trees “primitive integrals”,

for which we assume that the tree’s branches have the same radii and that the mem-

brane time constant remains constant everywhere along the tree. These primitive

integrals are derived for simple structures, and provide a basis for computing the

time-domain solution. For asymmetrical dendritic trees, such as those with unequal

radii, Horwitz [1981] computes correction terms to each of the four functions using a

Taylor expansion, allowing an approximate solution to be found. The time-domain

solutions provided by this method are valuable; however, the method remains a

manual one in that the inverse transforms need to be found by inspection, from ta-

bles relating an expression to its Laplace transform. Even for the primitive integrals,

which do not require an approximation by Taylor expansion, finding the inversions

in closed-form to allow a convolution to be taken analytically means that this would

be non-trivial to automate algorithmically. At least one of the four functions scales

in its complexity with the size of the tree, and therefore, there is no guarantee

that an algorithm could be written to decompose the Laplace-domain solution from

the Butz and Cowan [1974] calculus into Horwitz’s [1981] four simpler functions,

that a symbolic engine could provide an inverse Laplace transform, or that it could

compute a closed-form convolution with the inverted functions in reasonable time.

The work of Butz and Cowan [1974] was taken in another direction by Koch

and Poggio [1985], who developed four rules with which the geometric calculus could

be applied to any acyclic branching structure algorithmically. The rules describe

the frequency-domain solutions for the impedance of a branch and a terminal, the

total impedance of a branching point, the voltage along a cable if a current were

to be injected at a terminal, and the voltage along a cable should the voltage be

known at one end of the cable. This reformulation of the original geometric notation,

applied recursively, results in the “folding” of a branching tree into a finite cable,

upon which the transfer function can be calculated. Koch and Poggio [1985] went

on to implement their rules in an algorithm, thus allowing a solution to be obtained

more efficiently than an implementation of the original Butz and Cowan [1974]

method. They suggest that the transfer function can be inverted back into the time

40

domain using an inverse Fast Fourier Transform; errors are thus only introduced in

this final stage. Despite this, they provide no numerical results demonstrating the

method’s accuracy. Furthermore, whilst using an inverse Fourier transform can be

used to perform an inverse Laplace transform after a variable change, this method

can present some inherent instabilities and high sensitivity to parameters, especially

in functions with rapidly-changing derivatives, such as those that would arise in the

transfer function between two closely-positioned points.

Linear Systems of Laplace-Domain Equations

Citing the long, complicated approaches of Butz and Cowan [1974], Horwitz [1981],

and Koch and Poggio [1985], a simpler approach was proposed by Holmes [1986].

By deriving a general equation for the Laplace-domain transmembrane potential

at branching points and terminals on the tree, Holmes [1986] puts forth a method

revolving around a single equation describing the voltage at a branching point as

a function of the voltage at neighbouring branching points. The scheme is easily

applicable by computer to complex dendritic trees : by applying the equation as

a boundary condition at each node, a system of simple equations for the Laplace-

domain transmembrane potential can be constructed. The method yields n+1 equa-

tions for a tree with n branches – a large number of equations, but by exploiting the

sparsity of the system, the equations can be solved using Gaussian elimination prior

to taking a numerical inverse Laplace transform to return to the time domain. This

method has the advantage of solving for the transmembrane potential everywhere

on the tree simultaneously. By way of comparison, the methods based on the Butz

and Cowan [1974] calculus will compute the transfer function for a pairwise com-

bination of input and measurement locations on the tree; should we be interested

in how current diffuses along the entirety of the tree, we would require multiple

applications of the Butz and Cowan [1974] scheme, one for each input-output pair

of interest. However, the immediate downside to the Holmes [1986] approach is that

the resulting large system of equations requires evaluating at many frequency values

in order to invert the transform.

Infinite Series Approaches

In 1991, the first time-domain solution to the cable equation for arbitrary trees was

published in a paper by Abbott et al. [1991]. The path integral for dendritic trees

was formulated by generalising Brownian motion from a line to the tree, and comes

in the form of an integral of this generalised Brownian measure over all possible

41

paths from the point of measurement to the point of injection on the tree. Abbott,

Farhi and Gutmann use the method of images to write the Green’s function solution

for a single branching node in terms of the solution for an infinite cable. They obtain

a coefficient, giving a probabilistic weighting to the paths as they pass through or

reflect off the node, again based on Brownian transition probabilities. These calcu-

lations provide a set of rules for constructing Brownian paths which count towards

the measure on the tree. The Brownian paths are then generalised to deterministic

trips from the point of measurement, x, to the point of current injection, y, going

through a given series of nodes on the tree, and in a given order. Each trip has asso-

ciated with it a coefficient, Atrip, which is derived from the probabilistic weightings

of the Brownian paths; the length of the trip can be calculated as the sum of the

lengths of the edges travelled by the trip. For every trip generated, knowing the

trip’s length and coefficient is sufficient to compute the Green’s function solution as

a sum-over-trips. The paper finishes by introducing a reciprocity condition where,

if we know the Green’s function from x to y, we are able to compute the Green’s

function from y to x using the radii of the edges on which x and y reside. A follow-up

paper by Abbott [1992] formalises the construction of the Green’s function as a sum

over discrete trips rather than as an integral over probabilistic paths, and presents a

series of diagrammatic rules for finding valid trips and computing their coefficients

Atrip from the tree’s morphology. Abbott provides a proof that the sum-over-trip

series is convergent, assuming an infinite binary tree where the radii of all branches

are equal. Some results for a fifteen-branched tree are presented, showing conver-

gence of the sum-over-trips solution after inclusion of approximately ten thousand

terms. Finally, in the third paper in the series, Cao and Abbott [1993] provide an

algorithm for the generation of valid trips on a tree, by introducing the concept of

trip classes, a classification of the trips according to the direction they leave their

starting point x and the direction from which they arrive at their termination point

y. By using the four classes ideology, it is possible to construct all x → y trips by

inserting what Cao and Abbott term “excursions”, which are essentially a deviation

from the shortest, most direct trip by visiting either a neighbouring node, or by the

repeat visiting of a node already in the trip. By adding more and more excursions,

Cao and Abbott generate terms in the sum-over-trips solution in order of increas-

ing length, a heuristic which they justify by demonstrating that trips contribute

superexponentially less as their lengths increase. The method is especially accurate

for short times, and allows a solution for the transmembrane potential to be found

directly in the time domain.

In a series of five papers by Major, Evans and Jack starting in 1993 [Ma-

42

jor et al., 1993], an analytical solution for the cable equation on arbitrary trees is

presented as an infinite series of exponentially-decaying terms, each with different

amplitudes and time constants. The parameters of the equation can be obtained us-

ing a recursive algorithm that solves a transcendental equation, explicitly revealing

some of the system’s fundamental physical constants. In direct contrast with Ab-

bott’s approach, this infinite series converges particularly well for late times. Their

method generalises to dealing with somatic shunts, simulating the damage caused

by the insertion of an electrode into a soma, as well as for voltage-clamped systems.

Solutions to the amplitudes are found in the Laplace domain, and inverted using

Cauchy residue theorem. The time constants obtained, however, are very sensitive

to model parameters, and the method is mathematically very convoluted.

Equivalent Cables

A very different approach was proposed by Poznanski [1991], who extended the

equivalent cylinder methodology by Rall [1962a, 1977] to allow for an analytical

solution to be found for a tapering cylinder. Rall’s original constraint stated that

the sum of the 3/2-power of the radii of daughter branches must be equal to the

3/2-power of the radius of the mother branch. For a class of motorneurons, this

assumption is relatively well-justified; for other types of neurons, this geometric

constraint is not satisfied. Poznanski was able to generalise the equivalent cylin-

der model to deal with a much larger class of neurons, such as those that satisfy

trigonometric, quadratic or exponential relations in their radii. His method maps

the tree onto an equivalent tapering cylinder, on which the cable equation can be

solved explicitly.

In 1993, Whitehead and Rosenberg [1993] distinguished the equivalent cylin-

der from the equivalent cable : whilst both can be nonuniform, the equivalent

cylinder produces the same depolarisation at the soma as does the original den-

dritic tree, whereas the equivalent cable allows the transmembrane potential to be

computed everywhere on the original tree, and not just at the soma. Proposing a

method for the construction of equivalent cables, Whitehead and Rosenberg stress

that their approach has more value as a tool for visualising the electrotonic prop-

erties of the tree, rather than as a method for solving the Green’s function : they

provide illustrative results of reducing trees to equivalent cables, and explain how

certain aspects of the tree’s electrotonic behaviour can be inferred back from its

morphology. The work was furthered by Lindsay et al. [2001], who suggested a

series of transformations which map any uniform branching point on the dendritic

tree to an unbranched structure, allowing the construction of equivalent cables from

43

dendritic morphologies. An algorithm was presented in a subsequent publication by

Lindsay [2003].

Further Work in Cable Theory Methods

Over the last fifty years, numerous powerful approaches have been developed for

computing the membrane potential everywhere along a dendritic tree. Some meth-

ods are constrained to certain geometries, limiting their applicability in general

cases. Many others are applicable to arbitrary morphologies, but may be mathe-

matically or computationally involved, leading to difficulty in implementing com-

putational methods or in slow algorithm runtime. A large fraction of methods are

restricted to the Laplace domain, and thus have to surpass the additional hurdle

of requiring an inverse numerical Laplace transform. The most popular methods

to date are based on compartmental methods, which operate directly in the time

domain, but can be numerically demanding for large systems.

In order to understand the voltage dynamics of large dendritic trees, or even

of networks of spatially-extended neurons, efficient methods for computing the trans-

membrane potential are required. Methods with a set of diagrammatic rules, such as

those of Koch and Poggio [1985] for Butz and Cowan’s [1974] method, or Abbott’s

[1992] rules for the dendritic path integral method [Abbott et al., 1991], provide

simple instructions which may be readily implemented as computer algorithms.

The latter methodology has the advantage of being rooted in the time do-

main. Cao and Abbott [1993] provide an algorithm for implementing the dendritic

path integral, by sampling paths from the dendritic tree in a generally-increasing

order of path length. The path integral method therefore offers a promising starting

point in the development of novel, more efficient algorithms for computing trans-

membrane voltage on dendritic trees, which may allow us to study more effectively

how dendritic structure and function are related.

2.8 Conclusions

The fascinating array of computational tasks performed by dendritic trees hints at

the importance of branching and connectivity in neuronal networks, and how much

these computational operations could contribute to higher function in the brain.

London and Häusser [2005] suggest that the ultimate aim in the study of dendrites

is to objectively demonstrate that they convey a significant computational advantage

to neural systems. Such advances could potentially be applied in artificial neural

networks and other aspects of bio-inspired computing. Developing an understanding

44

of how dendritic structure is related to their function also opens possibilities in

molecular biology and medicine for the treatment of neurodegenerative diseases and

other disorders associated with dendritic structure.

A significant challenge in the study of dendrites has been the technological

limitation of accurate recording and imaging of dendritic trees. Novel methods, how-

ever, show significant promise : examples are those that make use of high-resolution

time-lapse imaging to probe developmental changes in dendritic morphology [Satoh

et al., 2012], adaptations on scanning and tunnelling electron microscopies to im-

age the substructures of presynaptic terminals [Horstmann et al., 2012], individ-

ual synaptic vesicles imaged by tagging their receptors with fluorescent proteins

[Padamsey and Jeans, 2012], and calcium signals simultaneously triggered and im-

aged in dendrites using holographic light patterning [Anselmi et al., 2011].

With recent improvements in computing power, and with highly-advanced

experimental paradigms being developed to support theory, a readily-applicable

computational framework for simulating dendritic systems is fundamental to fur-

thering our understanding of dendrites in the context of biological and mathematical

neuroscience. Decades of research have brought us closer to elucidating many of the

computational mechanisms that are experimentally observed in dendrites, such as

coincidence detection [Agmon-Snir et al., 1998] or image smoothing by convolution

[Cuntz et al., 2003]. Despite this, the structure-function relationship in dendrites

remains a topic which requires much further investigation. Therefore, the modelling

of electrical current propagating in dendritic trees remains an active field. A large

body of research, centred around the work of Wilfrid Rall, is at the heart of con-

temporary dendritic modelling, and one of the frameworks based on Rall’s dendritic

cable theory is Abbott et al.’s [1991] dendritic path integral. In the next chapter, we

will introduce this framework in the context of passive cables and use it to construct

solutions to the cable equation on various dendritic geometries. The end goal is for

us to develop novel algorithms and improvements on known methods, in order to

construct more efficient computational frameworks for simulating current flow in

dendritic trees.

45

Chapter 3

Linear Cable Theory and the

Dendritic Path Integral

Dendritic cable theory is a mathematical framework for modelling the passive flow

of electric current through neuronal fibres. Derived from core conductor theory, and

therefore making assumptions about the physiological properties of dendritic fibres,

cable theory can be derived from the theory of electric circuits, such as Ohm’s law

and Kirchhoff’s law.

By careful application of boundary conditions, cable theory can be used to

solve flow problems on elaborately-branching structures, such as those common in

dendritic trees. A generalisation of cable theory to such arbitrary branching trees,

while simple in itself, tends to yield systems which are very difficult to solve. Even

for small, simple trees, calculating an analytical solution in the time domain rapidly

becomes extremely involved, with a large number of equations and variables to keep

track of. On realistic dendritic trees, the sheer number of branches and boundary

conditions mean that alternative methods for finding solutions are required. As

noted in Section 2.7, many approaches transform the system into the Laplace do-

main, where the solution to the cable equation is more manageable. The solution

is then constructed using a variety of methods, from reduction of the graph to an

equivalent cable [Rall, 1962a, 1977; Poznanski, 1991; Whitehead and Rosenberg,

1993], to using repeat patterns or motifs on the tree to apply set rules for building

up an analytical expression [Butz and Cowan, 1974; Koch and Poggio, 1985]. A nu-

merical inverse Laplace transform is then typically required to obtain the solution

in the time domain. These inverse transforms are infamous for being numerically

challenging. Aside from their considerable computational expense, known inversion

algorithms work well for certain functions and not for others, making a generic in-

46

version method impossible. Their numerical stability is, at times, only guaranteed

in narrow parameter ranges, and require multiple-precision arithmetic methods for

computing terms to adequate accuracy, further slowing the computation.

Under the assumption that the characteristic time constant is the same ev-

erywhere on the tree (that is, τi = τ for all branches i), the Laplace-domain Green’s

function solution can be inverted analytically back into the time domain. Abbott

et al. [1991] use the time-domain Green’s function in a path integral framework, con-

structing the solution as an infinite sum of functions of the possible trips between

two points on an arbitrary tree.

In this chapter, we derive and describe the cable equation, and consider the

assumptions made in its derivation from a biological standpoint. After reviewing

some important concepts in linear dynamical systems theory, we provide solutions

to the cable equation for steady-state and general cases for single cables. We then

introduce Abbott et al.’s [1991] dendritic path integral, describe how the terms in

the solution are constructed and assess the convergence of the infinite series. We

finish by deriving certain closed-form solutions that make use of the path integral

for simple branching structures : we derive a simple solution for single finite cables,

and then introduce a novel analytical solution for symmetrical star graphs that

uses a combinatorial counting scheme to enumerate all possible trips on the graph

extremely efficiently.

3.1 The Linear Cable Equation

The cable equation is a linear, second-order partial differential equation. It describes

the dynamics of the transmembrane voltage, Vm, along an infinite cable assumed to

be one-dimensional along the spatial coordinate x. It is given here in a form similar

to (2.11), with an added term for an applied current :

∂Vm

∂t
= D

∂2Vm

∂x2
− Vm

τ
+ Iapp, −∞ < x <∞, t ≥ 0, (3.1)

where D = λ2/τ is the diffusion coefficient of the current, in mm2 ms−1. In order to

derive a fully-parameterised, dimensional form of this equation from the biologically-

relevant parameters, we begin by introducing the fundamental quantities associated

with cable systems.

47

3.1.1 A Note on Units

Many derivations in the literature prefer the use of parameters defined per unit

length of dendritic cable. For the purpose of this derivation, we will use the funda-

mental units which relate to the physical properties of the cytosolic or membrane

material instead.

Specific Longitudinal Resistivity

The longitudinal resistivity Rl is a fundamental property of the cytosol, and is

measured in units of Ohm-centimetres (Ω cm). This quantity measures how resistive

a piece of material of length L (in cm) and uniform cross-sectional area A (in cm2)

is to the flow of electric current :

Rl =
A

L
R, (3.2)

where R is the resistance measured across the component. R, in Ohms, is easily

measurable for a piece of cable, and once normalised by the dimensions of the

sample, we obtain a property of the cytosolic material, as opposed to a quantity like

resistance; a short, wide piece of dendritic cable has a much smaller resistance R

than a long, thin piece, but both may have equal resistivity, Rl.

The cytosolic resistance per unit length of cable, rl, can be found from the

cytosol’s specific resistivity by

rl =
Rl

πa2
, (3.3)

where a is defined as the radius of the cable, in centimetres. Then, the resistance

per unit length rl has units of Ω cm−1, as expected. This relation states that a piece

of cable of fixed length with a larger cross-sectional area has a smaller resistance

than one of equal length but smaller area, as expected.

Specific Transmembrane Resistivity

Similarly, our derivation will use a property of the lipid bilayer material, the specific

transmembrane resistivity Rm, rather than the transmembrane resistance per unit

length of cable, rm. The quantity Rm is measured in Ω cm2, and is defined as the

resistance to current flow across a section of membrane of a given area :

Rm = AR, (3.4)

48

where R is now the resistance measured, in Ω, across a piece of membrane of area

A. Intuitively, if we take a larger piece of membrane, we expect the total resistance

R to decrease; this can be seen in this equation.

The specific resistivity can be related to the transmembrane resistance per

unit length of cable, rm. If the radius of the cable, a, is known, then with its

circumference being 2πa, we can calculate the resistance per unit length of cable as

rm =
Rm

2πa
, (3.5)

a quantity measured in Ω cm. From this, we see that a cable with a larger radius

(thus having more surface area) will have decreased total transmembrane resistance.

Specific Transmembrance Capacitance

The capacitative effect that arises because of the membrane’s isolative properties

can be measured experimentally. If we normalise the total capacitance measured,

C (in Farads), by the area of the membrane, A, then we can calculate a property of

the membrane material, the specific transmembrane capacitance Cm :

Cm =
C

A
, (3.6)

measured in F cm−2. As we expect, a larger piece of membrane is able to distribute

charge more easily, and hence, has a larger total capacitance.

This quantity can be related to the capacitance per unit length of cable :

cm = 2πaCm, (3.7)

where a is, as before, the radius of the cable. The capacitance per unit length of

cable is therefore measured in F cm−1. Again, we see that, should we take a piece

of cable with a larger radius, its greater surface area would allow more capacitance

along it.

3.1.2 Derivation of the Cable Equation

We will derive the cable equation from first principles, outlining any assumptions we

make along the way, and with care to define parameters as the physical quantities

with biologically-realistic units described in Section 3.1.1, such that our derived

result may have immediate biological significance and be applicable to real neuronal

systems.

49

We begin by considering a length of uniform cable that satisfies the descrip-

tion of a core conductor, such as that in Figure 2.13. The cable has a radius a cm,

and its external environment is isolated from the cytosol by an imperfect mem-

brane of negligible thickness. We define the potential difference across the cable’s

membrane as

Vm(x, t) = Vi(x, t)− Ve(x, t), (3.8)

where Vi is the potential inside the cable, and Ve the potential of the extracellular

medium outside the cell, both in millivolts (mV). Later, as per the convention in

the field, we will set Ve(x, t) = 0, and hence, Vm will describe the transmembrane

potential relative to a constant external voltage – one of the assumptions treated

in Section 3.1.4. As discussed in Section 2.3, the transmembrane potential has a

negative value of around Vm = −70 mV at rest and, as in Section 2.4.1, a decrease

in the transmembrane potential is referred to as a hyperpolarisation, whereas should

the potential become less negative, or even positive, then Vm is said to be depolarised.

Referring to Figure 2.13, the voltage at any point along the cable can be

written as a function of the voltage some small distance ∆x away, should we assume

all resistances to be ohmic. Then,

Vi(x+ ∆x, t) = Vi(x, t)−
Rl ∆x

πa2
Ii(x, t), (3.9)

where Rl is the specific resistivity of the cytoplasm and, as in Section 3.1.1, the total

resistance for a piece of cable of length ∆x can be expressed as Rl∆x/πa
2.

After rearranging and taking the limit as ∆x goes to zero, we get

lim
∆x→0

Vi(x+ ∆x, t)− Vi(x, t)

∆x
=
∂Vi

∂x

= − Rl

πa2
Ii(x, t).

(3.10)

We must now define the internal current, Ii(x, t). Currents flowing into a piece

of cable are dependent on those flowing longitudinally through the neighbouring

segment, as well as any currents flowing through the membrane, either naturally (due

to a potential difference) or artificially (via an electrode). Hence, by conservation

of current, we define Ii as the sum of these currents :

Ii(x+ ∆x, t) = Ii(x, t)− Im(x+ ∆x, t) + Iapp(x+ ∆x, t). (3.11)

Here, the transmembrane current Im is negative because of our convention in (3.8) :

a negative transmembrane potential (and hence a negative transmembrane current)

50

arises when a current is moving from outside the cell into the cytosol, as is relevant

in the case of this definition. A positive transmembrane current would imply that

current is leaving the cell.

The transmembrane current is the sum of resistive and capacitative trans-

membrane currents. Because all resistances are assumed ohmic, then the resistive

current is a rearrangement of Ohm’s Law, V = IR. The capacitative current is a

function of the change in voltage over time. Hence, we define the transmembrane

current leaving a piece of cable of length ∆x as

Im(x, t) =
2πa∆x

Rm
Vm(x, t) + 2πaCm ∆x

∂Vm

∂t
, (3.12)

where Rm / 2πa∆x is the resistance across a piece of cable of length ∆x, and

2πaCm ∆x is the capacitance across the membrane of a piece of cable of the same

length. We can substitute (3.12) into (3.11) and rearrange, to obtain

Ii(x+ ∆x, t)− Ii(x, t)

∆x
= −2πa

Rm
Vm(x+ ∆x, t)− 2πaCm

∂Vm

∂t
+ Iapp(x+ ∆x, t).

(3.13)

Taking the limit as ∆x goes to zero, we get the expression

∂Ii

∂x
= −2πa

(
Vm

Rm
+ Cm

∂Vm

∂t

)
+ Iapp(x, t). (3.14)

Taking the derivative of (3.10) :

∂2Vm

∂x2
= − Rl

πa2

∂Ii

∂x
, (3.15)

and substituting (3.14) into this result gives us

∂2Vm

∂x2
= − Rl

πa2

[
− 2πa

(
Vm

Rm
+ Cm

∂Vm

∂t

)
+ Iapp(x, t)

]

=
2Rl

aRm
Vm +

2RlCm

a

∂Vm

∂t
− Rl

πa2
Iapp(x, t).

(3.16)

Rearranging :

2RlCm

a

∂Vm

∂t
=
∂2Vm

∂x2
− 2Rl

aRm
Vm +

Rl

πa2
Iapp(x, t)

∂Vm

∂t
=

a

2RlCm

∂2Vm

∂x2
− 1

RmCm
Vm +

1

2πaCm
Iapp(x, t).

(3.17)

51

Equation (3.17) represents the dimensional form of the cable equation. From

this, we can extract the lengthscale and timescale with which the cable responds

to perturbations, which will allow us to write the equation in a simpler form, as in

(3.1).

3.1.3 Characteristic Scales

Lengthscale λ

To determine the characteristic lengthscale associated with the dynamics of the

transmembrane voltage, Vm, we can consider what happens to the voltage when the

system is at a steady state on an infinite cable. By applying a constant current

Iapp(x) = σ δ(x) at x = 0 for all time t ≥ 0, and after a sufficiently long period

of time (during which time we see transients), the cable will reach an equilibrium

distribution of current in space. We can then describe the transmembrane potential,

Vm(x, t) as a function of simply space, Vm(x). At this stage,

∂Vm

∂t
= 0, (3.18)

for all space. The voltage will then reach a steady state lim
t→∞

Vm(x, t) = Vm(x),

which will satisfy the ordinary differential equation,

a

2RlCm

d2Vm(x)

dx2
− 1

RmCm
Vm(x) +

1

2πaCm
Iapp(x) = 0, (3.19)

The general solution to the homogeneous equation, with no forcing term, is

Vm(x) = α e−x/λ + β ex/λ, (3.20)

where α and β are constants that depend on the initial and boundary conditions,

and where λ is found to be

λ =

√
2Rm

aRl
=

√
rm

rl
. (3.21)

If we impose the constraint that

lim
x→∞

∣∣Vm(x)
∣∣ <∞, (3.22)

then we find that β = 0, and the voltage must fall exponentially with distance from

the point of injection, at a rate λ, starting at a point α = V (0). Knowing the

potential at any point on the cable is sufficient to solve for α : using Ohm’s law, the

52

voltage at x = 0, where Iapp is being injected, is σ rm. Hence,

Vm(x) = σ rm e−|x|/λ, (3.23)

where V0 = V (0) = σ rm is frequently used to refer to the scale component of the

solution.

The quantity λ is known as the characteristic lengthscale, and describes

how rapidly the exponentially-decaying voltage drops as a function of space. A

large lengthscale λ implies that current is able to diffuse long distances, while a

small λ means that the voltage decays quickly as we measure further from the

point of current injection. A set of example solutions (3.23) is shown in Figure 3.1

for different lengthscales. “Typical” values of λ do not exist per se, due to the

high variation in morphologies. With realistic values for the physical parameters,

however, λ tends to be in the region of 1 to 10 mm [Tuckwell, 1988].

-10 -8 -6 -4 -2 0 2 4 6 0 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x (mm)

V
m

 /
 V

0

λ = 1 mm

λ = 5 mm

λ = 10 mm

Figure 3.1: The steady-state voltage on an infinite cylinder, with constant
current Iapp = σ δ(x) injected at x = 0, for three different values of the
space constant, λ.

This length constant allows us to introduce a dimensionless, electrotonic dis-

tance, X = x/λ, and hence to consider the length l of a neuronal cable in dimen-

53

sionless form using its electronic length, L = l/λ. These dimensionless properties

allow different neuronal structures to be compared more readily, without having

to consider radii and cytosolic resistances. We can then compare the electrotonic

behaviour of different neurons by using the same language : the total electrotonic

length of a dendritic tree is a measure of how “electrically compact” the tree is

[Zador et al., 1995]. Therefore, whilst neurons may vary wildly in size, we can com-

pare their spatial electrotonic properties, or how much they will attenuate a current

injected some distance away, more readily from their characteristic lengthscale, λ.

Timescale τ

The time constant τ (measured in ms) is similar : it describes how rapidly the

transmembrane voltage Vm decays back to its resting state Vm = 0 from any non-

zero value. Let us then consider a patch of dendritic membrane satisfying

dVm

dt
= − 1

RmCm
Vm. (3.24)

If this patch of membrane is held at a value of Vm = V0 > 0, and, at time t = 0, we

release the voltage clamp holding the membrane’s potential at this level, then the

membrane will relax to zero according to

Vm(t) = V0 e−
t

Rm Cm . (3.25)

This exponential decay has a constant of τ = RmCm, such that the voltage

will have decayed to V0/e by time t = τ . This fundamental property of the system

can be used to measure a dendritic tree’s responsiveness : trees with large τ have a

membrane voltage that responds slowly to stimulus, while those with small τ react

rapidly to the effects of injected current, rising and falling quickly in response to

the stimuli. A typical value for the membrane time constant is τ = 20 ms; the time

constant can range from τ = 1 ms for neurons that encode fine-grained temporal

information, to τ = 100 ms for some hippocampal neurons [Spruston and Johnston,

1992]. As we can see here, the membrane time constant τ is a function of only

transmembrane properties, namely the resistivity and capacitance.

Figure 3.2 shows how a patch of membrane responds to a discontinuous

change in the transmembrane potential at time t = 0, for different values of τ , and

Figure 3.3 shows an example voltage trace for an isolated patch of membrane being

stimulated by delta spikes and a square pulse current, with the stimulus shown

below.

54

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t (ms)

V
m

 /
 V

0

τ = 1 ms

τ = 20 ms

τ = 100 ms

Figure 3.2: The transmembrane potential’s response to the release of a volt-
age clamp. The voltage had been held at V0, and the clamp was released at
t = 0, at which point the potential relaxes to zero as in (3.25), for different
values of the membrane time constant, τ .

3.1.4 Assumptions

Some of the key assumptions of dendritic cable theory stem from core conductor

theory : the one-dimensional aspect of the equation is cable theory’s most simplifying

assumption, allowing any radial dependence of Vm to be neglected [Rall, 1977]. A

wide body of evidence, both experimental [Rashbass and Rushton, 1949; Taylor,

1963; Cole, 1968] and theoretical [Plonsey, 1964; Clark and Plonsey, 1968; Rall,

1969; Eisenberg and Johnson, 1970], suggests that the errors generated in making

this assumption are negligible.

The cytosolic core of the cable is assumed to provide a simple ohmic resistance

to current flow. This, together with the assumption of the dependence of voltage

on only one spatial dimension, allows the intracellular space to be characterised by

Rl, the specific longitudinal resistivity, a parameter that does not depend on space.

This, however, does not imply that the cable must have uniform resistance – as we

will discover in the next chapter, it is possible to allow the radius of the cables to

55

0 10 20 30 40 50 60 70 80 90 100
-0.02

0

0.02

0.04

0.06

V
m
 (

m
V

)

τ = 3 ms

τ = 10 ms

0 10 20 30 40 50 60 70 80 90 100

-0.01

0

0.01

0.02

t (ms)

I ap
p
 (

n
A

)

Figure 3.3: Perturbation of the transmembrane potential by injected current
Iapp, a train of delta spikes with integral 0.01, and two square pulses of
magnitude 0.01, for two different membrane time constants. It is clear that
membranes with a larger time constant take longer to adapt to perturbations
and, as a result, may become more depolarised for an equivalent positive
stimulus than a membrane that relaxes more quickly to its steady state.
These voltage traces were obtained by numerical computation. These graphs
were obtained by numerical simulation.

vary in a discontinuous sense, in order to approximate a tapering in the dendrites.

A related assumption is that both the intracellular and extracellular spaces

are homogeneous. In reality, the cytosol contains a plethora of organelles (such as

the endoplasmic reticulum), as well as membranes and vesicles. Similarly, the extra-

cellular medium is packed full of neighbouring neurons and glial cells. Fortunately,

the characteristic lengthscale of the electrical dynamics, λ, is several orders of mag-

nitude greater than the scale of these heterogeneities, rendering this assumption

valid for neural cells.

Further to this, we assume that any charge in the extracellular or intracellular

fluids dissipates extremely rapidly. Any capacitive or inductive effects in these fluids

can therefore be safely neglected [Scott, 1971]. In addition, the vast majority of

current in a cable flows longitudinally, due to the large transmembrane resistivity,

Rm, and because cables have radii much smaller than their lengths. Therefore, only

56

a small amount of current escapes the cable into the large extracellular space. It

is hence safe to assume that no voltage gradients exist in the extracellular space –

they are simply too small and would diffuse too rapidly to affect the dynamics of

the system. The extracellular fluid is thus modelled at isopotentiality. Because the

amount of current entering the extracellular space from the cables is very small, the

fluid is assumed to have a potential of Ve = 0.

When current flows in cable-like structures, they induce a magnetic field.

These are assumed to be negligible, an assumption backed in work by Rosenfalck

[1969]; the magnetic fields are shown to be extremely small due to the very low

magnitude of currents flowing through the cable.

Electrical current is, in physical form, the flow of a large number of ions.

Cable theory assumes that these ions are both sufficiently numerous that the voltage

may take continuous values, and that they are never depleted. Even in the very small

(20 nm) space between chemical synapses, there are 36,000 potassium ions to be

found, with all other ions in greater concentrations [Holt, 1998]. Even with constant

electrical activity, Qian and Sejnowski [1989, 1990] found that ionic concentrations

do not vary siginificantly, except in very small structures, such as in dendritic spines.

Except in rare cases, these assumptions prove to be well-founded for the sys-

tem being modelled : a linear, passive dendritic cable, with the potential never devi-

ating too far from resting potential. With currents injected by electrode rather than

by changes in synaptic conductivity, closed-form solutions can be found; changes in

conductivity due to synaptic stimuli are analytically more difficult to treat. For the

modelling of subthreshold currents in dendritic trees, where stimulation occurs via

injection of current rather than synaptic input, this framework is therefore a good

approximation, and offers a valuable compromise between analytical tractability and

computational efficiency.

3.2 A Note on Integral Transforms

The Laplace Transform

The Laplace transform, denoted by the linear operator L, is defined as

f̄(s) = L
[
f
]
(s)

=

∞∫

0

f(t) e−st dt,
(3.26)

57

where the parameter s = σ + iω is a complex number, with σ, ω ∈ R. For the

Laplace transform f̄(s) of a real-valued function f(t) to exist, f(t) must be locally

integrable on the interval [0,∞) and the integral (3.26) must converge. This holds

true if f(t) is of exponential type : there must exist a, b ≥ 0 such that
∣∣f(t)

∣∣ ≤ a ebt

for all t ≥ 0.

Analytically, the Laplace transform turns differential equations into poly-

nomials, making them vastly easier to solve. For simple problems, the Laplace

transform can be found by inspection, using tables that match an expression in the

time domain with its analogue in the Laplace domain. This is the case for the cable

equation for the infinite cable (2.11). Knowing that L[f ′(t)] = sf̄(s)− f(0), where

f ′(t) is the first derivative of f(t), then we can express the cable equation (3.1) in

the Laplace domain as

s V̄m(x, s)− Vm(x, 0) =
λ2

τ

∂2V̄m(x, s)

∂x2
− V̄m(x, s)

τ
. (3.27)

If we introduce γ2(s) =
τs+ 1

λ2
, then this becomes

γ2(s) V̄m =
∂2V̄m

∂x2
(3.28)

assuming the zero initial condition, Vm(x, 0) = 0. Then, (3.28) is satisfied by

V̄m(x, s) = α(s) e−γ(s)x + β(s) eγ(s)x. (3.29)

Once the resulting algebraic problem is solved in the Laplace domain, the solution

is inverted back to its original domain using the inverse Laplace transform. For

the case of cable problems, we typically apply the solution (3.29) to a tree with

the relevant boundary conditions at branching points, at which point the system of

equations becomes too complex to invert back into the time domain using tables.

For systems of modest complexity, it may be possible to simply evaluate the inverse

Laplace transform analytically, as defined by the Bromwich integral :

f(t) = L−1
[
f̄
]
(t)

= lim
T→∞

1

2πi

γ+iT∫

γ−iT

f̄(s) est ds.
(3.30)

This contour integral is performed along the vertical line Re(s) = γ in the complex

plane. Here, γ must be to the right of any poles, to ensure the contour path is in

58

the integral’s region of convergence. For isolated singularities, this is the standard

approach. However, due to the multiplication by an exponential function of time,

the inverse Laplace transform is an inherently sensitive and ill-posed problem. Any

errors become exponentially divergent, an issue partially-resolved by using multiple

precision arithmetic computational libraries, which lead to heightened accuracy but

extremely slow evaluation of the integral. A number of Laplace transform inversion

algorithms have been put forth, each of which demonstrates strengths for only a

particular type of function. There exist methods based on evaluating an arbitrary

number of derivatives, based on Post’s Formula [Post, 1930; Gaver, 1966]; on La-

guerre polynomial expansions [Weeks, 1966]; on Fourier series expansions [de Hoog

et al., 1982]; and on evaluating contours that deform around the singularities [Tal-

bot, 1979]. Algorithms based on improvements or accelerations to these methods

are still the subject of research today.

The Fourier Transform

The Fourier transform is closely-related to the Laplace transform. It also maps a

function of space or time into an analogous frequency domain, where units are in

cycles per second. Unlike the Laplace transform, however, for the Fourier transform

f̂(ω) of a real-valued function f(x), the frequency argument ω is real.

The unitary, angular form of the Fourier transform is defined as

f̂(ω) = F
[
f
]
(ω)

=
1√
2π

∞∫

−∞

f(x) e−iωx dx,
(3.31)

and its inverse is
f(x) = F−1

[
f̂
]
(x)

=
1√
2π

∞∫

−∞

f̂(ω) eiωx dω.
(3.32)

The Fourier transform f̂(ω) of a function f(x) exists provided that

∞∫

−∞

∣∣f(x)
∣∣dx <∞ (3.33)

59

and that f(x) is a Lipschitz continuous function, satisfying

∣∣f(x)− f(x′)
∣∣ ≤ B

∣∣x− x′
∣∣β (3.34)

for any points x and x′, for constant B and for 0 < β ≤ 1.

One important difference between the Fourier transform and the Laplace

transform is the domain of integration. The traditionally-defined Laplace transform

is unilateral, integrating over the non-negative reals (although a bilateral defini-

tion exists), whereas the Fourier transform is always two-sided, integrating over

(−∞,∞). For variables existing in a doubly-infinite domain, such as the spatial

variable on an infinite cable, the Fourier transform can be the logical choice in

terms of integral transforms.

Convolution Theorem

A great computational tool is the convolution theorem, which states that the Fourier

transform of a convolution of two functions f(t) and g(t) is equal to the point-wise

multiplication of their frequency-transform representations, f̂(s) and ĝ(s). That is,

F
[
f ~ g

]
(s) = F

[
f
]
(s) · F

[
g
]
(s)

= f̂(s) · ĝ(s),

(3.35)

where
(
f ~ g

)
(t) =

∞∫

0

f(t′) g(t− t′) dt′

=

∞∫

0

f(t− t′) g(t′) dt′.

(3.36)

In terms of computational efficiency, a convolution done by point-wise multiplica-

tion in the Fourier domain is better than a convolution performed directly in the

time domain : a simple time-domain convolution is a quadratic operation, requir-

ing N2 operations to obtain a result on functions of discrete length N , while a

Fourier transform can be taken using the Fast Fourier Transform (FFT) [Cooley

and Tukey, 1965] in quasilinear time, requiring N logN operations. The pointwise

multiplication then requires N operations, and an inverse Fast Fourier Transform

(iFFT) requires another N logN , meaning that the convolution

(
f ~ g

)
(t) = F−1

[
F
[
f
]
· F
[
g
]]

(t) (3.37)

60

is less than quadratic when performed as a frequency domain calculation, rather

than directly in the time domain.

Integral transforms and convolutions are often used in signal processing and

the analysis of linear systems, where they are of paramount importance to finding

solutions to the systems’ dynamics.

3.3 Some Concepts in Linear Systems Theory

Systems can be seen as “black box” systems where, if stimulated by some input,

they respond in a way that is described by an operator, which maps a time-varying

input, x(t), to an output, f(t). If we denote the operator of our hypothetical system

by H, then we can describe the input-output relation of this system by

f(t) = H
[
x
]
(t). (3.38)

The cable equation (3.1) is such a system : were we to stimulate a cable at its

resting potential by the injection of a current, it would respond in some characteristic

manner. The cable equation can be classified as a second-order, linear, partial

differential equation. Several of the approaches used to solve it will be specific to at

least part of this description. For example, the cable equation’s linearity ensures we

can construct a solution for any number of inputs by simply solving it once for each

input, and summing up the solutions. Before we review the literature for methods

used to solve the cable equation analytically, it would be advantageous to discuss

certain concepts in the theory of linear dynamical systems, which will aid us in

developing algorithms for solving the equation on arbitrary trees.

Linearity

Systems that satisfy both the principles of superposition and scaling are known as

linear systems. Superposition implies that, if a system responds to an input x with

the output f(x), then, for any combination of inputs x1, . . . , xn, the following holds

true :

f(x1 + . . . + xn) = f(x1) + . . . + f(xn). (3.39)

The scaling property can be derived from superposition. If the function receives an

input x an integer a number of times, then its output must scale accordingly :

f(ax) = af(x). (3.40)

61

We can therefore consider any system, taking inputs x1(t) and x2(t) to produce the

outputs f1(t) = H
[
x1(t)

]
and f2(t) = H

[
x2(t)

]
, as linear, if and only if

af1(t) + bf2(t) = H
[
ax1 + bx2

]
(t). (3.41)

Time-Invariance

A system can be described as time-invariant if it obeys the time-shift property :

its output does not explicitly depend on time. For example, if a given input x(t)

at time t produces an output f(t) = H
[
x
]
(t), then the same input applied at the

delayed time t+ ∆t will produce the same output, delayed by the same amount of

time, such that f(t+ ∆t) = H
[
x
]
(t+ ∆t).

Impulse Response Functions

Any linear, time-invariant system can be fully characterised by its impulse response

function, h(t). This function is defined as the linear system’s output when it is

presented with a unit impulse :

h(t) = H
[
δ
]
(t), (3.42)

where δ(t) is the Dirac delta function, a function with value zero everywhere except

at t = 0, and with an integral of one, and where, as before, H is a linear operator.

The impulse response function is of fundamental importance, because it allows us

to compute the system’s response, f(t), as a function of any input, x(t), by the

convolution identity,

f(t) = H
[
x
]
(t)

=
(
x~ h

)
(t)

=

∞∫

0

x(t′)h(t− t′) dt′.

(3.43)

The impulse response function’s Laplace-domain analogue, h̄(s) = L[h](t), is known

as the transfer function. This frequency-domain representation has some significant

advantages over the time-domain impulse response function. Being a frequency-

domain function, it allows us to immediately determine the system’s attenuation of

certain frequencies; those that quench high frequencies while allowing low frequen-

cies to pass are termed lowpass filters, while the opposite are highpass filters. A

combination of these can create a bandpass filter, where only a range of frequencies

62

are passed and all others are attenuated. Such information can help us predict the

system’s response to various stimuli. In addition, by convolution theorem, we can

evaluate a convolution using the transfer function :

(
x~ h

)
(t) = L−1

[(
L
[
x
])
· h̄
]
(t). (3.44)

Note that, in (3.37), we saw that a convolution could be written as the inverse

Fourier transform of the pointwise product of the Fourier transforms of two func-

tions. Here, we have used the Laplace transform as our frequency-domain integral

transformation; more commonly, however, the Fourier transform is used, with con-

volution theorem holding for a range of integral transforms, of which the Fourier,

Laplace, and bilateral Laplace transforms. This is especially important in compu-

tational mathematics, where convolutions are almost exclusively performed in the

Fourier domain, thanks to the extremely efficient FFT algorithm. In the majority

of approaches to solving cable problems described in Section 2.7.1, the resulting

solution is found in the Laplace domain, meaning we can readily obtain h̄(s). For

certain well-behaved systems, with no singularities in the right half of the complex

plane, the Laplace-domain solution is analogous to a Fourier-domain function, after

a change of variables. In theory, therefore, we could obtain the time-domain re-

sponse of the dendritic system, f(t), by multiplying the transfer function, h̄(s) with

the Laplace transform of our input function, L
[
x
]
(s), and taking an inverse Fourier

transform after the change of variables, or by inverting the transfer function from

the Laplace domain into the time domain, and then taking a convolution with our

input, x(t), using the Fast Fourier Transform.

Green’s Functions

There are numerous approaches to solving differential equations, each of which may

be amenable to certain types of equations. The Green’s function approach is a

powerful method of obtaining a fundamental solution to inhomogeneous differential

equations, and is of central importance to this work. In order to set the context for

this approach, we begin with a reminder of the concepts of homogeneity, and how

differential equations can be described by their operators.

An nth-order ordinary differential equation has the general form,

n∑

k=0

pk(t)
dky

dtk
= q(t). (3.45)

If q(t) is non-zero, then it is called the source or forcing term, and the equation

63

is inhomogeneous. This equation is also linear, because any function of y(t) or its

derivatives are linear. Linearity ensures that we can write this equation in the form,

L
[
y
]
(t) = q(t), (3.46)

where L is the linear differential operator,

L =
n∑

k=0

pk(t)
dk

dtk
. (3.47)

This is an example of an ordinary differential equation, but this holds for partial

differential equations such as the cable equation. For the case of equation (3.1), the

linear differential operator can be written

L =
∂

∂t
− λ2

τ

∂2

∂x2
+

1

τ
, t ≥ 0, −∞ < x <∞, (3.48)

leaving the source term q(x, t) = 0 for this homogeneous partial differential equation.

When we were to include a source term Iapp(x, t), simulating a current being applied

to the cable at some point x at time t, then we would set q(x, t) = Iapp(x, t) and we

would have to solve for an inhomogeneous system instead.

This is where the Green’s function becomes a useful tool. Referring back to

our generic ordinary differential equation (3.45), then the Green’s function for this

equation, with linear differential operator (3.47), is defined as the function G(t, t′)

such that

L
[
G(· , t′)

]
(t) = δ(t− t′). (3.49)

If we then multiply with the source term q(t′) and integrate, we obtain

∞∫

0

L
[
G(· , t′)

]
(t) q(t′) dt′ =

∞∫

0

δ(t− t′) q(t′) dt′

= q(t),

(3.50)

which is equal to L
[
y(t)

]
, as in (3.46). Because L is a differential operator acting

only on t and not the integration variable t′, it can be taken out of the integral to

give

L

[∞∫

0

G(· , t′) q(t′) dt′

]
(t) = q(t)

= L
[
y
]
(t),

(3.51)

64

and can then be inverted such that

y(t) =

∞∫

0

G(t, t′) q(t′) dt′. (3.52)

Therefore, evaluating this integral will allow us to find the solution y(t) to the

inhomogeneous differential equation (3.45). This elegant result means that, for any

type of perturbation or input q(t) into the system (3.46), we can find the solution

y(t), assuming that we have the Green’s function G(t, t′) for the differential operator

L. Finding the Green’s function can therefore become the focus of solving a system

of equations. It can be found using Laplace transforms, the method of images, and

eigenvalue expansions [Cole et al., 2011].

As a final remark, we note that, by solving a linear system of the form

L
[
y
]
(t) = q(t) using the Green’s function G(t, t′), we have effectively found the

system’s inverse operator L−1 such that y(t) = L−1
[
q
]
(t). This inverse operator is

therefore represented by the integration kernel,

L−1
[
q
]
(t) =

∞∫

0

G(t, t′) q(t′) dt′. (3.53)

The Cable Equation as a Linear Dynamical System

Much of the description of the mathematical tools used to deal with linear dynamical

systems was exemplified using the hypothetical systems, (3.38) and (3.47). These

are, of course, not unrelated systems – both are linear dynamical systems being pre-

sented with some input, x(t) or q(t), and responding with f(t) and y(t) respectively.

With respect to the Green’s function for cable systems, we can immediately equate

these, but to steer around any confusion, we will use the notation prevalent in cable

theory. Let Iapp(x, t) be the source term, equivalent to x(t) or q(t), and let Vm(x, t)

be the response of the system, analogous to f(t) and y(t). We can therefore rewrite

the system as

H
[
Iapp

]
(x, t) = Vm(x, t), (3.54)

or

L
[
Vm

]
(x, t) = Iapp(x, t). (3.55)

For this dynamical system, we have already written down the differential operator

L describing the cable equation, in (3.48). This begs the question : how is H, the

operator which maps the input Iapp(x, t) to the system’s output, Vm(x, t), related

65

to the system’s differential operator, L ? We can consider (3.54) to be a forwards

problem, mapping an input to an output. In contrast, the system (3.55) is an

inverse problem : we need to somehow invert the differential operator L and apply

the inverse to the source term in order to obtain a solution for the quantity of

interest, Vm(x, t).

Informally, the inverse of L is encoded in its Green’s function, G(x, x′, t, t′),

as in (3.53). We have already seen that if we take the integral of the product of

the Green’s function with the source term, we are able to solve for the system’s

response :

Vm(x, t) =

∞∫

0

∞∫

−∞

G(x, x′, t, t′) Iapp(x′, t′) dx′ dt′. (3.56)

We can consider a simple injection of a delta stimulus at some point y at time t = 0

as an example. Letting Iapp = δ(x− y) δ(t), and solving (3.56) :

Vm(x, t) =

∞∫

0

∞∫

−∞

G(x, x′, t, t′) δ(x′ − y) δ(t′) dx′ dt′

= G(x, y, t, 0).

(3.57)

The operator H, mapping input to output, can then be defined as a convo-

lution with the Green’s function :

H
[
Iapp

]
(x, t) =

(
G~ Iapp

)
(x, t). (3.58)

This immediately brings to light another relation : the system’s impulse response

function, defined as h(t) in (3.42), is equivalent to the Green’s function. In this

sense, the Green’s function for the operator L is the system’s fundamental response

to a delta spike perturbation; this arises naturally from our definition of the Green’s

function in (3.49). The focus of the methods presented below is on solving for the

Green’s function, in order to evaluate Vm(x, t) using the convolution integral (3.56).

3.4 Steady-State and Time-Dependent Solutions

The diffusion of current along a cable will be affected by any boundaries or terminals

it encounters. Equation (3.23) represents the steady state solution to the cable

equation on the infinite cable. In this section, we will derive solutions to the cable

equation in different situations, such as the steady-state solutions on the finite cable

and, of course, the general solution.

66

3.4.1 Boundary Conditions for the Single Cable

At terminal points, where the cable ends, several boundary conditions can be con-

sidered. If we assume the dendrite has been cut, such that the cytosol is in direct

contact with the extracellular fluid at the terminal, then the appropriate boundary

condition is

Vm(xterm, t) = 0. (3.59)

This is typically referred to as a killed end or a short-circuit termination. More

relevant to healthy dendrites is the sealed or closed boundary condition, where the

dendritic terminal ends normally and the cytosol is never in direct contact with the

extracellular medium. This imposes a zero-current condition at the terminal, such

that
∂Vm(x, t)

∂x

∣∣∣∣
x=xterm

= 0. (3.60)

It is possible to voltage-clamp the dendritic tip, such that

Vm(xterm, t) = Vc, (3.61)

some constant potential at which the terminal is clamped. Finally, on a closed cable,

we can inject a constant current of magnitude σ, through the membrane and directly

into the cytosol using an electrode. The boundary condition at this point is then

∂Vm(x, t)

∂x

∣∣∣∣
x=xterm

= −rl σ. (3.62)

from (3.10), and as in Tuckwell [1988].

3.4.2 Steady State on a Semi-Infinite Cable

We can solve the cable equation for the semi-infinite cable, where x ∈ [0,∞). The

equation describing the dynamics of the voltage is a homogeneous differential equa-

tion of the form,

λ2 d2Vm(x)

dx2
− Vm(x) = 0, (3.63)

where λ is defined as in (3.21). As we noted in Section 3.1.3, the solution to this

equation is

Vm(x) = α e−x/λ + β ex/λ. (3.64)

At the terminal, we have a closed dendritic tip, through which we inject a

constant current Iapp(x) = σ δ(x) until equilibrium is reached. The voltage at the

67

terminal must then satisfy (3.62). We also require that the voltage remain finite as

the cable goes to infinity, such that

lim
x→∞

∣∣Vm(x)
∣∣ <∞. (3.65)

Substituting (3.64) into (3.65), we see that the coefficient β = 0. By differentiat-

ing (3.64) and substituting the result into (3.62), we can evaluate the remaining

coefficient, α :
dVm

dx

∣∣∣∣
x=0

= −α
λ

= −rl σ.

(3.66)

Thus, the steady-state voltage on a semi-infinite cable, when a constant current σ

is injected into the terminal, is

Vm(x) = λ rl σ e−x/λ, (3.67)

and the voltage decays exponentially with distance from the terminal, with decay

rate λ. The magnitude of the solution at any point in space is proportional to the

magnitude of the current, σ, and to the longitudinal resistance per unit length, rl.

Example voltage solutions are shown in Figure 3.4.

3.4.3 Steady State on a Finite Cable with Closed Ends

We will consider a finite cable with sealed ends at x = 0 and x = L. Let us assume

that the far side of our cable has Neumann boundary conditions : it is a closed,

healthy piece of dendritic cable with no current leaking through the tip, satisfying

(3.60). As above, we will consider the case where the near side of the cable, at

x = 0, is being subjected to the injection of a constant current Iapp(x) = σ δ(x),

such that the boundary satisfies (3.62). The distribution of voltage follows (3.64).

We can take its derivative to find

dVm

dx
=
β

λ
ex/λ − α

λ
e−x/λ. (3.68)

Then, substituting the boundary condition for the injected current at x = 0, we find

dVm

dx

∣∣∣∣
x=0

=
β − α
λ

= −rl σ. (3.69)

From this, we obtain

β = α− λ rl σ. (3.70)

68

0 1 2 3 4 5 6 7 8 9 10

x (mm)

λ = 10 mm

λ = 5 mm

λ = 1 mm

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
m

 /
 V

0

Figure 3.4: The steady-state voltage on a semi-infinite cylinder, with con-
stant current σ injected at x = 0, for three different values of the space
constant, λ.

We can do the same for the other boundary at x = L, substituting its zero-flow

condition into (3.68) :

dVm

dx

∣∣∣∣
x=L

=
β

λ
eL/λ − α

λ
e−L/λ = 0. (3.71)

This yields

β = α e−2L/λ. (3.72)

69

Substituting (3.72) into (3.70), we get

α e−2L/λ = α− λ rl σ

α
(
1− e−2L/λ

)
= λ rl σ

α =
λ rl σ(

1− e−2L/λ
)

β = λ rl σ

(
1(

1− e−2L/λ
) − 1

)

(3.73)

The steady-state solution for a cable with two closed ends, therefore, should we

inject a current Iapp(x) = σ δ(x) at the terminal x = 0, is

Vm(x) =
λ rl σ(

1− e−2L/λ
) e−x/λ + λ rl σ

(
1(

1− e−2L/λ
) − 1

)
ex/λ. (3.74)

This solution can be seen in Figure 3.5. As we expect, the solution scales linearly

with the magnitude of the constant injected current, σ, as with the longitudinal

resistance, rl. The characteristic length λ continues to scale the rate at which the

exponential decays with distance from the site of injection, but also the rate at

which it rises as we near the other boundary, in addition to scaling the amplitude

of the solution as with σ.

3.4.4 Steady State on a Finite Cable with One Open End

We can take the piece of dendritic cable from Section 3.4.3, and cut off the tip of the

membrane at x = L, such that the cytosol is in direct contact with the extracellular

potential. The boundary condition at this terminal is now

Vm(L) = 0, (3.75)

with the potential difference across the membrane going to zero as the intracellular

and extracellular media meet. The boundary condition at x = 0 remains the same

as before : we inject a constant current Iapp(x) = σ δ(x) from time t = 0, wait

until all transients have passed and the system reaches equilibrium. The current

is injected at x = 0, so the boundary condition reads as in (3.62). The equation

governing the distribution of current along the cable, as above, is (3.64). Taking

70

 0 1 2 3 4 5 6 7 8 9 10
x (mm)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V m
 /

 V
0

0

 = 10 mm
 = 5 mm
 = 1 mm

Figure 3.5: The steady-state solution on a finite cable with closed bound-
aries, and an injection at the terminal x = 0.

derivatives and substituting the open-end boundary condition :

Vm(L) = α e−L/λ + β eL/λ = 0, (3.76)

we find that

β = −α e−2L/λ. (3.77)

The boundary condition at x = 0 remains the same as above, and so we find that

β = α− λ rl σ (3.78)

71

as in (3.70). Substituting this into (3.77), we get

α− λ rl σ = −α e−2L/λ

α(1 + e−2L/λ) = λ rl σ

α =
λ rl σ

(1 + e−2L/λ)

β = λ rl σ

(
1(

1 + e−2L/λ
) − 1

)
.

(3.79)

The steady-state voltage distribution on a finite cable of length L, with an injected

current of magnitude σ through a closed end at x = 0, with the distal terminal open

to the cytosol, is

Vm(x) =
λ rl σ(

1 + e−2L/λ
) e−x/λ + λ rl σ

(
1(

1 + e−2L/λ
) − 1

)
ex/λ. (3.80)

Figure 3.6 shows this solution for different values of the characteristic length con-

stant, λ. This parameter plays an important role at governing the rate at which the

voltage decays to zero as we approach the open terminal.

3.4.5 General Solution

The general, time-dependent solution to the inhomogeneous cable equation (where

current is injected at any point along the cable, and is allowed to vary as a function

of time) can be found readily by rewriting it in the frequency domain. We will

derive the general solution to the cable equation in the form of the system’s impulse

response function. The cable equation for the infinite cable, as in (3.1), is

∂Vm(x, t)

∂t
= D

∂2Vm(x, t)

∂x2
− Vm(x, t)

τ
+ Iapp(x, t), (3.81)

with −∞ < x < ∞ and t ≥ 0. Furthermore, we assume that initially, the cable is

at rest such that

Vm(x, 0) = 0. (3.82)

Let us consider this system in the language of Green’s functions. We have a linear

differential operator, L = L(x, t), defined similarly to as in (3.48), by

L =
∂

∂t
− D

∂2

∂x2
+

1

τ
. (3.83)

72

0 1 2 3 4 5 6 7 8 9 10

x (mm)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
m

 /
 V

0

0

λ = 10 mm

λ = 5 mm

λ = 1 mm

Figure 3.6: The steady-state solution on a finite cable with an open distal
terminal tip, and an injection at the proximal, closed terminal.

When L acts on the function Vm(x, t), we see that

L
[
Vm

]
(x, t) = Iapp(x, t), (3.84)

from (3.81). The Green’s function for the operator L is a function which satisfies

L
[
G(· , x′, · , t′)

]
(x, t) = δ(x− x′) δ(t− t′). (3.85)

If we multiply (3.85) by the injection term Iapp and integrate, we find that

∞∫

0

∞∫

−∞

L
[
G(· , x′, · t′)

]
(x, t) Iapp(x′, t′) dx′ dt′

=

∞∫

0

∞∫

−∞

δ(x− x′) δ(t− t′) Iapp(x′, t′) dx′ dt′

= Iapp(x, t).

(3.86)

73

We then proceed as in Section 3.3, substituting (3.84) and (3.85) into (3.86) to give

L
[
Vm

]
(x, t) =

∞∫

0

∞∫

−∞

L
[
G(· , x′, · , t′)

]
(x, t) Iapp(x′, t′) dx′ dt′

= L

[∞∫

0

∞∫

−∞

G(· , x′, · , t′) Iapp(x′, t′) dx′ dt′

]
(x, t)

(3.87)

and therefore,

Vm(x, t) =

∞∫

0

∞∫

−∞

G(x, x′, t, t′) Iapp(x′, t′) dx′ dt′. (3.88)

As expected, this extremely useful result states that we can solve for the trans-

membrane potential for any input function Iapp by simply taking the integral of

a product of the Green’s function, G(x, x′, t, t′), with the injection term Iapp. We

must therefore solve (3.84) with Iapp as a delta stimulus in both space and time in

order to obtain a Green’s function for the operator L.

Without loss of generality, we can consider Iapp(x, t) = δ(x − x′) δ(t), with

current being injected at t = 0 instead of at an arbitrary time t′, and reintroduce

this point later, by making use of the linear system’s time-invariance. As such,

L
[
G(· , x′, ·)

]
(x, t) = δ(x− x′) δ(t). (3.89)

Taking the Laplace transform (as discussed in Section 3.2) for the time variable, we

find

L
[
∂G(x, x′, ·)

∂t
−D ∂2G(x, x′, ·)

∂x2
+
G(x, x′, ·)

τ

]
(s) = L

[
δ(x− x′) δ(·)

]
(s)

s Ḡ(x, x′, s)−G(x, x′, 0)−D ∂2Ḡ(x, x′, s)

∂x2
+
Ḡ(x, x′, s)

τ
= δ(x− x′).

(3.90)

After substituting the initial condition G(x, x′, 0) = 0, analogous to that in (3.82),

this can be written

γ2(s) Ḡ(x, x′, s)−D ∂2Ḡ(x, x′, s)

∂x2
= δ(x− x′), (3.91)

where γ2(s) = s+ 1/τ .

The Laplace transform allows us to write our differential equation in a sim-

74

pler, more manageable form. This transform is particular well-suited to the time

variable : time is defined as t ≥ 0, and the traditional Laplace transform is a func-

tion of a real, non-negative argument. We wish to simplify the Laplace-domain cable

equation (3.91), once again using an integral transform; however, the domain of in-

tegration must now be (−∞,∞), because the spatial variable is defined along this

domain. The Fourier transform, F , is a sister transform to the Laplace transform,

and has similar properties. Defined as in Section 3.2, it integrates the function over

the domain we are interested in. We will apply the Fourier transform of (3.91) with

respect to the spatial variable x, by inspection, and immediately solve the resulting

algebraic equation for the Green’s function :

F
[
γ2(s)G(· , x′, s)−D ∂2G(· , x′, s)

∂x2

]
(ω) = F

[
δ
(
· −x′

)]
(ω)

γ2(s) ˆ̄G(ω, x′, s) + ω2D ˆ̄G(ω, x′, s) =
eiωx

′

√
2π

ˆ̄G(ω, x′, s) =
1√

2πD

eiωx
′

(
γ2(s)/D + ω2

)

(3.92)

We can now invert the function back, first from the Fourier spatial frequency domain,

back into standard space, and then from the unilateral Laplace temporal frequency

domain, back into standard time. We therefore take an inverse Fourier transform,

again by inspection. Using the fact that

F−1

[√
2

π

1

a2 + (·)2

]
(x) =

e−a|x|

a
, (3.93)

we can take the inverse transform, using a2 = γ2(s)/D, such that

F−1
[

ˆ̄G(· , x′, s)
]
(x) = F−1

[
1

2D

√
2

π

ei(·)x
′

(
γ2(s)/D + (·)2

)
]

(x)

=

(
e
− γ(s)√

D
| · |

2
√
Dγ(s)

~ δ(· − x′)
)

(x),

(3.94)

by convolution theorem. Because γ is a function of s, it makes sense to substitute

these out for their functional forms and group terms in s for clarity. Thus,

Ḡ(x, x′, s) =
1

2
√
D

(
e
−
√
s+1/τ√
D
|x−x′|

√
s+ 1/τ

)
. (3.95)

75

This function is frequency-shifted : everywhere that s appears, there is a constant

1/τ being added to it, shifting its frequency by −1/τ . Knowing that

f̄(s+ a) = L
[

e−a| · | f
]
(s), (3.96)

for a function f = f(t), we can make use of this shifting property by writing

L−1
[
Ḡ(x, x′, ·)

]
(t) = L−1

[
1

2
√
D

(
e
−
√

(·)+1/τ√
D

|x−x′|
√

(·) + 1/τ

)]
(t)

=
e−t/τ

2
√
D
L−1

[
1√
(·)

e
−
√

(·)√
D
|x−x′|

]
(t)

=
e−

t
τ

2
√
D

e−
(x−x′)2

4Dt√
πt

.

(3.97)

As the final step of the derivation of this function, we will converge back onto the

notation used in the literature. By denoting the Green’s function for an infinite

cable by a subscripted infinity, and replacing x′ by the variable name y, we write

and define the Green’s function for the infinite cable as

G∞(x, y, t) :=
1√

4πDt
e−

(x−y)2
4Dt e−

t
τ . (3.98)

The function G∞(x, y, t) is the system’s impulse response function – the characteris-

tic transmembrane response to a unit delta spike or perturbation, injected at x = y

and t = 0. In making use of it, we will typically assume that we inject an input

current at time t = 0, although we could easily shift the response by some arbitrary

amount t′ by making use of the system’s time-invariance property, and computing

G∞(x, y, t− t′) instead.

The Green’s function (3.98) retains the property that the transmembrane

potential can be found for any generic current Iapp(x, t) and given any arbitrary

initial conditions Vm(x, 0), by taking a product and integrating :

Vm(x, t) =

t∫

0

∞∫

−∞

G∞(x, y, t−t′) Iapp(y, t′) dy dt′+

∞∫

−∞

G∞(x, y, t)Vm(y, 0) dy. (3.99)

A space-time representation of the Green’s function (3.98) is given in Figure 3.7.

Figure 3.8 shows how the voltage along a cable dissipates, with an injection Iapp(x, t)

at t = 0 and point of injection y = 5 mm, for the initial condition Vm(x, 0) = 0.

76

Figure 3.7: The Green’s function, G∞(x, y, t). Parameters were set at
λ = 10 mm and τ = 100 ms, similar to the space constant in a mo-
torneuron. The time axis is truncated between 0 ≤ t < 0.01, as the function
is extremely large in this interval (infinite at t = 0), making it very difficult
to visualise.

3.4.6 Alpha Currents

The delta stimulus, a function that jumps to a value infinitely high in infinitessi-

mal time, and yet with unit integral, is a highly unrealistic physiological perturba-

tion. Its usefulness lies in its ability to provide us with a Green’s function which,

once calculated, can be used to solve for more biologically-realistic forms of current

injection. Evidence [Jack and Redman, 1971] shows that synaptic input can be

well-approximated using the alpha function,

α(t) = b t e−
t
T , t > 0, (3.100)

where T > 0 is a scaling constant, determining the duration of the function. The

parameter b can be positive or negative depending on whether the stimulus is exci-

tatory or inhibitory. The alpha function, shown in Figure 3.9, grows to its maximum

at t = T , and then relaxes to zero.

We have no closed-form solution for the transmembrane potential’s response

to stimulation by an alpha-like current. Tuckwell [1988] does provide two different

77

3 3.5 4 4.5 5
0

5.5 6 6.5 7

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x (mm)

V
m

 (m
V

)

t = 0.01 ms

t = 0.25 ms

t = 0.50 ms

Figure 3.8: Voltage traces for injection at y = 5 mm on the infinite cable.
Parameters were taken to be λ = 1 mm and τ = 3 ms – a neuron with faster
response than the one in Figure 3.7.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

t (ms)

α
(t

)

Figure 3.9: Alpha function α(t) with T = 1 ms.

expressions for Vm(x, t), for situations where Iapp = δ(x − y)α(t), as calculated

in (3.99) – one for short times, and one for long times, pointing out that both

78

derivations make assumptions about the magnitude of T , and that, for the general

case, a numerical evaluation of the integrals in (3.99) may be preferable.

3.4.7 Rectangular Pulse

We can, however, derive a closed-form solution for the cable equation for rectangular

pulse currents : a constant current of magnitude σ, turned on instantaneously at

time t = 0, and turned off after a duration d. For this form of current, we have

Iapp(x, t) = σ δ(x− y) Θ(t) Θ(d− t), (3.101)

applied at y, where Θ(t) is the Heaviside step function :

Θ(t) =

{
0 t < 0

1 t ≥ 0
. (3.102)

The solution to (3.99), when Iapp(x, t) is an injected rectangular pulse of current, is

given by Coombes and Bressloff [2003] as

Vm(x, t) = A(x, t−min{t, τR})−A(x, t), (3.103)

where A(x, t) is given by

A(x, t) =
σ

4

√
τ

D

[
exp

(
− |x|

√
1

D τ

)
erfc

(
− |x|√

4Dt
+

√
t

τ

)

+ exp

(
|x|
√

1

D τ

)
erfc

(|x|√
4Dt

+

√
t

τ

)]
,

(3.104)

and

erfc(x) =
2√
π

∞∫

x

e−x
2

dx (3.105)

is the complementary error function. The resulting transmembrane voltage response

to this type of stimulus is shown in Figure 3.10.

3.5 The Path Integral for Dendritic Trees

The Green’s function for the infinite cable is the fundamental building block for the

construction of the time-domain solution to the cable equation on more complex

spaces. Branching structures such as binary trees, representative of the morphol-

79

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1
× 10

-4

t (ms)

V
m

 (m
V

)

Figure 3.10: Transmembrane voltage response to a rectangular current,
Iapp = σ δ(x) Θ(t) Θ(d− t) for a duration of d = 3 ms, amplitude σ = 1 nA,
characteristic length constant λ = 10 mm and time constant τ = 2 ms.

ogy of dendritic trees, can be used as the substrate for the diffusion of current in

cable theory problems. Thus, by applying the appropriate boundary conditions at

branching points, it is possible to solve for the Green’s function on finite, branching

trees.

At branching points, we apply Kirchhoff’s circuit laws : continuity of the

potential and a sum of zero net current. The prior imposes that, for a node where

branch i at x = 0 meets branch j at x = 0, then

Vi(0, t) = Vj(0, t). (3.106)

The latter states that
∑

i

1

ril

∂Vi
∂x

∣∣∣∣∣
x=0

= 0 , (3.107)

for all branches i having an x-coordinate of x = 0 at the node, and where ril is the

longitudinal resistance rl for branch i. Terminals can have open or closed ends, as

defined in Section 3.4.1, where closed tips, as in (3.60), are the most biologically-

realistic.

For arbitrarily-branching trees, constructing a system of equations and bound-

ary conditions quickly becomes very difficult. As demonstrated in the previous

chapter, a great deal of work has gone into developing methods for finding a solu-

80

tion to the linear cable equation on complex branching structures. The majority

of methods, however, are rooted in the Laplace domain, providing solutions which

must be numerically inverted back into the time domain. With the definition of

the inverse transform (3.30) containing an exponential function of time, numerical

inverse Laplace transform methods are inherently extremely sensitive to parameters

and to system precision, often requiring the use of multiple precision arithmetic

libraries, which can lead to drastic losses in computational efficiency. The main

alternatives are to use numerical simulation on a compartmentalised dendritic tree,

based on Rall’s compartmental model [Rall, 1964]; this remains the tool of choice for

the vast majority of cable theory problems today, due to its simplicity and general

applicability.

Numerical simulations can be computationally expensive, however, and only

provide a discrete approximation to the continuous cable equation. With the avail-

ability of thousands of neuronal geometries in the form of standardised .swc geome-

try files obtainable from the NeuroMorpho [Ascoli et al., 2007] database, representing

over two hundred thousand manual reconstruction hours, a method for efficiently

constructing the continuous Green’s function solution, to high accuracy and in the

time domain, would be extremely valuable. Abbott et al.’s [1991] path integral for

dendritic trees provides this tool, allowing the Green’s function to be written as an

infinite, convergent sum of functions of trips on the tree.

Abbott et al.’s [1991] Path Integral

The Green’s function, the response of a tree’s transmembrane voltage to a unit

pulse stimulus, captures the full effect of the tree’s spatial extent. With a strong

body of evidence demonstrating that the tree’s complete morphology is essential

to understanding how current diffuses along the branching structure, the ability to

compress the entire tree into a single function is extremely beneficial. In order to

compute the Green’s function, therefore, we must sample from the entirety of the

dendritic tree. We can capture the full detail of the dendritic morphology using a

path integral for the Green’s function.

The Feynman path integral stems from quantum mechanics, where it for-

mulates a description of a system’s trajectory between any two points, in terms of

an integral, or sum, over all possible trajectories between these two points. For a

particle moving in space, for example, there are an infinite number of trajectories

from some point x in space, to a point y, each weighted in a probabilistic fashion.

Assuming that the integral converges, it is possible to compute a property of the

particle’s trajectory (such as, in quantum mechanics, its quantum amplitude), by

81

integrating over the infinite set of trajectories that the particle can take.

In 1991, Abbott et al. [1991] derived a path integral formalism for dendritic

trees, where the Green’s function can be expressed as an infinite sum of the Green’s

function over all possible trips between two points on a branching structure. By gen-

eralising Brownian motion measure on the infinite cable to finite, graphical spaces,

they were able to derive a Feynmann path integral for diffusion along dendritic trees.

In the limit of a large number of independent random walks in one dimension, Ab-

bott et al.’s [1991] Green’s function is Gaussian with mean x − y and standard

deviation
√
t :

G0(x− y, t) =
1√
4πt

e−
(x−y)2

4t e−
t
τ . (3.108)

Note that this equation differs from (3.98) due to having a fixed diffusion constant

D = 1 on all branches. Abbott et al. [1991] take D to be constant because they

solve a version of the cable equation (3.1) where the spatial coordinate has been

rescaled by a constant characteristic length λ, thereby fixing this parameter on all

branches. In Section 3.5.1, we will show how to relax this assumption, to allow

λi to be different for each branch i, and therefore allowing a different diffusion

constant Di for different i. Abbott et al. [1991] also consider the leakage term e−t/τ

separately, not including it in their definition ofG0(x−y, t). Because it has no spatial

dependence, this has no effect on the derivation of the path integral. However, for

continuity and simplicity, we include it here rather than reinserting it later.

For the semi-infinite cable where x ≥ 0, with a closed tip boundary condi-

tion at x = 0 as in (3.60), Abbott et al. [1991] construct the Green’s function for

measurement at x and injection at y as a combination of two G0 terms, effectively

categorising the trips into those which touch the point x = 0, and those which do

not. The latter class of trips can be computed simply as G0(x−y, t), never touching

the origin. Any random walker that does touch x = 0, however, must reflect back

towards positive x with probability 1, and thus must be treated differently. If we

take the final part of the random walker’s trip, from its final contact with x = 0 to

the point y, and reflect this section about x = 0, we see that there exists a one-to-

one correspondance between all trips from x to y that touch x = 0, and trips from

x to the imaginary point −y. The Green’s function for this type of trip is simply

G0(x + y, t), and we can trivially construct the Green’s function for all paths on a

semi-infinite cable, from x to y in time t, by

Gclosed(x, y, t) = G0(x− y, t) +G0(x+ y, t). (3.109)

We can construct the Green’s function for a semi-infinite cable with an open bound-

82

ary (3.59) at x = 0 in a similar manner. With this terminal condition, any path

that touches x = 0 is lost and must be discounted. The Green’s function for this

system is therefore

Gopen(x, y, t) = G0(x− y, t)−G0(x+ y, t). (3.110)

A first step towards generalising from the single cable to the tree is made by

considering a single branching node, with n semi-infinite cables radiating from it,

and a coordinate choice of x = 0 at the node for all segments. The random walkers

behave normally along the cables, performing a random walk along them, and at

x = 0, jump onto segment k with a probability pk, given by

pk =
a

3/2
k

n∑

i=1

a
3/2
i

, (3.111)

where ak is the radius of branch k. A more general definition for the probabilities

pk is given by

pk =

(
λk rk

)−1

n∑

i=1

(
λi ri

)−1

, (3.112)

allowing λi to vary according to the branch; this simplifies to Abbott et al.’s [1991]

probabilities (3.111) if λi = λ ∀ i, as is assumed in their work. Indeed, the 3/2-power

in (3.111) stems from the dendritic input conductivity, as shown by Rall [1959], and

can be recovered by taking Rm and Rl to be the same for all branches in (3.112),

thereby imposing the same λ everywhere on the tree. If space is normalised by this

fixed space constant, such that a generalised definition of the electrotonic distance

x/λ is considered, the system of equations and boundary conditions describing the

voltage about a node can be collapsed down onto the Green’s function for the infinite

cable, should the radii obey ∑

j 6=i
a

3/2
j = a

3/2
i , (3.113)

where j are all daughter branches of i. Rall [1962a,b] used this relation in his deriva-

tion of the equivalent cylinder framework, a model used primarily in the simulation

of cat motoneurons. This equivalent cylinder rule allows any tree satisfying the

radial requirement to therefore be simplified to an analogous single cable, for which

we can solve easily.

Let us now consider a node with multiple semi-infinite branches extruding

83

from it, and the paths from a point x on branch i to a point y on branch j. When

i = j, there is a contribution of G0(x − y, t) − G0(x + y, t) from trips that do not

touch the node, as with Gopen in (3.110). Then, regardless of whether i = j, there

is a contribution from those that do touch the node of 2pj G0(x + y, t), where the

factor of 2 arises because of the analogous paths on the infinite cable, going from x

to y and from x to −y, both with probability pj . From this, we note that passing

through a node from a branch i onto a branch j takes a factor of 2pj , while trips

reflecting off a node back onto branch j pick up a factor of 2pj−1 as coefficient. By

continuing along these lines, Abbott et al. [1991] were able to demonstrate that their

random walks, following the rules mentioned here, satisfied the required boundary

conditions at all branching nodes and terminals. They were able to move away from

random walks along the branches, to graphical trips between nodes. The result is

that a Green’s function Gij(x, y, t), for walks starting at x on branch i and finishing

at y on branch j in time t, is constructed by an infinite sum over functions of all

possible trips from x to y via any number of nodes.

3.5.1 Rules for Trip Construction

In their first paper on the dendritic path integral, Abbott et al. [1991] provide a set

of rules for constructing valid trips on a dendritic structure. These are required to

compute the Green’s function on the structure, and hence to compute the voltage

response to a stimulus on a particular dendritic tree. In his subsequent paper,

Abbott [1992] provides a diagrammatic version of the rules, easily applicable to any

given branching structure, and the final paper in the series provides a computational

algorithm for the dendritic path integral [Cao and Abbott, 1993].

Trips are described as a sequence of node identifiers, sandwiched between the

points x and y, from which trips begin and terminate, respectively. The trip xAB y

is valid only if the point x is adjacent to the node A, which must be adjacent to

node B, which in turn must be adjacent to the point y, where adjacency is defined

by the presence of a branch between the nodes. Trips have a length Ltrip, the total

distance travelled along the branches : that between x and A, added to the length of

the branch (A,B), added to the distance between node B and point y. Finally, trips

also have a coefficient Atrip, a product of the terms 2pj and 2pi−1, as introduced in

Section 3.5. Initially, Atrip = 1. After the trip leaves x, if it passes through a node

and onto branch j from a different branch i (such that j 6= i), it would take a factor

of 2pj , while any trip reflecting back onto the same branch i at the node would take

a factor of 2pi − 1. Therefore, each time the trip encounters a node coming from a

branch i, its Atrip is multiplied by either 2pj or 2pi−1, depending on whether it had

84

passed through and onto branch j, or reflected from the node back onto i. When

the trip reflects off a terminal, Atrip is multiplied by +1 for closed terminals, or by

−1 for open terminals. This is shown diagrammatically in Figure 3.11.

Trips are used to construct the Green’s function Gij(x, y, t), for injection

of current at a point y on branch j, and measurement at x on branch i. It is

constructed by an infinite sum over functions of trips starting from x and finishing

at y, of which there are an infinite number. Trips may leave x in either direction

along branch i. They are allowed to change direction only at nodes, where they

can pass onto another branch, or reflect back onto the same branch. At terminals,

trips always reflect. Trips may visit nodes and may pass the point y any number of

times, but must eventually end exactly at y on branch j. The Green’s function is

then defined as

Gij(x, y, t) =
∑

trips

AtripG∞(Ltrip, t), (3.114)

where G∞(Ltrip, t), defined in a manner similar to (3.98), but with its (x−y) distance

dependence replaced with a space-constant-normalised trip length Ltrip :

G∞(Ltrip, t) =
1√

4πDj t
e−

(Ltrip)2 τ

4t e−
t
τ , (3.115)

where Ltrip = Ltrip(x/
√
λi, y/

√
λj) is the sum of the lengths of the edges travelled

during the trip, normalised by their own space constants.

i

j
x

y

2pj

i

j
x

y

2pi − 1

i

j
x

y

±1

Figure 3.11: Factors taken to Atrip as a trip encounters a node. The quan-
tities p are defined as in (3.111).

These rules are sufficient for the construction of the Green’s function (3.114).

The path integral framework also provides an identity for computing the Green’s

function for the exchange of points x and y :

Gji(y, x, t) =

(
Dj rj
Di ri

)3/2

Gij(x, y, t). (3.116)

85

Due to the superexponential suppression of the e−L
2
trip τ/4t term in (3.98)

for large path lengths, Abbott suggests that the Green’s function (3.114) can be

truncated. This approximation is especially valid at short times. This implies that

the short-time behaviour of passive voltage propagation on dendritic trees is dictated

by the shortest paths between x and y, while distal parts of the tree have no impact

at these times. For longer timescales, this sum-over-trips methodology samples from

the wider tree and more trips are required for the path integral to converge as the

exponential suppression becomes less significant. In addition, the number of possible

trips grows exponentially with trip length. Abbott provides a brief analysis of the

path integral’s convergence [Abbott, 1992], stating that, for a trip visiting N nodes,

the trip’s length scales with N and hence, G∞ scales with e−αN
2
, with constant α.

Assuming an infinite binary tree where each branch has equal radius (and hence

pk = 1/3 ∀ k), the Green’s function Gij is a sum of trips, each multiplied by their

own Atrip. Assuming that a trip reflects off n nodes and passes through N−n nodes,

then

AN,ntrip =

(
2

3

)N−n(
−1

3

)n
. (3.117)

There are
(
N
n

)
ways of selecting trips of length N with n reflections, and at each non-

reflection, there are 2 ways the trip can go. The total sum of path coefficients Atrips

is the sum over all possible combinations of reflections and transmissions through

nodes, each weighted by the relevant coefficient, that is,

∑
Atrip =

N∑

n=0

2N−n
(
N

n

)
AN,ntrip . (3.118)

Putting these together, we find that

∑
Atrip =

N∑

n=0

2N−nN !

n!(N − n)!

(
2

3

)N−n(
−1

3

)n
=

(
4

3
− 1

3

)N
= 1, (3.119)

and hence, the sum of coefficients Atrip does not grow with N , implying that the

exponential suppression factor e−L
2
trip/4Dt does not have to compete with a growing

number of trips; with longer trips exponentially more numerous but suppressed with

e−L
2
, trips should contribute monotonically less to the Green’s function (3.114) as

length increases.

86

3.5.2 Trip Classes

Trips can be separated into four classes, with each belonging to one class. This

serves to indicate the direction from which the trip leaves x and approaches y. On

the infinite cable, there exists only the direct x → y trip, with all others going to

infinity and not being able to change direction. This direct trip, leaving x in the

direction of y and approaching y from the x direction, is a Class 1 trip, and has the

trip description x y. On a branching structure, such as that in Figure 3.12, x and y

can exist on the same branch (in which case x y would still describe the most direct

trip), or on different branches : the structure in Figure 3.12 has xB y as its shortest,

most direct Class 1 trip. Should a trip leave x and move away from y at first, before

reflecting at a node or terminal and eventually arriving y as it moves away from x,

the trip is said to belong to Class 2. On the figure, xAB y is the shortest Class

2 trip. Class 3 trips move from x towards y at first, moving past the point, and

finish by reflecting and approaching y by moving towards the point x. The shortest

Class 3 trip on Figure 3.12 is xB C y. Any trip that leaves x by moving away from

y, and finishes approaching y by moving towards x is a Class 4 trip. These are

summarised visually in Figure 3.12. Trips are referred to as being analogous when

they are constructed from the same core path along the tree, only allowing the first

or last step to change, and hence, defining which class the trips belong to. It is

possible to construct the shortest Class 2, 3 and 4 trips from the shortest and most

direct trip between x to y; this is always a Class 1 trip. These newly-constructed

paths are analogous with the shortest trip. Likewise, from any non-direct Class 1

trip, which performs excursions by visiting other nodes (potentially many times), it

is possible to construct three analogous trips.

All analogous Class 2 and 3 trips have longer trip lengths Ltrip than their

analogous Class 1 trip. All Class 4 trips have longer Ltrip than the analogous Class

1, 2 and 3 trips. However, depending on where along the branches the points x

and y are placed, it is not possible to say, in general, which of the Class 2 or 3

trips are longer. Once determined for a particular branching structure, however,

the relationship always holds : if, on a given tree, Class 2 trips are longer than Class

3 trips, this will always be true for that tree.

3.5.3 Theoretical Convergence and Term Ordering

We can show that Abbott’s sum-over-trips makes an error that is bounded from

above by e−N , if all terms up to and including those of length N nodes are consid-

ered. We consider an identical diffusion coefficient D for all branches, although it is

87

A

B

C
A

B

C

x y x y

A

B

C

x y

A

B

C

x y

Class 1 : xBy Class 2 : xABy

Class 3 : xBCy Class 4 : xABCy

Figure 3.12: The four classes of trips, as defined by Cao and Abbott [1993].
Class 1 is the most direct trip, leaving x in the direction of y, and not going
past y before finishing (xBy). Class 2 leaves x in the other direction, but
finishes when it meets y (xABy). Class 3 moves from x towards y, but goes
past y and changes direction immediately after passing it before finishing
(xBCy). Class 4 trips move from x first away from point y, and pass y
before reflecting on the next node and finishing (xABCy).

possible to generalise this proof to support different diffusion coefficients. Fixing t

throughout, we let

Gij(x, y) =
∑

trips

Atrip G∞(Ltrip)

=
∞∑

k=0

∑

trips with
k nodes

Atrip G∞(Ltrip),
(3.120)

where G∞(Ltrip) is defined as in (3.98) for constant t.

We do not assume that all branches have equal radius. This implies that

Atrip is a product of N factors 2pi ∈ (0, 2) and 2pi − 1 ∈ (−1, 1), where N is the

number of nodes visited by the trip. Then,

|Atrip| ≤ 2N . (3.121)

88

There exists a constant B > 0 such that every trip touching N nodes satisfies

Ltrip ≥ BN. (3.122)

This makes B the coefficient of the lower bound on trip length, in terms of the

number of nodes in a trip. Intuitively, B is the minimum distance between any two

nodes, where, for this purpose, we count x and y as nodes.

Let FN be the number of trips with N nodes. For any realistic, finite, den-

dritic morphology, each node has degree d ≤ 3, and the total number of trips with

N nodes is bounded by

FN ≤ 3N . (3.123)

We wish to classify trips by the number of nodes they meet. We therefore introduce

ΓN , the Green’s function for trips with a given number of nodes, defined by

ΓN =
∑

trips with
N nodes

Atrip G∞(Ltrip) . (3.124)

Then

|ΓN | =

∣∣∣∣∣∣∣

∑

trips with
N nodes

Atrip G∞(Ltrip)

∣∣∣∣∣∣∣

≤
∑

trips with
N nodes

∣∣∣ Atrip G∞(Ltrip)
∣∣∣

=
∑

trips with
N nodes

∣∣ Atrip

∣∣ ∣∣ G∞(Ltrip)
∣∣.

(3.125)

For simplicity, we rewrite the Green’s function (3.98) as G∞(Ltrip) = Ce−EL
2
trip ,

where

C =
e−t/τ√
4πDt

, and E =
1

4Dt
. (3.126)

Then using (3.121) - (3.125), we obtain that the absolute value of the node-dependent

89

Green’s function ΓN is bounded from above :

|ΓN | ≤
∑

trips with
N nodes

2NCe−EL
2
trip

≤
∑

trips with
N nodes

2NCe−EB
2N2

≤ FN 2NCe−EB
2N2

≤ 3N2NCe−EB
2N2

= 6NCe−EB
2N2

= Ce−N(EB2N−ln(6)).

(3.127)

We define an integer M = bln(6)/(EB2)c, such that the term in the expo-

nential in (3.127), EB2N − ln(6), is positive for all path lengths N greater than M .

Then

∣∣∣∣∣
∞∑

N=0

ΓN

∣∣∣∣∣ ≤
∞∑

N=0

|ΓN |

≤
∞∑

N=0

Ce−N(EB2N−ln(6))

=
M∑

N=0

Ce−N(EB2Nk−ln(6)) +
∞∑

N=M+1

Ce−N(EB2N−ln(6)).

(3.128)

The first sum in (3.128) is a finite sum of finite terms, and is hence finite. We will

now show that the second sum is also finite using d’Alembert’s ratio criterion for

convergent series. The ratio ρN of the consecutive terms in the series, N and N + 1,

is

ρN =

∣∣∣∣∣
Ce−(N+1)(EB2(N+1)−ln(6))

Ce−N(EB2N−ln(6))

∣∣∣∣∣

= e−(EB2(2N+1)−ln(6))

(3.129)

90

Letting N →∞, we obtain

ρ∞ = lim
N→∞

ρN

= lim
N→∞

e−(EB2(2N+1)−ln(6))

= 0.

(3.130)

With ρ∞ < 1, the second sum in (3.128) converges absolutely for all constants

B,C,E > 0. Therefore, the series in (3.128) is absolutely convergent for sufficiently-

high N .

If we define GMij (x, y, t) =
M∑

N=0

∑

trips with
N nodes

Atrip G∞(Ltrip, t), then

∣∣Gij −GMij
∣∣ ≤

∞∑

N=M+1

Ce−N(EB2N−ln(6)) (3.131)

and the path integral converges faster than e−N in the worst case, with the number

of nodes N visited by the trips.

This analysis attempts to put bounds on the magnitude on how Atrip scales

with N , but the only major assumption made is that there exists some non-zero

distance between any two nodes, that is, that no two nodes exist on top of each

other. In a well-constructed dendritic tree, this assumption is perfectly valid, as

nodes represent points taken from a three-dimensional reconstructed image of a

dendritic tree. This assumption allows us to quantify, in terms of a bound, the

minimum length of a trip that meets N nodes. The parameter which defines at

which point we truncate the series solution, and how much error we make in doing

so, is therefore N . In contrast, Abbott’s convergence analysis [Abbott, 1992] uses

Ltrip as a cut-off parameter, and in doing so, assumes that all trips are ordered by

their lengths in a monotonically-increasing fashion, where the n + 1th term in the

series solution (3.114) therefore is smaller in absolute magnitude than the nth term.

We will define the trip length at which the sum-over-trips is truncated as Ltrunc :

any trip with Ltrip > Ltrunc will not be included in the series solution.

Because the number of trips grows exponentially with trip length, whether

characterised by Ltrunc or N , the order in which the series is constructed becomes

incredibly important for the convergence of the solution. With the trip coefficients

Atrip being impossible to compute without explicitly constructing each trip (except

on very simple structures), a heuristic must be used to determine which subset of

91

the infinite number of trips need to be generated. With convergence demonstrated

as a function of increasing length, then computing the Green’s function can be done

by generating the trips in order of increasing length, and hoping that, with this

ordering, their impact on the sum (3.114) does not deviate too strongly from the

optimally-ordered sum, where each term contributes less than its predecessor.

In order to construct the terms in order of their length, Cao and Abbott

[1993] derived an algorithm based on finding the shortest path between x and y (a

Class 1 path on any acyclic structure), and computing the analogous Class 2, 3 and

4 paths from that. They then add an excursion to the Class 1 path, or a deviation

from the shortest path, and compute the other analogous classes of trip from this

one. While, for large Ltrunc, this approach yields a generally monotonic series of

trips in terms of their lengths, it does not guarantee a strict monotonicity, nor does

it generally yield an increasing series over small ranges of Ltrunc. To illustrate this

point, we consider the simple branching structure in Figure 3.13A.

x
1

3

4

2

y

A.

x
1

3

4

2

y

B.

Figure 3.13: A model dendritic structure. A has the points of injection y
and measurement x near the middle of their respective branches, whereas B
has x shifted towards y, and y shifted away from x, which will cause trips
of Class 2 to be longer than those of Class 3.

The shortest trip from x to y along this structure is described by the sequence

of nodes, x 2 y. This Class 1 trip will generate three new trips, one for each of the

remaining classes. The associated Class 2 trip is x 1 2 y, the Class 3 trip is described

by x 2 4 y, and the Class 4 trip is x 1 2 4 y. If we associate the same length L = 1

with each branch, and we place points x and y in the middle of their respective

branches, then we have generated four trips with the lengths L1
trip = 1, L2

trip = 2,

L3
trip = 2, L4

trip = 3. Should we add an excursion to the Class 1 trip, say, x 2 3 2 y, and

generate the analogous Class 2, 3 and 4 trips (x 1 2 3 2 y, x 2 3 2 4 y and x 1 2 3 2 4 y

respectively), then we obtain lengths that continue to monotonically increase.

The situation changes, however, should we place x and y at different loca-

tions. If we consider the tree in 3.13B, we note that Class 2 trips will repeatedly

be longer than Class 3 trips. We move x such that it is closer to node 2 than to

92

node 1, and we move y in the same direction, making it closer to 4 than to 2, then

the Class 2 trip will be longer than the Class 3 trip. Indeed, the shortest Class 2

trip x 1 2 y has length Ltrip = 2.8 while the shortest Class 3 trip, x 2 4 y has length

Ltrip = 1.2, assuming we place x and y a distance 0.1 from their closest nodes. This

loss in monotonicity will occur along any four analogous, consecutive trips : it is a

product of generating trips in class order as opposed to true length order. The loss

in trip length monotonicity is therefore due to an assymmetry between where x and

y are located along their edges. Generating trips in terms of their classes will lead to

a period-4 oscillation in trip lengths, which would not occur if trips were generated

in ascending order of their lengths, as shown in Figure 3.14.

0 5 10 15 20 25
1

1.5

2

2.5

3

3.5

4

Number of Trips

L
tr

ip

Length Priority

Four Classes

Figure 3.14: Trip lengths, as ordered by the algorithm proposed in Cao and
Abbott [1993], in red. The length of trips, sorted ascending by their lengths,
is shown in black.

Pathological structures can be found wherever an assymmetry exists in the

tree. The oscillatory generation of trips by the length, artificially-induced by the

four classes paradigm, is one example of a pathology in the tree. As we will see in

the next chapter, other assymmetries may cause different problems in computational

convergence, depending on the order in which the trips are constructed. In theory,

93

however, the path integral approach is convergent, and can therefore be used to

compute the Green’s function solutions for certain cable structures, in closed form.

3.6 Closed-Form Solutions for Simplified Structures

With the sum-over-trips demonstrated to converge on any dendritic morphology for

a sufficiently-high number of terms, at least in theory, we can begin to consider the

analytical solutions for certain simplified geometries, where the Green’s function

can be written explicitly. In the following expressions, we are able to calculate Atrip

analytically for the given geometry, which allows us to bypass the issue of having

to generate trips according to the length heuristic described above. As in Abbott

et al.’s [1991] derivation of the path integral, we will assume that λi = λ for all

branches i, and hence, that there exists only one diffusion constant D over the

entire tree, for symmetry.

3.6.1 Finite Single Cable

x1 2y

L

Figure 3.15: Finite cable of length L.

Consider a finite cable of length L, with points of measurement and injection

x and y respectively, as in Figure 3.15. If we assume closed boundaries at x = 0

and x = L, then the Green’s function can be trivially written as

G(x, y, t) =

∞∑

n=0

[
G∞

(
2nL+ y − x, t

)

+G∞
(
2nL+ y + x, t

)

+G∞
(
2(n+ 1)L− y − x, t

)

+G∞
(
2(n+ 1)L− y + x, t

)]
,

(3.132)

where G∞(x, y, t) ≡ G∞(x − y, t) is defined in (3.98). This equation contains four

terms in the sum, conveniently separating the trips into their relevant classes. This

is possible because the structure allows us to explicitly compute the length of the

94

trips as a function of the possible reflections on the tree. There are four possible

configurations of trips, which correspond to the four classes of trip. Beyond these,

longer trips are simply excursions from the direct x → y path, for example, x 2 1 y

(the second-shortest Class 1 trip, corresponding to the shortest trip with a single

excursion). There exists only one length, L, and each excursion implies a reflection

on both terminals, for a total additional length of 2L. We can then write the length

of the trips, Ltrip, as a function of the number of excursions the trip makes, n. For

this simple structure, Atrip remains 1 for all trips, assuming closed boundaries at

the terminals.

3.6.2 Star Graph Cells

A star graph contains one central node, which we will label 0, and B external

nodes, each connected only to the central node. If B = 1, the structure is simply

the finite cable, although our definition of star graph will impose that B ≥ 2; we

consider B = 1 as a separate case, treated in Section 3.6.1. Two examples of star

graphs with B = 2 and B = 6 can be seen in Figure 3.16. Here, we derive a novel

combinatorial counting scheme for the construction of a closed-form solution to the

dendritic path integral for symmetrical star graphs.

0

1 2

0

1

2

6

5

4

3

Figure 3.16: B = 2 and B = 6 star graphs, with x and y.

We assume that each branch has the same length L, and that the radius of

each branch is equal, that terminals are closed and that x and y reside on different

branches. Path lengths can be computed as in the case of the finite single cable :

if the points x and y are measured by their distance from the central node 0, then

95

the trips lengths are simply

L1
trip(n) = x+ y + 2nL,

L2
trip(n) = −x+ y + 2(n+ 1)L,

L3
trip(n) = x− y + 2(n+ 1)L,

L4
trip(n) = −x− y + 2(n+ 2)L.

(3.133)

Unlike for the finite cable, trip lengths are not sufficient to compute the Green’s

function for star graphs. Because trips can now pass through and reflect off non-

terminal nodes, we must compute the trip coefficients Atrip. With all branches

having equal radii, we have p = 1/B, as defined in (3.111), independent of the

branch being moved onto, and therefore, 2p = 2/B is the coefficient taken when

we pass through the central node onto another branch, and 2p − 1 = (2 − B)/B

is the coefficient that arises from reflecting off the central node. As before, due to

our closed boundaries at the terminals, the coefficient taken from reflecting off a

terminal is 1.

We begin by considering, for a trip consisting of n excursions, how many

trips can be made where all excursions are reflections. With x and y on different

branches, there is at least one factor of 2p, to get us from x on a given branch to y

on another. If we have one excursion (n = 1), then we can reflect at the beginning

(x 0 1 0 y), or at the end (x 0 2 0 y).

In order to generalise to any n, we introduce the concept of a transition : if

we consider a sequence of nodes visited during a trip, a transition occurs when we

move onto another branch. They therefore exist as a triplet of nodes; any triplet

where the first and last nodes are not equal is a transition. Any move that is not

a transition must necessarily be a reflection, having the first and last nodes equal

to one another. For these purposes, we must substitute x and y with whichever

node is not adjacent to them in the triplet, in order to maintain the direction of trip

movement. An example is the trip x 0 1 0 2 0 y, a Class 1 trip with n = 2 excursions

(as x 0 y is the shortest trip). Here, the nodes perform a reflection (x → 0 → 1,

substituted with 1→ 0→ 1), then a transition (1→ 0→ 2), then another reflection

(2→ 0→ y, substituted with 2→ 0→ 2).

If we are interested in computing the number of trips which can contain only

one transition, for a sequence of nodes with n excursions, we note that this transition

must be the one that brings us from the branch where x resides, to the one which

hosts the point y. There are, therefore, n+1 possible places to put a transition, and

96

with only one transition, then there are
(
n+1

1

)
arrangements of nodes. The number

of trips with the coefficient Atrip = (2p)(2p− 1)n, therefore, is

q
(

(2p)(2p− 1)n
)

=

(
n+ 1

1

)
, (3.134)

where q(Atrip) denotes the number of trips with that coefficient.

We can now consider trips with n excursions that experience only two tran-

sitions, that is, those with coefficient Atrip = (2p)2(2p− 1)n−1. By the same logic, n

excursions and two transitions can be arranged in
(
n+1

2

)
possible ways. However, we

must now note that only one transition is definite : the first transition has to leave

the branch which hosts x but may now move onto any branch except the branch

hosting y, while the second transition may move from any branch except the branch

hosting x (as it has moved away from this branch), and must move onto the branch

containing y. The first transition is indefinite, having the possibility to move onto

any of B − 2 branches (all except the branch hosting x and the branch hosting y),

while the second transition is definite, because it must move onto the branch contain-

ing y. The multiplicity of the
(
n+1

2

)
locations to arrange the transitions is therefore

B − 2, and hence, the number of trips with coefficient Atrip = (2p)2(2p− 1)n−1 is

q
(

(2p)2(2p− 1)n−1
)

=

(
n+ 1

2

)
(B − 2). (3.135)

The number of trips with three transitions, or Atrip = (2p)3(2p − 1)n−2,

begin to show more complicated expressions. There are
(
n+1

3

)
to arrange their

transitions along the length of the trip, but their multiplicity is no longer so trivial.

We first consider the case where the first transition moves the trip onto the branch

containing y. The second transition then has B − 1 branches to choose from (all

except the branch it is currently on, including the branch hosting x). This transition

hence takes us away from the branch hosting y. The third transition is the definite

transition, taking us onto the branch containing y. This scenario has multiplicity

B−1. The other situation is when the first transition moves onto any branch except

the one containing y. As it is a transition and thus cannot reflect back onto the

same branch, this leaves B − 2 choices of branch. This implies that the second

transition also has B − 2 choices : any except the branch it is currently on, or the

branch containing y, as this branch is reserved for our definite transition. The total

multiplicity is this (B−1)(B−2)2, and the total number of trips with n excursions,

97

of which three are transitions, is

q
(

(2p)3(2p− 1)n−2
)

=

(
n+ 1

3

)
(B − 1)(B − 2)2. (3.136)

It is easier to continue enumerating these possibilities by using a decision

tree. Figure 3.17 shows the decision tree for calculating the multiplicity of trips

with n excursions, of which five are transitions (such that Atrip = (2p)5(2p−1)n−4).

The decisions for each transition occur left-to-right; moving upwards implies a choice

where the trip moves onto the branch containing y (and hence, all upwards decisions

have multiplicity 1), while moving downwards implies that the trip will not move

onto the branch hosting y during this transition, which may have multiplicity B− 1

or B − 2, depending on whether we are allowed to move onto any non-y branch, or

any branch that must also be different to the previous branch.

By following the possible paths in these decision trees, we are able to con-

struct solutions for trips with four and five transitions. We find that

q
(

(2p)4(2p− 1)n−3
)

=

(
n+ 1

4

)(
2(B − 1)(B − 2) + (B − 2)3 + (B − 2)2

)
, (3.137)

and

q
(

(2p)5(2p− 1)n−4
)

=

(
n+ 1

5

)(
(B− 1)2 + 3(B− 1)(B− 2)2 + (B− 2)4

)
, (3.138)

where the latter result can be checked from the decision tree in Figure 3.17 by

multiplying the multiplicity of each decision as we move down the tree, and summing

over all final branches.

The number of trips for any coefficient Atrip, can thus be found as a product

of two terms. The first is a combinatorial expression in the number of excursions

n the trip makes and the number of transitions, k, made during the trip. Here,

1 ≤ k ≤ n + 1, as the direct trip (with zero excursions, n = 0) has a single

transition. The second is a polynomial in the number of branches in the star graph,

with coefficients dictated by the number of transitions k made during the trip. By

expanding the polynomials, we can observe a pattern :

k = 1 1 n ≥ 0

k = 2 1B +2 n ≥ 1

k = 3 1B2 −3B +3 n ≥ 2

k = 4 1B3 −4B2 +6B −4 n ≥ 3

k = 5 1B4 −5B3 +10B2 −10B +5 n ≥ 4

98

1

B - 2

B - 2

B - 2

B - 2

B - 1

B - 2

B - 2

1

1

1
B - 1

B - 2

B - 1

B - 1

(B - 1)2

(B - 1)(B - 2)2

(B - 1)(B - 2)2

(B - 1)(B - 2)2

(B - 2)4

Figure 3.17: The decision tree for a trip with five transitions. Starting
at the leftmost node, we decide whether the next transition will take us
onto the branch containing y (an upwards choice), or any other branch
(a downwards choice). We describe the middle trajectory as an example.
Our first transition takes us away from the branch containing x, and onto a
branch not containing y, allowing a total of B−2 choices. The next transition
is onto the branch containing y, with multiplicity 1. Then, we have no choice
but to move away from this branch at the next transition, onto any non-y
branch, with B−1 choices. From here, our fourth transition must take us to a
place where we can move onto the branch containing y on the fifth transition,
and therefore must be any non-y branch that is different to our current
branch. Hence, we have B−2 choices at this stage. The total multiplicity for
trips following this pattern is then (B−1)(B−2)2. An example Class 1 trip
for this branch of the decision tree might be x 0 3 0 3 0 2 0 4 0 1 0 1 0 y, where
we have five transitions and two reflections (a total of n = 6 excursions).

The coefficients to the polynomial expressions follow Pascal’s Triangle, with the

rightmost diagonal removed. If this is correct, then the polynomial can be expressed

as

P (k) =
k∑

i=1

(
k

i− 1

)
(−1)i−1Bk−i. (3.139)

This combinatorial expression can be shown to generate the correct number of total

trips, should we sum over all possible combinations of transitions and reflections. If

we fix the number of excursions n, we have Bn total possible valid trips on a star

graph with B branches. We then consider the number of trips with k transitions,

99

and sum over k :

n+1∑

k=1

q
(

(2p)k(2p− 1)n−k+1
)

=
n+1∑

k=1

(
n+ 1

k

)
P (k). (3.140)

Substituting P (k) from (3.139), we find

n+1∑

k=1

q
(

(2p)k(2p− 1)n−k+1
)

=
n+1∑

k=1

(
n+ 1

k

) k∑

i=1

(
k

i− 1

)
(−1)i−1Bk−i

= −
n+1∑

k=1

(
n+ 1

k

)
Bk

k∑

i=1

(
k

i− 1

)(
− 1

B

)i

= −
n+1∑

k=1

(
n+ 1

k

)
Bk

k−1∑

j=0

(
k

j

)(
− 1

B

)j+1

=
n+1∑

k=1

(
n+ 1

k

)
Bk−1

k−1∑

j=0

(
k

j

)(
− 1

B

)j

=

n+1∑

k=1

(
n+ 1

k

)
Bk−1

(
k∑

j=0

(
k

j

)(
− 1

B

)j
−
(
− 1

B

)k)

=

n+1∑

k=1

(
n+ 1

k

)
Bk−1

((
1− 1

B

)k
−
(
− 1

B

)k)

=
1

B

n+1∑

k=1

(
n+ 1

k

)(
(B − 1)k − (−1)k

)

=
1

B

n+1∑

k=0

(
n+ 1

k

)(
(B − 1)k − (−1)k

)

=
Bn+1 − 0

B

= Bn ,

(3.141)

and thus, this expression finds the correct number of paths for any number of ex-

cursions n, for any number of transitions k and for any number of branches B on a

star graph.

We can now construct an expression for the Green’s function. We must

100

consider all trips from n = 0 to N excursions (an upper limit on trip length), each

of which must have from k = 1 to n + 1 transitions. Each of these has a given

coefficient, Atrip, and we are now able to enumerate the number of trips with this

coefficient, q
(
Atrip

)
. So, the Green’s function for star graphs with B branches can

be written

Gij(x, y, t) =
∑

trips

AtripG∞(Ltrip, t)

=

N∑

n=0

∑

trips with
n excursions

AtripG∞(Ltrip, t)

=

N∑

n=0

n+1∑

k=1

q
(
Atrip

)

︸ ︷︷ ︸
trips with
n excursions

AtripG∞(Ltrip, t)

=

N∑

n=0

n+1∑

k=1

k∑

i=1

(
n+ 1

k

)(
k

i− 1

)
(−1)i−1Bk−i

︸ ︷︷ ︸
q
(
Atrip

)

(2p)k (2p− 1)n−k+1

︸ ︷︷ ︸
Atrip

×
(
G∞(L1

trip(n), t) +G∞(L2
trip(n), t)

+G∞(L3
trip(n), t) +G∞(L4

trip(n), t)

)
,

(3.142)

which accounts for all classes of trips up to N excursions, with all possible combina-

tions of reflections and transmissions, with the correct coefficients, and for the right

trip lengths.

3.7 Conclusions

In this chapter, we presented a complete derivation of the cable equation, along with

its assumptions and some of its steady-state solutions. We then derived the Green’s

function general solution by using Laplace and Fourier transforms, and used this

form to introduce Abbott et al.’s [1991] dendritic path integral. We demonstrated

how the path integral can be used to construct simple and extremely-efficient closed-

form solutions for some simple dendritic structures, such as the finite cable and

symmetrical star-graphs, for which we derived a novel and optimal solution.

101

Closed-form solutions such as those derived in Sections 3.6.1 and 3.6.2 provide

a highly-efficient manner of computing the Green’s function for certain branching

structures. Equation (3.132) groups trips on the finite cable by their class, and

creates each trip by increasing its base length by twice the length of the cell, an

augmentation on the mother trip dubbed an excursion. For star cells, the solution

in Section 3.6.2 is optimal, in the language of a sum-over-trips : equation (3.142)

is a compact form of the dendritic path integral, in which trips are grouped by

their coefficients, by the number of reflections and transitions they make. As such,

trips are merely enumerated and not explicitly created, a phenomenal computational

saving.

However, the morphological constraints imposed by these solutions do not

lend these solutions to the study of realistic dendritic systems. Few neuronal systems

exhibit the symmetry that these solutions rely on. Star graphs can be used to

caricature systems such as the starburst amacrine cells in the retina, as in Figure

2.15. Linear structures, such as in Figure 3.15, have been used to simulate the flow

of calcium between an array of cells [Harris and Timofeeva, 2010].

For more realistic dendritic morphologies, with complex branching struc-

tures, and not limited to a set of symmetries to be exploited in simplifying the solu-

tion, more general methods for construction of the Green’s function must be consid-

ered. The next chapter introduces several algorithms for solving the dendritic path

integral on arbitrary geometries, directly in the time domain – a minority amongst

a plethora of Laplace-domain methods. These more general algorithms construct

the Green’s function by sampling from the full dendritic morphology, again, based

on the work of Abbott et al. [1991] and the algorithmic implementation of Cao and

Abbott [1993].

102

Chapter 4

Time-Domain Methods

The solutions introduced in the previous chapter are extremely valuable : those that

are simple enough (and do not rely on combinatorial expansions) provide mathe-

matical insight into the behaviour of the transmembrane voltage in cables; those

more complicated still provide a very rapid means of computing the path integral

and hence, to efficiently simulate voltage spread along branching structures. Unfor-

tunately, the majority of branching structures are too complex to enable a compact,

closed-form sum-over-trips solution to be derived, relying instead on the sampling

of paths from the tree in a fashion we must decide upon.

The intuition given to us by Abbott [1992], which we supplemented with

a more formal and general derivation in Section 3.5.3, states that the impact of

a trip on the sum-over-trips solution diminishes exponentially with the number of

trips, should they be ordered by increasing trip length; hence, we will first consider

algorithms which sample trips from the tree in order of increasing trip length. We

describe the classed-based excursions heuristic of Cao and Abbott [1993] in Section

4.2, and develop a novel formal language framework allowing for improvements to

be made to this algorithm in Section 4.3.

From this point onwards, we introduce a set of new algorithms for sampling

trips from dendritic trees. A true length-priority heuristic is developed in Section 4.4.

Then, in Section 4.5, we introduce the Feynman-Kac formula for the cable equation

on trees, and derive a Monte Carlo algorithm for it, sampling trips stochastically

using a random walker on the nodes of the tree. In Section 4.6, we map the tree to

a discretised analogue and compute the sum-over-trips using a modified incidence

matrix to count trips with a given length and calculate trip coefficients on-the-fly.

Section 4.7 compares the computational convergence of the algorithms detailed in

this chapter, and Section 4.8 summarises these results.

103

4.1 Graph Theory and Algorithms Terminology

When dealing with dendritic structures, it is extremely useful to represent the

branching tree as a graph, or network. The field of graph theory can provide a

great deal of results useful to the following work, and can make concrete some of the

concepts used. We therefore begin by a short list of graph-theoretic terminology.

Graph

A graph G is typically defined by a set of nodes or vertices, V, and a set of edges, E .

Edges may be directed or undirected, and represent a relationship between a given

pair of nodes. In addition to direction, edges may be given a weight, which may

represent a cost or distance associated with moving from one node to its neighbour.

An edge between vertices i, j ∈ V may be denoted (i, j) ∈ E .

A graph may be fully defined by its adjacency matrix A, a square matrix

denoting the distances between connected nodes. In the case of unweighted graphs,

the matrix is binary, with Aij = 1 if an edge exists between vertex i and vertex j,

and Aij = 0 otherwise. Undirected graphs have a symmetrical adjacency matrix,

as an edge between i and j implies an edge between j and i, whereas, in directed

graphs, (i, j) 6=⇒ (j, i).

A variant on the adjacency matrix is the edge-adjacency matrix, denoted B,

where Bmn = 1 implies that edges m,n ∈ E now share a node.

Degree

The degree of a node i ∈ V, denoted d(i), is the number of edges adjacent to i. If

the graph is directed, a node’s degree can be classified according to whether the

edges are incoming (in-degree) or outgoing (out-degree). A node i with d(i) = 1 is

typically called a terminal ; the root node is simply a designated special case of a

terminal node. If a directed edge (i, j) points from a node i to a node j, then i is

said to be the edge’s tail, and j is the edge’s head.

Tree

A tree is an acyclic graph. This also prohibits self-cycles, that is, (i, i) 6∈ E for

any tree. A binary tree is a tree in which the maximal degree for any node is three.

Equivalently, nodes in a binary tree have one parent, and no more than two children.

104

Walks

A walk is a sequence of nodes on the graph, where each node is connected by an

edge to the node that precedes it. Direct walks follow the shortest available path

between their first and last nodes; on a tree, there is only one direct walk between

any two nodes. Any walk that is not direct is allowed to visit nodes that are not

along the direct walk (an excursion), or visit nodes more than once. The term path

will be used synonymously with walk in this work. In the dendritic path integral

literature [Abbott et al., 1991; Cao and Abbott, 1993; Coombes and Bressloff, 2003;

Timofeeva, 2003; Svensson, 2009; Harris and Timofeeva, 2010], paths are primarily

called trips.

Connectedness

A fully-connected graph is one in which there exists at least one walk between any

two pairs of nodes. Graphs that are not fully connected have a number of connected

components that is greater than one, each of which are fully-connected subgraphs.

Cardinality

Perhaps not truly terminology belonging to graph theory or algorithms, the cardi-

nality of a set remains a central concept in these fields. Taking the set of edges V
as an example, its cardinality is denoted |V|, and measures the number of elements

in the set – thus, |V| is the number of nodes on a tree. For any fully-connected tree,

|V| = |E|+ 1.

Spanning Tree

For any fully-connected graph defined by its set of nodes V and set of edges E , a

spanning tree is a graph consisting of all nodes in V and a subset of the edges in E
such that all nodes lie on the tree and there exists a path between any two nodes,

but no cycles are present. Any tree is its own spanning tree; any cyclic graph can

admit multiple spanning trees, each of which form a tree which spans all nodes in

V. Any bridging edge (an edge that, if deleted, increases the number of connected

components in the graph) must belong to the spanning tree.

Shortest Path Tree

A shortest path tree T for a graph G is a spanning tree with a root at a given node

v ∈ V, such that the length of the path between any node u ∈ V and v on the

105

shortest path tree T is equal to the length of the shortest path between these nodes

in G. Shortest path trees are not necessarily unique.

Order

The total order of a tree is the total number of levels that make up the tree, counted

from the root. The root is defined as having order zero, its children having order

one, and so on, until the furthest terminal node.

Heap

A tree in which the nodes have some sort of value, or key, associated with them

satisfies the min-heap property if, for all nodes, the parent node’s key is less than

or equal to the keys of any child nodes. Similarly, a max-heap is a tree in which the

key of the parent node is greater than or equal to the keys of children nodes. Heaps

are examples of ordered data structures, and are especially important in algorithmic

graph theory as they implement the maximally-efficient form of a priority queue, a

structure which sorts elements in a queue and always provides the element with the

highest priority first.

Time Complexity

Mathematically, a graph is a representation of a set of objects, explicitly linked

according to some relation between them. When viewed from a computational per-

spective, however, graphs can be considered data structures from which we would

like to extract information using an algorithm : a procedure, or set of instructions,

which computes a desired quantity or finds a function of interest in finite time.

Some algorithms are faster at producing their output than others – however, the

absolute speed with which an algorithm provides a solution to the required problem

is dependent on the size of the dataset, on certain parameters of the dataset, on

computational power available, on memory access-times, and many more factors

which make defining an absolute compute time for an algorithm a meaningless en-

deavour. Instead, a theoretical speed, or time complexity, can be associated with an

algorithm, as a function of the size of its input. If the algorithm acts on a graph,

then its time complexity can be defined as a function of the number of nodes in the

graph, for example, describing how the algorithm’s performance scales with the size

of its input.

Big O notation is used to describe the time complexity of an algorithm. An

algorithm such as the Depth-First Search, which searches through a graph from a

106

given node in depth order will, in the worst case, have to iterate through every node

in order to find what it is searching for. This algorithm is therefore linear in the

number of nodes on the graph, and has a time complexity denoted by O(|V|). This

states that the algorithm will slow linearly as we increase the size of the graph that

must be searched. The Breadth-First Search algorithm, which searches through the

graph by visiting all neighbours of a node before moving on in its search list, also

has a time complexity of O(|V|). Both of these algorithms can be used to find the

shortest path between any two given nodes : they begin at the starting point, and

continue searching until they have found the goal node.

Arguably the most famous shortest-path algorithm is Dijkstra’s [1959] algo-

rithm. It has a time complexity of O(|V|2) for sparse graphs, which means that it

scales quadratically with the number of nodes on the graph. This compares dis-

favourably with Depth- and Breadth-First Search algorithms; however, it must be

noted that this description of performance only captures the scaling of the algo-

rithm. If we wish to know how the algorithm would perform in practice, we must

consider two things : that an algorithm may typically perform far better than its

worst-case running time, and that, to obtain actual running time, we must also con-

sider the constant that precedes the performance scaling. Because Big O notation

describes the algorithm’s scaling behaviour, if an algorithm requires 10n2 time, and

another requires n2 time, both are described as being O(n2) (where n is the size of

the input), although the latter algorithm will always scale better than the prior.

Big O notation describes the theoretical worst scaling of an algorithm, pro-

viding an upper bound on the algorithm’s scaling with input size n. For example,

the time taken to find the smallest element in an array of size n is O(n). However,

certain algorithms can typically operate much more rapidly than their worst-case

complexity – in this example, it would take n/2 operations on average.

Finally, algorithms may operate in different time complexities depending on

the problem. Using a Fibonacci heap to implement a priority queue and applying it

to sparse graphs, Dijkstra’s algorithm only takes O(|V| log |V|) time. The efficiency

of Dijkstra’s algorithm means that it will be at the heart of some of the algorithms

presented in Chapter 4.

4.2 The Four Classes Algorithm

From (3.131), we know that truncating the sum-over-trips solution (3.114) at N

excursions produces an error that scales with e−N for a sum where the terms are

ordered monotonically in their lengths. Thus, with each term in the sum-over-trips

107

corresponding to a unique trip, the error is minimised for any k trips if we use the

shortest possible k trips from x to y on the tree. We can find a correspondence

between N and Abbott’s Lcutoff , the length of a trip beyond which we truncate

the sum. If we are able to construct trips from the single shortest trip, and then

incrementally increase in length until Lcutoff is met, we have computed the k shortest

trips that exist under the length threshold.

In this section, we will describe the algorithm proposed by Cao and Abbott

[1993] which implements the dendritic path integral reviewed in Section 3.5. We

will see how it constructs paths that are pseudo-monotonic in length, in that they

are only guaranteed get monotonically longer every four terms, due to potential

asymmetries in where points x and y are placed; see Figure 3.14 for a comparison

between this periodic phenomenon and the true length ordering of trips. We will

compare this algorithm with our own Length Priority algorithm, designed to avoid

this periodic behaviour while being more optimal; we will also point out how a

different type of asymmetry in the tree can cause this algorithm to show highly-

discontinuous convergence.

4.2.1 Implementation by Cao and Abbott

Intuitively, an algorithm based on finding trips in increasing order of length will

start with the shortest trip between the two points of interest. It is possible to

find the shortest, most direct trip between any two points on a tree, using a search

algorithm such as Dijkstra’s algorithm, centering its search at x, or even a breadth-

first or depth-first search. On a tree, the shortest trip is guaranteed to be unique,

and should the tree be fully connected, its existence is also guaranteed. Dendritic

morphologies fulfill both of these conditions : should there be multiple individual

dendritic trees, they remain connected at the soma, and nowhere do dendrites form

cycles. Cao and Abbott [1993] proposed an algorithm which begins by finding this

unique shortest trip, and then derives longer trips by adding all possible excursions

to this trip, creating an entire batch of longer trips. Iteratively, new trips are used

to derive still longer trips by considering all possible excursions along each trip.

Using Figure 3.12 as a reference, we can describe excursions more formally : if A

and B are adjacent nodes in a tree, then an excursion could be added to the trip

xB y to generate the trip xB AB y, representing a reflection on node B towards A,

reflecting at the terminal A back towards B, passing through this node and finally

onto point y. This process can be iterated indefinitely, generating a trip with two

more nodes each time. Finally, if all trips generated in one batch are above some

length threshold, the algorithm terminates.

108

However, this simple algorithm suffers from certain inefficiencies. The Four

Classes algorithm generates duplicate trips, which must then be removed by a binary

search through the list of existing trips for every new trip generated [Cao and Ab-

bott, 1993], which takes O(k log k) time overall, for k trips constructed. There are

two different mechanisms by which duplicate trips are generated, and both mecha-

nisms can be eliminated by applying simple restrictions to the choice of excursions

applicable to a trip. We continue to refer to Figure 3.12, where, as an example of

the first mechanism, we note that it is possible to generate the trip xB ABC B y

in two different ways from the shortest Class 1 trip, xB y:

xB y

Excursion
B → BAB−−−−−−→ xB AB y

Excursion
B → BCB−−−−−−→ xB ABC B y,

xB y

Excursion
B → BCB−−−−−−→ xB C B y

Excursion
B → BAB−−−−−−→ xB ABC B y.

(4.1)

Due to the fact that the excursion may be added at any step in the trip (at the first

or second B), the same trip may be generated multiple times.

The second mechanism by which duplicate trips are produced is the addition

of excursions along the same branch, starting from either end. In the structure in

Figure 3.12 we have both A → ABA and B → BAB. Hence, we can generate

xABAB y in two different ways (brackets added for clarity) :

xAB y

Excursion
A→ ABA−−−−−−→ x (ABA)B y,

xAB y

Excursion
B → BAB−−−−−−→ xA (BAB) y.

(4.2)

Finding all possible excursions for each trip rapidly becomes expensive. For

a trip passing through n nodes, then it costs O(nd) time to find all excursions, where

d is the maximum degree on the tree. This must be repeated for every trip in each

batch of trips, with n increasing with every new batch. Because of this scaling, it is

not possible to determine the algorithm’s time complexity in full. At the first stage,

when we have found the shortest path and wish to add all possible excursions, then

the number of nodes in the shortest path, n, scales with the diameter of the tree,

which itself is bounded by the number of nodes in the tree, |V|. At this point, we

have one path, so it costs O(n) to obtain the first batch of longer trips, where d is

omitted because we can assume that the maximum degree on the tree is bounded.

This batch of n trips contain duplicates; we must therefore apply a binary search,

at the cost of O(n log n) to prune these out of the path list. We nonetheless retain

109

O(n) trips, of length n + 2 nodes, to which we must apply all possible excursions.

This iteration therefore costs O(n+n log n) operations to produce. The next batch

is generated by adding O(n+ 2) excursions to O(n) trips and then binary searching

for duplicates, costing O
(
n(n+ 2) + n log n

)
, such that finding two batches of trips

has cost a total of O
(
n2 +2n+n log n+(n+2) log(n+2)

)
operations, and therefore

scales with a leading order term of O(n2).

The trend in the leading-order term, then, is that each iteration costs an

additional power of n. While the first iteration scales with O(n), the second requires

O(n2), the third O(n3), and so on. This cost is somewhat offset by the fact that

trips are generated in an exponentially-increasing number per batch; this algorithm

therefore scales linearly in the number of trips it generates. Practically, however,

the algorithm contains inefficiencies which may be improved upon. Because trips

are constructed only in batches, we may massively overshoot the number of trips

we require : due to the termination condition, at least twice as many trips as are

necessary to meet the length cutoff are generated. The removal of duplicate trips,

due to its log-linear scaling with the number of trips per batch, also increases the

cost per batch. Therefore, whilst it is not possible to write down an accurate scaling

for this algorithm, we can say that, due to pruning for duplicate trips, the leading-

order time complexity is O(n log n), and that the algorithm requires at least double

the computation time necessary to complete the task.

Applying this algorithm naively to the shortest trip will lead to the con-

struction of only Class 1 trips. We know that trips always come in four classes, and

that any direct trip is a Class 1 trip; we also know that there exist three analogous

trips that can be written down immediately, without the need to construct them

algorithmically. Cao and Abbott [1993] use this fact, applying the algorithm inde-

pendently to each of the shortest Class 1, 2, 3 and 4 trips. If this process is applied

to every node on every trip with n and n + 1 nodes, then every trip with n + 2

and n + 3 nodes will be generated. Thus, from the four shortest x → y trips on

the tree, it is possible to construct all trips up to some threshold number of nodes

in length explicitly. If our first Class 1 trip has n nodes, then the Class 2 and 3

trips always have n + 1 nodes, and thus, this condition is fulfilled. The lengths

and coefficients of all trips can then be calculated from their full trip descriptions,

allowing the Green’s function given by equation (3.114) to be approximated up to

some length threshold. However, the inefficiencies we have demonstrated here can

motivate the development of improvements to this algorithm in order to improve its

scaling from log-linear in the number of trips generated. We will therefore present

two modifications which will be sufficient to prevent the construction of duplicate

110

trips, without any trips being missed, leading to an algorithm that will scale linearly

in the number of trips generated.

4.3 A Formal Grammar for Paths on Graphs

The motivation behind the development of a language-theoretic algorithm comes

from its ability to formalise the ideas used in the Four Classes algorithm, and allow

for modifications to be made in order to improve its performance. The idea of

increasingly-longer trips on a branching structure is closely related to the formation

of sentences in a linguistic sense, and the rules which dictate which trips on a tree

are valid can be expressed in terms of a formal grammar. Before we describe the

Four Classes algorithm in terms of formal language theory, and discuss modifications

which will avoid the generation of duplicate trips, we must introduce some jargon.

4.3.1 Some Language Theory Terminology

Alphabets and Words

An alphabet Σ is a set of symbols which form the basis of any language. Alphabets

can consist of a finite set of letters; these can be the alphabetical characters in the

English language, or numbers, or any other set of symbols.

A word over an alphabet is any finite string, or sequence, of letters from the

alphabet Σ. The set of all possible finite-length words, including the empty string, is

denoted Σ∗. Words can be concatenated to form new words; concatenating a word

with the empty word results in the original word.

Grammar

A grammar is a set of rules for the construction of words from letters in an alphabet.

Based on a starting string or letter, the grammar provides production rules which,

when applied, replaces a portion or the entirety of the word with another string.

We have already introduced the syntax of production rules in Section 4.2.1, where

excursions are described as, for example, A→ ABA. This implies that if the letter

A is found in a word, it can be replaced by the series of letters, ABA.

A grammar that results in the construction of the same word using different

production rules, as can be seen in (4.2), is an ambiguous grammar. The fact that

the Four Classes algorithm provided in Cao and Abbott [1993] can be described by

an ambiguous grammar is one of the reasons why it generates duplicate trips.

111

A context-free grammar is one where the left-hand side of all production rules

consists of a single letter.

Language

A formal language over an alphabet Σ, is a subset of the words found in Σ∗ which can

be constructed using a given grammar. In terms of trips on a branching structure,

where the alphabet Σ = V is the set of nodes on the tree, then the words in the

language are the valid trips between x and y; the grammar relevant to obtaining the

language is a set of rules which allow valid excursions to be applied to trips such

that the resulting trips are valid with regard to the tree’s morphology.

4.3.2 The Improved Four Classes Algorithm

As we noted, the major costs associated with Cao and Abbott’s [1993] Four Classes

algorithm are the generation of duplicate trips, which leads to a log-linear cost in

trip generation, where it could potentially be linear; and the termination condition,

which results in the algorithm generating at least twice as many trips as are required.

By describing the algorithm in the theory of formal languages, we can address the

prior issue at the core of the algorithm, as is described in the rest of this section.

The latter issue can be eliminated entirely by generating trips one at a time as

opposed to in exponentially-growing batches. Whilst this is only a constant factor,

irrelevant to the algorithm’s asymptotic scaling, it has practical implications for

the algorithm’s runtime as well as for its memory usage, which will later become a

critical factor.

We can derive a formal language approach by requiring a grammar to con-

struct words over the alphabet of the set of nodes, V. Each word will constitute a

valid trip on the tree. The production rules that make up the grammar are simply

substitutions of the form A→ ABA, if and only if A is adjacent to B on the graph,

and A,B ∈ V. Because the tree is undirected, the existence of the rule A→ ABA in

the grammar implies the existence of B → BAB, which, as we noted in (4.1), leads

to the construction of the same trip in two different manners. This problem can be

avoided by assigning each branch a direction. If the branch AB is given direction
−−→
BA, then the excursion A → A|BA is disallowed. The choice of direction for each

branch is unambiguous on acyclic structures: apart from the branch on which x is

found, each branch must be directed away from x. The branch upon which x resides

is directed away from y. This ensures that each node has a sequence of excursions

that allow the algorithm to generate trips including it. The allocation of direction

112

to each branch can be performed before the process of generating trips, and may

coincide with finding the four main classes of trips. These modifications require

that the graph be acyclic, since “away from a point” is not generally definable on a

graph with cycles. There do exist cyclic graphs for which an unambiguous grammar

can generate the language of x→ y trips, but these are not relevant to the study of

single dendritic trees.

The other mechanism by which duplicate trips are created, shown in (4.2),

can also be avoided. If we insist that excursions cannot be added at any step that

precedes the excursion most recently added to the trip, this can be prevented. In the

theory of context-free grammars, this is equivalent to requiring a leftmost derivation.

We can represent this using the symbol | to separate the mutable and immutable

parts of the trip :

x |B y
Excursion
B → B|AB−−−−−−−→ xB |AB y

Excursion
B → B|CB−−−−−−−→ xB AB |C B y, (4.3)

x |B y
Excursion
B → B|CB−−−−−−−→ xB |C B y −−−−−−−→6 xB ABC B y. (4.4)

The two excursions in (4.3) will construct the path xB ABC B y, whereas the

excursion sequence in (4.4) is unable to do so, because the second excursion could

only be added to the B after the separation symbol, leading to the production of

xB C BAB y instead. Note that only the rightmost mutability symbol | is kept –

anything to the left of this symbol cannot be used as a basis for an excursion.

These two modifications of the Four Classes algorithm are sufficient to pre-

vent the generation of any duplicate trips, without any trips being missed. Together,

they provide an unambiguous context-free grammar generating the entire language

of x→ y trips.

4.3.3 Application of the Improved Four Classes Algorithm

We will illustrate the application of the Four Classes algorithm, with the language-

theory improvements mentioned above, on a simple branching structure. Consider

the tree in Figure 4.1.

Initialisation

We must first attribute a direction to each edge on the tree. Following the convention

described in Section 4.3.2, where each edge is directed away from x, and the edge

containing x is directed away from y, we obtain an analogous directed graph whose

113

1 2

3

4

5

7

6

8

L = 6

L = 6

L = 5

L = 3.
5

L = 2.5

L = 3.5

L = 1

x

y

Figure 4.1: Example tree for the Four Classes algorithm.

edge set E is

E =
{

(2, 1), (2, 3), (2, 4), (4, 5), (4, 6), (6, 7), (6, 8)
}
,

where an edge (A,B) is directed A → B, with A,B ∈ V. As before, the existence

of (A,B) ∈ E implies that (B,A) 6∈ E .

The set of directed edges E is sufficient to create the complete list of pro-

duction rules. Each edge (A,B) defines a production rule, A→ A|BA. These must

be ordered by their lengths such that we may easily select the shortest excursion at

any time :

4→ 4 | 6 4, L = 2,

2→ 2 | 4 2, L = 5,

6→ 6 | 7 6, L = 7,

6→ 6 | 8 6, L = 7,

4→ 4 | 5 4, L = 10,

2→ 2 | 3 2, L = 12,

2→ 2 | 1 2, L = 12.

The initialisation stage of the algorithm is concluded by finding the shortest

trip from x to y, and associating with it a list of valid excursions. By using Dijkstra’s

algorithm, the shortest trip is found to be x | 2 4 y. The trip therefore passes through

114

two nodes, 2 and 4. Whilst production rules are only applied to Class 1 trips,

such as this one, we can still immediately write down three analogous trips. From

this Class 1 trip description, we therefore construct the analogous Class 2 trip by

allowing x 2 to become x 1 2, giving us the trip x 1 2 4 y. Similarly, we construct

the analogous Class 3 trip by allowing 4 y to become 4 6 y, yielding x 2 4 6 y. By

applying both transformations, we obtain the Class 4 trip, x 1 2 4 6 y. We will keep

these analogous trips in a separate list, as they will not be used to generate new trips,

and as such, are not required to contain the | symbol for differentiating the mutable

and immutable parts of the trip. Finally, we provide the Class 1 trip with a list of

valid excursions. To be valid, an excursion is required to be based on a node present

in the trip. We therefore associate with this trip a list of the excursions which have

a left-hand side equal to 2 or 4. This trip-excursions pair is placed in a list, ordered

by the length of the trip plus the length of its shortest excursion. With respect to

the computational implementation of this algorithm, the trip-excursions pair (TEP)

will be placed in an ordered container such that the first entry always corresponds

to the TEP with the shortest combined trip length and shortest excursion. These

data structures have an insertion cost of O(log n) for n items in the list, ensuring

that a new TEP is guaranteed to be inserted in the correct place along the list to

ensure the list remains sorted. In this example, the shortest trip has a length of

Ltrip = 6, and its shortest excursion has L = 2, associating with it a combined TEP

length of LTEP = 8.

Continuation

The iterative part of this algorithm loops over the counter k, the number of trips

generated. After the Initialisation, the counter is set to k = 1, and the Continuation

stage will therefore be iterated until k = kmax, some maximum number of trips we

wish to produce, or until the last trip generated exceeds a length of Lcutoff .

We begin by selecting the shortest item from the TEP list, an operation

costing only O(1) time as the TEP list is a sorted container. This item represents

the mother trip that will be used to generate a longer one, and its own list of valid

excursions. The excursions list is already ordered, so we simply select the first one

and apply it to the trip, yielding the guaranteed next shortest trip along the tree.

In our example, we had just entered the Continuation stage, and the TEP list

only contained one item. We therefore select it, and apply the shortest excursion

(4 → 4 | 6 4) to this trip to construct the daughter trip x 2 4 | 6 4 y as the second-

shortest Class 1 trip. As before, we can construct analogous Class 2, 3, and 4 trips

based on the Class 1 trip description by allowing transformations of the beginning

115

and ending of the node sequence. We place these trips in our separate list, along

with the previously-derived Class 2, 3, and 4 trips.

Once a new Class 1 trip has been generated by applying an excursion to a

shorter trip, we must provide it with a list of valid excursions and place it in the

TEP list. We note that our new Class 1 trip x 2 4 | 6 4 y passes through nodes 2,

4, and 6, and therefore select all excursions whose left-hand side is equal to these.

In this case, this corresponds to all possible excursions. We therefore associate the

excursions list with the trip, and place it in the TEP list.

The final operation of the Continuation stage is the modification of the valid

excursions list associated with the mother trip. In order to prevent the mother trip

from being selected and generating the same daughter trip, we must remove the

excursion used to generate this daughter trip. The first trip therefore now has a list

of only four valid excursions :

��
���XXXXX4→ 4 | 6 4,

2→ 2 | 4 2,

4→ 4 | 5 4,

2→ 2 | 3 2,

2→ 2 | 1 2.

The daughter trip is not affected by this removal, and contains its own list which,

for this example, happens to contain the complete list of all excursions.

The insertion of the new trip-excursions pair into the TEP list may have

modified the ordering of the list. Indeed, in our example, the TEP lists consists

of two objects : the trip x | 2 4 y and its shortest valid excursion 2 → 2 | 4 2; and

the trip x 2 4 | 6 4 y along with its shortest excursion, 4 → 4 | 6 4. The first has an

updated TEP length of LTEP = 11, while the daugther trip, of length Ltrip = 8 and

with a shortest valid excursion of length L = 2, has a TEP length of LTEP = 10,

placing it above the mother trip in the TEP list.

After incrementing our trip counter (k ← k + 1), this iteration of the Con-

tinuation stage is now finished. The next iteration would repeat this procedure :

it would select the trip from the TEP list having the shortest TEP length (in our

example, the trip x 2 4 | 6 4 y), would apply its shortest excursion 4→ 4 | 6 4 to give

x 2 4 6 4 | 6 4y with Ltrip = 10, would associate with it its own list of valid excursions

and insert it into the TEP list with a value of LTEP = 12. The mother trip would

see its shortest excursion made invalid, taking its LTEP from 10 to 13. The TEP

list now consists of three trips, the first of which is our original shortest trip, x | 2 4 y

116

with its shortest valid excursion 2→ 2 | 4 2, and thus having LTEP = 11. Each trip

is used to derive three analogous Class 2, 3, and 4 trips, placed in a separate list.

Trips are constructed with constant cost and maintained in the TEP list with a cost

of O(2 log n), where one logarithmic factor comes from insertion of the daughter

trip, and the other from the modification the excursions list of the mother trip to

invalidate the excursion used this iteration.

Termination

The algorithm terminates when the next shortest trip to be constructed has a length

that exceeds our predetermined cutoff length, Lcutoff . Because LTEP is the length

of the next shortest trip to be generated, we can halt the algorithm when the first

item in the TEP list satisfies LTEP > Lcutoff . Alternatively, we could terminate

the algorithm after a fixed number of trips kmax were constructed. With either

termination condition, we have constructed k trips, where k is the counter that is

incremented during the Continuation stage. We copy each trip into the separate list

of the Class 2, 3, and 4 trips which were constructed during the Continuation stage,

and remove the | symbol from each (as these are no longer required). Then, because

each algorithmically-constructed trip generated a total of four trips on the tree, we

have constructed the shortest 4k trips between x and y as a cost of O(k log k), with

no duplicate trips constructed and no excess computation made.

Conclusions

The Improved Four Classes algorithm is a modification of Cao and Abbott’s [1993]

suggested implementation, which removes the generation of duplicate trips and a

one-time inefficiency in the total number of trips generated for a requested threshold

length. In doing so, the algorithm runs more efficiently, although the time complex-

ity remains O(n log n).

4.4 The Length Priority Algorithm

The length-priority heuristic for trip construction is motivated by the e−L
2
trip term

in the Green’s function (3.98) and indicates that the path integral (3.114) may be

made convergent if trips are generated in length order. An algorithm able to rapidly

construct trips in a length-ascending order would therefore be highly beneficial in

computing the Green’s function on a tree. Our proposed improvements on the Four

Classes algorithm have led to a method which avoids the duplicate construction of

117

trips and reduces the computation time by a constant factor. However, despite being

a more elegant algorithm for trip construction, by generating trips individually and

uniquely, it remains log-linear for the construction of individual trips. In addition,

the Four Classes algorithm and its improved derivative both require O(kn) space,

for k trips with n nodes, which can impose a limit on the number of trips that are

able to be constructed, given a specific hardware architecture.

Fortunately, the k shortest trips problem has interested graph theorists for

many years, and as a result, many algorithms have been proposed [Dreyfus, 1969;

Hoffman and Pavley, 1959; Yen, 1971]. A powerful algorithm by Eppstein [1999]

provides both time and memory advantages, and can be used instead of the formal

grammar derived in Section 4.3.2. The k shortest trips can be constructed on any

branching structure, in O(|V|+ |E| log |E|+k) time, assuming no edges have negative

weights. It is therefore linear in the number of trips constructed, k, an improvement

on our previous log-linear time.

Eppstein’s algorithm circumvents an O(k2|V|) minimum for the listing of

k trips explicitly by using an implicit trip description. By using a pointer to the

previous trip and listing the details of the excursion, the algorithm stores trips as

nodes in a tree, where each edge denotes an excursion added to a previous trip.

Each node has at most a degree of |V|, and the tree satisfies the heap-structured

property such that, for all nodes in the tree, each child node represents a trip that is

longer than its parent node. This implicit representation only requires O(k) space

for k trips. A graph representing all possible excursions is then built. The shortest

path tree and the excursions graph are constructed in O(|V|+ |E| log |E|) time; from

these, the k shortest paths can be found in linear time.

The algorithm also provides a method for computing any properties that can

be described by a monoid in O(1) time per trip. Because coefficients are products

of real numbers, the axioms required for an algebraic structure to be described as

a monoid (associativity, closure and the existence of the identity element), then

the coefficients Atrip may be described as monoids. Eppstein therefore offers the

computation of trip coefficients in O(k) for k trips, an improvement on the Four

Classes algorithm’s O(kn) to compute the product for n nodes over k trips.

Jiménez-Marzal Optimisation

It was noted by Jiménez and Marzal [2003] that the construction of a graph of all pos-

sible excursions was computationally expensive. Thus, despite the Eppstein [1999]

algorithm having the lowest worst-case time complexity of known k shortest path

algorithms, the practical applicability of the algorithm was significantly reduced

118

by this one-off initialisation cost. They went on to propose a recursive function

which constructs only the parts of the excursions graph as they are required. While

maintaining Eppstein’s worst-case time complexity, this improvement reduces the

amount of computation time considerably [Jiménez and Marzal, 2003] by turning it

into a lazy algorithm.

Conclusions

By replacing the trip excursions concept in sampling from the tree with Eppstein’s

[1999] algorithm for finding the k shortest trips, we improve the asymptotic time

complexity to one of O(k), linear in the number of trips constructed. An improve-

ment in the amount of space required is also obtained, and the algorithm provides

a method for computing trip coefficients in constant time per trip. A practical op-

timisation by Jiménez and Marzal [2003] allows even further speed improvements

to be made, rendering this algorithm much faster than the Improved Four Classes

method.

4.5 Monte Carlo Method

The path integral formulation of the solution to the cable equation introduced by

Abbott et al. [1991] is derived via consideration of a Feynman-Kac representation

of the solution in terms of random walkers on the dendritic geometry. Hence, it is

natural to consider Monte Carlo approaches to evaluating this path integral. Instead

of a length-ordered series solution as provided by the Length Priority approach, the

Green’s function (3.114) can be constructed using a stochastic algorithm. The aim of

this approach is to sample from trips x→ y in such a way that the probabilistically

more likely samples coincide with the trips that contribute most to the series solution

(3.114).

4.5.1 Random Walkers and Diffusion

To motivate this Monte Carlo approach, we consider a linear diffusion equation

along an infinite one-dimensional cable,

∂G
∂t

= D
∂2G
∂x2

, −∞ < x <∞, t ∈ [0, T], (4.5)

satisfying the initial condition G(x, 0) = δ(x − y). Instead of solving this equation

analytically or numerically, its solution can be found as the expectation of a stochas-

tic process. Analogous to (4.5), a diffusion process for the state variable Xt can be

119

defined by the stochastic equation

dXt =
√

2D dWt, (4.6)

with the initial condition X0 = y, and where Wt is a Wiener process.

Equation (4.5) is the Kolmogorov equation of the diffusion process (4.6); it

can be described as the time evolution equation of the probability density for the

state of the diffusion (4.6). This means that, should we solve (4.5) via classical

numerical or analytical methods, we would discover the probability density of Xt.

The relationship, fortunately, goes both ways : the expectation of the stochastic

process (4.6) is described by the solution to (4.5), and thus, repeated sampling from

the diffusion process (4.6) will converge onto the solution G(x, t).

Therefore, if we correctly set appropriate boundary conditions at branching

nodes and terminals, this method of sampling from random walks can be applied

to branching structures with arbitrary geometries, allowing us to compute G(x, t)

on trees. We can then easily find a solution of the cable equation on this geometry

using the relation

Gij(x, y, t) = Gij(x, y, t) e−t/τ .

The Feynman-Kac relation between the partial differential equation (4.5) and the

Brownian motion (4.6) is at the heart of a Monte Carlo method which we will now

describe in terms of discrete random walkers on branching structures.

4.5.2 Random Hoppers

We have established that the expectation of a function on random walks on the

branching points of the dendritic tree is equivalent to the sum-over-trips form of the

solution, (3.114). However, the sampling of random walkers diffusing along the edges

of a tree is incredibly computationally expensive. In addition, with the constraint

made by Abbott et al. [1991] that all branches have constant radius (with discrete

jumps in radius at the nodes), the simulated continuous-space diffusion of the walkers

would provide no benefit to the accuracy of the solution. Thus, the reduction of the

random walk problem from the complete continuous space geometry of the neuron

to the discrete topology of the branching nodes of the tree gives a considerable

efficiency saving to a Monte Carlo solver. We therefore make a distinction between

random walkers on the continuous space of dendritic branches, and random hoppers,

which take discrete hops between the branching and terminal points of the tree.

We introduce a parameter hmax, the maximum number of discrete hops on

nodes for which we wish to calculate the expectation. The maximum number is

120

based upon the effective maximum range of diffusion during the interval [0, t], and

is linked to the trip cutoff length Lcutoff introduced in Cao and Abbott [1993], as

an upper limit on the length of trips. Then, we generate a realisation of a random

walk on the nodes,

ω = (ω1, ω2, . . . , ωhmax), (4.7)

where each ωh is a label identifying a particular node. For trips x → y we select

ω1 such that it is either of the two nodes adjacent to the branch containing x, with

equal probability. By indexing a branch existing between two nodes, ωh−1 and ωh,

as the hth branch, subsequent steps are performed with the transition probability

P (ωh | ωh−1) = ph, 2 ≤ h ≤ hmax, (4.8)

where ph is given by (3.111). This connects the Monte Carlo method with the other

algorithms derived from the dendritic path integral [Abbott et al., 1991].

4.5.3 Obtaining the Green’s Function Solution

The random hoppers allow us to sample from the tree’s geometry, in the same way

that a length-priority method does; here, however, we do not use length to guide our

sampling, but rather the likelihood of the trips themselves. We then use properties

of the trips, namely their lengths Ltrip and their coefficients Atrip in a function

(3.114) which establishes a link between the trips and the Green’s function solution.

In the Monte Carlo method, each trip is constructed with a certain prob-

ability. In fact, because each random hopper takes a step onto a branch h with

probability ph, the probability of generating a particular trip in (4.7), is simply

P (ω) =

hmax∏

h=2

ph, (4.9)

or the product of the factors ph. Thus, trips generated by the Monte Carlo method

contain additional information, which may be harnessed by introducing two auxiliary

functions, φ and ã, of subwalks of ω. A subwalk is defined simply as any fraction

of the walk (4.7) starting from its first node ω1 and ending early at ωh for some

h < hmax.

The first function serves to indicate whether a subwalk of h steps on a reali-

121

sation ω is a valid trip, and is defined by

φ(ω, h, x, y, t) =

{
G∞

(
L(ω, h, x, y), t

)
, if ωh−1 and ωh are adjacent to y,

0, otherwise.

(4.10)

Here, L(ω, h, x, y) is the length of the trip starting at x, taking the trajectory set

out by the subwalk of ω with h hops, and terminating at the point y. Therefore, if

this subwalk of ω terminates by hopping across the edge which houses the point y,

then φ returns the Green’s function G∞ for a trip of the correct length, and zero

otherwise.

The other auxiliary function, ã, is defined as

ã(ω, h) =





1, if h = 1, 2,

2, if ωh−2 6= ωh,

(2ph − 1)/ph, if ωh−2 = ωh,

1, if at a closed terminal (taking priority).

(4.11)

The relevant function on paths can be defined as a composite of the auxiliary

functions described above :

Ã(ω, x, y, t) =

hmax∑

h=1

2 φ(ω, h, x, y, t)

(
h∏

i=1

ã(ω, i)

)
.

We can demonstrate that taking the expectation of Ã with respect to the random

walk (4.8) is equivalent to solving for the path integral, up to some value of hmax at

time t :

EP
[
Ã(ω, x, y, t)

]
=
∑

ω

P (ω) Ã(ω, x, y, t)

=
∑

ω

hmax∑

h=1

2 P (ω) φ(ω, h, x, y, t)

(
h∏

i=1

ã(ω, i)

)

=
∑

ω :
x→y
at h

hmax∑

h=1

2 P (ω) G∞

(
L(ω, h, x, y), t

)(h∏

i=1

ã(ω, i)

)

=
∑

trips
x→y

Atrip G∞(Ltrip, t),

122

where P (ω) is the probability of the realisation ω, and E denotes the expectation op-

erator. Therefore, the Monte Carlo strategy is to sample, sequentially or in parallel,

the random function Ã in order to construct this expectation.

Breaking the walk into subwalks offers the computational advantage that, for

every trip realisation ω with hmax hops, we can truncate the walk at any h < hmax

to obtain other walks.

Conclusions

A Monte Carlo on the space of valid excursions allows trips to be sampled probabilis-

tically rather than by order of length. By randomly hopping between nodes on the

tree, trips may be found in a highly parallelisable manner, yielding computational

savings over high performance architectures.

4.6 Trip-Grouping Matrix Algorithm

In each of the algorithms thus far mentioned, trip are constructed and stored, either

explicitly or implicitly, such that we obtain a complete description of the trip (a

sequence of nodes), for each trip. For the Four Classes algorithm and its language-

theoretic derivative, the vast majority of space required for the algorithm is ac-

counted for by these trip descriptions. The memory consumed scales with O(kn),

for k trips with n nodes. As k increases, and n increases with it, this rapidly become

prohibitive. A trivial optimisation to these algorithms is to compute the important

properties of the trips, Ltrip and Atrip upon the construction of each trip, and sim-

ply store these, reducing the memory required to a more reasonable O(k), although

these are still computed in O(kn) time. The Length Priority algorithm, based on

Eppstein’s [1999] algorithm, only requires constant space per trip due to its implicit

trip representation, and is also able to compute both trip length and coefficient in

constant time.

Nevertheless, the aforementioned methods are trip enumeration algorithms,

constructing every one of the k trips required. This general class of methods will,

at best, construct trips linearly in k, their core objective being the counting and

construction of individual trips. In order to achieve sublinear times for trip con-

struction, we must group the trips by some common characteristic.

An alternative method of constructing the sum-over-trips series solution,

123

therefore, is by grouping trips by their lengths :

∑

trips

Atrip G∞(Ltrip, t) =
∑

l

G∞(l, t)
∑

trips with
Ltrip = l

Atrip, (4.12)

where the sum over l is over all possible trip lengths Ltrip. On a dendritic tree with

branches described by a continuous space, trips grouped by their length makes little

sense : groups may well only ever contain one trip unless the tree exhibits some

symmetries, and as the group size tends to one, the sum (4.12) becomes equivalent

to the individual trip construction of the path integral in (3.114). However, on a

discretised dendritic tree, such as those in Rall’s [1964] compartmental model or

those discretised into segments by numerical packages such as NEURON [Carnevale

and Hines, 2006], trip groups may become large. In this situation, the grouping of

trips according to their lengths allows us to count the number of trips of a given

length l without having to explicitly construct them individually.

The adjacency matrix is naturally suited to counting walks between two

nodes on a graph. The elements nth power of the adjacency matrix A represent the

total number of walks between two nodes. That is, (An)ij denotes the number of

walks between i and j in n hops. The Trip-Grouping Matrix method uses a matrix

Q similar to a directed edge adjacency matrix which encodes for coefficients.

4.6.1 Discretisation of the Dendritic Tree

In order to obtain a large number of trips grouped by their lengths, the branching

structure is discretised into small, directed branches of length ∆x. Then, main-

taining our notation, u, v ∈ V are nodes that define the extremities of the discrete

compartments of length ∆x. Then, if u and v are adjacent, e = (u, v) ∈ E is a

directed edge from u to v. For any edge e = (u, v), we denote the reverse edge by

e′ = (v, u). The existence of e ∈ E implies the existence of e′ ∈ E , that is, all edges

are directed but all adjacent nodes are connected by two edges, one in each direc-

tion. In addition, the edge set E is a totally-ordered set of directed edges. Whilst

the actual order of the edges in the set is not important, the existence of a binary

operation on the set’s elements which places them in some unambiguous order is

crucial.

The points of measurement and injection x and y must reside along different

edges; the discretisation length ∆x must be chosen such that at least one node falls

between x and y. This will simplify the computation of the Green’s function once

trips are counted.

124

Trips are taken to begin from a point x along a starting edge s = (s1, s2),

and end at a point y along a goal edge g = (g1, g2) for s, g ∈ E . For simplicity, we

say that x ∈ s or x ∈ (s1, s2) if x resides along edge s = (s1, s2). Because edges are

directional, and two exist between any pair of adjacent nodes, the points x and y are

no longer unique. In fact, if x ∈ s resides along the starting edge s, then an entirely

equivalent point x ∈ s′ exists along the reverse edge, and the same is true of the

point y. The artificial directionality of edges in this method is introduced such that

we may capture the direction of movement of the trips, again without explicitly

constructing them : because the coefficient taken when a trip passes through a

node is different to that taken when the trip reflects off a node, we must maintain

directional information in the method. Because x ∈ s and x ∈ s′ are equivalent,

there is no need to differentiate between them.

The orientation of s and g are defined such that the shortest x → y trip

satisfies x → s2 → · · · → g1 → y. Therefore, the shortest x → y trip always starts

on edge s, that is, in the s1 → s2 direction, and approaches y along the edge g, in

the g1 → g2 direction. This is equivalent to a Class 1 trip; Class 2 trips leaving x

along the s′ = (s2, s1) edge, arriving at y ∈ g; Class 3 trips go from x ∈ s to y ∈ g′;
Class 4 trips, finally, go from x ∈ s′ to y ∈ g′. The locations of the points x ∈ s and

y ∈ g along their respective edges are given as a fraction of the branch length, such

that x∆x denotes the distance from x to s2 and y∆x is the distance between node

g1 and point y.

We must distinguish between k, the number of edges travelled in a particular

trip, and the length of the trip Ltrip. Because x and y reside along their respec-

tive edges, the total length of a trip that travels along k edges is less than if the

full distance along k edges had been travelled. For example, a trip x s2ABC g1 y

consists of k = 6 hops, but while the four central hops cover full edges, and thus

have a length of ∆x each, the first and last hops have a length of x∆x and y∆x

respectively. Thus, Ltrip < k∆x for any combination of x, y and for all k.

4.6.2 Construction of the Edge-Adjacency Matrix

The aim of the Matrix method is to group all trips starting on a given edge and

finishing on a target edge, by their lengths, Ltrip, and calculate the sum of the coeffi-

cients Atrip of those trips for each particular group, instead of calculating coefficients

individually for each trip. Because the method is centred around taking powers of

an adjacency matrix Q, the number of trips starting from x and ending on any edge

are calculated simultaneously, which is an advantage should we wish to compute

Gij(x, y, t) for all j, that is, the Green’s function response at a point x on branch i

125

for an injection anywhere along the tree. Coefficients are encoded into the matrix

Q, the sums of coefficients are computed at the same time as trips are counted.

We begin by defining the function csk : E → R, s ∈ E , as the sum of all

coefficients Atrip which begin at point x ∈ s and travel over k edges, finishing on a

given edge g :

csk(g) =
∑

trips
x→...→y

in k jumps

Atrip , x ∈ s, y ∈ g .

Because E is a totally-ordered and finite set, then csk =
(
csk(e1), . . . , csk(e|E|)

)
∈ R|E|

can be thought of as a vector, where ei ∈ E for i = 1, . . . , |E|. The ith element of

the vector csk corresponds to the sum of coefficients Atrip for all trips originating at

x on s and ending along the ith edge ei, having travelled over k edges. Thus, the

vector cs1 consists mostly of zeros, with a one only in the entry corresponding to

the edge s. This is because the coefficient taken for starting at x and moving along

s remains equal to 1, while all other moves are invalid in only one hop, and hence

have coefficient 0.

We can now define a matrix Q ∈ RE×E such that

Qk c1 = ck+1. (4.13)

Q is a modified form of the edge-adjacency matrix. With E ordered, the indices

of an edge-adjacency matrix correspond to the ordering of the edge set E . Instead

of a Boolean matrix, however, we define the elements (i, j) of Q as containing the

coefficient taken in moving from edge j to edge i. The entries of Q can thus be

computed from the morphology of the graph. If the jth entry corresponds to edge

(u, v) and the ith entry to edge (v, w), then the entry Qji is the coefficient taken

when moving from branch (u, v) to (v, w). In the general case, these numerical

values must be determined for each entry. However, in the simplified case where the

radii on all branches are equal and all nodes have degree d = 1 or d = 3, the matrix

Q can be constructed according to

Qji =





−1
3 , if j = (u, v) and i = (v, u), where v is a node of degree d = 3,

1, if j = (u, v) and i = (v, u), where v is a closed terminal (d = 1),

2
3 , if j = (u, v) and i = (v, w), where u 6= w,

0, otherwise.

(4.14)

Note that the above rules apply to the transpose of Qij .

126

4.6.3 Computing the Path Integral

Thus, knowing the matrix Q from the dendritic geometry, and the vector cs1 from

the starting edge s, it is possible to calculate csk(g), the sum of coefficients for all

trips travelling up to kmax edges, from x ∈ s to y ∈ g. However, by considering trips

moving from x in one direction only, and arriving at y from only one direction, we

have calculated the coefficients of just Class 1 trips. In order to find coefficients for

the remaining three Classes, we must also compute cs
′
k (g), csk(g

′) and cs
′
k (g′). Then,

using (4.13), the Green’s function in (3.114) can therefore be written as

Gij(x, y, t) =
∑

trips
x to y

Atrip G∞(Ltrip, t)

=

kmax∑

k=1

[(
Qk−1 cs1

)
g
G∞

(
L1(k), t

)

+
(
Qk−1 cs

′
1

)
g
G∞

(
L2(k), t

)

+
(
Qk−1 cs1

)
g′
G∞

(
L3(k), t

)

+
(
Qk−1 cs

′
1

)
g′
G∞

(
L4(k), t

)]
, (4.15)

where
(
Q cs1

)
g

is the gth element of the matrix-vector product of Q and cs1. Lengths

L1, ..., L4 are the lengths of Class 1 to Class 4 trips, respectively, and are defined as

L1(k) = ∆x
(

2(k − 1) + x+ y
)
,

L2(k) = ∆x
(

2k − x+ y
)
,

L3(k) = ∆x
(

2k + x− y
)
,

L4(k) = ∆x
(

2(k + 1)− x− y
)
.

By selecting a small ∆x, branches may be well approximated by a discretisa-

tion using an integer number of edges of length ∆x. As in compartmental models,

this allows the full morphology of the dendritic tree to be approximated, in a trade-

off between high speed (large ∆x) and accuracy (small ∆x). As ∆x→ 0, however,

this approach tends to the computational complexity of naively integrating the cable

equation using numerical methods. As in numerical simulations, where reducing ∆x

in order to increase accuracy brings about a necessary and associated change in ∆t,

the same is true of the Matrix method : selecting a small ∆x and hence, increasing

127

|E|, implies that kmax must be increased.

In all cases with bounded node degree, Q is a sparse matrix with only a few

entries per row, and O(|E|) entries altogether, making the complexity for the cal-

culation of all coefficients O(|E| kmax) by using highly-efficient sparse linear algebra

algorithms. This compares positively with the algorithms previously described : the

Trip-Grouping Matrix method is linear in kmax, related to the maximum length of

the trips. As kmax increases, the total number of trips increases exponentially, and

hence, an increase in maximum trip length yields a greater-than-linear number of

trips counted and coefficients computed.

4.6.4 Example Calculation

Here, we demonstrate an example realisation of the Matrix method for a dendritic

structure composed of three branches of equal length ∆x and equal radius, shown

in Figure 4.2. In this symmetrical case, the matrix Q is very small, and can be

constructed by hand. We place the point of measurement x along edge s = (A,B),

and point of current injection y along g = (B,D). We begin by ordering the edge

A

C

B

D

x

y

xL

yL

e

e

Figure 4.2: A model branching structure for the example calculation for the
Matrix method. All three branches have length L and the same radius.

pairs as follows :

(A,B), (B,A), (B,C), (C,B), (B,D), (D,B).

Based on this ordered set, we can obtain two coefficients vectors : one for trips

that begin at x and move towards B, denoted cs1, and one for trips moving from x

towards node A, denoted cs
′

1 . The first of these will help us generate Class 1 and

Class 3 trips, while the latter will be used in the construction of Class 2 and Class 4

128

trips. These vectors are found to be

cs1 =
(

1 0 0 0 0 0
)T

, (4.16)

cs
′

1 =
(

0 1 0 0 0 0
)T

. (4.17)

Using the rules described in (4.14), we can construct the matrix Q for our dendritic

structure as follows :

Q =




0 1 0 0 0 0

−1
3 0 0 2

3 0 2
3

2
3 0 0 −1

3 0 2
3

0 0 1 0 0 0

2
3 0 0 2

3 0 −1
3

0 0 0 0 1 0




.

Note that all rows and columns sum to 1. The matrix Q is, in this way, somewhat

analogous to the bistochastic transition matrix for a Markov chain. Instead of

representing transition probabilities, however, its elements represent the cost of

taking a particular transition to the overall Green’s function solution. As such, the

entries of Q are allowed to be negative.

Knowing this matrix Q and breaking the trips into the four main classes, it

is straightforward to find the complete Green’s function :

Gsg(x, y, t) =

kmax∑

k=1

(
Qk−1 cs1

)
g
G∞

(
∆x
(
2(k − 1) + x+ y

)
, t
)

+

kmax∑

k=1

(
Qk−1 cs

′
1

)
g
G∞

(
∆x
(
2k − x+ y

)
, t
)

+

kmax∑

k=1

(
Qk−1 cs1

)
g′
G∞

(
∆x
(
2k + x− y

)
, t
)

+

kmax∑

k=1

(
Qk−1 cs

′
1

)
g′
G∞

(
∆x
(
2(k + 1)− x− y

)
, t
)
. (4.18)

By summing over the number of hops allowed, k, each time taking the product

between a sparse matrix and a vector, the Green’s function Gsg(x, y, t) is computed

for injection at y on edge g and measurement at x on edge s. The matrix-vector

product
(
Qk−1c1

)
actually yields results for the sum of coefficients for trips finishing

129

on all edges; the selection of a given element g in the matrix-vector product in (4.18)

allows the calculation of the Green’s function for injection at a given location, but

the solution Gsg is computed for all g ∈ E simultaneously, offering considerable

computational efficiency.

Conclusions

The Improved Four Classes, the Length Priority and the Monte Carlo methods

all construct trips explicitly, and one at a time. They are therefore constrained

to a linear lower bound on scaling, with the number of trips constructed. The

Trip-Grouping Matrix algorithm discretises the dendritic tree in order to group all

trips of equal length into one iteration of the algorithm. For sparse discretisations,

this yields extreme efficiency, at a cost to accuracy. This method is analogous to a

generalisation of our solution for symmetrical star graphs, presented in Section 3.6.2.

4.7 Convergence of Time-Domain Methods

All of the algorithms for approximating the Green’s function in the time-domain

described in this chapter consist of infinite sums. Whilst the series solution for

the dendritic path integral is proven to converge for all finite acyclic geometries

with bounded degree, the convergence analysis in Section 3.5.3 suggests an error

that scales with e−N for a series solution including all trips up to N nodes in

length, assuming an optimally-ordered sum. The Four Classes, Length Priority

and Trip-Grouping algorithms use length heuristics to order the terms, while the

Monte Carlo method generates randomly-ordered terms. Therefore, none of these

methods construct a sum in which the terms are optimally-ordered, and we must

differentiate between the theoretical convergence of the dendritic path integral and

the computational convergence of the various algorithms which implement it.

4.7.1 Morphologies

Calculations of the Green’s function (3.114) were made on a number of branching

structures taken from the digital reconstructions of real neurons published in peer-

reviewed literature. The NeuroMorpho Database [Ascoli et al., 2007] hosts a large

number of such reconstructions in .swc format. These files describe a sequence of

nodes with precise radii and three-dimensional locations to describe the location of

the soma and the paths taken by the axon and each dendrite. A dendrite’s path

can be described using as many nodes as necessary to accurately reflect the spatial

130

jitter and variation in radius of its path. Because radii are described at nodes,

edges between two nodes of different radius taper. The dendritic path integral

formalism requires constant diameter along edges, but allows discontinuous jumps

in the diameters at nodes. Hence, edge diameter was defined as the average of the

diameters of adjacent nodes. This allows full dendritic branches to be represented

as a sequence of uniform cylinders of arbitrary length and with abrupt changes in

diameters at nodes.

x

y

BA C

ED

x

y

y

xy

y

x

x

Amacrine

PyramidalTangential

Purkinje

Figure 4.3: Neuronal structures used in construction of the Green’s function.
A : a fourth-order binary tree, B : a rabbit amacrine cell [Bloomfield and
Miller, 1986], C : a rat pyramidal cell [Radman et al., 2009], D : a rat
Purkinje cell [Vetter et al., 2001], and E : a blowfly tangential cell [Cuntz
et al., 2008].

The information contained within these .swc files required processing before

it could be used by any of the algorithms described in this section. A parser was

therefore written in Python, to provide the preliminary data processing to construct

an input object capable of being passed to the algorithm, such as an adjacency list

for the Monte Carlo method and the Length Priority algorithm.

Figure 4.3 shows the neuronal geometries used in the validation and conver-

131

gence analysis of these algorithms. Figure 4.3A is a fourth-order binary tree where

all branches have equal length and radius, morphologically close to the binary tree

in Cao and Abbott’s [1993] Figure 2B. The structures in Figures 4.3B-E are recon-

structions from micrographs for four different neuronal types with qualitatively very

different dendritic trees. For calculations run on the binary tree, three different sets

of parameters were used, as shown in Table 4.1. Parameters in Set A are taken

from Cao and Abbott [1993], while Sets B and C are more biologically realistic

parameters.

For each morphology, points x and y were selected such that the measurement

point, x, was adjacent to the soma; this situation is interesting should we wish the

assess the somatic impact of a postsynaptic stimulation. The injection point, y, was

placed as far from the soma as possible, to simulate the input of a distal postsynaptic

potential.

4.7.2 Implementations

The Improved Four Classes Algorithm

The Improved Four Classes algorithm was written purely in C++, using containers

and sorting algorithms from the Standard Template Library.

The Length Priority Algorithm

The Length Priority algorithm was implemented primarily in C with an implemen-

tation of the optimised Eppstein [1999] algorithm provided by Jiménez and Marzal

[2003]. From this, the lengths and coefficients of the trips, and subsequently, the

Green’s functions, were computed in C++.

The Monte Carlo Method

The Monte Carlo method can easily be parallelised, as all trip realisations are gen-

erated independently. By also providing a natural means for string manipulation

for the discovery of subwalks, Matlab [2012] was a natural choice for the imple-

mentation of the Monte Carlo method.

The Trip-Grouping Matrix Method

The Matrix method is centered around sparse matrix-vector multiplications. As

such, Matlab [2012] was used in its implementation.

132

Parameter Set A Parameter Set B Parameter Set C

Branch length L 0.3 50 µm 100 µm

Branch diameter a 0.05 1 µm 1 µm

Diffusion coefficient D 1 2.5 ×104 µm2 ms−1 2.5× 104 µm2 ms−1

Time constant τ 1 3.3 ms 3.3 ms

Capacitance Cm 1 1 µF cm−2 1 µF cm−2

Table 4.1: Parameter sets of the binary tree in Figure 4.3A.

4.7.3 Validation Against Numerics

We first validate the computational implementations of our algorithms by construct-

ing the Green’s function Gij(x, y, t) on a small binary tree. Two profiles of the

response function obtained by the Length Priority, the Monte Carlo and the Trip-

Grouping Matrix methods, compared to a numerical simulation computed by the

software package NEURON [Carnevale and Hines, 2006], are shown in Figure 4.4.

NEURON can used as a reference when configured such that the dendritic trees are

discretised into very small segments, and the time step is also small. These simula-

tions tend to run very slowly, but this configuration of parameters ensures that the

accumulated error remains small. For large networks of trees, however, this would

be infeasible due to time constraints, and one of the methods proposed here may be

more suited to large-scale simulations.

These plots demonstrate an excellent agreement between the different algo-

rithms and the numerical solution, with a slightly worse performance of the Monte

Carlo method for larger times. Due to the process of extracting subwalks from

longer walks of fixed length, then long trips are undersampled in comparison with

shorter trips, and so convergence at long times requires more sampling.

4.7.4 Error of Convergence

The error made during the calculation of the Green’s function (3.114) is a direct

measure of the how far the computation is from convergence. We use the following

133

Time (ms)

V
o
lt
ag

e
(m

V
)

A B
x

x

y
y

0.005

0.01

0.015

0.02

0.025

0
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.2

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

Numerical (NEURON)

Length Priority

Monte Carlo

Trip Grouping Matrix

Figure 4.4: The Green’s function constructed by a number of methods. The
voltage traces show the computed solutions Gij(x, y, t) for fixed x and y
on a binary tree for the Length Priority method (red circles), the Monte
Carlo method (blue diamonds) and the Trip-Grouping Matrix method with
kmax = 100 (green squares) superimposed on NEURON’s numerical solution
(black line). Parameter set A (Table 4.1) was used in these computations.

normalised L1 error as a measure of convergence :

ε =
1

VN

T∫

0

∣∣∣Gij(x, y, t)− V ∗(x, y, t)
∣∣∣ dt, (4.19)

where T = 20 ms is the final simulation time, Gij(x, y, t) is calculated algorithmi-

cally using one of the methods described in this chapter, V ∗(x, y, t) is NEURON’s

numerical solution to very high accuracy, and

VN =

T∫

0

V ∗(x, y, t) dt (4.20)

is the integral of the accurate NEURON solution. This convergence measure is

therefore relative to the amplitude of the “real” solution, and thus errors ε are

comparable between different neuronal types.

134

4.7.5 Convergence of the Length Priority Methods

Figure 4.5 shows the error of convergence (4.19) of the Improved Four Classes and

of the Length Priority methods on the five geometries from Figure 4.3, as a function

of the number of trips generated. Three sets of parameters given in Table 4.1 were

considered for the binary tree in Figure 4.3A, and the relative errors ε for each

case are demonstrated in Figures 4.5A-C. These plots illustrate fairly uniform con-

vergence, in which both methods offer similar accuracies and rates of convergence.

Of the two trees with biophysically realistic parameters, the binary tree with the

longer branches (Parameter Set C) converges faster, as is expected on structures

with longer trips in each Class. This is reflected in Table 4.2, which shows the num-

ber of trips required on the binary tree to remain under a given error threshold for

different parameter sets.

Figures 4.5D-G show ε for the structures in Figures 4.3B-E respectively.

They demonstrate that convergence is non-trivial on complex branching structures.

Figure 4.5D shows that the Length Priority method makes consistently less error

on the amacrine cell geometry, in contrast to the convergence of the Purkinje cell,

shown in Figure 4.5E, where the Improved Four Classes method generates less error

for all numbers of trips. Both of these show strongly irregular convergence, and high-

amplitude oscillation in the errors ε in the amacrine cell. For both methods, the

Purkinje cell shows a plateau in error for Green’s functions with few trips, indicating

that these trips either are of small magnitude, or that their voltage traces alternate

between undershooting and overshooting the correct solution between subsequent

trips. This indicates that neither the Length Priority nor the Improved Four Classes

methods are necessarily good heuristics for ordering terms in the Green’s function.

This is further demonstrated at by the oscillating property of the error, which shows

how there are regions where trips that will increase the error are more frequent than

trips that reduce it.

The pyramidal cell’s convergence shows very discontinuous behaviour (Figure

4.5F), particularly in the Length Priority method. The large jump in error when

approximately 350 trips are included in the Green’s function was found to be caused

by the first and shortest Class 2 trip included thus far, with all prior trips belonging

to Class 1. This behaviour is likely to arise if there exist very short branches along

the shortest and most direct x→ y trip, and thus many Class 1 trips are generated

first, being shorter than the first Class 2 trip. Whilst one of the motivating reasons

for considering a Length Priority approach was to generate trips fully by length

order, this heuristic makes no attempt to include the coefficient Atrip in its ordering.

This is an example of a pathologically large change in the coefficients value for a

135

10
0

10
2

10
4

10
6

0

0.2

0.4

0.6

0.8

1

0

0.1

0.2

0.3

0.4

0.5

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.1

0.2

0.3

0.4

0.5

0

0.1

0.2

0.3

0.4

0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

B. Binary Tree, Parameter Set B

A. Binary Tree, Parameter Set A

C. Binary Tree, Parameter Set C

D. Amacrine E. Purkinje

F. Pyramidal G. Tangential

Length Priority Method

Improved Four Classes Method

R
el

at
iv

e
E

rr
or

Number of Trips Generated

10
0

10
2

10
4

10
6

10
0

10
2

10
4

10
6

10
0

10
2

10
4

10
6

10
0

10
2

10
4

10
6

10
0

10
2

10
4

10
6

10
0

10
2

10
4

10
6

Figure 4.5: Convergence of the Improved Four Classes and Length Priority
methods for a number of dendritic morphologies. The relative error ε of
the approximation of Gij(x, y, t) is shown as a function of the number of
trips in the sum-over-trips framework for injection at y and measurement
at x on the dendritic trees in Figure 4.3. The membrane parameters for
real dendritic morphologies are : Cm = 1 µF cm−2, R = 3000 Ω cm2 and
Ra = 100 Ω cm. Note that the Improved Four Classes method always begins
with four trips, and each iteration in the algorithm adds a further four trips,
with one belonging to each class.

136

Binary tree Relative Error Threshold ε

0.1 0.05 0.01 0.001

Parameter Set A 3240 8750 1820000 > 5× 107

Parameter Set B 825 2600 129000 > 5× 107

Parameter Set C 22 65 815 7700

Table 4.2: Length Priority method on a binary tree: number of trips required
for a given accuracy.

Class 2 trip which contributes a very significant amount to the Green’s function. The

Improved Four Classes approach, which enforces generation of trips of all four classes

at every added excursion, does not show such a drastic drop in error. However, the

error plot is still very discontinuous, and this may be a characteristic of situations as

we have just described, where points x and y are placed on branches having a very

different length to those on the most direct x → y trip, or when these points are

placed very close to a node. Whether injection and measurement points are located

on branches that are significantly longer or shorter than those along the shortest

x → y trip, both the Improved Four Classes and the Length Priority methods will

generate trips in an “unnatural” order, subsampling the trips where current will

spread the most, but oversampling in areas of the tree with very short branches. This

pathological feature may not be inherently present in the real neuronal morphology,

but may have been created during digital reconstruction from slice image data, if, for

example, a change of radius were found along the branch. Therefore, this pathology

may not be representative of the neuronal geometry, but becomes a function of the

reconstruction.

The tangential cell’s convergence, shown in Figure 4.5G, shows almost iden-

tical errors for both the Improved Four Classes and the Length Priority methods,

indicating that trips are generated in a similar order, regardless of method. Con-

trary to the example with the pyramidal cell, this behaviour is likely to occur when

x and y are placed on branches that are significantly shorter than those that arise

on the shortest x → y path, such that the Length Priority method returns trips of

Class 1, 2, 3 and 4 in sequential order, as these increases in length are shorter than

adding an excursion along the direct x→ y trip.

These results clearly indicate that the convergence of the realisation of the

137

sum-over-trip framework by either the Improved Four Classes or the Length Prior-

ity method strongly depends on a dendritic geometry. For real morphologies, the

number of trips required quickly becomes very large to the point where guarantee-

ing convergence to within some small error threshold may become computationally

expensive.

4.7.6 Convergence of the Monte Carlo Method

The convergence of the Monte Carlo method is shown in Figure 4.6 for the binary

tree in Figure 4.3A with Parameter Set A, and for a larger binary tree of order 16

with the same parameters. Boundary effects can be seen on the smaller tree, where

the convergence rate is slightly faster than that of a typical Monte Carlo integration,

which is observed here for a larger tree. It is worth noting that the x-axis on this

plot shows the number of random walks generated; however, due to the number of

subwalks extracted from each random walk, the number of terms contributing to

the Green’s function can potentially be significantly different. For small trees, the

number of subwalks the algorithm extracts is typically much larger than the number

of random hopper realisations sampled; larger trees have trips that can “get lost”

far from the points of interest, meaning that a considerable section of the realisation

does not contribute to the sum-over-trips.

10
2

10
3

10
4

10
5

10
6

10
7

10-3

10-2

10-1

100

101

102

103

10-3

10-2

10-1

100

101

102

103

Number of Random Walks Generated

R
el

at
iv

e
E

rr
o
r

A B

10
2

10
3

10
4

10
5

10
6

10
7

Figure 4.6: Convergence of the Monte Carlo method for a binary tree. The
relative error ε is shown as a function of the number of random walk real-
isations generated, k. A : the error generated on the binary tree in Figure
4.3A with parameter set A. The red line shows a fit for ε ∼ k−0.54. B : the
convergence error on a binary tree of order 16 (65536 nodes). The red line
demonstrates a fit for ε ∼ k−0.5, the typical rate of convergence of a Monte
Carlo integration.

138

The graphs in Figure 4.6 show that the Monte Carlo method is very slow to

converge, although the method is much more predictable in its convergence, despite

the noise. As expected, therefore, the Monte Carlo method generates trips that are

more “naturally” ordered, and hence, convergence is much more monotonic. Despite

this improved ordering of terms in the series solution, the Monte Carlo approach

remains computationally intensive and very slow to converge with an increasing

number of trips.

4.7.7 Convergence of the Trip-Grouping Matrix Algorithm

Finally, the convergence of the Matrix method on a binary tree is shown in Figure

4.7. This algorithm converges extremely quickly to within very small error tolerances

as a function of kmax, the maximum number of edges covered by trips generated.

The values of the product of Atrip coefficients obtained by this method remain O(1)

for all kmax which agrees with the proof in Abbott [1992].

0 10 20 30 40 50 60 70 80 90
10

-20

10
-15

10
-10

10
-5

10
0

10
5

R
el

at
iv

e
E

rr
or

kmax

Figure 4.7: Convergence of the Trip-Grouping Matrix method. The relative
error ε is shown as a function of the maximal number of edges travelled in
the trips, kmax, for a binary tree in Figure 4.3A.

Because the algorithm is based on simple matrix-vector multiplication, where

the matrix is |E|×|E| in size, the computation of the Green’s function for small trees

such as the binary trees used here to within ε = 10−15 only takes a fraction of a

second on a desktop computer. On more complex trees such as Purkinje cells, this

139

becomes more expensive, although computing Gij(x, y, t) for the whole tree (for all i

and j) remains computationally preferable to the use of brute-force simulators. Us-

ing the reciprocal rule (3.116), this is possible in |E|/2 applications of the algorithm.

This compares favourably with the Length Priority and the Four Classes methods,

which require |E|
(
|E| + 1

)
/2 applications of the algorithm, and with NEURON,

which would require |E|2 simulations, and this would only provide solutions for a

single point y on each edge. In addition, the sparseness of the matrix Q means that

coefficient calculation up to kmax only takes O
(
|E| kmax

)
time, and so the method

scales linearly with the number of branches on the tree.

Due to the Trip-Grouping Matrix method’s extreme efficiency, we can use it

to probe the convergence of the dendritic path integral as a function of system time,

in addition to its convergence on different morphologies. In Figure 4.8A, we have

constructed the Green’s function for a depth-4 binary tree using the Trip-Grouping

Matrix method, for times 0 ≤ t ≤ 50 ms, and computed its relative error as in (4.19),

except for the removal of the absolute value function, in order to better demonstrate

the oscillatory property of the dendritic path integral’s convergence. These results

show how, whilst small errors may be made at short times, as agrees with Cao and

Abbott [1993], they rapidly grow for longer times. Because of this, the number of

trips chosen to compute in the path integral should be informed by the length of

the simulation : for long-duration simulations, orders of magnitude more trips are

required to obtain the same accuracy.

Figure 4.8B shows the same calculation for a depth-12 binary tree. It shows

that, comparatively, it is much harder to achieve convergence on a larger tree. Even

at short times, errors are present for a large number of trips, and, for longer times,

we could require as many as 1030 trips on a tree of this size - a number which is

infeasible with regards to explicit trip construction, for modern computing resources.

This places trip-enumerating methods such as the Trip-Grouping Matrix method at

a significant advantage, compared with those that construct trips explicitly : the

prior are able to evaluate a far greater number of trips than the latter. This is evident

in comparing Figures 4.5 and 4.6, where we constructed 107 trips, with Figure 4.8,

where we were able to obtain 1036 trips, in a similar amount of computation time.

4.7.8 Structural-Electrotonic Properties

The Green’s function Gij(x, y, t) for a given dendritic geometry, being equivalent to

an impulse response function, can be used to assess the efficacy with which electric

signals are transmitted on a given dendritic morphology. Assessing whether a the

geometry of a branching structure significantly impacts the propagation of a signal

140

0 7796 3.7e+07 1.7e+11 7.5e+14 3.4e+18 1.5e+22 7.0e+25 3.2e+29 1.4e+33 6.5e+37

0

10

20

30

40

50

 -0.4

 -0.2

0

0.2

0.4

0.6

0.8

1

t (ms)

R
el

at
iv

e
E

rr
or

Number of Trips

0 7796 3.7e+07 1.7e+11 7.5e+14 3.4e+18 1.5e+22 7.0e+25 3.2e+29 1.4e+33 6.5e+37

0

10

20

30

40

50

 -0.4

 -0.2

0

0.2

0.4

0.6

0.8

1

t (ms)

Number of Trips

R
el

at
iv

e
E

rr
or

A

B

Figure 4.8: Convergence error, as a function of number of trips and simula-
tion time.

is a step towards answering questions regarding the structure-function relationship

behind the enormous natural variation in dendritic morphologies. A dendritic tree’s

electrotonic properties could hint at the role of the neuron in terms its signal inte-

gration and processing of information.

Using the measures introduced by Zador et al. [1995], the propagation delay

and the log-attenuation, we can analyse the how the variation in dendritic morphol-

ogy affects the propagation of the response signal in the four reconstructed cells in

141

Figure 4.3, effectively mapping a measure of structure to one of function. For a pair

of points (x, y) along the tree, we reintroduce the propagation delay Pxy from Zador

et al. [1995] as a measure of the impact of the tree’s electrotonic structure on the

timing of signals, defined as

Pxy = t̂x − t̂y. (4.21)

Here, t̂x and t̂y are the geometric centroids of the voltage transients measured at x

on branch i and at y on branch j, respectively, for a stimulus at y on j :

t̂x =

∞∫

0

t Gij(x, y, t) dt

∞∫

0

Gij(x, y, t) dt

and t̂y =

∞∫

0

t Gjj(y, y, t) dt

∞∫

0

Gjj(y, y, t) dt

. (4.22)

The propagation delay Pxy is a measure of the speed at which signals are able to

diffuse along the dendritic tree from the point at which current is injected. Should

we use the Green’s function G∞(x, y, t) as the signal itself, the centroid for the

response at the point of injection t̂y can be found in closed form. First, we rewrite

the numerator as a Gamma function :

∞∫

0

t Gjj(y, y, t) dt =

∞∫

0

t
1√

4πDt
e−t/τ dt

=
1√

4πD

∞∫

0

t√
t

e−t/τ dt. (4.23)

Introducing z = t/τ such that dt = τ dz, then we can write (4.23) as

1√
4πD

∞∫

0

τz√
τz

e−z τ dz =
τ2

√
4πDτ

∞∫

0

z1/2 e−z dz

=
τ2

√
4πDτ

Γ(3/2), (4.24)

where

Γ(x) =

∞∫

0

zx−1 e−z dz (4.25)

142

is the generalised Gamma function. Similarly for the denominator, we find that

∞∫

0

Gjj(y, y, t) dt =
1√

4πD

∞∫

0

t−1/2 e−t/τ dt

=
τ√

4πDτ

∞∫

0

z−1/2 e−z dz

=
τ√

4πDτ
Γ(1/2). (4.26)

Reassembling the fraction in 4.22, we find that

t̂y = τ
Γ(3/2)

Γ(1/2)

=
τ

2
. (4.27)

The propagation delay can thus be written simply, as

Pxy =

∞∫

0

t Gij(x, y, t) dt

∞∫

0

Gij(x, y, t) dt

− τ

2
. (4.28)

This delay measure admits an additive property, such that Pxy = Pxz + Pzy for a

point z between x and y.

The other of Zador et al.’s [1995] measure of electrotonic structure, the log-

attenuation of the response signal between a pair of points (x, y), is defined as

Axy = log




∞∫

0

Gjj(y, y, t) dt

∞∫

0

Gij(x, y, t) dt



. (4.29)

It acts as a measure of the amount that a transient signal’s amplitude diminishes

as it travels between two points. Axy is also additive for a point z between x and

y, that is, Axy = Axz +Azy.
Using Zador et al.’s [1995] two measures, we can compute the Green’s func-

143

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

D
el

ay
 (

m
s)

Amacrine

Purkinje

Pyramidal

Tangential

0 50 100 150 200 250 300 350
0

1

2

3

4

5

6

7

8

Distance (µm)

lo
g

−A
tt

en
u
at

io
n

Amacrine

Purkinje

Pyramidal

Tangential

350

Figure 4.9: Propagation delay and log-attenuation for reconstructed geome-
tries in Figure 4.3.

tion for different reconstructed dendritic geometries, and compare how the morphol-

ogy impacts signal attenuation and delay. Figure 4.9 demonstrates the propagation

delay and the log-attenuation as a function of distance away from a fixed point of

measurement x, for the reconstructed dendritic morphologies in Figure 4.3B-E. The

point x was placed near the soma, as in this figure; the position of y was moved away

from x to the distal dendrites along a single path, finishing in the same position y

as shown in the figure. As expected with an additive property, both the delay and

the log-attenuation are linear in the distance between y and x. The curves in Figure

4.9 show a noisy linear trend, which could be smoothed to better demonstrate this

linearity by sampling the data from multiple points located along different branches,

but at the same fixed distance away from x, in the manner of an expanding sphere

of radius y, with origin at x (where an average must be taken for x everywhere along

the tree).

To compare how the response signal is transferred in four neuronal types, we

plot the rate of change of the delay and log-attenuation for individual cells in Figure

4.10, computed by a linear regression and imposing that the line passes through the

origin. It succinctly illustrates that the input signal will spread differently in these

four cells, with the tangential cell having a similar rate of delay as the pyramidal

cell and a similar log-attenuation as the amacrine cell. The signal in the Purkinje

cell is shown to be attenuated most, whereas the pyramidal cell transfers signals

very effectively. Similar conclusions, but about the propagation of the dendritic

action potential, were made by Vetter et al. [2001]. The activation of voltage-gated

channels is expected to be less robust in the case of strong attenuation of the passive

spread of voltage which might explain the results of Vetter et al. [2001].

144

1.8 2 2.2 2.2 2.4

× 10
-3

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Delay per unit length (ms µm-1)

lo
g−

A
tt

en
u
at

io
n
 p

er
 u

n
it
 l
en

gt
h
 (

µ
m

-1
)

Amacrine

Purkinje

Pyramidal

Tangential

Figure 4.10: Electrotonic properties of the response signal for reconstructed
geometries.

4.8 Conclusions

The algorithms presented in this chapter, and first published in Caudron et al. [2012],

implement Abbott et al.’s [1991] dendritic path integral framework for computing

the impulse response function for a dendritic tree directly in the time domain. The

solution is constructed as an infinite sum which, in theory, converges exponentially

quickly in the number of terms in the sum. The major difficulty is constructing

the sum in an efficient order, where the absolute value of each term contributes

more than the that of the next term. This is illustrated in the convergence analysis

of the algorithms described here, which show a highly non-monotonic convergence

for terms that are ordered by their lengths, and a much slower convergence for the

Monte Carlo method where terms are randomly sampled.

Nevertheless, the series solution is guaranteed to converge, and therefore,

with enough computational power, a solution can be found to within acceptable

error tolerances. The Trip-Grouping algorithm proposed is especially rapid, pro-

ducing very small errors in extremely short times, although it requires the tree to

be discretised as in numerical simulation.

The resulting Green’s function allows us to gain insight into how the dendritic

tree’s morphology affects its signal propagation efficacy. We have demonstrated how

to calculate the extent to which a diffusing electrical signal is delayed as a function

of the distance it must travel, and how much it will be attenuated in doing so.

These time-domain methods represent a powerful framework for investigating

145

the voltage response to a current injection on dendritic trees with arbitrary mor-

phology. Unlike numerical methods used in compartmental modelling, these meth-

ods scale favourably with system size and could be used to tackle large spatially-

extended systems of dendritic trees. Bypassing the requirement for a numerical

inverse Laplace transform, inherent to the vast majority of cable theory methods,

is a strong incentive for use of the dendritic path integral. However, the solution

remains an approximation, and significant computational power is required to con-

struct it. In contrast, Laplace-domain methods can provide an exact solution, with

error only being introduced during the numerical inverse transform. The next chap-

ter will therefore introduce a novel method for constructing the Green’s function in

the Laplace domain, with a view to attacking cable problems from another angle.

146

Chapter 5

Laplace-Domain Methods

With the cable equation taking a simpler form in the Laplace domain, it is easy

to see why methods rooted in the frequency domain outnumber those that operate

in the time domain. Indeed, many Laplace-domain approaches, such as those of

Butz and Cowan [1974], Koch and Poggio [1985] and Holmes [1986] provide exact

solutions to the cable equation in the Laplace domain. In contrast, Abbott et al.’s

[1991] dendritic path integral delivers only an approximation, and one which is not

always trivial to obtain to the desired accuracy, as demonstrated in the previous

chapter.

The method presented in the following sections revolves around the use of

motifs, or minimal substructures extracted from the dendritic morphology, to put

together a system of equations which can then used to solve the Laplace-domain

solution to the cable equation. A major advantage of the motif idea is that the

algorithm is very easy to apply, as each motif, identified from a node on the tree,

leads to the concatenation of a small matrix into a larger system of equations.

Before introducing the algorithm that makes use of motifs, we review the

Laplace-domain solution to the cable equation and introduce an alternate form

in Section 5.1. Motifs are formally introduced in Section 5.2, and applied to an

algorithm in Section 5.3.

147

5.1 Cable Systems in the Laplace Domain

For an arbitrary tree with V nodes and E branches, we can consider a system of |E|
equations as in (3.81), with one for each branch i ∈ E :

∂Vi(x, t)

∂t
= Di

∂2Vi(x, t)

∂x2
− Vi(x, t)

τi
, i 6= j, 0 ≤ x ≤ Li,

∂Vj(x, t)

∂t
= Dj

∂2Vj(x, t)

∂x2
− Vj(x, t)

τj
+ Iapp(x, t), 0 ≤ x ≤ Lj ,

(5.1)

for t ≥ 0 and i, j ∈ E , and where the indices in Vi indicate the transmembrane po-

tential on branch i. Each branch is allowed its own lengthscale λi and characteristic

time τi, encoded in the space constant Di = λi/τi.

The current Iapp(x, t) is injected only along branch j. As in Section 3.4.5,

and specifically in (3.89), we will set Iapp(x, t) to the delta function δ(x− y) δ(t), in

order to solve for the system’s Green’s function for injection at an arbitrary point

y on branch j at time t = 0, without loss of generality.

In the Laplace domain, the Green’s function for the system described in (5.1)

can be written in a form similar to equation (3.90) :

L
[
∂Gi(x, ·)

∂t
−Di

∂2Gi(x, ·)
∂x2

+
Gi(x, ·)

τi

]
(s) = 0, i 6= j,

L
[
∂Gj(x, ·)

∂t
−Dj

∂2Gj(x, ·)
∂x2

+
Gj(x, ·)

τj

]
(s) = L

[
δ(x− y) δ(·)

]
(s),

(5.2)

and therefore, assuming zero initial conditions as in Section 3.4.5, we find that

γ2
i (s) Ḡi(x, s) =

∂2Ḡi(x, s)

∂x2
, i 6= j,

γ2
j (s) Ḡj(x, s) =

∂2Ḡj(x, s)

∂x2
+
δ(x− y)

Dj
,

(5.3)

where

γ2
i (s) =

s+ τ−1
i

Di
. (5.4)

148

5.1.1 Laplace-Domain Solutions

Solutions to the set of equations (5.3) are found to be

Ḡi(x, s) = αi(s) e−γi(s)x + βi(s) eγi(s)x, i 6= j,

Ḡj(x, s) = αj(s) e−γj(s)x + βj(s) eγj(s)x − Isj (x, y, s),
(5.5)

as in [Boyce and DiPrima, 2012], and where the injection term Isj (x, y, s) and its

derivative Icj (x, y, s), used later, are defined as

Isj (x, y, s) =





sinh
(
γj(s) (x− y)

)

Djγj(s)
x > y,

0 otherwise,

(5.6)

Icj (x, y, s) =
∂Isj (x, y, s)

∂x
=





cosh
(
γj(s) (x− y)

)

Djγj
x > y,

0 otherwise.

(5.7)

for some fixed 0 > y > Lj .

5.1.2 Boundary Conditions

With the system of equations in place, a set of boundary conditions must be consid-

ered at branching nodes and terminals. These are the Laplace-domain analogues of

those covered in the description of the dendritic path integral in Section 3.5 : con-

tinuity of potential at nodes, as in (3.106), and Kirchhoff’s current law, imposing

that the sum of currents flowing into a node is equal to the sum of currents flowing

out of it, as in (3.107). These must, however, be expressed in the Laplace domain,

where continuity of potential imposes

Ḡi(xnode, s) = Ḡj(xnode, s), (5.8)

at a node, for all pairs of branches i and j that share the node. Kirchhoff’s current

law states that ∑

i

1

ri

∂Ḡi(x, s)

∂x

∣∣∣∣
x=xnode

= 0, (5.9)

where the sum is over the i branches adjacent to a node, and ri is the longitudinal

resistance per unit length of branch i.

149

At terminals, we will consider closed dendritic tips :

∂Ḡi(x, s)

∂x

∣∣∣∣
x=xterm

= 0. (5.10)

5.2 Motifs

The motivation behind the use of motifs lies in the coefficients α(s) and β(s) in (5.5).

Obtaining expressions for these would enable us to compute the exact Laplace-

domain solutions to the cable equation explicitly. Depending on the form of the

solution used, there is one (α(s), β(s)) pair, for each branch on the tree, and thus

2|E| equations for these coefficients.

The branching nodes and terminal points on a tree are where the boundary

conditions in Section 5.1.2 are applied, and thus, make a natural focus for the

construction of the set of equations required to evaluate the coefficients in (5.5).

Motifs are therefore centred around the nodes, allowing precomputed expressions to

be used to construct a system of equations for these coefficients, which may then be

solved in order to evaluate the solutions to the cable equation itself.

5.2.1 The Motif Concept

Motifs are improper directed graphical substructures (but not valid subgraphs),

consisting of only one node and up to three branches adjacent to the node. The

propriety of a graphical structure designates whether its edges are defined as existing

between two nodes. One node is insufficient to have an edge; proper edges are defined

as a relation, or link, between two nodes, in the traditional graph-theoretic sense

(see Section 4.1). Motifs, structures with only one node, are therefore improper

structures, simply because they contain free-hanging edges with no nodes on the

other end. We will continue to refer to these improper edges as simply edges or

branches, and each will be contextually-associated with a given proper edge on the

tree; each edge on a motif will therefore be indexed, and will relate to a given

dendritic branch.

There is a non-contextual relation between the node in the motif and the

nodes on the tree. A node v ∈ V at the heart of a motif refers always to the same

node v on the tree, and only to that node. In this way, we can associate each node

on the tree with one motif in a surjective fashion. The improper edges on motifs,

however, are not uniquely related to a branch on the tree. Instead, the association

between motif edges and tree branches is contextual : the formation of a simple,

order-2 binary tree (a four-node tree consisting of a central node with three proper

150

edges radiating from it), we require four motifs, as each motif only has one node.

Three of the four motifs will consist of one edge adjacent to the node, and the last

motif will have three edges adjacent to the node. By “overlapping” the improper

edges of the three one-edge motifs onto the three edges of the three-node motif, we

are able to form a proper graphical structure with four nodes and three edges. This

is illustrated in Figure 5.1. In this example, each node is associated with a motif

from the set of motifs, M, with certain motifs (specifically, the one with a single

edge) being associated with several nodes on the tree (specifically, the terminals).

+3 = =

Figure 5.1: The construction of an order-2 binary tree from three motifs
with one edge, and one three-edge motif.

When combined, motifs can be used as building blocks to form any tree

we wish, up to a bounded degree d = 3, a biologically-relevant constraint. This

constraint is merely imposed for simplicity; the ideas can be generalised to any

bounded degree, although the number of calculations to be performed before a

motif method can be used increases rapidly with d : a larger degree bound on the

tree implies that the set of motifs required to construct the tree is also larger. The

set of motifs, M, is therefore a finite, countable set, whose cardinality depends

non-trivially on the maximum degree on the tree.

5.2.2 Edge Orientation

Whilst dendritic morphologies are undirected graphs, imposing a direction on their

edges can be algorithmically beneficial. In Section 4.3.2, where each branch was

assigned a direction according to a given rule, then some level of ambiguity was

removed from the algorithm - the edge directionality imposed by the Improved Four

Classes algorithm stopped the production of duplicate trips.

Here, the directing of branches on tree imposes a choice of coordinates, such

that x = 0 at the tail of a directed edge, and x = Li at the head of edge i. With

regards to motifs, the directing of branches on a tree is a mechanism for ensuring

that boundary conditions are applied only in the correct places and that they are

not applied multiple times, because the coordinate system is now unambiguous.

151

Directed edges, however, increase the total number of possible motifs that

are needed to construct the tree. Instead of having only one motif with a single

edge, we now have two : one with the motif’s node at the tail of the edge, and one

with the node at its head. We must therefore be careful in our choice of rule for

allocating each edge with a direction, in order to keep |M| to a minimum.

One rule which optimises over this constraint is to select any terminal and

denote it the root node vR ∈ V, and to have all edges pointing away from the root

node. This ensures that all nodes except the root vR have one edge head, and

anywhere between zero and two edge tails, adjacent to them. This is equivalent to

saying that each node (again, except the root) houses the distal coordinate x = Li

of one and only one edge, and the proximal coordinates x = 0 for between zero and

two edges.

5.2.3 Nomenclature : The Set of Motifs

Motifs are given a name in the form XY , where X = d(v) is the degree of the node

v ∈ V in the motif, and Y is an indicator of the edge on which current is injected, if

any on this motif. X ∈ {1, 2, 3} by the degree constraint imposed in Section 5.2.1,

and Y ∈ {0, i, j, k} where 0 implies that no edge on this motif is being stimulated

by an applied current Iapp, and the indices i, j, k refer to a specific edge on the motif

where current is injected. The exception to this is the root node vR, which has its

own motif, denoted 1R. Figure 5.2 uses this notation to illustrate the complete set of

motifs required for the construction of an arbitrary dendritic tree, given the upper

bound on branching degree and the rule for directing branches.

The Motif method constructs a system of equations for the coefficients α(s)

and β(s) in (5.5) by precalculating the coefficients of the edges whose tails are at

the node, from those whose head is at the node. Because each motif’s node is the

head of only one edge, each motif expresses how the daughter branches’ coefficients,

whose tails are at the node, can be expressed as a function of the mother edge’s

coefficients on the motif. The Forward Motif method simply constructs a linear

system of these equations, which can then be inverted to solve for the coefficients.

5.3 Forward Motif Method

In this section, we will derive the expressions relating the coefficients on daughter

branches to those on the mother branch, used in the Forward Motif method to

obtain a system of equations for the coefficients α(s) and β(s). First, motifs for

branching nodes will be derived, followed by terminal motifs.

152

i

1
0

i

y

1
i

i

1
R

i

0

0L

L

i

j

j

2
0

i

0

0L

L

i

j

jy

2
i

i

0

0L

L

i

j

j y

2
j

i

0

0
L

L

k

j

0

j

L

i

k

0

3
0

i

0

0
L

L

k

j

0

jy

L

i

k

0

3
i

i

0

0
L

L

k

j

0

j y

L

i

k

0

3
j

i

0

0
L

L

k

j

0

j

y

L

i

k

0

3
k

Li Li Li

000

Figure 5.2: The complete set of motifs required for the construction of an
arbitrary dendritic tree.

5.3.1 Coefficient Expressions

20 : Degree-2 Motif with No Injection

The 20 motif, as in Figure 5.2, is a two-branch system with mother edge i ∈ E
pointing into the node, and daughter edge j ∈ E pointing out of it. With no

injections of current on either i or j, this system is described by the set of equations,

Gi(x, s) = αi(s) e−γi(s)x + βi(s) eγi(s)x,

Gj(x, s) = αj(s) e−γj(s)x + βj(s) eγj(s)x.
(5.11)

At the node, the continuity of potential condition (5.8) implies that

Gi(Li, s) = Gj(0, s), (5.12)

and Kirchhoff’s law (5.9) states that

1

ri

∂Gi(x, s)

∂x

∣∣∣∣
x=Li

=
1

rj

∂Gj(x, s)

∂x

∣∣∣∣
x=0

. (5.13)

From (5.12), we find that

αi(s) e−γi(s)Li + βi(s) eγi(s)Li = αj(s) + βj(s), (5.14)

153

and (5.13) gives us

rj γi(s)

ri γj(s)

(
βi(s) eγi(s)Li − αi(s) e−γi(s)Li

)
= βj(s)− αj(s). (5.15)

From equations (5.14) and (5.15), we find

αj(s) = αi(s)
e−γi(s)Li

2

(
1 +

rj γi(s)

ri γj(s)

)
+ βi(s)

eγi(s)Li

2

(
1− rj γi(s)

ri γj(s)

)
,

βj(s) = αi(s)
e−γi(s)Li

2

(
1− rj γi(s)

ri γj(s)

)
+ βi(s)

eγi(s)Li

2

(
1 +

rj γi(s)

ri γj(s)

)
.

(5.16)

We have successfully expressed the coefficients α(s) and β(s) for the daughter branch

j in terms of those of the mother branch i. Using the same approach, we can derive

functions for coefficients of branches on the other motifs in the set of motifs. Once

expressions are found for every required motif, they can be combined in a linear

system of equations and solved by matrix inversion.

2i : Degree-2 Motif with Injection on the Mother Branch

This motif is based on the same graphical structure as in 20, except that the mother

branch i is now the subject to a current injection. The equations describing this

motif are therefore

Gi(x, s) = αi(s) e−γi(s)x + βi(s) eγi(s)x − Isi (x, y, s),

Gj(x, s) = αj(s) e−γj(s)x + βj(s) eγj(s)x.
(5.17)

Substituting in the boundary conditions (5.8) and (5.9) gives

αi(s) e−γi(s)Li + βi(s) eγi(s)Li − Isi (Li, y, s) = αj(s) + βj(s), (5.18)

rj γi(s)

ri γj(s)

(
βi(s) eγi(s)Li − αi(s) e−γi(s)Li − Ici (Li, y, s)

)
= βj(s)− αj(s), (5.19)

154

respectively. From (5.18) and (5.19), we find that

αj(s) = αi(s)
e−γi(s)Li

2

(
1 +

rj γi(s)

ri γj(s)

)
+ βi(s)

eγi(s)Li

2

(
1− rj γi(s)

ri γj(s)

)

− 1

2

(
Isi (Li, y, s)−

rj γi(s)

ri γj(s)
Ici (Li, y, s)

)
,

βj(s) = αi(s)
e−γi(s)Li

2

(
1− rj γi(s)

ri γj(s)

)
+ βi(s)

eγi(s)Li

2

(
1 +

rj γi(s)

ri γj(s)

)

− 1

2

(
Isi (Li, y, s) +

rj γi(s)

ri γj(s)
Ici (Li, y, s)

)
,

(5.20)

where Icj is defined as in (5.7).

2j : Degree-2 Motif with Injection on the Daughter Branch

If the injected current is applied to branch j, then (5.5) fully describes this motif.

Applying the continuity condition (5.8) gives us

αi(s) e−γi(s)Li + βi(s) eγi(s)Li = αj(s) + βj(s), (5.21)

exactly as in (5.14), while the Kirchhoff boundary condition gives

rj γi(s)

ri γj(s)

(
βi(s) eγi(s)Li − αi(s) e−γi(s)Li

)
= βj(s)− αj(s), (5.22)

as in (5.15). Thus, the 2j motif provides the same expressions for the daughter

branch’s coefficients as the 20 motif :

αj(s) = αi(s)
e−γi(s)Li

2

(
1 +

rj γi(s)

ri γj(s)

)
+ βi(s)

eγi(s)Li

2

(
1− rj γi(s)

ri γj(s)

)
,

βj(s) = αi(s)
e−γi(s)Li

2

(
1− rj γi(s)

ri γj(s)

)
+ βi(s)

eγi(s)Li

2

(
1 +

rj γi(s)

ri γj(s)

)
.

(5.23)

30 : Degree-3 Motif with No Injection

A node at which a mother edge i enters and two daughter edges j and k leave, forms

the 30 motif if none of the edges are subject to an injection of current. As we can

155

see from (5.5), the equations that describe this system are

Gi(x, s) = αi(s) e−γi(s)x + βi(s) eγi(s)x,

Gj(x, s) = αj(s) e−γj(s)x + βj(s) eγj(s)x,

Gk(x, s) = αk(s) e−γk(s)x + βk(s) eγk(s)x,

(5.24)

with boundary conditions

Gi(Li, s) = Gj(0, s) = Gk(0, s), (5.25)

and
1

ri

∂Gi(x, s)

∂x

∣∣∣∣
x=Li

=
1

rj

∂Gj(x, s)

∂x

∣∣∣∣
x=0

+
1

rk

∂Gk(x, s)

∂x

∣∣∣∣
x=0

. (5.26)

From (5.25), we get

αi(s) e−γi(s)Li + βi(s) eγi(s)Li = αj(s) + βj(s) = αk(s) + βk(s), (5.27)

and (5.26) gives us

γi(s)

ri

(
βi(s) eγi(s)Li−αi(s) e−γi(s)Li

)
=
γj(s)

rj

(
βj(s)−αj(s)

)
+
γk(s)

rk

(
βk(s)−αk(s)

)
.

(5.28)

Substituting (5.27) into (5.28), we obtain

2γj
rj

αj(s) +
2γk(s)

rk
αk(s) = αi(s) e−γi(s)Li

(
γi(s)

ri
+
γj(s)

rj
+
γk(s)

rk

)

+ βi(s) eγi(s)Li
(
− γi(s)

ri
+
γj(s)

rj
+
γk(s)

rk

)

2γj
rj

βj(s) +
2γk(s)

rk
βk(s) = αi(s) e−γi(s)Li

(
− γi(s)

ri
+
γj(s)

rj
+
γk(s)

rk

)

+ βi(s) eγi(s)Li
(
γi(s)

ri
+
γj(s)

rj
+
γk(s)

rk

)
.

(5.29)

156

3i : Degree-3 Motif with Injection on the Mother Branch

An injection on the mother branch on a 30 motif turns it into a 3i motif. This

system is described by the equations

Gi(x, s) = αi(s) e−γi(s)x + βi(s) eγi(s)x − Isi (x, y, s),

Gj(x, s) = αj(s) e−γj(s)x + βj(s) eγj(s)x,

Gk(x, s) = αk(s) e−γk(s)x + βk(s) eγk(s)x,

(5.30)

with the same boundary condition as for the 30 motif, (5.25) and (5.26). The first

of these gives us

αi(s) e−γi(s)Li + βi(s) eγi(s)Li − Isi (Li, y, s) = αj(s) + βj(s)

= αk(s) + βk(s),
(5.31)

and the second provides us with

γi(s)

ri

(
βi(s) eγi(s)Li − αi(s) e−γi(s)Li − Ici (Li, y, s)

)
=
γj(s)

rj

(
βj(s)− αj(s)

)

+
γk(s)

rk

(
βk(s)− αk(s)

)
.

(5.32)

Proceeding as for the 30 motif, we substitute (5.31) into (5.32) and obtain

2γj
rj

αj(s) +
2γk(s)

rk
αk(s) = αi(s) e−γi(s)Li

(
γi(s)

ri
+
γj(s)

rj
+
γk(s)

rk

)

+ βi(s) eγi(s)Li
(
− γi(s)

ri
+
γj(s)

rj
+
γk(s)

rk

)

−
(
γi(s)

ri
Ici (Li, y, s)−

(γj(s)
rj

+
γk(s)

rk

)
Isi (Li, y, s)

)
.

2γj
rj

βj(s) +
2γk(s)

rk
βk(s) = αi(s) e−γi(s)Li

(
− γi(s)

ri
+
γj(s)

rj
+
γk(s)

rk

)

+ βi(s) eγi(s)Li
(
γi(s)

ri
+
γj(s)

rj
+
γk(s)

rk

)

−
(
γi(s)

ri
Ici (Li, y, s) +

(γj(s)
rj

+
γk(s)

rk

)
Isi (Li, y, s)

)
.

(5.33)

157

3j , 3k : Degree-3 Motifs with Injection on a Daughter Branch

For the same reason as the 2j motif returns coefficient expressions exactly equal to

those provided by 20, the motifs 3j and 3k give the same coefficient expressions as

the motif 30. Subtituting the system equations into boundary conditions (5.8) and

(5.9) implies that the injection terms Isj or Isk and their derivatives Icj and Ick are

evaluated at x = 0, and according to their definitions in (5.6) and (5.7), equate to

zero. Thus, for 3j and 3k motifs, we have

2γj
rj

αj(s) +
2γk(s)

rk
αk(s) = αi(s) e−γi(s)Li

(
γi(s)

ri
+
γj(s)

rj
+
γk(s)

rk

)

+ βi(s) eγi(s)Li
(
− γi(s)

ri
+
γj(s)

rj
+
γk(s)

rk

)

2γj
rj

βj(s) +
2γk(s)

rk
βk(s) = αi(s) e−γi(s)Li

(
− γi(s)

ri
+
γj(s)

rj
+
γk(s)

rk

)

+ βi(s) eγi(s)Li
(
γi(s)

ri
+
γj(s)

rj
+
γk(s)

rk

)
.

(5.34)

10 : Terminal Motif with No Injection

The 10 motif has a mother edge entering a node, and no outgoing daughter edges.

It applies at all terminals with no injections, aside from at the root node vR. The

equation that describes it is

Gi(x, s) = αi(s) e−γi(s)x + βi(s) eγi(s)x, (5.35)

with the closed tip terminal condition (5.10) applying at the node. With only one

branch on this motif, we cannot obtain an expression relating coefficients between

different branches. However, we can find a relation between the two coefficients on

the same branch :

αi(s) = βi(s) e2 γi(s)Li . (5.36)

11 : Terminal Motif with Injection

The equation describing an injection on a terminal branch is

Gi(x, s) = αi(s) e−γi(s)x + βi(s) eγi(s)x − Isi (x, y, s). (5.37)

158

The terminal condition (5.10) can be applied to give

αi(s) = βi(s) e2γi(s)Li − eγi(s)Li

γi
Ici (Li, y, s). (5.38)

1R : Root Motif

The 1R motif is only ever applied once per tree : at the root. Here, a single edge

leaves the root node at x = 0, and hence, is described by the following equation,

regardless of whether the branch houses a current injection :

Gi(x, s) = αi(s) e−γi(s)x + βi(s) eγi(s)x. (5.39)

The terminal condition (5.10) means that

αi(s) = βi(s). (5.40)

5.3.2 Motif Matrix Rows

Constructing a linear system from these equations can be made trivial by rewriting

them as matrix equations :

MC = I, (5.41)

where the coefficient expressions are written in the forms of rows of a matrix, M ,

and I is a column vector of the inhomogeneous terms found in deriving the motif

expressions. C, therefore, is a column vector of the coefficients themselves. This is

the final step of the precalculation for the Forward Motif method, and serves as a

convenient summary of the coefficient expressions.

Motifs 20, 2j

MC =




e−γi(s)Li

2

(
1 +

rj γi(s)

ri γj(s)

)
eγi(s)Li

2

(
1− rj γi(s)

ri γj(s)

)
−1 0

e−γi(s)Li

2

(
1− rj γi(s)

ri γj(s)

)
eγi(s)Li

2

(
1 +

rj γi(s)

ri γj(s)

)
0 −1







αi(s)

βi(s)

αj(s)

βj(s)



,

I =


0

0


 .

(5.42)

159

Motif 2i

MC =




e−γi(s)Li

2

(
1 +

rj γi(s)

ri γj(s)

)
eγi(s)Li

2

(
1− rj γi(s)

ri γj(s)

)
−1 0

e−γi(s)Li

2

(
1− rj γi(s)

ri γj(s)

)
eγi(s)Li

2

(
1 +

rj γi(s)

ri γj(s)

)
0 −1







αi(s)

βi(s)

αj(s)

βj(s)



,

I =
1

2




Isi (Li, y, s)−
rj γi(s)

ri γj(s)
Ici (Li, y, s)

Isi (Li, y, s) +
rj γi(s)

ri γj(s)
Ici (Li, y, s)


 .

(5.43)

Motifs 30, 3j , 3k

MC =




e−γi(s)Li eγi(s)Li −1 −1 0 0

e−γi(s)Li eγi(s)Li 0 0 −1 −1

e−γi(s)Li z+ eγi(s)Li z− −2
γj(s)

rj
0 −2

γk(s)

rk
0







αi(s)

βi(s)

αj(s)

βj(s)

αk(s)

βk(s)




,

I =




0

0

0


 ,

(5.44)

where z+ =

(
γi(s)

ri
+
γj(s)

rj
+
γk(s)

rk

)
and z− =

(
− γi(s)

ri
+
γj(s)

rj
+
γk(s)

rk

)
.

160

Motif 3i

MC =




e−γi(s)Li eγi(s)Li −1 −1 0 0

e−γi(s)Li eγi(s)Li 0 0 −1 −1

e−γi(s)Li z+ eγi(s)Li z− −2
γj(s)

rj
0 −2

γk(s)

rk
0







αi(s)

βi(s)

αj(s)

βj(s)

αk(s)

βk(s)




,

I =




Isi (Li, y, s)

Isi (Li, y, s)

(
γj(s)

rj
+
γk(s)

rk

)
Isi (Li, y, s)−

γi(s)

ri
Ici (Li, y, s)




,

(5.45)

where z+ =

(
γi(s)

ri
+
γj(s)

rj
+
γk(s)

rk

)
and z− =

(
− γi(s)

ri
+
γj(s)

rj
+
γk(s)

rk

)
.

Motif 10

MC =
(
−1 e2γi(s)Li

)

αi(s)

βi(s)


 ,

I =
(

0
)
.

(5.46)

Motif 11

MC =
(
−1 e2γi(s)Li

)

αi(s)

βi(s)


 ,

I =
(

eγi(s)Li
γi

Ici (Li, y, s)
)
.

(5.47)

161

Motif 1R

MC =
(
−1 1

)

αi(s)

βi(s)


 ,

I =
(

0
)
.

(5.48)

5.3.3 Constructing a Solution

At this point, construction of a solution is trivial : we merely treat the matrices

M as blocks, and insert them into a matrix of size 2|E| × 2|E|, and concatenate the

vectors C and I into vectors of size 2|E|. Using the same matrix equation (5.41) for

the new, larger matrix M and vectors C and I, we can obtain analytical expressions

for the coefficients using

C = M−1I. (5.49)

As an example, let us consider the tree in Figure 5.3A, with injection on

branch (2, 4). We will construct the matrix M and the vectors C and I for this

system by identifying the motifs in order of their node identifiers.

1

2

3 4

5

y

v
R

V
1

V
2

V
3

V
4

A B

Figure 5.3: An example branching structure used in the construction of a
solution using the Forward Motif method (A), with its equivalent structure
(B) where a root node vR has been nominated, edges oriented, and branches
labelled V1, V2, V3, V4 according to their tail nodes.

We will nominate node 1 as the root. All edges therefore point away from

this node, as in Figure 5.3B. Note that edges are identified by their tail node, such

that the voltage along edge (1, 2) is denoted V1, and so on. Beginning with node

1, we select the 1R motif, (5.48). Node 2 belongs to 3j or 3k equivalently, as an

injection exists on one of its daughter branches. We therefore select (5.44). The

next motif is 10 for the terminal node 3. Node 4 gives us 2i, a degree-2 motif with

162

injection on its mother branch. Finally, node 5 matches 10, another terminal with

no injection.

We will first construct C, very simply as the column vector

C =
(
α1 β1 α2 β2 α3 β3 α4 β4

)T
, (5.50)

where we ensure that the coefficients are in the same order as the nodes were eval-

uated. Then, the injection vector I is a vertical concatenation of the I vectors from

the various motifs, giving us

I =
1

2

(
0, 0, 0, 0, 0,

(
Is3(L3, s)−

r4 γ3

r3 γ4
Ic3(L3, s)

)
,
(
Is3(L3, s) +

r4 γ3

r3 γ4
Ic3(L3, s)

)
, 0

)T
.

(5.51)

Finally, we must construct M by blocks. By inserting the correct coefficient expres-

sion matrices into the large matrix M , we find that

M =




0 0 0 0 0 0

0 0

0 0

0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0 0




,

M
A

M
B

M
C

M
D

M
E

(5.52)

where

MA =
(
−1 1

)
, (5.53)

MB =




e−γ1 L1 eγ1 L1 −1 −1 0 0

e−γ1 L1 eγ1 L1 0 0 1− −1

e−γ1 L1 z+ eγ1 L1 z− −2γ2r2 0 −2γ3r3 0



, (5.54)

163

MC =
(
−1 e2γ2 L2

)
, (5.55)

MD =




e−γ3 L3

2

(
1 +

r4 γ3

r3 γ4

)
eγ3 L3

2

(
1− r4 γ3

r3 γ4

)
−1 0

e−γ3 L3

2

(
1− r4 γ3

r3 γ4

)
eγ3 L3

2

(
1 +

r4 γ3

r3 γ4

)
0 −1



, (5.56)

ME =
(
−1 e2γ4 L4

)
. (5.57)

The construction of the large matrix M from blocks of motif matrix rows, and of the

injection and coefficient vectors C and I can be done using a symbolic computational

package, such as Mathematica [2010] or the Symbolics Toolbox in Matlab [2012].

Once constructed, M can be inverted symbolically, and numerical values of s can

be substituted into the matrix M−1 and the vector I. Each M−1(s) for different

s is multiplied by I(s), to obtain a frequency series C(s), each element of which

represents a coefficient αi(s) or βi(s) for branch i.

Using these coefficients, we can evaluate (5.5) numerically and without ap-

proximation, obtaining a numerical solution for the Green’s function Gi(x, s) in the

Laplace domain. The final step, then, is a numerical inverse Laplace transform,

where the only errors for this method are introduced into the solution.

This algorithm’s time complexity is fairly high, although it remains polyno-

mial. Construction of the system of equations (by iterating over |V| nodes), takes

O(|V|) time. Once constructed, inverting the symbolic matrix costs O(|E|3) time.

In certain numerical inverse Laplace transform methods, such as Talbot’s

[1979] method, the number of times a Laplace-domain function must be sampled in

order to invert it is equal to the number of time samples requested after inversion.

Thus, substituting in different values of s into the dense symbolic matrix M−1 to

obtain Gi(x, t) up to some time T , sampled T/∆t times in intervals of ∆t millisec-

onds, takes O(|E|2 T/∆t) time. This returns T/∆t dense matrices, each of which

must be multiplied by the vector I at a cost of O(|E|2). The total time complexity

is therefore

O
(
|V|︸︷︷︸

construction

+ |E|3︸︷︷︸
inversion

+ T/∆t (|E|2︸︷︷︸
substitution

+ |E|2︸︷︷︸
multiplication

)
)
, (5.58)

should we invert the matrix M symbolically. However, it may be computationally

faster to evaluate the matrix numerically for each s, and invert that many numer-

ical matrices, rather than inverting the symbolic matrix once and evaluating the

result for every s. Symbolic computation is extremely slow compared to numerical

164

calculations, and there exist more optimal algorithms for numerical matrices. For

example, if we first substitute the different s into M before its inversion, we take

a cost of O(|E|) instead of O(|E|2) due to M being sparse. Then, we must invert

T/∆t matrices instead of just one. However, solving MC = I can be done using

highly-efficient matrix decompositions instead of inversion, such as using the LU

decomposition, which has the added advantage of preserving sparsity. This may

well be more numerically stable than computing an inverse, and allows us to take

advantage of the sparse matrix’s structure, drastically reducing the computation

time compared to the naive inversion and substitution of a symbolic matrix. We

can calculate the time complexity, in this case, to be

O
(
|V|︸︷︷︸

construction

+ T/∆t (|E|︸︷︷︸
substitution

+ |E|3︸︷︷︸
LU

+ |E|︸︷︷︸
multiplication

)
)
. (5.59)

This method has the advantage of being incredibly simple to implement. Its

major disadvantage, outside the fact that it requires a numerical inverse Laplace

transform, is the symbolic inversion of a matrix, or the numerous inversions of

numerical matrices : this is a limiting factor for both time and memory.

0 1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

t (ms)

V
m

 (m
V

)

Forward Motif solution

Numerical solution

Figure 5.4: Transmembrane potential for the tree in Figure 5.3, as computed
by the Forward Motif method, in black; the numerical solution computed
using NEURON [Carnevale and Hines, 2006], in red.

165

With the Forward Motif method, the fastest and most accurate results for

the construction and inversion of Gi(x, s) to its time-domain representation, Gi(x, t),

were obtained using Talbot’s [1979] method. Numerical instabilities were only ob-

served should the point of injection y exist very close to the point of measurement,

x. For the correct choice of Talbot [1979] method parameters, the solution demon-

strated excellent agreement with the time-domain solution as calculated both numer-

ically and using the Matrix method presented in Section 4.6, although this required

the use of multiple precision libraries such as GMP [2012], which can lead to high

computational costs on large trees. Figure 5.4 shows the transmembrane potential

for the tree in Figure 5.3, computed using the Forward Motif method, against a

solution computed numerically using NEURON [Carnevale and Hines, 2006]. The

point of injection was placed halfway along the edge (2, 4) and measurement was

made halfway along edge (1, 2). Results demonstrate a high accuracy, with an error

of ε = 1.1 × 10−3 as computed in (4.19), a far smaller error than made with the

Improved Four Classes, the Length Priority, or the Monte Carlo methods described

in Chapter 4.

5.4 Conclusions

The Forward Motif method provides an exact analytical solution, with errors being

introduced only in the numerical inversion. Its simplicity makes is easy to implement

computationally, with significant computational gains to be made by parallelising

the substitutions and matrix-vector products, despite the multiple precision arith-

metic required for numerical stability in the Laplace transform inversion.

166

Chapter 6

Discussion

“ Swiftly the brain becomes an enchanted loom, where millions of flashing

shuttles weave a dissolving pattern – always a meaningful pattern – though never

an abiding one.

”- Sherrington [1940]

6.1 Conclusions

In this thesis, we have studied the dynamics of the transmembrane potential on

spatially-extended dendrites. Our focus was on developing and assessing novel al-

gorithms, primarily built upon Abbott et al.’s [1991] path integral, for constructing

solutions to the cable equation on arbitrary dendritic trees.

The importance of dendritic trees in neural systems was first brought to

light by Wilfrid Rall, who demonstrated that the membrane properties of dendrites

could be analysed rigorously [Rall, 1957, 1959, 1960]. Dendritic cable theory, Rall’s

[1959] groundbreaking description of the propagation of electrical signals in spatially-

extended cells, provided a mathematical framework for the modelling of neurons

with complex geometries, providing a means to assess the integrative function and

signal processing properties of dendrites. Rall’s work on cable theory methods and

membrane properties, summarised in a book by Segev et al. [1995], inspired a large

body of research in methods for constructing solutions to arbitrary dendritic trees.

Approaches, approximate or exact, included Laplace transforms [Butz and Cowan,

167

1974; Horwitz, 1981; Koch and Poggio, 1985], reduction of the branching structure

to simpler geometries [Poznanski, 1991; Whitehead and Rosenberg, 1993], infinite

series solutions [Abbott et al., 1991; Major et al., 1993] and the construction of

linear systems [Holmes, 1986]. Many methods have gone on to incorporate resonant

or active dendrites [Koch, 1984; Coombes et al., 2007], and we have seen how certain

work seeks to assess how different dendritic trees integrate signal to and from the

soma [Zador et al., 1995; Mainen and Sejnowski, 1996], or how varying morphology

may affect firing [Vetter et al., 2001; Cook et al., 2007]. An understanding of the

relationship between dendritic structure and its impact on neuronal computation

could be essential to an overarching theory of brain function, and lead to substantial

advances in medicine.

6.1.1 Contributions

For such elaborate structures, however, a theoretical framework can be a far cry

from a useable solution. Closed-form analytical solutions are typically infeasible to

construct due to the sheer complexity of the dendritic trees, except on those with

certain symmetries. As such, efficient algorithms must be developed to construct

and evaluate a solution on arbitrary trees. Abbott et al.’s [1991] path integral for

dendritic trees is a time-domain method for generating such solutions. Consisting

of an infinite series, each term in the solution must be sampled from the tree. After

proving that the dendritic path integral converges absolutely for an optimal ordering

of the terms in the series solution, we successfully derived closed-form solutions for

small, symmetrical trees, arranging the terms in the solution by the length of the

trips on the tree. Our novel combinatorial counting scheme for symmetrical star

graphs offers an optimal solution to the path integral, for a constrained subset of

morphologies. These closed-form solutions do not explicitly construct trips, simply

enumerating them, hence their high efficiency.

For arbitrary geometries, constructing trips individually is essential to sample

from the complete tree. The trip length heuristic, used to determine how trips are

sampled from the tree, is also at the core of Cao and Abbott’s [1993] Four Classes

algorithm. This algorithm provides a way to construct the series solution for any

tree. After isolating some inefficiencies in this algorithm, we derived an equivalent

formal grammar for sampling trips from a tree in increasing order of length, but

sorted by their classes. This did not reduce the asymptotic time complexity of the

algorithm in comparison to that provided by Cao and Abbott [1993], although its

runtime is improved.

Then, based on Eppstein’s [1999] efficient k shortest paths algorithm, we de-

168

scribed a true Length Priority approach for constructing the series solution. Com-

parison of the convergence of the Improved Four Classes method and the Length

Priority algorithm on real reconstructed morphologies demonstrated a strong de-

pendence on the tree’s geometry, and, more importantly, a slow and highly non-

monotonic convergence, indicating that length is a poor heuristic for term construc-

tion.

To address this, we developed a Monte Carlo approach by considering the

Feynman-Kac relation between the cable theory equations and stochastic processes.

This method was shown to have a far more stable and predictable (albeit slow) rate

of convergence. The method is also trivial to implement, as it revolves around the

sampling of random walkers on the nodes of the tree. This also makes the algorithm

highly parallelisable on many-core systems.

A third approach, the Trip-Grouping Matrix method, was developed to take

advantage of a way to compute the required properties of the trips (their lengths

and coefficients) without explicitly constructing them. This method, applied to dis-

cretised dendritic structures, trades accuracy – discretisation of the tree into smaller

segments reduces the error made but increases computation time and memory re-

quirements – for extremely efficient computation costs. This allowed us to compute

the error of convergence at many different times, to assess how simulation time af-

fected the convergence of Abbott et al.’s [1991] path integral, which is known to

be more accurate for short times. As expected, we demonstrated that a far greater

number of trips is required to achieve the same level of accuracy for longer simula-

tions.

These algorithms were used to evaluate some integrative properties of real

dendritic morphologies. We showed how pyramidal cells propagate signals with less

delay and attenuation than Purkinje cells, the latter of which are known experimen-

tally to have a strong signal attenuation [Vetter et al., 2001].

Exact solutions to cable problems can be found more readily in the Laplace

domain. We derived a method for the construction of a linear system of equations

from graphical motifs, which can be identified around each node on a dendritic

tree. With a trivial computational implementation, the algorithm concatenates

precomputed blocks into a matrix equation, which can then be solved to provide an

exact solution in the Laplace domain. The frequency series were successfully inverted

using Talbot’s [1979] method for numerical Laplace transform inversion. Unlike the

Four Classes, Length Priority, and Trip-Grouping algorithms, the Forward Motif

method is parallelisable for performance on scientific computing systems.

The advantages to using analytical methods to construct the solution are nu-

169

merous. The path integral provides a framework for computing the solution directly

in the time domain which scales well with system size, allowing us to compute the

transmembrane potential, or to calculate the Green’s function, on large trees. This

can be extended to networks of trees by allowing gap junctions at nodes. Length-

priority approaches, despite potential convergence problems, can nonetheless provide

solutions to high accuracy faster than numerical simulation. Stochastic sampling via

the Monte Carlo method, which demonstrates predictable convergence, can be used

on trees with pathological geometries. For large systems, a discretisation can be

taken to allow the Trip-Grouping Matrix method to be used, yielding solutions in

very short times and to very high accuracy. Finally, the Laplace-domain Motif

method can be used to find exact analytical solutions to the cable equation on arbi-

trary geometries, with errors only being introduced during the system’s numerical

inverse transform.

6.2 Further Work

A primary aim for the future is the application of the methods described in this work

to networks of neurons. Recent advances in imaging technology allow the three-

dimensional reconstruction of not just individual neurons, but of small networks of

connected neurons, such as the gap-junction-coupled GABAergic interneurons in the

striatum or in the cerebral cortex [Fukuda, 2007, 2009], and, eventually, even the

302 chemically- and electrically-coupled neurons that comprise the full connectome

of C. elegans [White et al., 1986]. Calculation of the Green’s function between the

somas of such networks would enable us to rapidly compute the effect of current

injections or spikes anywhere on the network. This function is interesting both for

use in simulation, and in itself, as a network-level impulse response kernel.

The impulse response kernel provides us with insight on how signals dif-

fuse along the network structure, and how much influence one neuron has over its

proximal and distal neighbours. On the network-level, this gives us a quantitative

description of signal integration, and allows a direct comparison between the elec-

trotonic properties of different networks, via measures such as those of Zador et al.

[1995], potentially providing insight into the “speed” or “range of impact” of signal

processing on a network – measures which would take into account both somatic

and dendritic time and space constants.

Using the methods presented in this thesis to compute impulse response func-

tions has strong computational advantages. The Green’s function allows the rapid

calculation of the system’s response to any type of stimulus, anywhere, by a simple

170

convolution, whereas numerical methods require us to run a different simulation for

every location of interest. Using Fukuda’s [2009] networks of interneurons as an

example, the Green’s function Gij(x, y, t) would only need to be computed a small

number of times, using the fact that a branch i need only be included if it forms

an electrical synapse with another neuron; the Green’s function on branches with

no synapses are unnecessary for such a simulation. This makes a method such as

the Matrix method from Section 4.6 ideal. Should the network consist of densely-

connected neurons with relatively targetted branching (in comparison to space-filling

branches as on Purkinje cells), then the Monte Carlo method, discussed in Section

4.5, could be used to high efficiency : each realisation of a random hop on nodes

would provide a significant number of trips; in the best case, a random hopper on

kmax nodes could contribute kmax − 1 trips to Gij(x, y, t) for various i and j. On

more sparsely-connected networks, application of Whitehead and Rosenberg’s [1993]

equivalent cable method could allow the reduction of branching to the point where

the network becomes dense. Then, use of the reciprocal rule (3.116) halves the

number of computations to be performed to obtain the impulse response function.

Naturally, such network-level computations requires us to be able to deal

with synapses. The Forward Motif method developed in Section 5.3 is amenable to

systems with electrical synapses by deriving motifs for gap-junction-coupled den-

drites. This would enable the Green’s function to be found on networks such as

those in Fukuda [2007, 2009]. In addition, Laplace-domain methods such as the

Forward Motif method support resonant dendrites as described by Koch and Poggio

[1985], where dendritic filtration acts like a bandpass filter, rather than a lowpass

filter.

Chemical synapses, being highly nonlinear, are more difficult, but can be

simulated via a threshold process : should the transmembrane potential at the

synapse reach the threshold at time t = tc, a postsynaptic potential of the form

Isyn(t − tc) ~ Gij(x, y, t) is initiated on the postsynaptic branch. Simulations can

then be constructed of a sum of such Green’s functions convolutions, delayed to

account for the time taken for neurotransmitter to diffuse across the synaptic cleft,

after the presynaptic terminal was brought to its firing threshold and began releasing

neurotransmitter.

The final piece of the puzzle is the addition of active somas, such as Hodgkin

and Huxley [1952] or Izhikevich [2003] model somas. By numerically simulating the

ordinary differential equations driving soma dynamics, and using Green’s function

convolutions for whenever they spike, as with chemical synapses, we can do away

with the spatial aspect of numerical integration, while retaining it within the system

171

in the form of Green’s functions. Then, for a network of Nn neurons connected across

Ns chemical synapses, we would need to compute N(N − 1)/2 Green’s functions,

with N = Nn +Ns. We then integrate N systems of ODEs numerically, adding the

relevant Green’s function to adjacent synapses should a soma fire, and to connected

somas when a synapse initiates a postsynaptic potential. Compared with pure

numerical simulation of the network, including the dendritic cables, a reduction of

the network to its active ODEs and its Green’s functions would allow significantly

faster simulation of the network’s dynamics. An ambitious aim, therefore, could be

to develop a library, in the style of NeuroMorpho Ascoli et al. [2007], of Green’s

functions for various systems, allowing them to be precomputed once, and then

made available for use in simulation.

172

Bibliography

L. F. Abbott. Simple diagrammatic rules for solving dendritic cable problems.

Physica A: Statistical Mechanics and its Applications, 185 (1–4) : 343–356, 1992.

L. F. Abbott and S. B. Nelson. Synaptic plasticity: taming the beast. Nature

Neuroscience, 3 : 1178–1183, 2000.

L. F. Abbott, E. Farhi, and S. Gutmann. The path integral for dendritic trees.

Biological Cybernetics, 66 (1) : 49–60, 1991.

H. Agmon-Snir, C. E. Carr, and J. Rinzel. The role of dendrites in auditory coinci-

dence detection. Nature, 393 (6682) : 268–272, 1998.

F. Anselmi, C. Ventalon, A. Begue, D. Ogden, and V. Emiliani. Three-dimensional

imaging and photostimulation by remote-focusing and holographic light pattern-

ing. Proceedings of the National Academy of Sciences, 108 (49) : 19504–19509,

2011.

T. Araki and T. Otani. Response of single motoneurons to direct stimulation in

toad’s spinal cord. Journal of Neurophysiology, 18 (5) : 472–485, 1955.

G. A. Ascoli, D. E. Donohue, and M. Halavi. NeuroMorpho.Org: a central resource

for neuronal morphologies. Journal of Neuroscience, 27 (35) : 9247–9251, 2007.

S. M. Baer and J. Rinzel. Propagation of dendritic spikes mediated by excitable

spines: a continuum theory. Journal of Neurophysiology, 65 (4) : 874–890, 1991.

S. Baigent, J. Stark, and A. Warner. Modelling the effect of gap junction nonlinear-

ities in systems of coupled cells. Journal of Theoretical Biology, 186 (2) : 223–239,

1997.

A. Bloomfield and F. Miller. A functional organization of ON and OFF pathways

in rabbit retina. Journal of Neuroscience, 6 (1) : 1–13, 1986.

173

J. M. Bower and D. Beeman. The Book of GENESIS: Exploring Realistic Neural

Models with the GEneral NEural SImulation System. Springer, 1998.

W. E. Boyce and R. C. DiPrima. Elementary Differential Equations and Boundary

Value Problems. Wiley, 2012.

E. G. Butz and J. D. Cowan. Transient potentials in dendritic systems of arbitrary

geometry. Biophysical journal, 14 (9) : 661–689, 1974.

R. Cachope, K. Mackie, A. Triller, J. O’Brien, and A. E. Pereda. Potentiation

of electrical and chemical synaptic transmission mediated by endocannabinoids.

Neuron, 56 (6) : 1034–1047, 2007.

J. Campbell. The Improbable Machine: What the Upheavals in Artificial Intelligence

Research Reveal About How the Mind Really Works. Simon and Schuster, 1989.

B. J. Cao and L. F. Abbott. A new computational method for cable theory problems.

Biophysical Journal, 64 (2) : 303–313, 1993.

N.T. Carnevale and M.L. Hines. The NEURON Book. Cambridge University Press,

2006.

Q. Caudron, S. R. Donnelly, S. P. C. Brand, and Y. Timofeeva. Computational

convergence of the path integral for real dendritic morphologies. Journal of Math-

ematical Neuroscience, 2 (11), 2012.

J. Clark and R. Plonsey. The extracellular potential field of the single active nerve

fiber in a volume conductor. Biophysical Journal, 8 (7) : 842–864, 1968.

K. D. Cole, J. V. Beck, A. Haji-Sheikh, and B. Litkouhi. Methods for obtaining

Green’s functions. Taylor and Francis, 2011.

K. S. Cole. Dynamic electrical characteristics of the squid giant axon membrane.

Archives des Sciences Physiologiques, 3 : 253–258, 1949.

K. S. Cole. Membranes, Ions and Impulses. University of California Press, 1968.

K. S. Cole and A. L. Hodgkin. Membrane and protoplasm resistance in the squid

giant axon. Journal of General Physiology, 22 (5) : 671–687, 1939.

E. P. Cook, A. C. Wilhelm, J. A. Guest, Y. Liang, N. Y. Masse, and C. M. Colbert.

The neuronal transfer function: contributions from voltage- and time-dependent

mechanisms. Progress in Brain Research, 165 : 1–12, 2007.

174

J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation of complex

Fourier series. Mathematics of Computation, 19 (90) : 297–301, 1965.

S. Coombes and P. C. Bressloff. Solitary waves in a model of dendritic cable with

active spines. SIAM Journal of Applied Mathematics, 61 (2) : 432–453, 2000.

S. Coombes and P. C. Bressloff. Saltatory waves in the spike-diffuse-spike model of

active dendritic spines. Physical Review Letters, 91 (2) : 028102, 2003.

S. Coombes, Y. Timofeeva, C.-M. Svensson, G. J. Lord, K. Josić, S. J. Cox, and

C. M. Colbert. Branching dendrites with resonant membrane: a “sum-over-trips”

approach. Biological Cybernetics, 97 (2) : 137–149, 2007.

J. S. Coombs, J. C. Eccles, and P. Fatt. The inhibitory suppression of reflex dis-

charges from motoneurones. Journal of Physiology, 130 (2) : 396–413, 1955.

K. P. Cosgrove, C. M. Mazure, and J. K. Staley. Evolving knowledge of sex differ-

ences in brain structure, function, and chemistry. Biological Psychiatry, 62 (8) :

847–855, 2007.

M. Cremer. Zum kernleiterproblem. Zeitschrift für Biologie, 37 : 550–553, 1899.

F. Crick. Do dendritic spines twitch? Trends in Neuroscience, 5 : 44–46, 1982.

H. Cuntz, J. Haag, and A. Borst. Neural image processing by dendritic networks.

Proceedings of the National Academy of Sciences, 100 : 11082–11085, 2003.

H. Cuntz, F. Forstner, J. Haag, and A. Borst. The morphological identity of insect

dendrites. PLoS Computational Biology, 4 (12), 2008.

H. J. Curtis and K. S. Cole. Transverse electric impedance of the squid giant axon.

Journal of General Physiology, 21 (6) : 757–765, 1938.

Y. Dan and M.-m. Poo. Spike timing-dependent plasticity of neural circuits. Neuron,

44 (1) : 23–30, 2004.

L. Davis, Jr. and R. Lorente de Nó. Contribution to the mathematical theory of the

electrotonus. Studies from the Rockefeller Institute for Medical Research, 131 :

442–496, 1947.

F. R. de Hoog, J. H. Knight, and A. N. Stokes. An improved method for numer-

ical inversion of Laplace transforms. SIAM Journal on Scientific and Statistical

Computing, 3 (3) : 357–366, 1982.

175

O. Deiters. Untersuchungen über die Lamina spiralis membranacea. Henry et Cohen,

1860.

E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische

Mathematik, 1 : 269–271, 1959.

D. Drachman. Do we have brain to spare ? Neurology, 64 (12) : 2004–2005, 2005.

S. E. Dreyfus. An appraisal of some shortest-path algorithms. Operations Research,

17 (3) : 395–412, 1969.

R. S. Eisenberg and E. A. Johnson. Three dimensional electrical field problems in

physiology. Progress in Biophysics, 20 : 1–65, 1970.

Y. Elgersma and A. J. Silva. Molecular mechanisms of synaptic plasticity and

memory. Current Opinion in Neurobiology, 9 (2) : 209–213, 1999.

D. Eppstein. Finding the k Shortest Paths. SIAM Journal on Computing, 28 (2) :

652–673, 1999.

P. Fatt. Sequence of events in synaptic activation of a motoneurone. Journal of

Neurophysiology, 20 (1) : 61–80, 1957.

E. S. Fortune and G. J. Rose. Short-term synaptic plasticity contributes to the

temporal filtering of electrosensory information. Journal of Neuroscience, 20 (18) :

7122–7130, 2000.

J. Fourier. Théorie analytique de la chaleur. Firmin Didot, Imprimeur du Roi,

1822.

K. Frank and M. G. F. Fuortes. Stimulation of spinal motoneurones with intracel-

lular electrodes. Journal of Physiology, 134 (2) : 451–470, 1956.

T. Fukuda. Structural organization of the gap junction network in the cerebral

cortex. Neuroscientist, 13 (3) : 199–207, 2007.

T. Fukuda. Network architecture of gap junction-coupled neuronal linkage in the

striatum. Journal of Neuroscience, 29 (4) : 1235–1243, 2009.

D. P. Gaver. Observing stochastic processes, and approximate transform inversion.

Operations Research, 14 (3) : 444–459, 1966.

R. Gillette. On the significance of neuronal giantism in gastropods. The Biological

Bulletin, 180 (2) : 234–240, 1991.

176

D. L. Glanzman. Common mechanisms of synaptic plasticity: minireview in verte-

brates and invertebrates. Current Biology, 20 (1) : R31–R36, 2010.

GMP. Version 5.1.0. The GNU Multiple Precision Arithmetic Library. Torbjörn

Granlund and the GMP development team, 2012.

C. Golgi. Sulla struttura della sostanza grigia del cervello. Gazetta Medica Italiana,

Lombardia, 6 : 244–246, 1873.

J. Harris and Y. Timofeeva. Intercellular calcium waves in the fire-diffuse-fire frame-

work: Greens function for gap-junctional coupling. Physical Review E, 82 (5),

2010.

M. Häusser. Synaptic function: dendritic democracy. Current Biology, 11 (1) :

R10–R12, 2001.

S. Herculano-Houzel. The human brain in numbers: a linearly scaled-up primate

brain. Frontiers in Neuroscience, 3 : 1–11, 2009.

L. Hermann. Beiträge zur physiologie und physik des nerven. Pflüger’s Archiv für

die gesamte Physiologie des Menschen und der Tiere, 109 (3) : 95–144, 1905.

V. M. Ho, J.-A. Lee, and K. C. Martin. The cell biology of synaptic plasticity.

Science, 334 (6056) : 623–628, 2011.

A. L. Hodgkin. The membrane resistance of a non-medulated nerve fibre. Journal

of Physiology, 106 (3) : 305–318, 1947.

A. L. Hodgkin and A. F. Huxley. A quantitative description of membrane current

and its application to conduction and excitation in nerve. Journal of Physiology,

117 (4) : 500–544, 1952.

A. L. Hodgkin and B. Katz. The effect of sodium ions on the electrical activity of

the giant axon of the squid. Journal of Physiology, 108 (1) : 37–77, 1949.

A. L. Hodgkin and W. A. H. Rushton. The electrical constants of a crustacean nerve

fibre. Proceedings of the Royal Society B: Biological Sciences, 131 (873) : 444–479,

1946.

A. L. Hodgkin, A. F. Huxley, and B. Katz. Measurement of current-voltage relations

in the membrane of the giant axon of the Loligo. Journal of Physiology, 116 (4) :

424–448, 1952.

177

R. Hoffman and R. R. Pavley. A method for the solution of the nth best path

problem. Journal of the Association for Computing Machinery, 6 (4) : 506–514,

1959.

W. R. Holmes. A continuous cable method for determining the transient potential

in passive dendritic trees of known geometry. Biological Cybernetics, 55 (2–3) :

115–124, 1986.

G. Holt. A Critical Reexamination of Some Assumptions and Implications of Cable

Theory in Neurobiology. PhD thesis, California Institute of Technology, 1998.

J. L. Hoorweg. Über die elektrischen eigenschaften der nerven. Pflüger’s Archiv für

die gesamte Physiologie des Menschen und der Tiere, 71 (3–4) : 128–157, 1898.

H. Horstmann, C. Korber, K. Satzler, D. Aydin, and T. Kuner. Serial section

scanning electron microscopy ((SEM)-E-3) on silicon wafers for ultra-structural

volume imaging of cells and tissues. PLoS ONE, 7 (4) : e35172, 2012.

B. Horwitz. An analytic method for investigation transient potentials in branched

neurons with branching dendritic trees. Biophysical Journal, 36 (1) : 155–192,

1981.

E. H. Hu, F. Pan, Béla Völgyi, and S. A. Bloomfield. Light increases the gap

junctional coupling of retinal ganglion cells. Journal of Physiology, 588 (21) :

4145–4163, 2010.

E. M. Izhikevich. Simple model of spiking neurons. IEEE Transactions on Neural

Networks, 14 (6) : 1569–1572, 2003.

E. M. Izhikevich and G. M. Edelman. Large-scale model of mammalian thalam-

ocortical systems. Proceedings of the National Academy of Sciences, 105 (9) :

3593–3598, 2008.

J. J. B. Jack and S. Redman. The propagation of transient potentials in some linear

cable structures. Journal of Physiology, 215 (2) : 283–320, 1971.

V. M. Jiménez and A. Marzal. A Lazy Version of Eppsteins K Shortest Paths

Algorithm. Experimental and Efficient Algorithms - Lecture Notes in Computer

Science, 2647 : 179–191, 2003.

D. Johnston and R. Narayanan. Active dendrites: colorful wings of the mysterious

butterflies. Trends in Neurosciences, 31 (6) : 309–316, 2008.

178

D. Johnston, J. C. Magee, C. M. Colbert, and B. R. Christie. Active properties of

neuronal dendrites. Annual Review of Neuroscience, 19 : 165–186, 1996.

B. Katz. The electrical properties of the muscle fibre membrane. Proceedings of the

Royal Society B: Biological Sciences, 135 (881) : 506–534, 1948.

P. W. Keeley, I. E. Whitney, M. A. Raven, and B. E. Reese. Dendritic spread and

functional coverage of starburst amacrine cells. Journal of Comparative Neurology,

505 (5) : 539–546, 2005.

C. Koch. Cable theory in neurons with active, linearized membranes. Biological

Cybernetics, 50 (1) : 15–33, 1984.

C. Koch. Biophysics of Computation. Oxford University Press, 1999.

C. Koch and T. Poggio. A simple algorithm for solving the cable equation in den-

dritic trees of arbitrary geometry. Journal of Neuroscience Methods, 12 (4) :

303–315, 1985.

J. Kozloski and J. Wagner. An ultrascalable solution to large-scale neural tissue

simulation. Frontiers in Neuroinformatics, 5 (15), 2011.

J. L. Krichmar, S. J. Nasuto, R. Scorcioni, S. D. Washington, and G. A. Ascoli.

Effects of dendritic morphology on CA3 pyramidal cell electrophysiology : a sim-

ulation study. Brain Research, 941 : 11–28, 2002.

K. F. H. Lee, C. Soares, and J.-C. Bé̈ıque. Examining form and function of dendritic

spines. Neural Plasticity, 2012 : 704103, 2012.

K. Lindsay. Analytical and numerical construction of equivalent cables. Mathemat-

ical Biosciences, 184 (2) : 137–164, 2003.

K. A. Lindsay, J. M. Ogden, and J. R. Rosenberg. Equivalence transformations

for dendritic Y-junctions: a new definition of dendritic sub-unit. Mathematical

Biosciences, 170 (2) : 133–154, 2001.

M. London and M. Häusser. Dendritic computation. Annual Review of Neuroscience,

28 : 503–532, 2005.

J. C. Magee and E. P. Cook. Somatic EPSP amplitude is independent of synapse

location in hippocampal pyramidal neurons. Nature Neuroscience, 3 (9) : 895–903,

2000.

179

J. C. Magee and D. Johnston. A synaptically controlled, associative signal for

Hebbian plasticity in hippocampal neurons. Science, 275 (5297) : 209–213, 1997.

Z. F. Mainen and T. J. Sejnowski. Influence of Dendritic Structure on Firing Pattern

in Model Neocortical Neurons. Nature Letters, 382 (6589) : 363–366, 1996.

G. Major, J. D. Evans, and J. J. B. Jack. Solutions for transients in arbitrarily

branching cables: I. Voltage recording with a somatic shunt. Biophysical Journal,

65 (1) : 423–449, 1993.

F. Mammano. Cell-Cell Channels, chapter Gap Junctions: Cell-Cell Channels in

Animals. Springer-Verlag, 2006.

H. Markram. The Blue Brain Project. Nature Reviews Neuroscience, 6 (2) : 153–160,

2006.

H. Markram. The Human Brain Project, www.humanbrainproject.eu, 2012.

G. Marmont. Studies on the axon membrane. Journal of Cellular and Comparative

Physiology, 34 (3) : 351–382, 1949.

Mathematica. Version 8.0. Wolfram Research, Inc., 2010.

M. C. Matteucci. Sur le pouvoir électromoteur secondaire des nerfs, et son appli-

cation à l’électrophysiologie. Comptes Rendus de l’Académie des Sciences, 56 :

231–235, 1863.

Matlab. Version 2012a. MathWorks Inc., 2012.

E. A. Nimchinsky, B. L. Sabatini, and K. Svoboda. Structure and function of

dendritic spines. Annual Review of Physiology, 64 : 313–353, 2002.

Z. Padamsey and A. Jeans. Imaging synaptic vesicles using VGLUT1-Venus knock-in

mice: insights into the dynamic nature of intersynaptic vesicle exchange. Journal

of Neuroscience, 32 (10) : 3284–3286, 2012.

A. Parent and M. B. Carpenter. Carpenter’s Human Neuroanatomy. Williams &

Wilkins, 1995.

W. F. Pickard. Electrotonus on a cell of finite dimensions. Mathematical Biosciences,

10 (3–4) : 201–213, 1971.

R. Plonsey. Volume conductor fields of action currents. Biophysical Journal, 4 (4) :

317–328, 1964.

180

A. Polsky, B. W. Mel, and J. Schiller. Computational subunits in thin dendrites of

pyramidal cells. Nature Neuroscience, 7 (6) : 621–627, 2004.

E. L. Post. Generalized Differentiation. Transactions of the American Mathematical

Society, 32 (4) : 723–781, 1930.

R. R. Poznanski. A generalized tapering equivalent cable model for dendritic neu-

rons. Bulletin of Mathematical Biology, 53 (3) : 457–467, 1991.

N. Qian and T. J. Sejnowski. An electro-diffusion model for computing membrane

potentials and ionic concentrations in branching dendrites, spines and axons. Bi-

ological Cybernetics, 62 (1) : 1–15, 1989.

N. Qian and T. J. Sejnowski. When is an inhibitory synapse effective? Proceedings

of the National Academy of Sciences, 87 (20) : 8145–8149, 1990.

T. Radman, R. L. Ramos, J. C. Brumberg, and M. Bikson. Role of Cortical Cell Type

and Morphology in Sub- and Suprathreshold Uniform Electric Field Stimulation.

Brain Stimulation, 2 (4) : 215–228, 2009.

W. Rall. Membrane time constant of motoneurons. Science, 126 (3271) : 454, 1957.

W. Rall. Branching dendritic trees and motoneuron membrane resistivity. Experi-

mental Neurology, 1 (5) : 491–527, 1959.

W. Rall. Membrane potential transients and membrane time constant of motoneu-

rons. Experimental Neurology, 2 (5) : 503–532, 1960.

W. Rall. Electrophysiology of a dendritic neuron model. Biophysical Journal, 2 (2) :

145–167, 1962a.

W. Rall. Theory of physiological properties of dendrites. Annals of the New York

Academy of Sciences, 96 (4) : 1071–1092, 1962b.

W. Rall. Theoretical significance of dendritic trees for neuronal input-output rela-

tions. In R. F. Reiss, editor, Neural Theory and Modeling, pages 73–97. Stanford

University Press, 1964.

W. Rall. Distributions of potential in cylindrical coordinates and time constants for

a membrane cylinder. Biophysical Journal, 9 (12) : 1509–1541, 1969.

W. Rall. Core conductor theory and cable properties of neurons. In E. R. Kandel,

editor, Handbook of Physiology - The Nervous System (I), pages 39–97. Oxford

University Press, 1977.

181

S. Ramón y Cajal. Textura del sistema nervioso del hombre y de los vertebrados.

Moya, 1899.

C. Rashbass and W. A. H. Rushton. The relation of structure to the spread of

excitation in the frogs sciatic trunk. Journal of Physiology, 110 (1–2) : 110–135,

1949.

P. Rosenfalck. Intra- and Extracellular Potential Fields of Active Nerve and Muscle

Fibres. PhD thesis, Copenhagen University, 1969.

B. L. Sabatini, T. G. Oertner, and K. Svoboda. The life cycle of Ca2+ ions in

dendritic spines. Neuron, 33 (3) : 439–452, 2002.

D. Satoh, R. Suyama, K. Kimura, and T. Uemura. High-resolution in vivo imaging

of regenerating dendrites of Drosophila sensory neurons during metamorphosis:

local filopodial degeneration and heterotypic dendrite-dendrite contacts. Genes

to Cells, 17 (12) : 939–951, 2012.

T. Schwann. Microscopic investigations on the accordance in the structure and

growth of plants and animals. Berlin, English translation by the Sydenham Soci-

ety, 1839.

A. C. Scott. Effect of the series inductance of a nerve axon upon its conduction

velocity. Mathematical Biosciences, 11 (3–4) : 277–290, 1971.

I. Segev, J. Rinzel, and G. M. Shepherd. The Theoretical Foundation of Dendritic

Function. MIT Press, 1995.

G. M. Shepherd, R. K. Brayton, J. P. Miller, I. Segev, J. Rinzel, and W. Rall.

Signal enhancement in distal cortical dendrites by means of interactions between

active dendritic spines. Proceedings of the National Academy of Sciences, 82 (7) :

2192–2195, 1985.

C. Sherrington. Man on his Nature. Cambridge University Press, 1940.

N. Spruston and D Johnston. Perforated patch-clamp analysis of the passive mem-

brane properties of three classes of hippocampal neurons. Journal of Neurophys-

iology, 67 (3) : 508–529, 1992.

N. Spruston, G. Stuart, and M. Häusser. Dendrites. Oxford University Press, 1999.

G. Stuart and N. Spruston. Determinants of voltage attenuation in neocortical

pyramidal neuron dendrites. Journal of Neuroscience, 18 : 3501–3510, 1998.

182

G. Stuart, N. Spruston, B. Sakmann, and M. Häusser. Action potential initiation

and backpropagation in neurons of the mammalian CNS. Trends in Neuroscience,

20 (3) : 125–131, 1997.

G. J. Stuart and M. Häusser. Dendritic coincidence detection of EPSPs and action

potentials. Nature Neuroscience, 4 (1) : 63–71, 2001.

C.-M. Svensson. Dynamics of Spatially Extended Dendrites. PhD thesis, University

of Nottingham, 2009.

A. Talbot. The accurate numerical inversion of Laplace transforms. IMA Journal

of Applied Mathematics, 23 (1) : 97–120, 1979.

R. E. Taylor. Physical Techniques in Biological Research, chapter Cable Theory,

pages 219–262. New York Academic, 1963.

W. R. Taylor and R. G. Smith. The role of starburst amacrine cells in visual signal

processing. Visual Neuroscience, 29 (1) : 73–81, 2012.

M. Thallmair, G. A. S. Metz, W. J. Z’Graggen, O. Raineteau, G. L. Kartje, and

M. E Schwab. Neurite growth inhibitors restrict plasticity and functional recovery

following corticospinal tract lesions. Nature Neuroscience, 1 (4) : 124–131, 1998.

W. Thomson. On the theory of the electric telegraph. Mathematical and Physical

Papers, 7 : 382–399, 1854.

Y. Timofeeva. Oscillations and Waves in Single and Multi-cellular Systems with

Free Calcium. PhD thesis, University of Loughborough, 2003.

Y. Timofeeva, G. J. Lord, and S. Coombes. Spatio-temporal filtering properties of

a dendritic cable with active spines: a modeling study in the spike-diffuse-spike

framework. Journal of Computational Neuroscience, 21 (3) : 293–306, 2006.

Y. Timofeeva, S. J. Cox, S. Coombes, and K. Josić. Democratization in a pas-

sive dendritic tree: an analytical investigation. Journal of Computational Neuro-

science, 25 (2) : 228–244, 2008.

H. C. Tuckwell. Introduction to Theoretical Neurobiology: Volume 1, Linear Cable

Theory. Cambridge University Press, 1988.

B. Ulfhake and J. O. Kellerth. A quantitative light microscopic study of the den-

drites of cat spinal alpha-motoneurons after intracellular staining with horseradish

peroxidase. Journal of Comparative Neurology, 202 (4) : 571–583, 1981.

183

E. I. Vaney, B. Sivyer, and W. R. Taylor. Direction selectivity in the retina: sym-

metry and asymmetry in structure and function. Nature Reviews Neuroscience,

13 (3) : 194–208, 2012.

P. Vetter, A. Roth, and M. Häusser. Propagation of Action Potentials in Dendrites

Depends on Dendritic Morphology. Journal of Neurophysiology, 85 (2) : 926–937,

2001.

H. Weber. Über die stationären strömunger der elektricität in cylindern. Journal

für die Reine und Angewandte Mathematik, 76 (1) : 1–20, 1873.

W. T. Weeks. Numerical inversion of Laplace transforms using Laguerre functions.

Journal of the Association for Computing Machinery, 13 (3) : 419–429, 1966.

Wellcome Library, London. Wellcome Images, www.wellcomeimages.org.

E. White, J. G. Southgate, J. N. Thomson, and S. Brenner. The structure of the ner-

vous system of the nematode caenorhabditis elegans. Philosophical Transactions

of the Royal Society B: Biological Sciences, 314 (1165) : 1–340, 1986.

R. R. Whitehead and J. R. Rosenberg. On trees as equivalent cables. Proceedings

of the Royal Society B: Biological Sciences, 252 (1334) : 103–108, 1993.

J. Y. Yen. Finding the k shortest loopless paths in a network. Management Science,

17 (11) : 712–716, 1971.

K. Yoshida, D. Watanabe, H. Ishikane, M. Tachibana, I. Pastan, and S. Nakanishi.

A key role of starburst amacrine cells in originating retinal directional selectivity

and optokinetic eye movement. Neuron, 30 (3) : 771–780, 2001.

J. Z. Young. The structure of nerve fibres in cephalopods and crustacea. Proceedings

of the Royal Society B: Biological Sciences, 121 (823) : 319–337, 1936.

A. M. Zador, H. Agmon-Snir, and I. Segev. The morphoelectrotonic transform:

a graphical approach to dendritic function. Journal of Neuroscience, 15 (3) :

1669–1682, 1995.

R. S. Zucker and W. G. Regehr. Short-term synaptic plasticity. Annual Review of

Physiology, 64 : 355–405, 2002.

184

	covercaudron.pdf
	University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

