9,796 research outputs found

    Control-Based Resource Management Procedures for Satellite Networks

    Get PDF
    This paper describes the resource management of a DVBRCS geostationary satellite network. The functional modules of the access layer aim at efficiently exploiting the link resources while assuring the contracted Quality of Service (QoS) to the traffic entering the satellite network. The main novelty is the integration between the Connection Admission Control and the Congestion Control procedures. Both them exploit the estimation of the traffic load, performed by a Kalman filter. The proposed solution has been analysed via computer simulations, which confirmed their effectiveness

    UDWDM-PON using low-cost coherent transceivers with limited tunability and heuristic DWA

    Get PDF
    A new Passive Optical Network (PON) for access, making use of Ultra Dense Wavelength Division Multiplexing (UDWDM) by densely spacing channels at few GHz, and introducing the “wavelength-to-the-user” concept, is proposed. The key challenge will be developing low-cost coherent transceivers, providing an excellent selectivity while avoiding filters, and furnishing high sensitivity, which will allow high splitting ratios, large number of users and long distance reach. The Optical Distribution Network (ODN) at the outside plant is based on splitters and kept compatible with legacy systems. Optical Network Unit (ONU) designs realized with coherent transceivers using one or two lasers are presented and the corresponding Optical Line Terminal (OLT) architectures are introduced. The ONUs at customer premises own lasers with limited thermal tunability and their wavelengths are randomly distributed in a band. By using heuristic Dynamic Wavelength Assignment (DWA) schemes and extending the original working band, the required optical band is obtained and optimized. In activation processes, ONU acceptances up to 99.9% are achieved. Furthermore, in operation scenario under indoors and also under outdoors environmental conditions, ONU blocking probabilities below 0.1% and ONU availability ratios (OARs) up to 99.9% are demonstrated. The PON is dimensioned according to the number of deployed users and system reach; moreover, power safety and also fiber nonlinearities constraints are evaluated, illustrating the characteristics of the projected network. Finally, the coexistence with legacy networks is discussed.Peer ReviewedPostprint (author's final draft

    Microring-Resonator-Based Switch Architectures for Optical Networks

    Get PDF
    Integrated silicon photonics provides a promising platform for chip-based, high-speed optical signal processing due to its compatibility with complementary metal-oxide semiconductor (CMOS) fabrication processes. They are attracting significant research and development interest globally and making a huge impact on green information and communication technologies, and high-performance computing systems. Microring resonators (MRRs) show the versatility to implement a variety of network functions, compact footprint, and complementary metal-oxide semiconductor compatibility, and demonstrate the viability applied in photonic integrated technologies for both chip level and board-to-board interconnects. Furthermore, MRRs have excellent wavelength selection properties and can be used to design tunable filters, modulators, wavelength converters, and switches that are critical components for optical interconnects. The research work of this dissertation is focused on investigating how to develop MRR-based switches and switch architectures for possible applications not only in optical interconnection networks but also in flexible-grid on-chip networks for optical communication systems. The basic properties and performances of the MRR switches and the MRR switch architectures related to their applications in the networks are examined. In particular, how to design and how to configure high performance, bandwidth variable, low insertion loss, and weak crosstalk MRR-based switches and switch architectures are investigated for applications in optical interconnection networks and in flexible-grid on-chip networks for optical communication systems. The works include several parts as follows. The physical characteristics of microring resonator switching devices are thoroughly analyzed using a model based on the field coupling matrix theory. The spectral response and insertion loss properties of these switching elements are simulated using the developed model. Then we investigate the optimal design of high-order MRR-based switch devices. Spectral shaping of the passbands of microring resonator switches is studied. Multistage high-order microring resonator-based optical switch structures are proposed to achieve steep-edge flat-top spectral passband. Using the transfer matrix analysis model, the spectral response behaviors of the switch structures are simulated. The performances of the proposed multistage high-order microring resonator-based optical switch structures and the high-order microring-resonator-based optical switch structures without stages are studied and compared. Two types of MRR-based switch architectures are proposed to realize variable output bandwidths varying from 0 to 4 THz. One consists of 320, 160, and 80 third-order MRR switches with -3 dB passband widths of 12.5, 25, and 50 GHz, respectively. Another one is two-stage switch structure. In the first stage there are 4 third-order MRR switches with the passband widths of 1 THz. In second stage, there are 80, 40, 20 third-order MRR switches with the passband widths of 12.5, 25, and 50 GHz, respectively. Their insertion losses and crosstalks in the worst cases are numerically analyzed and compared in order to show the feasibility for the architectures to be applied in flexible optical networks. MRR-based bandwidth-variable wavelength selective switch architectures with multiple input and output ports are proposed for flexible optical networks. The light transmission behaviors of a 1 by N MRR-based WSS are analyzed in detail based on numerical simulation using transfer matrix theory. Two types of N by N MRR-based WSS architectures consisting of MRR-based WSSs and MRR-based WSSs, and MRR-based WSSs and optical couplers are proposed. The performances of the proposed architectures are studied. Scalable optical interconnections based on MRRs are proposed, which consist mainly of microring resonator devices: microring lasers, microring switches, microring de-multiplexers, and integrated photo-dectors. Their throughput capacities, end-to-end time latencies, and transmission packet loss rates are evaluated using OMNet++. In summary, the research of the dissertation contributes to develop high performance, variable bandwidth, low insertion loss, and low crosstalk MRR-based optical switches and switch architectures to adapt to dynamic source allocation of flexible-grid optical networks

    Design, development and verification of the 30 and 44 GHz front-end modules for the Planck Low Frequency Instrument

    Get PDF
    We give a description of the design, construction and testing of the 30 and 44 GHz Front End Modules (FEMs) for the Low Frequency Instrument (LFI) of the Planck mission to be launched in 2009. The scientific requirements of the mission determine the performance parameters to be met by the FEMs, including their linear polarization characteristics. The FEM design is that of a differential pseudo-correlation radiometer in which the signal from the sky is compared with a 4-K blackbody load. The Low Noise Amplifier (LNA) at the heart of the FEM is based on indium phosphide High Electron Mobility Transistors (HEMTs). The radiometer incorporates a novel phase-switch design which gives excellent amplitude and phase match across the band. The noise temperature requirements are met within the measurement errors at the two frequencies. For the most sensitive LNAs, the noise temperature at the band centre is 3 and 5 times the quantum limit at 30 and 44 GHz respectively. For some of the FEMs, the noise temperature is still falling as the ambient temperature is reduced to 20 K. Stability tests of the FEMs, including a measurement of the 1/f knee frequency, also meet mission requirements. The 30 and 44 GHz FEMs have met or bettered the mission requirements in all critical aspects. The most sensitive LNAs have reached new limits of noise temperature for HEMTs at their band centres. The FEMs have well-defined linear polarization characteristcs.Comment: 39 pages, 33 figures (33 EPS files), 12 tables. Planck LFI technical papers published by JINST: http://www.iop.org/EJ/journal/-page=extra.proc5/1748-022

    VoIP: Making Secure Calls and Maintaining High Call Quality

    Get PDF
    Modern multimedia communication tools must have high security, high availability and high quality of service (QoS). Any security implementation will directly impact on QoS. This paper will investigate how end-to-end security impacts on QoS in Voice over Internet Protocol (VoIP). The QoS is measured in terms of lost packet ratio, latency and jitter using different encryption algorithms, no security and just the use of IP firewalls in Local and Wide Area Networks (LAN and WAN). The results of laboratory tests indicate that the impact on the overall performance of VoIP depends upon the bandwidth availability and encryption algorithm used. The implementation of any encryption algorithm in low bandwidth environments degrades the voice quality due to increased loss packets and packet latency, but as bandwidth increases encrypted VoIP calls provided better service compared to an unsecured environment.Les eines modernes de comunicació multimèdia han de tenir alta seguretat, alta disponibilitat i alta qualitat de servei (QoS). Cap tipus d¿implementació de seguretat tindrà un impacte directe en la qualitat de servei. En aquest article s¿investiga com la seguretat d'extrem a extrem impacta en la qualitat de servei de veu sobre el Protocol d'Internet (VoIP). La qualitat de servei es mesura en termes de pèrdua de proporció de paquets, latència i jitter utilitzant diferents algoritmes d¿encriptació, sense seguretat i només amb l'ús de tallafocs IP en local i en xarxes d'àrea àmplia (LAN i WAN). Els resultats de les proves de laboratori indiquen que l'impacte general sobre el rendiment de VoIP depèn de la disponibilitat d'ample de banda i l'algorisme de xifrat que s'utilitza. La implementació de qualsevol algorisme de xifrat en entorns de baix ample de banda degrada la veu a causa de l'augment de la pèrdua de paquets i latència dels paquets de qualitat, però quan l'ample de banda augmenta les trucades de VoIP xifrades proporcionen un millor servei en comparació amb un entorn sense seguretat.Las herramientas modernas de comunicación multimedia deben tener alta seguridad, alta disponibilidad y alta calidad de servicio (QoS). Ningún tipo de implementación de seguridad tendrá un impacto directo en la calidad de servicio. En este artículo se investiga como la seguridad de extremo a extremo impacta en la calidad de servicio de voz sobre el Protocolo de Internet (VoIP). La calidad de servicio se mide en términos de pérdida de proporción de paquetes, latencia y jitter utilizando diferentes algoritmos de encriptación, sin seguridad y sólo con el uso de cortafuegos IP en local y en redes de área amplia (LAN y WAN). Los resultados de las pruebas de laboratorio indican que el impacto general sobre el rendimiento de VoIP depende de la disponibilidad de ancho de banda y el algoritmo de cifrado que se utiliza. La implementación de cualquier algoritmo de cifrado en entornos de bajo ancho de banda degrada la voz debido al aumento de la pérdida de paquetes y latencia de los paquetes de calidad, pero cuando el ancho de banda aumenta las llamadas de VoIP cifradas proporcionan un mejor servicio en comparación con un entorno sin seguridad

    Access and metro network convergence for flexible end-to-end network design

    Get PDF
    This paper reports on the architectural, protocol, physical layer, and integrated testbed demonstrations carried out by the DISCUS FP7 consortium in the area of access - metro network convergence. Our architecture modeling results show the vast potential for cost and power savings that node consolidation can bring. The architecture, however, also recognizes the limits of long-reach transmission for low-latency 5G services and proposes ways to address such shortcomings in future projects. The testbed results, which have been conducted end-to-end, across access - metro and core, and have targeted all the layers of the network from the application down to the physical layer, show the practical feasibility of the concepts proposed in the project
    corecore