43,216 research outputs found

    A biologically inspired spiking model of visual processing for image feature detection

    Get PDF
    To enable fast reliable feature matching or tracking in scenes, features need to be discrete and meaningful, and hence edge or corner features, commonly called interest points are often used for this purpose. Experimental research has illustrated that biological vision systems use neuronal circuits to extract particular features such as edges or corners from visual scenes. Inspired by this biological behaviour, this paper proposes a biologically inspired spiking neural network for the purpose of image feature extraction. Standard digital images are processed and converted to spikes in a manner similar to the processing that transforms light into spikes in the retina. Using a hierarchical spiking network, various types of biologically inspired receptive fields are used to extract progressively complex image features. The performance of the network is assessed by examining the repeatability of extracted features with visual results presented using both synthetic and real images

    Comparing Feature Detectors: A bias in the repeatability criteria, and how to correct it

    Full text link
    Most computer vision application rely on algorithms finding local correspondences between different images. These algorithms detect and compare stable local invariant descriptors centered at scale-invariant keypoints. Because of the importance of the problem, new keypoint detectors and descriptors are constantly being proposed, each one claiming to perform better (or to be complementary) to the preceding ones. This raises the question of a fair comparison between very diverse methods. This evaluation has been mainly based on a repeatability criterion of the keypoints under a series of image perturbations (blur, illumination, noise, rotations, homotheties, homographies, etc). In this paper, we argue that the classic repeatability criterion is biased towards algorithms producing redundant overlapped detections. To compensate this bias, we propose a variant of the repeatability rate taking into account the descriptors overlap. We apply this variant to revisit the popular benchmark by Mikolajczyk et al., on classic and new feature detectors. Experimental evidence shows that the hierarchy of these feature detectors is severely disrupted by the amended comparator.Comment: Fixed typo in affiliation

    Semantic Cross-View Matching

    Full text link
    Matching cross-view images is challenging because the appearance and viewpoints are significantly different. While low-level features based on gradient orientations or filter responses can drastically vary with such changes in viewpoint, semantic information of images however shows an invariant characteristic in this respect. Consequently, semantically labeled regions can be used for performing cross-view matching. In this paper, we therefore explore this idea and propose an automatic method for detecting and representing the semantic information of an RGB image with the goal of performing cross-view matching with a (non-RGB) geographic information system (GIS). A segmented image forms the input to our system with segments assigned to semantic concepts such as traffic signs, lakes, roads, foliage, etc. We design a descriptor to robustly capture both, the presence of semantic concepts and the spatial layout of those segments. Pairwise distances between the descriptors extracted from the GIS map and the query image are then used to generate a shortlist of the most promising locations with similar semantic concepts in a consistent spatial layout. An experimental evaluation with challenging query images and a large urban area shows promising results
    corecore