8 research outputs found

    The number of independent sets in unicyclic graphs

    Get PDF
    AbstractIn this paper, we determine upper and lower bounds for the number of independent sets in a unicyclic graph in terms of its order. This gives an upper bound for the number of independent sets in a connected graph which contains at least one cycle. We also determine the upper bound for the number of independent sets in a unicyclic graph in terms of order and girth. In each case, we characterize the extremal graphs

    Trees with Given Stability Number and Minimum Number of Stable Sets

    Full text link
    We study the structure of trees minimizing their number of stable sets for given order nn and stability number α\alpha. Our main result is that the edges of a non-trivial extremal tree can be partitioned into n−αn-\alpha stars, each of size ⌈n−1n−α⌉\lceil \frac{n-1}{n-\alpha} \rceil or ⌊n−1n−α⌋\lfloor \frac{n-1}{n-\alpha}\rfloor, so that every vertex is included in at most two distinct stars, and the centers of these stars form a stable set of the tree.Comment: v2: Referees' comments incorporate

    Tur\'an Graphs, Stability Number, and Fibonacci Index

    Full text link
    The Fibonacci index of a graph is the number of its stable sets. This parameter is widely studied and has applications in chemical graph theory. In this paper, we establish tight upper bounds for the Fibonacci index in terms of the stability number and the order of general graphs and connected graphs. Tur\'an graphs frequently appear in extremal graph theory. We show that Tur\'an graphs and a connected variant of them are also extremal for these particular problems.Comment: 11 pages, 3 figure

    NEW COUNTING FORMULA FOR DOMINATING SETS IN PATH AND CYCLE GRAPHS

    Get PDF
    Let G=(V(G), E(G)) be a path or cycle graph. A subset D of V(G) is a dominating set of G if for every u element of V(G)\D, there exists v element of D such that uv element of E(G), that is, N[D]=V(G). The domination number of G, denoted by gamma(G), is the smallest cardinality of a dominating set of G. A set D_1 subset of V(G) is a set containing dominating vertices of degree 2, that is, each vertex is internally stable. A set D_2 subset of V(G) is a set containing dominating vertices where one of the element say a element of D_2,  and the rest are of degree 2. A set  D_3 subset of V(G) is a set containing dominating vertices in which two of the elements say b, c element of D_3, deg(b)=deg(c)=1. This paper developed a new combinatorial formula that determines the number of ways of putting a dominating set in a path and cycle graphs of order n>=1 and n>=3, respectively. Further, a combinatorial function P^1_G(n),  P^2_G(n) and P^3_G(n) that determines the probability of getting the set D_1, D_2, and D_3, respectively in graph G of order n were constructed

    Bounds for the Number of Independent and Dominating Sets in Trees

    Get PDF
    In this work, we investigate bounds on the number of independent sets in a graph and its complement, along with the corresponding question for number of dominating sets. Nordhaus and Gaddum gave bounds on χ(G)+χ(G) and χ(G) χ(G), where G is any graph on n vertices and χ(G) is the chromatic number of G. Nordhaus-Gaddum- type inequalities have been studied for many other graph invariants. In this work, we concentrate on i(G), the number of independent sets in G, and ∂(G), the number of dominating sets in G. We focus our attention on Nordhaus-Gaddum-type inequalities over trees on a fixed number of vertices. In particular, we give sharp upper and lower bounds on i(T )+ i(T ) where T is a tree on n vertices, improving bounds and proofs of Hu and Wei. We also give upper and lower bounds on i(G) + i(G) where G is a unicyclic graph on n vertices, again improving a result of Hu and Wei. Lastly, we investigate ∂(T )+ ∂(T ) where T is a tree on n vertices. We use a result of Wagner to give a lower bound and make a conjecture about an upper bound
    corecore