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Abstract

In this paper, we determine upper and lower bounds for the number
of independent sets in a unicyclic graph in terms of its order. This gives
an upper bound for the number of independent sets in a connected
graph which contains at least one cycle. We also determine the upper
bound for the number of independent sets in a unicyclic graph in terms
of order and girth. In each case we characterize the extremal graphs.
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1 Notation

We denote by G a graph of order n = |V (G)| and size m = |E(G)|. For a
vertex x in V (G) let deg G(x) denote its degree. A leaf is a vertex of degree
one and a stem is a vertex adjacent to at least one leaf. Let Pn denote
the path on n vertices and let Cn denote the cycle on n vertices. A corona
graph G is a graph in which each vertex is a leaf or a stem adjacent to
exactly one leaf. If H is a graph, then H ◦ K1 denotes the corona graph
constructed from H by attaching precisely one leaf at each vertex of H.
Let K1,n−1 denote the star consisting of one center vertex adjacent to n− 1
leaves. A graph is called unicyclic if it is connected and contains exactly
one cycle. A graph is unicyclic if and only if it is connected and has size
equal to its order. We shall by Hn,k denote the unicyclic graph constructed
by attaching n− k leaves to a cycle of length k. The Fibonacci numbers, 0,
1, 1, 2, 3, 5, 8, 13, 21, 34,... are defined recursively by fib(0) = 0,fib(1) = 1,
and for n ≥ 2, fib(n) = fib(n − 2) + fib(n − 1). The Lucas numbers are
L(n) = fib(n − 1) + fib(n + 1). Given a graph G, a subset S ⊆ V (G) is
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called independent if no two vertices of S are adjacent in G. The set of
independent sets in G is denoted by I(G). The empty set is independent.
The set of independent sets in G which contains the vertex x is denoted
by Ix(G), while I−x(G) denotes the set of independents sets which do not
contain x. The number of independent sets in G is denoted by i(G). In the
chemical literature the graph parameter i(G) is referred to as the Merrifield-
Simmons index [5].

2 Introduction

The first papers about counting maximal independent sets in a graph are
Miller and Muller [6] and Moon and Moser [7]. For a survey see [1, 2]. In
the same spirit Prodinger and Tichy [8] initiated the study of the number
i(G) of independent sets in a graph. The problem of counting the num-
ber of independent sets in a graph is NP-complete (see for instance Roth
[10]). However, for certain types of graphs the problem of determining their
number of independent subsets is polynomial. For instance, Prodinger and
Tichy [8] proved, by induction, that i(Pn) and i(Cn), respectively, is the
sequence of Fibonacci and Lucas numbers.

Theorem 2.1 ([8])

∀n ∈ N : i(Pn) = fib(n + 2).
∀n ∈ N≥3 : i(Cn) = L(n) = fib(n− 1) + fib(n + 1).

When dealing with a graph parameter for which the value is NP-complete
to determine, it is often useful to find bounds for its value. Prodinger and
Tichy [8] proved that every tree T on n vertices satisfies fib(n+2) ≤ i(T ) ≤
2n−1 +1, while Lin and Lin [4] proved that i(T ) = fib(n+2) iff T ' Pn and
i(T ) = 2n−1 + 1 iff T ' K1,n−1.

In 1997 Jou and Chang [3] gave an upper bound on the number of
maximal independent sets in graphs with at most one cycle. In this pa-
per we consider the number of independent sets in unicyclic graphs. In
particular, we prove that every unicyclic graph G on n vertices satisfies
L(n) ≤ i(G) ≤ 3 · 2n−3 + 1 and we characterize the extremal graphs for
these inequalities.

3 The Number of Independent Sets in Unicyclic
Graphs

We shall in the following give both lower and upper bounds for the number
of independent sets in unicyclic graphs.
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3.1 A Lower Bound for i(G)

Given integers n and k with 3 ≤ k ≤ n, the lollipop Ln,k is the unicyclic
graph of order n obtained from the two vertex disjoint graphs Ck and Pn−k

by adding an edge joining a vertex of Ck to an endvertex of Pn−k. The
lollipops satisfy i(Ln,k) = i(Ln,n+3−k) and i(Ln,k) is minimized for k = 3
and k = n. The main result of this section shows that among all unicyclic
graphs of order n, the two graphs Ln,3 and Ln,n ' Cn have the smallest
number of independent subsets.

Theorem 3.1
If G is a unicyclic graph of order n, then i(G) ≥ L(n) and equality occurs
if and only if G ' Cn or G ' Ln,3.

For the proof of Theorem 3.1 we shall use the following results.

Lemma 3.2
Given any integer k ≥ 1, the corona tree Qk := Pk ◦ K1 satisfies i(Qk) =
g(k), where the function g is defined recursively by g(0) = 1, g(1) = 3 and
g(j) = 2 (g(j − 1) + g(j − 2)) for every integer j ≥ 2. Moreover, i(Ck◦K1) =
4g(k − 3) + 2g(k − 1) for every integer k ≥ 3.

The proof of the above lemma is straightforward and is omitted.
Prodinger and Tichy [8] solved the recursion for g(k) and found that

i(Qk) =
3 + 2

√
3

6
(1 +

√
3)k +

3− 2
√

3
6

(1−
√

3)k.

Lemma 3.3
For any integer k ≥ 3, i(Ck ◦K1) > i(C2k).

Proof. We prove by induction on k that 4g(k−3)+2g(k−1) > L(2k).
The statement is easily verified for k ∈ {3, 4}. Suppose that k ≥ 5 and that
4g(j − 3) + 2g(j − 1) > L(2j) whenever 3 < j < k. We then obtain

i(Ck ◦K1) =
4g(k − 3) + 2g(k − 1) = 4 (2g((k − 1)− 3) + 2g((k − 2)− 3))+

2 (2g((k − 1)− 1) + 2g((k − 2)− 1))
= 2 (4g((k − 1)− 3) + 2g((k − 1)− 1))+

2 (4g((k − 2)− 3) + 2g((k − 2)− 1))
> 2L(2(k − 1)) + 2L(2(k − 2))
= 2L(2k − 2) + 2L(2k − 4) > 2L(2k − 2) + L(2k − 3)
= L(2k − 2) + L(2k − 1) = L(2k) = i(C2k).

This completes the proof.
Furthermore, we shall use the inequality 2sL(n − s) > L(n) for s ≥ 1,

which can be proved by induction.
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Proof of Theorem 3.1. We apply induction on the order of the graph.
The statement is easily verified for n ∈ {3, 4, 5}. Hence we may assume
n ≥ 6.

Among the unicyclic graphs of order n, let G denote one for which the
number of independent vertex subsets is minimum.

If G is a cycle, then, according to Theorem 2.1, i(G) = L(n) and we are
done. Suppose that G is not a cycle and let Ck denote the unique cycle of
G. Let x denote a vertex of G having maximum distance to Ck.

(1) Suppose that dist(Ck, x) ≥ 2. The number of independent sets of G
which contain x is equal to i(G−N [x]). The maximality of dist(Ck, x)
and the assumption that dist(Ck, x) ≥ 2 imply that G−N [x] consists
of one component with precisely one cycle and possibly a number of
isolated vertices, say G−N [x] = H∪Ks, where H is a unicyclic graph
of order n− 2− s. By induction on n, i(G−N [x]) ≥ 2sL(n− 2− s) ≥
L(n − 2). In fact, we have i(G − N [x]) > L(n − 2) if s ≥ 1. The
number of independent sets of G, which do not contain x, is equal to
i(G − x) and, by the induction on n, i(G − x) ≥ L(n − 1). Together
these two inequalities imply i(G) ≥ L(n − 2) + L(n − 1) = L(n). If
i(G) = L(n), then we must have s = 0, i(G − x) = L(n − 1) and
i(G − N [x]) = L(n − 2). Moreover, since G − x is not a cycle, the
induction on n implies that G−x ' Ln−1,3 and consequently G ' Ln,3.

(2) Assume dist(Ck, x) = 1. We shall show that this assumption leads to
a contradiction. Let the vertices of the cycle in G be consecutively
labelled v1, v2, . . . , vk. It suffices to consider the following three cases.

(2.1) Suppose that some vertex vj of G has more than one leaf attached,
say v1 has at least two leaves x and y. Define H by deleting the
edges v1v2, v1y and introducing two new edges xy and v2y, that
is, H := (G − {v1y, v1v2}) ∪ {xy, yv2}. Now H is a unicyclic
graph on n vertices. We intend to show i(G) > i(H) and thus
obtain a contradiction with the minimality of i(G). We do this
by constructing an injective, non-surjective mapping φ from I(H)
to I(G). Let B denote an independent set in H and let φ(B)
be defined by the table in Figure 1. The number beneath each
vertex indicates whether or not the vertex is considered to be
in the indendent set B. For instance, the third row reads 0010,
which means that y is in B while neither v1, v2 nor x is in B.
The mapping φ is injective. Moreover, {x, y, vk} ∈ I(G), but
there exists no independent set B ∈ I(H) with φ(B) = {x, y, vk}.
Hence φ is also non-surjective. It follows that i(G) > i(H), which
contradicts the minimality of i(G). Hence, in the following we
shall assume that every vertex vi has at most one leaf attached.
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v1 x y v2 φ(B)
0 0 0 0 B
0 0 0 1 B
0 0 1 0 B
0 1 0 0 B
1 0 0 0 B
0 1 0 1 B
1 0 0 1 (B − {v1}) ∪ {x, y}
1 0 1 0 (B − {v1}) ∪ {x}

Figure 1: Definition of the mapping φ : I(H) → I(G).

v1 x v2 φ(B)
0 0 0 B
0 0 1 B
0 1 0 B
1 0 0 B
1 0 1 (B − {v2}) ∪ {x}

Figure 2: Definition of the mapping φ : I(H) → I(G).

(2.2) Suppose that no vertex vi of G has more than one leaf attached
and that G contains a vertex vj which has no leaf attached. We
may w.l.o.g. assume that the vertices of G have been numerated
such that v1 has no leaf attached while v2 has exactly one leaf
attached, say x. Define H := (G−{v1v2})∪{v1x}. The graph H
has order n and is unicyclic. Again, we obtain a contradiction be
showing i(G) > i(H). We construct an injective non-surjective
mapping φ from I(H) to I(G). Let B denote an independent set
in H and let φ(B) be defined by the table in Figure 2.

The mapping φ is injective. Recall that n ≥ 6 and so, in this
case, k ≥ 4. This implies {x, v1, v3} ∈ I(G). However, there
exists no independent set B ∈ I(H) with φ(B) = {x, v1, v3}.
Hence φ is also non-surjective and it follows that i(G) > i(H).
This contradiction implies that every vertex vi of G must have
exactly one leaf attached.

(2.3) Suppose that every vertex vi has exactly one leaf attached. Then
G ' Ck ◦K1 where k = n/2 and it follows from Lemma 3.3 that
i(G) > i(Cn), a contradiction.

This completes the proof.
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3.2 Two results used in proving an upper bound

Let Bn,d denote the graph obtained from the path Pd with n − d leaves
attached to one of its ends. The following results were obtained in [9].

Theorem 3.4 ([9])
Let T denote a tree of order n ≥ 2 and diameter d. Then

i(T ) ≤ fib(d) + 2n−dfib(d + 1) = i(Bn,d) (1)

and equality occurs if and only T ' Bn,d.

Proposition 3.5 ([9])
For any d ≥ 3 and n ≥ d + 1,

i(Bn,d) < i(Bn,d−1)

These two results immediately give the following corollary.

Corollary 3.6
If T is a tree of order n and diameter at least k, then i(T ) ≤ i(Bn,k) and
equality occurs if and only if T ' Bn,k.

3.3 An Upper bound for i(G)

Recall that Hn,k is a k-cycle with n−k leaves attached to one of its vertices.

Proposition 3.7
Given integers k ≥ 3 and n ≥ k. Then

i(Hn,k) = fib(k − 1) + 2n−kfib(k + 1). (2)

Proof. Let x denote the unique stem of Hn,k. The number of indepen-
dent sets of Hn,k containing x is equal to the number of independent sets
in G − N [x] ' Pk−3, which, by Theorem 2.1, is fib(k − 1). Similarly, the
number of independent sets of Hn,k not containing x is equal to the number
of independent sets in G− x ' Pk−1 ∪Kn−k, which is fib(k + 1)2n−k. This
establishes (2).

Theorem 3.8
Let G denote a unicyclic graph with n vertices. Then i(G) ≤ 3 · 2n−3 + 1
and equality holds if and only if G is a 4-cycle or G ' Hn,3.
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Proof. The statement is easily verified for n ≤ 5, therefore let us
assume n ≥ 6.

Suppose that the cycle in G has length three. If G is obtained by attach-
ing n−3 leaves at one vertex x of the 3-cycle, then, by (2), i(G) = 3·2n−3+1
and we are done. Suppose that G cannot be constructed by attaching n− 3
leaves to the 3-cycle of G. Now, either the 3-cycle of G contains at least two
vertices of degree greater than two, or there is a vertex in G with distance
at least two to the 3-cycle. In any event, G contains a spanning tree T of
diameter at least four. According to Corollary 3.6 and Theorem 3.4,

i(G) < i(T ) ≤ i(Bn,4) = fib(4) + 2n−4fib(5) = 3 + 5 · 2n−4. (3)

A simple calculation shows i(Bn,4) < 3 · 2n−3 + 1 for all n ≥ 6 and so the
desired inequality follows.

If the cycle in G is of length greater than three, then it is easy to see that
G contains a spanning tree T of diameter at least four and so (3) implies
i(G) < 3 · 2n−3 + 1. This completes the proof.

Corollary 3.9
Let G denote a graph in which every component contains exactly one cycle.
Then i(G) ≤ 3 · 2n−3 + 1 and equality holds if and only if G is a 4-cycle or
G ' Hn,3.

Proof. Given any n, we consider the class Gn of graphs of order n with
the property that every component has exactly one cycle. In this class of
graphs, let G denote a graph for which the number of independent sets is
maximum.

Suppose that G contains k ≥ 2 components, say G1, . . . , Gk and let nj

denote the order of Gj . Since each component contains exactly one cycle,
we have nj ≥ 3 and, according to Theorem 3.8, i(Gj) ≤ 3 · 2nj−3 + 1 for
every j ∈ {1, . . . , k}. Now it is easy to see that 2p + 2q + 6 < 2p+q for every
pair of integers p, q ≥ 3. It follows that

i(G1) · i(G2) ≤ 3 · 2n1−3 + 1 + 3 · 2n2−3 + 1

<
3
8

(2n1 + 2n2 + 6)

< 3 · 2n1+n2−3 < i(Hn1+n2,3).

Hence the graph G′ := Hn1+n2,3 ∪G3 ∪ · · · ∪Gk has more independent sets
than G and, since G′ ∈ Gn, we have a contradiction with the maximality
of i(G). It follows that G must be connected, and now the desired result
follows directly from Theorem 3.8.

Theorem 3.10
Let G denote a connected graph. If G is not a tree, then i(G) ≤ 3 ·2n−3 +1.
Equality holds if and only if G is a 4-cycle or G ' Hn,3.
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Proof. Let T denote a spanning tree of G and let e denote an edge
in E(G) − E(T ). Now G′ := T + e is a unicyclic spanning subgraph of G
and therefore, by Theorem 3.8, i(G) ≤ i(G′) ≤ 3 · 2n−3 + 1, where equality
occurs if and only if G ' Hn,3.

3.4 An Upper Bound in terms of Order and Cycle Length

A tree T rooted at v is the pair (T, v) consisting of a tree T and a dis-
tinguished vertex v ∈ V (T ). By G ' U((T1, v1), (T2, v2), . . . , (Tk, vk)) we
denote a unicyclic graph with cycle Ck ' v1v2 . . . vk and the connected
component of G − E(Ck) containing vi is the tree Ti, 1 ≤ i ≤ k. The
tree Ti is said to be pendent from vi, attached to vi or rooted at vi. Let
hi = h(Ti) = h(Ti, vi) = max{d(vi, x)|x ∈ V (Ti)} denote the height of
Ti and let h = max{hi|1 ≤ i ≤ k}. Analogously L((T1, v1), . . . , (Tk, vk))
denotes U((T1, v1), (T2, v2), . . . , (Tk, vk)) − v1vk, i.e. a path v1 . . . vk with
Tj rooted at vj , 1 ≤ j ≤ k. For short we may write U(T1, . . . , Tk) and
L(T1, . . . , Tk).

Lemma 3.11
Let G ' L(T1, . . . , Tk) be a tree of order n, where each Tj is a star Tj '
K1,aj , aj ≥ 0 rooted at its center vj . Then i(G) ≤ 2n−kfib(k+2) and equality
occurs if and only if a1 = · · · = ak = 0.

Proof. We use induction on k. We see that the lemma holds for k =
1, 2. Suppose k ≥ 3. Observe I(L(T1, . . . , Tk)) = Ivk

(L(T1, . . . , Tk)) ∪
I−vk

(L(T1, . . . , Tk)). Therefore i(L(T1, . . . , Tk)) = 2ak−1i(L(T1, . . . , Tk−2))+
2ak i(L(T1, . . . , Tk−1)) and, by the induction hypothesis, we obtain

i(L(T1, . . . , Tk)) ≤ 2ak−12a1+a2+...+ak−2fib(k) + 2ak2a1+...+ak−1fib(k + 1)
≤ 2n−kfib(k + 2),

where equality occurs if and only if a1 = · · · = ak = 0.

Lemma 3.12
Let G ' U(T1, . . . , Tk) be a unicyclic graph of order n, where each Tj is a

star Tj ' K1,aj , aj ≥ 0 rooted at its center vj . Then i(G) ≤ 2n−kfib(k +
1) + fib(k − 1) and equality occurs if and only if G ' Hn,k.

Proof. We apply induction on n − k. If n − k = 0, then G is a cycle
and the statement is true according to Theorem 2.1. Suppose n − k ≥ 1.
Let x denote a leaf of G and let v1 denote the stem of x. Again, we use
I(G) = I−x(G) ∪ Ix(G). By induction on n− k, we obtain

|I−x(G)| ≤ 2n−1−kfib(k + 1) + fib(k − 1). (4)

Moreover, Lemma 3.11 implies

|Ix(G)| = 2a1−1i(L(T2, . . . , Tk)) ≤ 2a1−12a2+···+akfib(k + 1). (5)
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By summing up we obtain i(G) ≤ 2n−kfib(k + 1) + fib(k − 1) as desired. If
i(G) = 2n−kfib(k + 1) + fib(k − 1), then we must have equality in (4) and
(5). Inequality (4) and the induction hypothesis implies G − x ' Hn−1,k.
Finally, (5) implies a2 = · · · = ak = 0 and therefore G ' Hn,k.

We can now prove that the expression in Proposition 3.7 is an upper
bound for all unicyclic graphs.

Theorem 3.13
If G is a unicyclic graph of order n and cycle length k, then i(G) ≤
2n−kfib(k + 1) + fib(k − 1). Equality occurs if and only if G ' Hn,k.

Proof. If all pendent trees have height 0 or 1, the theorem follows from
Lemma 3.12. We may therefore assume that x is a leaf in G at distance ≥ 2
from the cycle. We have by induction assumption on n

|I−x(G)| ≤ 2n−1−kfib(k + 1) + fib(k − 1)

and assume the stem of x has t other leaves, t ≥ 0. Then

|Ix(G)| ≤ 2t
(
2n−k−t−2fib(k + 1) + fib(k − 1)

)
.

This gives i(G) ≤ 3 · 2n−k−2fib(k + 1) + (2t + 1)fib(k− 1) and, since 0 ≤ t ≤
n− k − 2, we obtain

i(G) ≤ 3 · 2n−k−2fib(k + 1) + fib(k − 1) + 2n−k−2fib(k − 1)
≤ 2n−kfib(k + 1) + fib(k − 1) + 2n−k−2(fib(k − 1)− fib(k + 1))
< 2n−kfib(k + 1) + fib(k − 1).

This completes the proof.

3.5 Unicyclic Graphs with Long Cycles

It follows from the work of Lin and Lin [4] that if T is a tree on n vertices
and T not isomorphic to the star K1,n−1, then i(T ) ≤ 3 ·2n−3 +2. Moreover,
i(T ) = 3 · 2n−3 + 2 if and only if T can be constructed from the star K1,n−2

by subdividing a single edge. In this section we obtain a similar result for
the unicyclic graphs which are not isomorphic to Hn,3.

Define h : N2 −→ N by h(n, k) = fib(k − 1) + 2n−kfib(k + 1). According
to Theorem 3.13, every unicyclic graph G of order n and cycle length k
satisfies i(G) ≤ h(n, k). The following lemma shows that for fixed n the
function h(n, k) is decreasing in k, so k = 3 gives its largest value and we
have i(G) ≤ 2n−3fib(4) + fib(2) = 3 · 2n−3 + 1, which is the inequality of
Theorem 3.8.

Lemma 3.14
For any pair of integers n and k with 4 ≤ k ≤ n we have h(n, k) ≤ h(n, k−1).
Equality occurs if and only if n = k = 4.
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Proof. First, suppose k ≥ 5. We shall prove that h(n, k) < h(n, k − 1)
holds by means of the following inequalities.

h(n, k) = fib(k − 1) + 2n−kfib(k + 1) < fib(k − 2) + 22−k+1fib(k) = h(n, k − 1)
⇐⇒ fib(k − 1)− fib(k − 2) < 2n−k+1fib(k)− 2n−kfib(k + 1)
⇐⇒ fib(k − 3) < 2n−k(2fib(k)− fib(k + 1))
⇐= fib(k − 3) < 2fib(k)− fib(k + 1) = fib(k − 2).

Secondly, if k = 4, then fib(k−3) = 1 < 2n−k(2fib(k)−fib(k+1)) = 2n−4

if and only if n ≥ 5. Hence h(n, 4) < h(n, 3) whenever n ≥ 5. Finally, for
k = 4 and n = 4 we have h(4, 4) = 7 = h(4, 3).

Theorem 3.15
Let r ≥ 3 be an integer and G a unicyclic graph with n vertices and cycle
length k. If k ≥ r, then i(G) ≤ h(n, r) = fib(r−1)+2n−rfib(r+1). Equality
occurs if and only if G ' Hn,r (k = r) or G ' C4 (k = 4 = r + 1).

Proof. By Theorem 3.13, i(G) ≤ h(n, k) and, by Lemma 3.14, h(n, k) ≤
h(n, r). Hence i(G) ≤ h(n, r). If i(G) = h(n, r), then h(n, k) = h(n, r). This
occurs if and only if k = r or n = k = r+1 = 4. If k = r, then Theorem 3.13
implies G ' Hn,k. If n = k = r + 1 = 4, then G ' C4.

Observe that if e = uv is an edge of a graph G then

I(G) = I(G− e)−
{
{v1, v2} ∪ S|S ∈ I(G−N [v1, v2])

}
,

and so i(G) = i(G− e)− i(G−N [v1, v2]).

Theorem 3.16
Let G denote a unicyclic graph with n vertices. If G 6' Hn,3, then i(G) ≤
h(n, 4) = 5 · 2n−4 + 2. Equality occurs if and only if (i) G ' Hn,4 or (ii) G
is obtained from a C3 by attaching one leaf to one of its vertices and n− 4
leaves to another of its vertices.

Proof. Let T denote a spanning tree of G such that diam(T ) is max-
imum. Then T is obtained by removing some edge, say v1v2, on the cycle
Ck : v1v2 . . . vk in G. If diam(T ) ≥ 5, then it follows easily from Corollary 3.6
that i(G) ≤ i(T ) < h(n, 4). Hence we may assume that diam(T ) ≤ 4.

If k ≥ 5, then it follows from Theorem 3.15 that i(G) < h(n, 4). Hence
we may suppose k ≥ 4.

If k = 4, then, by Theorem 3.15, i(G) ≤ i(Hn,4) and equality occurs if
and only if G ' Hn,4.

Suppose k = 3. The assumption G 6' Hn,3 implies diam(T ) ≥ 4 and so,
by Corollary 3.6, i(T ) ≤ 3+5 ·2n−4. Now it suffices to consider the following
three cases.
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(i) deg (v1) ≥ 3 and deg (v2) = deg (v3) = 2. In this case diam(T ) ≥
4 implies i(T − N [v1, v2]) ≥ 2 and therefore i(G) = i(T ) − i(T −
N [v1, v2]) ≤ 3 + 5 · 2n−4 − 2 < i(Hn,4).

(ii) deg (v1),deg (v2) ≥ 3 and deg (v3) = 2. Since diam(T ) ≤ 4, we find
that G is the graph obtained from C3 by attaching s1 leaves at v1 and
s2 leaves at v2 such that n = s1 + s2 + 3. Now it is easy to see that
i(G) = 2s1+s2+1 + 2s1 + 2s2 . Assume s1 ≤ s2. For s1 = 1 we obtain
s2 = n− 4 and the equality i(G) = 2s1+s2 + 2 + 2s2 = 5 · 2n−4 + 2. For
2 ≤ s1 ≤ s2 we get i(G) = 2s1+s2−1(5+21−s2 +21−s1 − 1) ≤ 2n−4 · 5 <
5 · 2n−4 + 2 = h(n, 4).

(iii) deg (v1),deg (v2),deg (v3) ≥ 3. This case is similar to case (ii).
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