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Abstract 
 

In this work, we investigate bounds on the number of independent sets in a graph 

and its complement, along with the corresponding question for number of dominating 

sets. Nordhaus and Gaddum gave bounds on χ(G)+χ(G) and χ(G) χ(G), where G is 

any graph on n vertices and χ(G) is the chromatic number of G. Nordhaus-Gaddum- 

type inequalities have been studied for many other graph invariants. In this work, we 

concentrate on i(G), the number of independent sets in G, and ∂(G), the number of 

dominating sets in G. We focus our attention on Nordhaus-Gaddum-type inequalities 

over trees on a fixed number of vertices. In particular, we give sharp upper and lower 

bounds on i(T )+ i(T ) where T is a tree on n vertices, improving bounds and proofs 

of Hu and Wei. We also give upper and lower bounds on i(G) + i(G) where G is a 

unicyclic graph on n vertices, again improving a result of Hu and Wei. Lastly, we 

investigate ∂(T )+ ∂(T ) where T is a tree on n vertices. We use a result of Wagner 

to give a lower bound and make a conjecture about an upper bound. 
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Chapter 1 

Introduction 

A graph G is a pair consisting of a vertex set V (G) and an edge set E(G), a subset of 

pairs of V (G). We will focus on simple graphs, a graph having no loops or multiple 

edges. Mathameticians have been studying graphs  since  at  least  1736  when  Leon- 

hard Euler first studied the Konigsberg Bridge problem, which was a problem about 

traversing all the edges of a graph without repeating any edges. 

A fundamental notion in graph theory is whether two vertices in a graph are 

adjacent. Vertices x, y ∈ V (G) of a graph G are adjacent, denoted x ∼ y, if x and 

y  are both endpoints of the same edge, that is if x ∼ y  then xy ∈ E(G).  Note that   

x /= y since we will assume throughout that G is a simple graph and there are no 

loops in simple graphs. The neighborhood of x, denoted N (x), is the set of all vertices 

adjacent to x and the closed neighborhood, denoted N [x], is the set of all vertices 

adjacent of x along with x itself (N [x] = N (x) ∪ {x}). 

We further characterize the vertex set by  splitting V (G) into independent sets.  

An independent set in a graph is a set of vertices, in which every pair is not adjacent. 

In other words, if x ?V y (nonadjacent ) then xy ∈/ E(G) and x and y can be collected 

into an independent set together. If x is in an independent set S, then none of the 
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neighbors of x are in S. 

A clique, C, in a graph G is a set of vertices such that all vertices in C are adjacent. 

We can think of cliques and independent sets as extremes of adjacency. The vertices 

in an independent set are nonadjacent to every other vertex in the set, while a vertex 

in a clique is adjacent to every other vertex in the set. An interesting relationship 

between cliques and independent sets of a graph G is the elements of each set switch 

when considering the complement of G. Given a graph G, we let the complement of G, 

denoted G, have the same vertex set as G and e ∈ E(G) if and only e /∈ E(G). This 

relationship dictates that if you understand the independent sets in a graph G  you  

also understand the cliques in G. The concept of independence lays the foundation 

for several areas of study of the vertex set outlined in the sections below. 

 

 

 

1.1 Chromatic Number 

 
We chose to explore specific invariants of a graph G. The first invariant we examine  

is the chromatic number of G. The chromatic number of a graph G, denoted χ(G), is 

the minimum number of colors needed to label the vertices so that adjacent vertices 

receive different colors. This means vertices in the same color set are nonadjacent 

and form an independent set. Another way  of characterizing the chromatic number  

of a graph G is the minimum number k so that V (G) can be partitioned into k 

independent sets. A graph G with chromatic number k is said to be k-partite since  

V (G) can be expressed as the union of k disjoint independent sets. 

Consider the graph in Figure 1.1: the vertices on the right side are all nonadjacent 

to one another, but each is adjacent to every vertex on the left. Thus the vertices on 

the right form an independent set. The vertices on the left are adjacent to every other 

vertex in the graph; therefore, each vertex on the left forms its own independent set 
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α(G) 

as a singleton. This gives us four independent sets of the vertices, but we must insure 

that we cannot partition V (G) into a smaller number of independent sets, which we 

cannot. Thus, the chromatic number in Figure 1.1 is χ(G) = 4 and G is a 4-partite. 

Now examing the relationship betwen G and G in Figure 1.1 we see that the vertices 

on the left in G  form a clique therefore they form an independent set in G.  The set  

of vertices on the right forms an independent set in G, hence, in G it forms a clique. 

We can see that χ(G) = 3. 

 

 

Figure 1.1: Graph of S3,3 

 

Our interest in the chromatic number of a graph G does not only concern finding 

χ(G), but identify the extremes of χ(G). Exploring the minimum and maximum 

values of χ(G) allows us to find relationships between the chromatic number and other 

properties of the graph. The chromatic number is affected by the clique number. The 

clique number of a graph G, denoted ω(G) is the maximum size of a clique in G. The 

chromatic number is also affected by the maximum size of independent set, denoted 

α(G), along with the number of vertices in G, denoted n(G). In his book, Introduction 

to Graph Theory [1], West provides the following propositions. We include the proofs 

for completeness and to illustrate the application of definitions in proofs. 

Proposition 1. For every graph G, χ(G) ≥ ω(G) and χ(G) ≥ n(G) . 

 
Proof. We can see that no vertices in the clique may have the same color, thus the 

chromatic number must be at least than the clique number. The second bound holds 

because each color class is an independent set and has at most α(G) vertices. 
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Clearly, an upper bound on the chromatic number must be n(G), a distinct color 

for each vertex. This is not a great bound for all graphs, but we can prove a better 

bound using the maximum degree of G, denoted Δ(G), and greedy coloring algorithm. 

The greedy coloring relative to a vertex ordering v1, ..., vn of V (G) is obtained by col- 

oring the vertices in the order v1, ..., vn, assigning to vi the smallest-indexed color not 

already used on its lower-indexed neighbors. Through the greedy coloring algorithm 

we obtain the upper bound. 

Proposition 2. For every graph G, χ(G) ≤ Δ(G)+ 1. 

 
Proof. In a vertex ordering, each vertex as at most Δ(G) earlier neighbors, thus we 

used at most Δ(G) colors leaving the current vertex uncolored. Thus Δ(G)+ 1 colors 

are enought to color the vertex set. 

 

Given the bounds on the chromatic number, ω(G) ≤ χ(G) ≤ Δ(G) + 1, we can 

extend them to be the bounds on the number of partition of G. Thus a graph can 

be partitioned between ω(G) and Δ(G) + 1 independent sets, when the number of 

independent sets is minimized. 

Propositions 1 and 2 establish a lower  and an upper bound for χ(G).  We  now   

fix our gaze to the relationship between a graph and its complement. Nordhaus and 

Gaddum provided bounds on the sum and product of the chromatic number of a 

graph and its complement. They proved the following [2]. 

Theorem 3 (Nordhaus, Gaddum 1956). If G is a graph on n vertices, then 

 

2
√

n ≤ χ(G)+ χ(G) ≤ n + 1, 
 

 

and 
   

n ≤ χ(G) · χ(G) ≤ 

 
n + 1

 2
 

 

 2 
. 
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1.2 Nordhaus and Gaddum Inequalities 
 

Chromatic numbers have been extensively studied dating back to 1850, when Francis 

Guthrie proposed the Four Color Problem [3]. This problem was later solved by 

means of a computer in 1976 by Appel and Haken. Exploration of the chromatic 

number was extensive for the next hundred years, but all these studies investigating 

chromatic numbers considered a graph G only, not its complement. Zykov proved the 

lower bound n ≤ χ(G) · χ(G), from Theorem 3, creating the first study of chromatic 

numbers on a graph G and its complement G together [3].  Nordhaus and Gaddum,  

in 1956, furthered the exploration of the chromatic number by proving a lower and an 

upper bound on the sum and on the product of χ(G) and χ(G) over  various classes   

of graphs. One well known class is that of trees. 

 
The relationship between a graph G and its complement G is not only a concern 

for chromatic numbers, but also for any invariant of the graph and its complement. 

The bounds found on the sum or product of an invariant in a graph and the same 

invariant in its complement is called a Nordhaus-Gaddum type inequality. There are 

currently hundreds of Nordhaus-Gaddum type of inequalities in graph theory and 

more being explored [3]. We use Nordhaus-Gaddum Inequalities as an inspirations 

for our current work and study, particularly the Nordhaus-Gaddum type inequalities 

pertaining to independent sets. 

 

 

1.3 Trees 

 
A graph that contains no cycle is called acyclic and a tree is a connected acyclic 

graph. A leaf or pendant vertex is a vertex of degree 1. We examine independent 

sets of trees in the following sections, but first we will give foundational knowledge 

on trees. One of the first characteristics we learn is that deleting a leaf from a tree 
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results in a smaller tree. 

 
Lemma 4. Every tree with at least two vertices has at least 2 leaves. Deleting one 

leaf from an n-vertex tree results in a tree with n − 1 vertices. 

Trees are connected and acyclic graphs, so we can draw the conclusion that a tree 

on n-vertices has n−1 edges. West [1] provides the following characterization of trees. 

Theorem 5. For an n-vertex graph G (with n ≥ 1), the following are equivalent and 

characterize trees with n vertices: 

 

A. G is connected and has no cycles. 

 
B. G is conneceted and has n − 1 edges. 

C. G has n − 1 edges and no cycles. 

A tree with maximum degree Δ  ≥ 2 has at least Δ leaves.   This is true since    

the degree of a vertex is the number of neighbors a vertex has and each neighbor 

corresponds to a branch and every branch must end with at least one leaf.   Paths    

are trees that have maximum degree 2 while a star  is a tree with maximum degree  

n − 1.  Let  Pn  be the path  on  n  vertices and  T  be any  tree on  n  vertices.  Then 

2 = Δ(Pn) ≤ Δ(T ) ≤ Δ(Sn) = n − 1. Paths and stars are important for our work in 

the later sections on independent sets in trees. 

 

 

 

1.4 Unicyclic Graphs 

 
Another graph that we examine is unicyclic graph. A unicyclic graph is a connected 

graph with exactly one cycle. We can obtain any unicyclic graph from a tree by 

adding one edge in the tree. Adding a one edge to a tree forms exactly one cycle. 
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Thus, the resulting graph is unicyclic. A tree on n vertices has n − 1 edges, thus, a 

unicyclic graph on n vertices has n edges. 

 

A cycle is a type of unicyclic graph, because it has exactly one cycle and is 

connected. The other unicyclic graphs have a cycle with potential trees extending 

from the vertices on the the cycle. Note that the edges on the cycle are the only edges 

that connect the different trees. It is because if there is another edge connecting the 

trees but not on the cycle, we would have 2 cycles in the graph and the graph would 

not be unicyclic. 
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Chapter 2 
 

Independent Sets in Trees 
 
 

While exploring the chromatic number of graphs it naturally brings us to independent 

sets.  We let I(G) be the set of all independent sets in a graph G, and set i(G) =   

|I(G)|. Given  v  ∈ V (G)  we  can  calculate  the  number  of  independent  sets  in  G  by 

finding the number of independent sets containing v, denoted i(G − N [v]), and the 

number of independent sets not containing v, denoted i(G − v). Using this approach 

gives us the following identity: 

 

i(G) = i(G − N [v]) + i(G − v). 

 

There have been many recent studies on i(G) over various classes of graphs. We 

will first focus on the number of independent sets in a tree. For example, Prodinger 

and Tichy [4] gave bounds on the number of independent sets in a tree. 

Theorem 6 (Prodinger, Tichy 1982). If T is a tree on n vertices, then 
 
 

i(Pn) ≤ i(T ) ≤ i(K1,n−1). 
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Prodinger and Tichy also proved that i(Pn) = Fn+1, the (n + 1)st Fibonacci 

number1 and that i(Cn) = Ln, the nth Lucas number2.  If we let Sn = K1,n−1,  where 

Sn is an n-vertex star, then i(Sn) = 2n−1 + 1.  It is quite easy to see, because an 

independent set either contains the central vertex of the star or it does not. There is 

only 1 independent set that contains the central vertex and there are 2n−1  sets that   

do not contain the central vertex, because we can take any subset of the n − 1 leaves. 

Hu and Wei [5] continued the exploration of i(T ) through their investigation of 

Nordhaus-Gaddum inequalities for the number of independent sets in specific trees. 

DS2,n−4 is the double star on n vertices with one hub adjacent to two leaves and the 

other adjacent to n − 4 leaves. 

Theorem 7 (Hu, Wei 2018). If T is a tree on n vertices with connected complement, 

then 

i(Pn) ≤ i(T )+ i(T ) ≤ i(DS2,n−4), 

 
We  are able to accomplish two  objectives with Hu and Wei’s  result:  first we  

can provide a simpler proof of the upper bound through compression and second we 

extend the proof to encompass all trees regardless of their complements. 

Let G be any be any non-complete graph, and let x and y be adjacent vertices in 

G. The choice of x and y defines a natural partition of V (G) into four parts: vertices 

which are adjacent only to x, vertices adjacent only to y, vertices adjacent to both, 

and vertices adjacent to neither. We write 

 
Axy = {v ∈ V (G)  :  v ∼ x, v ?V y} , 

 
  Axy = {v ∈ V (G) : v ∼ x, v ∼ y} , 

1The Fibonacci number Fn is defined by F0 = 0, F1 = 0, and Fn = Fn−1 + Fn−2 for n ≥ 2. 
2The Lucas number Ln is defined by L0 = 2, L1 = 1, and Ln = Ln−1 + Ln−2 for n ≥ 2. 
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Axy = {v ∈ V (G) : v ?V x, v ∼ y} . 

The compression of G from x to y, denoted Gx→y, is the graph obtained from G by 

deleting all the edges between x and Axy and adding all edges from y to Axy. Com- 

pression along nonadjacent vertices is possible and used in other problems. However, 

we focus on compression only along adjacent vertices. Cutler and Radcliffe [6] estab- 

lished that compression on a non-complete graph does not decrease the number of 

independent sets in the graph. 

 
Lemma 8. If G is a non-complete graph, and x and y are adjacent vertices in G, 

then 

i(G) ≤ i(Gx→y). 

 
Proof.  We’ll show that there is an injection from I(G)\I(Gx→y) to I(Gx→y) \ I(G). 

If  I  ∈ I(G) \ I(Gx→y),  then  y, z  ∈ I  for  some  z  ∈ Axy.   But  since  x  ∼ y  (in  both 

graphs), we must have x ∈/ I  but then I \ ({y} ∪ {x}) is an inpendendent set in Gx→y 

but not in G. 

 

In essence, the number of independent sets does not decrease when a graph is 

compressed. Using compression and Lemma 8 creates a natural avenue for simplifying 

Hu’s and Wei’s  proof  of  the  upper  bound.  Our  goal  of  simplifying  the  proof  of  

the upper bound is reliant on compression; however, we  must establish that the 

compression of a tree results in a tree. 

Lemma 9. If T is a tree on n vertices and x and y are adjacent vertices, then Tx→y 

is a tree. 
 

Proof. To prove that Tx→y is a tree we must show Tx→y possesses two characteristics. 

First, we must show Tx→y is connected. Second, we must show Tx→y contains no 

cycles. 
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Let T  be a tree on n  vertices.  The compression Tx→y  deletes all edges from x  to  

Axy and adds them from y to Axy and x becomes a leaf of y. Now we must show that  

Tx→y  is connected.  Given vertices u, v  ∈ V (T ) we  know there exists a path between u 

and v in T .  This path either contains the vertex x or it does not in T .  If the u, v-path 

in T does not contain the vertex x then it is unaffected in Tx→y. If the u, v-path in T 

does contain the vertex x then it now travels through the vertex y in Tx→y. Since all 

vertices in Axy are now adjacent to y in Tx→y. Thus, Tx→y is connected. 

Since Tx→y is connected, it is equivalent to show that Tx→y has the same amount 

of edges as T , namely n − 1, to prove there are no cycles in Tx→y. Because xy ∈ E(T ), 

xy ∈ Tx→y. Now we must consider the set Axy of vertices adjacent to x but not y. 

The edges between x and Axy no longer exist in Tx→y but for every edge lost we gain 

one through the edge formed between y and Axy . Hence, we still have n − 1 edges in 

Tx→y. Thus, Tx→y is a tree. 

 

We now examine the effects of repeated compressions on a tree. A single com- 

pression on a tree results in a tree, so repeated compression on a tree will also result       

in a tree. However, we claim that given enough compressions on a tree the result will 

always be a star. 

Lemma 10. Repeated compression along edges in a tree yields a star. 

 

Proof. Let T be a tree and let x and y be vertices. If x and y are adjacent non-leaf  

vertices we  can compress along this edge and increase the number of leaves  in the     

tree. Allowing x, y ∈ V (T ) to be such vertices and compressing along the edge xy we 

obtain Tx→y.  All other existing leaves  before the compression remain being leaves  and  

x becomes a new leaf of y. So, compression strictly increases the number of leaves. If 

there are not any adjacent non-leaves then the tree is a star. 

 
 

Compressions on trees do not decrease the number of independent sets and turn 
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any tree into a star. Using these qualities provides a natural avenue for a tight upper 

bound on the number of independent sets in trees. 

Lemma 11. If T is a tree on n vertices then i(T ) ≤ i(Sn). 

Proof. This is a direct consequence of Lemma 8 and Lemma 10. 

 

Before we explore the Nordhaus and Gaddum sum inequality on the number of 

independent sets in trees it is necessary to analyze the number of independent sets    

in a tree’s complement. Hu and Wei [5] proved that i(T ) = 2n for a connected 

complement T . However, Hu’s and Wei’s proof extends to any complement T , so we 

include their proof for completion. 

 

Lemma 12. Let T be a tree on n vertices with any complement T , then 
 

 
i(T )+ i(T ) = i(T )+ 2n. 

 
 
 

Proof. Let ik(T ) be the number of independent sets of size k. Then ik(T ) = 0 for k 

≥ 3. Assume to the contrary that T has an independent set of size 3, but that would 

mean T would contain a cycle C3, a contradiction to T being a tree. Now we must 

consider the number of independent sets in T of sizes 0, 1, and 2, that is i0(T ), i1(T ) 

and i2(T ) respectively. An independent set of size zero can only occur one way, the 

empty set, so i0(T ) = 1. An independent set of size 1 is a set containing only one 

vertex thus, i1(T ) = n since there are only n distinct vertices. While looking at the 

number of independent sets of size two we remind  ourselves that that two  vertices  

x, y ∈ V (T ) can be in an independent set together only if xy ∈ E(T ). Since a tree T 

on n vertices has n − 1 edges this means there are n − 1 edges “missing” from T thus 

i2(T ) = n − 1. Using these outcomes we have the following result. 

 

 

i(T ) = i0(T )+ i1(T )+ i2(T ). 
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i(T ) = 1 + n + (n − 1) = 2n. 

 

Thus, 
 

i(T )+ i(T ) = i(T )+ 2n. 
 
 

 

 

Lemma 12 establishes that the number of independent sets in any tree’s comple- 

ment is 2n, meaning i(Sn) = 2n. Thus, if we wish to minimize or maximize i(T )+i(T ) 

we need only minimize or maximize i(T ). Utilizing i(T ) = i(Sn) = 2n and the effects 

of compressions on T we produce the following tight upper bound on the Nordhaus 

Gaddum inequality for the number of independent sets in a tree. 

Theorem 13 (Improved result by Hu, Wei ). If T is a tree on n vertices with any 

complement T , then 

 
i(Pn)+ i(Pn) ≤ i(T )+ i(T ) ≤ i(Sn)+ i(Sn), 

 
Proof. Let T be any tree on n vertices with any complement T . From Lemma 12 we 

have 

i(T )+ i(T ) = i(T )+ 2n. 
 

Using Theorem 6 and Lemma 11 we have, 

 

 

i(Pn)+ i(Pn) = iP (n)+ 2n ≤ i(T )+ i(T ) ≤ i(Sn)+ 2n = i(Sn)+ i(Sn). 
 

 

Therefore,  
i(Pn)+ i(Pn) ≤ i(T )+ i(T ) ≤ i(Sn)+ i(Sn). 
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Chapter 3 
 

Independent Sets in Unicyclic 

Graphs 

 
Hu and Wei also investigated Nordhaus Gaddum inequalites for the number of in- 

dependent sets in a unicyclic graph and its complement. They defined the graph 

Ox1,x2,x3 as a unicyclic graph on n vertices created from a cycle C3 = v1v2v3 by at- 

taching xi (i = 1, 2, 3) pendent vertices to vi such that x1 + x2 + x3 +3 = n [5]. This 

means On−4,1,0 is a triangle with one vertex adjacent to n − 4 leaves, the second vertex 

adjacent to 1 leaf and the last vertex adjacent to no leaf. Hu and Wei were able to 

prove the following: 

 

Theorem 14 (Hu, Wei 2018). Let G be a unicyclic graph of order n ≥ 5 with a 

connected complement G, then 

 

i(Cn)+ i(Cn) ≤ i(G)+ i(G) ≤ i(On−4,1,0)+ i(On−4,1,0). 

 

We improve upon Hu’s and Wei’s theorem by expanding the theorem to include a 

unicyclic graph with any complement, connected or disconnected, and by coming up 
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with a simpler verison of their proof. We  accomplish these tasks by  first examining  

a result of Pedersen and Vestergaard [7], who investigated bounds for the number of 

independent sets in a unicyclic graph. 

Theorem 15 (Pedersen, Vestergaard 2005). If G is a unicyclic graph of order n, 

then 

i(Cn) ≤ i(G) ≤ 3(2)n−3 + 1. 

 
While exploring Pedersen’s and Vestergaard’s work, in hopes to simplify Theorem 

14, we developed more concise proofs of Pedersen’s and Vestergaard’s bounds for the 

number of independent sets in a unicyclic graph. We shorten the proof of the lower 

bound in Theorem 15 by utilizing induction, similar to Prodinger and Tichy’s proof  

of the lower bound on the number of independent sets in trees (Theorem 6). A key 

notion in our proof relies on the fact that deleting a leaf from a unicyclic graphs 

results in another unicyclic graph, if a leaf exists. 

Lemma 16. Let G be a uncyclic graph of on n ≥ 3 vertices with a leaf v, then G − v 

is unicyclic. 

 

Proof. Let v be a leaf on the unicyclic graph G.  Consider the graph G − v.  We  

want to prove that G − v is unicyclic, namely, G − v contains only one cycle and is 

connected. Let u, w ∈ V (G) and u, w /= v, then there exists a uw-path since G 

isconnected. Vertex v cannot be a vertex on the uw-path since v is a leaf. So, deleting 

v leaves the uw-path unaffected in G − v. Thus, G − v is connected. Since, v is a 

leaf it is not on the cycle present in G, deleting v results in the same cycle in G − v. 

Therefore G − v is a unicyclic graph. 

 
 

To prove the lower bound on the number of independent sets in a unicyclic graph 

we follow Prodinger’s and Tichy’s method of calculating the number of independent 
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sets with a leaf v and the number of independent sets without the leaf v, i(G) = 

i(G − N [v]) + i(G − v). 

Theorem 17. Let G be a unicyclic graph on n ≥ 3 vertices, then 

 
i(G) ≥ i(Cn). 

 

Proof. We use induction on the number of vertices n in G. For n = 3 the only unicyclic 

graph is C3, i(G) = i(C3).  Suppose i(G) ≥ i(Cn) for n ≥ 4 vertices.  Consider G  on  

n + 1 vertices,  we  want  to show that i(G) ≥ i(Cn+1).  If G  = Cn+1  we’re done.  If   

G /= Cn+1, then G contains a vertex v of degree one. We know that G − v is uncyclic, 

from Lemma 16, and by induction i(G − v) ≥ i(Cn). Also, we know 

 
i(G) = i(G − N [v]) + i(G − v). 

 

 

Thus, by induction  
i(G) ≥ i(G − N [v]) + i(Cn). 

 

The graph G − N [v] may be disconnected, but we can add edges to connect the 

components of G − N [v] to create a graph that is unicyclic, without increasing the 

number of independent sets. So, G − N [v] is now a unicyclic graph on n − 1 vertices. 

Thus, by induction 

 

 

i(G) ≥ i(Cn−1)+ i(Cn) = Ln+1 + Ln = Ln+1 = i(Cn+1). 
 

 

Therefore,  
i(G) ≥ i(Cn+1). 
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We also provide a simpler the proof for the upper bound in Theorem 15 by applying 

compression to the graph as we  did for Theorem 7.  We  know that compression does   

not decrease the number of independent  sets.  Compression  is  a  natural  avenue  to  

help establish the upper bounds for the number of independent  sets  in  a  unicyclic 

graph. Knowing that repeated compression to a tree results in a star is going to help 

establish the affects of compression on a unicyclic graph. However, a unicyclic graph 

contains a cycle, so we must explore the effects of compresssion on a cycle. 

Lemma 18. If n ≥ 3 and C = Cn with adjacent vertices x, y, then Cx→y is a unicyclic 

graph. 

 

Proof. Suppose x and y are adjacent vertices on the cycle Cn. We know that |N (x)| = 

2 and that one of these neighbors is y. Let the other neighbor of x  be v.  If n = 3  

then we have a triangle, which cannot be compressed since no vertex has any unique 

neighbors. If n > 3 the compression Cx→y makes vertex x a leaf of y and v becomes 

adjacent to y. So Cx→y contains a cycle of length n − 1 and one leaf; thus, Cx→y is a 

unicyclic graph. 

 
 

Given that the compression of a cycle results in a unicyclic graph, one should  

ask, “How will repeated compression along a cycle affect it?” Our instincts should  

be telling us that repeated compression should result in a specific type of unicycle 

graph; similarly, how the repeated compression of a tree resulted in a star. Repeated 

compression on a cycle results in a triangle star, denoted TSn. Let TSn be a triangle 

with n − 3 leaves on one of the vertices. In other words, TSn is the resulting graph 

by adding one edge connecting two leaves of the star Sn. 

Lemma 19. Repeated compressions on cycle Cn results in TSn. 

 

Proof. If x and y are adjacent non-leaves we can compress along this edge and increase 

the number of leaves in the graph. Let x, y ∈ V (Cn) be such vertices and compress 
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along the edge xy. From Lemma 18 we obtain Cx→y is a unicyclic graph with a cycle 

of length n − 1 and x a leaf adjacent to y. Each compression along the cycle shortens 

the cycle in the unicyclic graph by one and adds one leaf. We can only compress 

along an edge if the endpoints have distinct neighbors in the cycle. Therefore, once 

the unicyclic graph contains a triangle we can no longer compress along the cycle 

since a triangle is a clique. This means one of the vertices has n − 3 leaves, giving us 

TSn. 
 

 

Knowing the effects of compression on cycles and trees, we turn our attention to 

the effects of compression on a unicyclic graph. Cycles are a specific type of uncicyclic 

graph, so we claim compressions on a unicyclic graph have the following effect. 

Lemma 20. If G is a unicyclic graph on n vertices, then there exists a series of 

compressions that can be applied to G that results in TSn. 

Proof. If G is a cycle then we can apply Lemmas 18 and 19 and we’re done. Otherwise, 

G contains at least one leaf. If there is a leaf l that is not adjacent to a cycle vertex, 

then let x be the unique neighbor of l and y be the vertex adjacent to x on the path 

from l to the cycle in G. Gx→y takes all the unique neighbors of x (other than y) and 

makes them adjacent to y. By this compression, we have reduced the total distance 

from vertices off the cycle to the cycle. After repeating this, we end up with a cycle 

with pendant edges off some of its vertices. Now we compress along adjacent cycle 

vertices. When we do this, we shorten the cycle and “consolidate” pendant vertices. 

This yields a triangle with pendant edges. Compressing along triangle edges leaves 

the triangle intact, since it is a clique, but the pendant edges are consolidated to a 

single vertex of the triangle. Thus, we’ve compressed G into TSn 
 
 

Establishing that there exists a sequence of compressions, on any unicyclic graph, 

that results in the TSn graph allows us to repove Pedersen’s and Vestergaard’s upper 
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bound for the number of independent sets in a unicyclic graph. 

 
Theorem 21. If G is a unicyclic graph on n ≥ 3 vertices, then 

 
i(G) ≤ i(TSn). 

 
Proof. This a direct result of Lemma 8 and Lemma 20. 

 

 

We now move back to Hu’s and Wei’s Nordhaus-Gaddum inequalities for the 

number of indpendent sets in a unicyclic graph and its complement. Hu and Wei 

obtain the minimum and maximum values of i(G) + i(G), where G is a connected 

complement, by establishing an equality for i(G) [5]. However, Hu’s and Wei’s proof 

does not rely on the fact that G is connected, so we incorporate their proof for 

completion. 

Lemma 22. Let G be a unicyclic graph of on n vertices with any complement G, 

then 

i(G)+ i(G) = 1 + 2n + i3(G)+ i(G). 
 

 

Proof. Let ik(G) be the number of independent sets of size k. Then ik(G) = 0 for k 

≥ 4. Assume to the contrary then G could have an independent set of size 4, but that 

would mean G would contain a K4 and this is a contradiction since G is unicyclic. 

Now we must consider the number of independent sets in G of sizes 0, 1, 2, and 3, 

i0(G), i1(G), i2(G), and i3(G) respectively. An independent set of size zero can only 

occur one way, the empty set, so i0(G) = 1. An independent set of size 1 is a set 

containing only one vertext thus, i1(G) = n, since there are only n distinct vertices. 

While looking at the number of independent sets of size two we remind ourselves  

that that two  vertices x, y  ∈ V (G) can be in an independent set together only if     

xy ∈ E(G). G is a unicyclic graph on n vertices with n edges, meaning there are n 
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edges “missing” from G thus i2(G) = n.  Lastly, i3(G) = 1 or 0 if G has a triangle or  

is triangle free, respectively. Using these outcomes we have the following result. 

 
 

i(G) = i0(G)+ i1(G)+ i2G)+ i3(G). 
 

 

So, 
 

i(G) = 1 + n + n + i3(G). 
 

Thus, 
 

i(G)+ i(G) = i(G)+ 2n + 1+  i3(G). 
 
 

 

 
A consequence of the above lemma is the minimum or maximum of i(G)+ i(G) 

depends on the minimum and maximum of i(G) and the number of complete graphs 

of size 3, denoted K3(G), G contains. We can now prove the following. 

Proposition 23. If G is unicyclic, then 
 
 

i(G) ≤ i(Gx→y). 

 
Proof. If G is unicyclic, then 

 

 
 

i(G) = 1 + 2n + K3(G). 
 
 

Since compression on G increases the number of independent sets we have the follow- 

ing inequality, 

i(G) ≤ 1+ 2n + K3(Gx→y) = i(Gx→y). 

 

Thus,  
i(G) ≤ i(Gx→y). 
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Knowing that i(Cn) ≤ i(G) ≤ TSn and i(G) = 1+ 2n + i3(G), we can prove the 

following. 
 
 

Theorem 24. Let G be a unicyclic graph on n vertices with any complement G, then 
 
 

i(Cn)+ i(Cn) ≤ i(G)+ i(G) ≤ i(TSn)+ i(TSn). 

 
Proof. Let G be a unicyclic graph on n vertices with any complement G. From 

Lemma 22 we have, 

 
 

i(G)+ i(G) = i(G)+ 2n + 1+  i3(G). 
 
 

and from Theorems 17 and 21 we get, 

 

 

i(Cn)+ 2n +1+ i3(G) ≤ i(G)+ 2n +1+ i3(G) ≤ i(TSn)+ 2n +1+ i3(G). 

 
We also know, from Lemma 22, that 2n +1+ i3(G) is the number of independent sets 

in any unicyclic graph’s complement, so 

 
i(Cn)+ i(Cn) ≤ i(G)+ i(G) ≤ i(TSn)+ i(TSn). 
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Chapter 4 

Dominating Sets 

We shift our focus from the number of independent sets in a tree to the number of 

dominating sets in a tree. A dominating set in a graph G is a set of vertices S such 

that every vertex of G is either in S  or adjacent to a vertex in S.  We  let ∂(G) be  

the number of dominating sets in a graph G. Lex Schrijver [8] proved the following 

theorem. 

Theorem 25 (Schrijver 2009). The number of dominating sets of any graph G is 

always odd. 

 

This fascinating property means that the Nordhaus Gaddum sum of the number  

of dominating sets of a graph and its complement results in an even number, since 

adding two odd numbers is even. 

Like we did with independent sets, we can count dominating sets by splitting the 

set into two  types:  the number of sets that contain a vertex x, denoted ∂x(G), and  

the number of sets that do not contain x, denoted ∂xˆ(G). Then the basic rule for 

recusively evaluating the number of dominating sets in a graph G is as follows. For 

any vertex x of G, 

∂(G) = ∂x(G)+ ∂xˆ(G). 
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⎩ 

5 

Note that a dominating set that does not contain x must contain a vertex from the 

neighborhood of x.  If x  has no neighbors then ∂x̂(G) = 0 and x  must be contained in 

all dominating sets of G. 

We have the tight lower and upper bounds for the number of dominating sets of 

any graph G, 1 ≤ ∂(G) ≤ 2n−1, with equality for the empty and complete graphs, 

respectively.  Bród and Skupień studied the lower bounds on the number of dominating 

sets in a tree [9]. They proved the following. 

 
Theorem 26 (Brod, Skupień 2006).  If T  is a tree on n vertices, then 

 
 

βm · 5∗n/3J ≤ ∂(T ) ≤ ∂(K1,n−1), 
 

 

where 
⎧

⎪1 n ≡ 0 (mod 3) 

 

 

βm = 

⎪⎨
9 

⎪ 

n ≡ 1 (mod 3) . 

⎪
3 n ≡ 2 (mod 3) 

There are multiple extremal graphs possessing the lower bound. 

 
There have been many studies of ∂(G) in the framework of Nordhaus-Gaddum 

inequalities, that is finding bounds on ∂(G)+ ∂(G). For example, Wagner [10] proved 

the following and we include Wagner’s proof for completeness. 

Theorem 27 (Wagner 2013). If G is a graph on n vertices, then 
 
 

∂(G)+ ∂(G) ≥ 2n. 

 
Proof. Consider a set S of vertices that is not a dominating set of G. Then there  

exists a vertex v that is not dominated by S. But this implies that v is connected to  

all vertices of S in the complement graph G, so that set S of S is a dominating set of 
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G.  So we  can conclude that G  has at least as many dominating sets as the number  

of nondominating sets in G. Thus we have the inequality, 

 
∂(G)+ ∂(G) ≥ ∂(G)+ (2n − ∂(G)) = 2n. 

 

 

 

 

Wagner’s lower bound is sharp for multiple graphs. Clearly, equality holds for the 

complete graph; furthermore, equality also holds for the star, Sn. If the central vertex 

is in a dominating set we can take any combination of the pendant vertices giving us 

2n−1 sets.  If the central vertex is not in a dominating set then we must collect all 

pendant vertices producing only 1 set.  Thus, ∂(Sn) = 2n−1 + 1.  The graph of Sn  is   

a clique of n − 1 vertices with an isolated vertex. To be a dominating set in Sn the  

set must contain the isolated vertex and a nonempty subset of the clique, so we have 

∂(Sn) = ∂(Kn−1 ∪ E1) = 2n−1 − 1. Thus, the sum of the number of dominating sets 

in a star and it’s complement is 

 

∂(Sn)+ ∂(Sn) = 2n−1 +1+ 2n−1 − 1 = 2n. 
 
 
 

More recently, Keough and Shane [11] gave an upper bound on ∂(G)+ ∂(G) 

 
Theorem 28 (Keough, Shane 2019). If G is a graph on n vertices, then 

 

∂(G)+ ∂(G) ≤ 2n+1 − 2ln j − 2In l−1. 

 
As the authors note, this bound is not sharp. The conjectured extremal example is 

Krn/2l,∗n/2J.  The bound in Theorem 28 is correct in the lead term as 

 

∂(K )+ ∂(K ) = 2(2ln j − 1)(2In l − 1) + 2. rn/2l,∗n/2J rn/2l,∗n/2J 
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We continue the work on dominating sets by further exploring the number of 

dominating sets in a tree and its complement. Wagner’s lower bound is sharp which  

is achieved by Sn and its complement, so ∂(T )+ ∂(T ) ≥ 2n. We focus on finding the 

upper bound on ∂(T )+ ∂(T ). It’s interesting that the lower bound for ∂(T )+ ∂(T ) 

is ∂(Sn)+ ∂(Sn) since through our exploration of the number of independent sets in 

trees the star was our upper bound.  Also, in Theorem 26 Bród and Skupień proved 

that the upper bound for ∂(T ) is ∂(Sn), which furthers the interest of how the star 

becomes the extremal graph for the lower bound of the Nordhaus-Gaddum inequality 

on the number of dominating sets in trees. 

Our  first  guess  for  the  upper  bound  was  the  path  and  its  complement.   Bród 

and Skupień  proved that ∂(Pn) = Tn, where Tn  is the nth  number in the Tribonacci 

sequence [9], similar to how Tichy and Prodinger showed the number of independent 

sets in a path followed the Fibonacci sequence. Bueno [8] has shown that Tribonacci 

sequence grows exponentially by a factor of approximately 1.839. We now examine 

the number of dominating sets in Pn. 

 

Proposition 29. Let Pn be a path on n vertices with Pn as its complement, then 

 
 

∂(Pn) = 2n − 2n. 

 
Proof. Let vertex x be an endnpoint in Pn with vertex y as x’s only neighbor. The 

number of dominating sets in Pn is ∂(Pn) = ∂x(Pn) + ∂xˆ(Pn). We  first find ∂x(Pn).  

We  can further characterize ∂x(Pn) breaking it up to the dominating set containing    

x and y and the sets containing x but not y giving us 

 
 

∂x(Pn) = ∂xy(Pn)+ ∂xyˆ(Pn). 
 
 
 

If x and y are in the dominating set then we can build more dominating sets of Pn 
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using an number of the remaining n − 2 vertices giving us ∂xy(Pn) = 2n−2. If y is  

not in the dominating set then there are only two subsets of the remaming n − 2 

vertices that would not be dominating, the empty set and set containing x and y’s 

other neighbor in Pn. Thus ∂xyˆ(Pn) = 2n−2 − 2. So, we have 

∂x(Pn) = 2n−2 + (2n−2 − 2) = 2n−1 − 2. 

 
Since ∂x̂(Pn)  = ∂y(Pn−1) + ∂ŷ(Pn−1) a dominating set that contains y  must also 

contain a vertex that is not adjacent to y in Pn−1 in order to dominate x, so ∂y(Pn−1) = 

2n−2 − 2 for n ≥ 4. We have a recurrence for the number of dominating sets in Pn 

not containing an endpoint, call it ∂∗(Pn). So, 

 
∂∗(Pn) = ∂∗(Pn−1)+ 2n−2 − 2. 

 
Applying the recursion agian, we have 

 

 

∂∗(Pn) = ∂∗(Pn−2)+ 2n−3 − 2+ 2n−2 − 2. 
 

 

We can continue to apply the recursion until P4, giving 

 

   n−3 

∂∗(Pn) = (2n−1−i − 2) + ∂∗(P3). 
i=1 

 
 

Note that ∂∗(P3) = 1.Then 
 

   n−3 

∂∗(Pn) = (2n−1−i) − 2(n − 2) + 1. 
i=2 
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� 

n 

j=2 j=1 

Reversing the order of the summation 

 
   n−2 n−2 

∂∗(Pn) =
 
(2j) − 2(n − 2) + 1 =

 
(2j) − 2 − 2(n − 2) + 1. 

 
 

Using the fact that 
k 

2i 

i=1 

= 2k+1 − 1, we get 

 

∂∗(Pn) = 2n−1 − 1 − 2 − 2n + 4 + 1  = 2n−1 − 2n + 2. 
 

 

Therefore, 

 

 

∂(Pn) = ∂x(Pn)+ ∂xˆ(Pn) = ∂x(Pn)+ ∂∗(Pn) = 2n−1 − 2+ 2n−1 − 2n + 2 = 2n − 2n. 
 
 

 

 

 

We now have ∂(Pn) + ∂(Pn) = Tn + 2n − 2n and as we look at the Nordhaus- 

Gaddum sum we clearly see ∂(Pn)+ ∂(Pn) is not a candidate for the upper bound for 

the sum of the numbers of dominating sets in a tree and its complement. 

Our second graph choice is the even double star on an even number of vertices, 

denoted DS, with central vertices x and y. We are able to prove the following. 

Proposition 30. Let DS be an even double star on an n vertices, where n is even, 

with central vertices x and y then 

 
∂(DS) = 2n−2 . 

+2 2 +1  
 

 

Proof. Let the vertices x and y be the central vertices of DS. The number of dominat- 

ing sets in DS can be broken down into four subsets the dominating sets containing 

both x and y, containing x but not y, containing y but not x, and containing neither 
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2 +2 2 +1  

) = 2 +2 2 

x nor y. Thus, 
 

 

∂(DS) = ∂xy(DS) + ∂xŷ(DS) + ∂x̂y(DS) + ∂x̂ŷ(DS). 

 
 

It is important to note that the set containing x but not y and containing y but not 

x are equivalent since the DS is symmetric. So, we have 

 

 

∂(DS) = ∂xy(DS) + 2 · ∂xŷ(DS) + ∂x̂ŷ(DS). 

 
Note that ∂xy(DS) = 2n−2, since x and y are adjacent to the other n − 2 vertices and 

{x, y} is dominating, we can take any subset of those n − 2 vertices. Now we consider 

∂xyˆ(DS),  x  is adjacent to y  and  n−2  vertices and y  is adjacent to the remaining n−2 

vertices. Since, y is not in the set then the n−2 neighbors of y must be in the set. 

We can take any subset of the n−2 neighbors of x meaning ∂ 
 
xŷ  (DS) = (2 

n−2 

). Lastly, 

if neither x nor y is in the set then all the neighbors of x and y must be in the set, 

meaning ∂x̂ŷ(DS) = 1.  Putting this together, we see 

 

 

∂(DS) = 2n−2 + 2(2 
n−2 

) + 1 = 2n−2 
n 

. 
 

 

 

 

Now we consider DS, which is Kn−2 with x adjacent to half of the vertices of 

Kn−2 and y adjacent to the other half of Kn−2 and x  is not adjacent to y.  We  are  

able to prove the following. 

 
Proposition 31. Let DS be an even double star on n vertices, where n is even, with 

central vertices x and y, then 

 
 

 

∂(DS 
n n +1 + 1. 
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2 

2 − 2 

) = 2 2 2 

2 2 2 2 

2 2 +2  − 2 2 + 1 = 2 − 2 2 

Proof. Let DS be an even double star on an n vertices, where n is even, with central 

vertices x and y. We  consider DS, similarly to DS, the number of dominating sets  

in DS can be broken down into four subsets the dominating sets contain both x and 

y, containing x but not y, containing y but not x, and containing neither x nor y. 

 
 

∂(DS) = ∂xy(DS) + ∂xŷ(DS) + ∂x̂y(DS) + ∂x̂ŷ(DS). 
 
 

It is improtant to note that the sets containing x but not y and the sets containing 
 

y but not x are equivalent since DS is symmetric. So, we have 

 

 

∂(DS) = ∂xy(DS) + 2 · ∂xŷ(DS) + ∂x̂ŷ(DS) 

 
Note that ∂xy(DS) = 2n−2 since {x, y} is dominating allowing us to take any  subset  

of the n − 2 remaing vertices. 

Now we consider ∂xyˆ(DS), x is not adjacent to y but x is adjacent to n−2 vertices 

and y is adjacent to the remaining n−2 vertices. We can take any subset of the 

neighborhood of x and take any nonempty subset of the neighborhood of y to build 

a dominating set. Thus, ∂ 
 

 

(DS 
n−2 

(2 
n−2 

− 1).
 

 
 

Lastly, we eveluate ∂x̂ŷ(DS).  Neither x nor y  is in these sets so we need at least 

one of each of their neighbors. It is important to remember that N (x) ∩ N (y) = ∅ 

and N (x) ∪ N (y) = Kn−2. Meaning we need a nonempty subset of N (x) and a 

nonempty  subset  of  N (y)  to  form  a  dominating  set.    It  implies  that  ∂x̂ŷ(DS)  = 

(2 
n−2 

1)(2 
n−2 

− 1). Putting these together, we obtain 

 
∂(DS) = 2n−2 + 2(2 

n−2 

(2 
n−2 

− 1)) + (2 
n−2 

− 1)(2 
n−2 

− 1). 
 
 

∂(DS) = 2n−2 + 2n−1 − n−2 n n +1 

xŷ  

+ 1. 
n n 
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+2 2 +1+2  2 

 

 

 
Therefore the Nordhaus-Gaddum sum of the DS and DS is 

 

 

∂(DS)+ ∂(DS) = 2n−2 n − 2 
n +1 + 1 = 5 · 2n−2 − 2n/2 + 2. 

 
 

Another candidate for the upper bound on the numbers of dominating sets in a 

tree and its complement is the broom graph. The broom, denoted BPk,n−k, is a path of 

length k with n − k leaves attached to an endpoint of the path. Note that B2,n−2 = Sn 

and Bn,0 = Pn, so we can think of the different size brooms as the varying stages of the 

star Sn turning into the path Pn. We will start by finding the number of dominating 

sets in B3,n−3, B4,n−4 and B5,n−4 and their respective complements. 

 

Proposition 32.  
∂(BP ,n−3)+ ∂(BP ,n−3) = 2n + 2n−3. 

 
 

Proof. Let x, y and z be the vertices of P3  in BP3,n−3  such that x  is the endpoint of 

P3 and x is adjacent to the n − 3 pendant vertices and y. The dominating sets of 

BP3,n−3 can be split into two types of sets: the sets that contain x and the sets that 

don’t. So, we have 

 
 

∂(BP3,n−3) = ∂x(BP3,n−3) + ∂x̂(BP3,n−3). 

 
We first consider ∂x(BP3,n−3).  Since x is in the set we  dominated all vertices except  

z  meaning we  need to take a nonempty subset of {y, z}, and take any  subset of the  

n − 3 leaves. Thus, ∂x(BP3,n−3) = 2n−3(3). If x is not in the set then all n − 3 leaves 

must be in the set. This leaves y and z undominated so we must have a nonempty 

n 
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set of {y, z}, so ∂x̂(BP3,n−3) = 3 Adding these together gives us 

 
∂(BP ,n−3) = 3 · 2n−3 + 3. 

 

 

The dominating sets of BP3,n−3 can be broken up into two sets: the sets containing x 

and those that don’t. Thus, we have 
 

 
 

∂(BP3,n−3) = ∂x(BP3,n−3) + ∂x̂(BP3,n−3). 

 

Looking at BP3,n−3 we note that x  is only adjacent to z, while y  and z  are adjacent  

to the remaining n − 3 vertices but not each other.   When counting ∂x(BP3,n−3)      

we know each set contains x so only z is dominated, so inorder for the set to be 

dominating we must take a nonempty set of the remaining n − 2 vertices. Implying, 

∂x(BP ,n−3) = 2(2n−2 − 1). Now counting ∂x (̂BP ,n−3) we realize that z must be in the 

set in order to dominate x. This only leaves y undominated, so our sets must contain  

a nonempty subset of Kn−3 ∪ {y}. Meaning ∂x (̂BP ,n−3) = 2n−2 − 1. Adding these 

together gives us 

 
 

∂(BP ,n−3) = 2(2n−2 − 1) + (2n−2 − 1) = 2nn−1 + 2n−2 − 3. 

 
Therefore, 

 

 

∂(BP ,n−3)+ ∂(BP ,n−3) = 3 · 2n−3 +3+ 2n−1 + 2n−2 − 3 = 2 · 2n−3 + 2n−3 + 2n−1 + 2n−2. 
 

 

Thus,  
∂(BP ,n−3)+ ∂(BP ,n−3) = 2n + 2n−3. 
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We compare the reasults of the DS and BP3,n−3 and we see there are more dom- 

inating sets in DS and its complement than in BP3,n−3 and its compement. The 

comparison is as follows 

 

∂(DS)+ ∂(DS) − ∂(BP ,n−3) − ∂(BP ,n−3) = 5 · 2n−2 − 2n/2 +2 − (2n + 2n−3) 

= 10 · 2n−3 − 9 · 2n−3 − 2n/2 +2  

= 2n−3 − 2n/2 + 2. 

 
And 2n−3 − 2n/2 +2 > 0 for n > 4. Thus, DS and DS have more dominating but 

not much more so we look at the next stage of the broom, which is BP4,n−4. 

 

Proposition 33.  
∂(BP ,n−4)+ ∂(BP ,n−4) = 5 · 2n−2. 

 
 

Proof. Let x, y, z and w be the vertices of P4 in BP4,n−4 such that x is the endpoint 

with deg(x) = n − 3 and the other vertices follow sequentially along the path. The 

dominating sets of BP4,n−4 can be split into two types of sets: the sets that contain x 

and the sets that don’t. So, we have 

 
 

∂(BP4,n−4) = ∂x(BP4,n−4) + ∂x̂(BP4,n−4). 

 

Counting the sets that contain x, allows us to take any subset of the leaves and y since 

they are all dominated by x. The vertices z and w are undominated at this point, 

meaning we must take an unempty subset of {z, w}. Thus, ∂x(BP4,n−4) = 3 · 2n−3. 

The sets not containing x must contain all the leaves, meaning y, z and w are left to 

be dominated. Taking any nonempty subset of {y, z, w} except {y} , {w} will lead 

to a dominate set.  Thus we have ∂x̂(BP4,n−4) = 23 − 3 = 5.  Adding these together, it 
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4 

4 

4 

4 

4 

4 

gives us  
∂(BP ,n−4) = 3 · 2n−3 + 5. 

 
 

 

We now move on to ∂(BP4,n−4) which can be split into two types of sets: the sets that 

contain x and the sets that don’t. So, we have 
 

 
 

∂(BP4,n−4) = ∂x(BP4,n−4) + ∂x̂(BP4,n−4). 

 

If x is in the dominating set then vertices z and w are dominated leaving y and the 

n − 2 vertices undominated. So we can take any nonempty set of the n − 1 vertices 

except the set {z}. Thus, ∂x(BP ,n−4) = 2n−1 − 2. As we count the number of 

dominating sets without x we see that either z or w must be in the set, in order to 

dominate x. So, we have 

 

 

∂x̂(BP4,n−4) = ∂x̂zw (BP4,n−4) + ∂x̂zŵ(BP4,n−4) + ∂x̂ẑw (BP4,n−4). 

 

If z and w are in the sets then we can take subset of the remaining n − 3 vertices 

since  {z, w} is  dominating,  giving  us  ∂x̂zw(BP ,n−4)  =  2n−3.   If  z  is  in  the  sets  but 

not w we need to take a nonempty subset of the remaining n − 3 vertices to ensure 

we dominate y  and w.  So, ∂x̂zŵ(BP ,n−4) = 2n−3 − 1.  Lasly we must count the sets 

containing w but not z. Containing w means every vertex is dominated except z, 

therefore we must choose a nonempty subset of N (z) − {x} and y can be in or out of 

the set.  So, ∂x̂ẑw(BP ,n−4) = 2 · (2n−4 − 1) = 2n−3 − 2.  Altogether we have 

 
∂xˆ(BP ,n−4) = 2n−3 + (2n−3 − 1) + 2n−3 − 2 = 3 · 2n−3 − 3. 

So, we have 

 

 

∂(BP4,n−4) = ∂x(BP4,n−4) + ∂x̂(BP4,n−4) = 2n−1 − 2 + 3 · 2n−3 − 3 = 7 · 2n−3 − 5. 
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· P

P 

Therefore, 

 

 

∂(BP ,n−4)+ ∂(BP ,n−4) = 3 · 2n−3 + 5 + 7  · 2n−3 − 5 = 10 · 2n−3 = 5 · 2n−2. 
 

 

 

 

Looking back that the sum ∂(DS)+ ∂(DS) = 5 · 2n−2 − 2n/2 + 2 we see that this 

sum is less than the sum of ∂(BP ,n−4) + ∂(BP ,n−4) = 5 · 2n−2. So,  the number of  

the dominating sets in a broom and its complement increased when we increased the 

length of the path. We continue to extend the path to see if the trend continues. 
 

Proposition 34. 
 

∂(B )+ ∂(B ) = 41  2n−5 + 2. 
5,n−5 5,n−5 

 
 

Proof. Let x, y, z, v and w be the vertices of P5 in BP5,n−5 such that x is an endpoint 

with the other vertices following sequentially along the path. The dominating sets of 

BP5,n−5 can be split into two types of sets: the sets that contain x and the sets that 

don’t. So, we have 

 

∂(BP5,n−5 ) = ∂x(BP5,n−5 ) + ∂x̂(BP5,n−5 ). 

 
The sets containing x dominate the n−5 leaves and y, leaving z, v and w undominated. 

So, we must take subets of {y, z, v, w} to ensure our sets dominate; however, 5 of the 

subsets do not result in domination,  giving us ∂x(BP5,n−5)  =  11 · 2n−5.  The sets  

not containing x must have the n − 5 leaves in them since x is the only vertex that 

dominates them and x is not in the set. Thus we must take subsets of {y, z, v, w} to 

ensure the sets not contain x dominate. However, there are 7 subsets of {y, z, v, w} 

that do not result in a dominating set, so ∂x̂(BP5,n−5) = 9.  Add these together gives 



35  

·P 

5,n−5 

us 

∂(B ) = 11  2n−5 + 9. 
5,n−5 

 
 

We now turn our attention to counting ∂(BP5,n−5 ). Again we can split our sets into 

sets containing x and sets that don’t. It gives 
 

 
 

∂(BP5,n−5 ) = ∂x(BP5,n−5 ) + ∂x̂(BP5,n−5 ). 

 
If a subset contains x then we must take any nonempty subset of the remaing n − 1 

vertices, except for {z}, to create a dominating set.  This means that ∂x(BP5,n−5 )  =   

2n−1 − 2. A subset not containing x may have w in it or not. Thus 

 
 

∂(BP5,n−5 ) = ∂x̂w (BP5,n−5 ) + ∂x̂ŵ(BP5,n−5 ). 

 
If w is in the set, we can build a dominating set by taking any nonempty subset of the 

remaining n − 2 vertices except {z} so ∂x̂w(BP       ) = 2n−2 − 2.  If w is not in the set 

then we must have a combination of z and v in our dominating sets. So, 

 
 

∂x̂ŵ(BP5,n−5 ) = ∂x̂ŵzv (BP5,n−5 ) + ∂x̂ŵzv̂(BP5,n−5 ) + ∂x̂ŵẑv (BP5,n−5 ). 

 

The  sets  counting  both  z  and  v  are  dominating,  so  ∂x̂ŵzv(BP5,n−5)  =  2n−4.   If  z 

is in the set but not v then we can take a nonempty subset of the n − 4 meaning 

∂x̂ŵzv̂(BP5,n−5) = 2n−4 − 1.  Lastly if v is in the set but z  is not then we can take any 

nonempty subset of the n − 4 vertices excluding just y  so we have ∂x̂ŵẑv(BP5,n−5 ) = 

2n−4 − 2. Adding these together gives us 

 
∂x̂ŵ(BP5,n−5 ) = 2n−4 + (2n−4 − 1) + (2n−4 − 2) = 3 · 2n−4 − 3. 
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5,n−5 

− · − · −P x P x̂ P 

· · − ·P P 

· P P  P 

· ·P  P 

2 2 2 2 

Thus,  
∂x (̂BP ) = (2n−2 − 2) + 3 · 2n−4 − 3 = 7 · 2n−4 − 5. 

 

So, 
 

 
 

∂(B ) = ∂ (B )+ ∂ (B ) = 2n−1 2 + 7  2n−4 5 = 15  2n−4 7. 
5,n−5 5,n−5 5,n−5 

 

 

Therefore, 
 

 
 

∂(B )+ ∂(B ) = 11  2n−5 + 9 +  15  2n−4 7 = 41 2n−5 + 2. 
5,n−5 5,n−5 

 
 
 

 

 
Comparing ∂(B )+∂(B ) = 41 2n−5+2 to the previous broom ∂(B )+ 

5,n−5 5,n−5 4,n−4 
 

∂(B ) = 5 2n−2 = 40 2n−5 we see that B and its complement produce more 
4,n−4 5,n−5 

dominating sets as BP4,n−4 and its complement. We have established that increasing  

the length of the path of the broom increases the number of dominating sets in the 

broom and its complement. However,  we  know the number of dominating sets in  

the broom and its complement cannot keep increasing as we increase the length of 

the path, because eventually the broom would just be a path and we’ve already 

established that ∂(Pn) + ∂(Pn) are not an upper bound for the Nordhaus-Gaddum 

sum inequality for trees. This means at some point the number of dominating sets 

must reach the peak and then start to decrease as the length of the path of the broom 

increases. So, our conjecture is the following 

 

Conjecture 1. Let T be a tree with complement T then 
 
 

∂(T )+ ∂(T ) ≤ ∂(BP n , n )+ ∂(BP n , n ). 

 

We believe that the broom with it’s vertices evenly split between the path and 
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the leaves will yield the largest number of dominating sets for the class of trees. 
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