199 research outputs found

    The xSAP Safety Analysis Platform

    Full text link
    This paper describes the xSAP safety analysis platform. xSAP provides several model-based safety analysis features for finite- and infinite-state synchronous transition systems. In particular, it supports library-based definition of fault modes, an automatic model extension facility, generation of safety analysis artifacts such as Dynamic Fault Trees (DFTs) and Failure Mode and Effects Analysis (FMEA) tables. Moreover, it supports probabilistic evaluation of Fault Trees, failure propagation analysis using Timed Failure Propagation Graphs (TFPGs), and Common Cause Analysis (CCA). xSAP has been used in several industrial projects as verification back-end, and is currently being evaluated in a joint R&D Project involving FBK and The Boeing Company

    SAT-based Explicit LTL Reasoning

    Full text link
    We present here a new explicit reasoning framework for linear temporal logic (LTL), which is built on top of propositional satisfiability (SAT) solving. As a proof-of-concept of this framework, we describe a new LTL satisfiability tool, Aalta\_v2.0, which is built on top of the MiniSAT SAT solver. We test the effectiveness of this approach by demonnstrating that Aalta\_v2.0 significantly outperforms all existing LTL satisfiability solvers. Furthermore, we show that the framework can be extended from propositional LTL to assertional LTL (where we allow theory atoms), by replacing MiniSAT with the Z3 SMT solver, and demonstrating that this can yield an exponential improvement in performance

    Model-checking infinite-state nuclear safety I&C systems with nuXmv

    Get PDF

    NuRV: A nuXmv Extension for Runtime Verification

    Get PDF
    We present NuRV, an extension of the nuXmv model checker for assumption-based LTL runtime verification with partial observability and resets. The tool provides some new commands for online/offline monitoring and code generations into standalone monitor code. Using the online/offline monitor, LTL properties can be verified incrementally on finite traces from the system under scrutiny. The code generation currently supports C, C++, Common Lisp and Java, and is extensible. Furthermore, from the same internal monitor automaton, the monitor can be generated into SMV modules, whose characteristics can be verified by Model Checking using nuXmv. We show the architecture, functionalities and some use scenarios of NuRV, and we compare the performance of generated monitor code (in Java) with those generated by a similar tool, RV-Monitor. We show that, using a benchmark from Dwyer's LTL patterns, besides the capacity of generating monitors for long LTL formulae, our Java-based monitors are about 200x faster than RV-Monitor at generation-time and 2–5x faster at runtime

    Satisfiability Checking for Mission-Time LTL

    Get PDF
    Mission-time LTL (MLTL) is a bounded variant of MTL over naturals designed to generically specify requirements for mission-based system operation common to aircraft, spacecraft, vehicles, and robots. Despite the utility of MLTL as a specification logic, major gaps remain in analyzing MLTL, e.g., for specification debugging or model checking, centering on the absence of any complete MLTL satisfiability checker. We prove that the MLTL satisfiability checking problem is NEXPTIME-complete and that satisfiability checking MLTL0 , the variant of MLTL where all intervals start at 0, is PSPACE-complete. We introduce translations for MLTL-to-LTL, MLTL-to-LTLf , MLTL-to-SMV, and MLTL-to-SMT, creating four options for MLTL satisfiability checking. Our extensive experimental evaluation shows that the MLTL-to-SMT transition with the Z3 SMT solver offers the most scalable performance

    Model-checking I&C logics — insights from over a decade of projects in Finland

    Get PDF

    Model Checking of Stream Processing Pipelines

    Get PDF
    Event stream processing (ESP) is the application of a computation to a set of input sequences of arbitrary data objects, called "events", in order to produce other sequences of data objects. In recent years, a large number of ESP systems have been developed; however, none of them is easily amenable to a formal verification of properties on their execution. In this paper, we show how stream processing pipelines built with an existing ESP library called BeepBeep 3 can be exported as a Kripke structure for the NuXmv model checker. This makes it possible to formally verify properties on these pipelines, and opens the way to the use of such pipelines directly within a model checker as an extension of its specification language
    • …
    corecore