31,360 research outputs found

    Generalization of the convex-hull-and-line traveling salesman problem

    Get PDF
    Two instances of the traveling salesman problem, on the same node set (1,2 n} but with different cost matrices C and C, are equivalent iff there exist {a, hi: -1, n} such that for any 1 _i, j _n, j, C(i, j) C(i,j) q-a -t-bj [7]. One ofthe well-solved special cases of the traveling salesman problem (TSP) is the convex-hull-and-line TSP. We extend the solution scheme for this class of TSP given in [9] to a more general class which is closed with respect to the above equivalence relation. The cost matrix in our general class is a certain composition of Kalmanson matrices. This gives a new, non-trivial solvable case of TSP

    The Maximum Scatter TSP on a Regular Grid

    Get PDF
    In the maximum scatter traveling salesman problem the objective is to find a tour that maximizes the shortest distance between any two consecutive nodes. This model can be applied to manufacturing processes, particularly laser melting processes. We extend an algorithm by Arkin et al. that yields optimal solutions for nodes on a line to a regular m×nm \times n-grid. The new algorithm \textsc{Weave}(m,n) takes linear time to compute an optimal tour in some cases. It is asymptotically optimal and a 105\frac{\sqrt{10}}{5}-approximation for the 3×43\times 4-grid, which is the worst case.Comment: 6 pages, 2 figures; to appear in OR Proceedings 201

    On the Approximability of the Traveling Salesman Problem with Line Neighborhoods

    Get PDF
    We study the variant of the Euclidean Traveling Salesman problem where instead of a set of points, we are given a set of lines as input, and the goal is to find the shortest tour that visits each line. The best known upper and lower bounds for the problem in Rd\mathbb{R}^d, with d3d\ge 3, are NP\mathrm{NP}-hardness and an O(log3n)O(\log^3 n)-approximation algorithm which is based on a reduction to the group Steiner tree problem. We show that TSP with lines in Rd\mathbb{R}^d is APX-hard for any d3d\ge 3. More generally, this implies that TSP with kk-dimensional flats does not admit a PTAS for any 1kd21\le k \leq d-2 unless P=NP\mathrm{P}=\mathrm{NP}, which gives a complete classification of the approximability of these problems, as there are known PTASes for k=0k=0 (i.e., points) and k=d1k=d-1 (hyperplanes). We are able to give a stronger inapproximability factor for d=O(logn)d=O(\log n) by showing that TSP with lines does not admit a (2ϵ)(2-\epsilon)-approximation in dd dimensions under the unique games conjecture. On the positive side, we leverage recent results on restricted variants of the group Steiner tree problem in order to give an O(log2n)O(\log^2 n)-approximation algorithm for the problem, albeit with a running time of nO(loglogn)n^{O(\log\log n)}

    On the Approximability of the Traveling Salesman Problem with Line Neighborhoods

    Get PDF
    We study the variant of the Euclidean Traveling Salesman problem where instead of a set of points, we are given a set of lines as input, and the goal is to find the shortest tour that visits each line. The best known upper and lower bounds for the problem in Rd\mathbb{R}^d, with d3d\ge 3, are NP\mathrm{NP}-hardness and an O(log3n)O(\log^3 n)-approximation algorithm which is based on a reduction to the group Steiner tree problem. We show that TSP with lines in Rd\mathbb{R}^d is APX-hard for any d3d\ge 3. More generally, this implies that TSP with kk-dimensional flats does not admit a PTAS for any 1kd21\le k \leq d-2 unless P=NP\mathrm{P}=\mathrm{NP}, which gives a complete classification of the approximability of these problems, as there are known PTASes for k=0k=0 (i.e., points) and k=d1k=d-1 (hyperplanes). We are able to give a stronger inapproximability factor for d=O(logn)d=O(\log n) by showing that TSP with lines does not admit a (2ϵ)(2-\epsilon)-approximation in dd dimensions under the unique games conjecture. On the positive side, we leverage recent results on restricted variants of the group Steiner tree problem in order to give an O(log2n)O(\log^2 n)-approximation algorithm for the problem, albeit with a running time of nO(loglogn)n^{O(\log\log n)}

    The Traveling Salesman Problem Under Squared Euclidean Distances

    Get PDF
    Let PP be a set of points in Rd\mathbb{R}^d, and let α1\alpha \ge 1 be a real number. We define the distance between two points p,qPp,q\in P as pqα|pq|^{\alpha}, where pq|pq| denotes the standard Euclidean distance between pp and qq. We denote the traveling salesman problem under this distance function by TSP(d,αd,\alpha). We design a 5-approximation algorithm for TSP(2,2) and generalize this result to obtain an approximation factor of 3α1+6α/33^{\alpha-1}+\sqrt{6}^{\alpha}/3 for d=2d=2 and all α2\alpha\ge2. We also study the variant Rev-TSP of the problem where the traveling salesman is allowed to revisit points. We present a polynomial-time approximation scheme for Rev-TSP(2,α)(2,\alpha) with α2\alpha\ge2, and we show that Rev-TSP(d,α)(d, \alpha) is APX-hard if d3d\ge3 and α>1\alpha>1. The APX-hardness proof carries over to TSP(d,α)(d, \alpha) for the same parameter ranges.Comment: 12 pages, 4 figures. (v2) Minor linguistic change
    corecore