research

The Traveling Salesman Problem Under Squared Euclidean Distances

Abstract

Let PP be a set of points in Rd\mathbb{R}^d, and let α1\alpha \ge 1 be a real number. We define the distance between two points p,qPp,q\in P as pqα|pq|^{\alpha}, where pq|pq| denotes the standard Euclidean distance between pp and qq. We denote the traveling salesman problem under this distance function by TSP(d,αd,\alpha). We design a 5-approximation algorithm for TSP(2,2) and generalize this result to obtain an approximation factor of 3α1+6α/33^{\alpha-1}+\sqrt{6}^{\alpha}/3 for d=2d=2 and all α2\alpha\ge2. We also study the variant Rev-TSP of the problem where the traveling salesman is allowed to revisit points. We present a polynomial-time approximation scheme for Rev-TSP(2,α)(2,\alpha) with α2\alpha\ge2, and we show that Rev-TSP(d,α)(d, \alpha) is APX-hard if d3d\ge3 and α>1\alpha>1. The APX-hardness proof carries over to TSP(d,α)(d, \alpha) for the same parameter ranges.Comment: 12 pages, 4 figures. (v2) Minor linguistic change

    Similar works