1,333 research outputs found

    Neural Classifier Systems for Histopathologic Diagnosis

    Full text link
    Neural network and statistical classification methods were applied to derive an objective grading for moderately and poorly differentiated lesions, based on characteristics of the nuclear placement patterns. Using a multilayer network after abbreviated training as a feature extractor followed by a quadratic Bayesian classifier allowed grade assignment agreeing with visual diagnostic consensus in 96% of fields from the training set of 500 fields, and a 77% of 130 fields of a test set

    A new model-discriminant training algorithm for hybrid NN-HMM systems

    Get PDF
    This paper describes a hybrid system for continuous speech recognition consisting of a neural network (NN) and a hidden Markov model (HMM). The system is based on a multilayer perceptron, which approximates the a-posteriori probability of a sequence of states, derived from semi-continuous hidden Markov models. The classification is based on a total score for each hybrid model, attained from a Viterbi search on the state probabilities. Due to the unintended discrimination between the states in each model, a new training algorithm for the hybrid neural networks is presented. The utilized error function approximates the misclassification rate of the hybrid system. The discriminance between the correct and the incorrect models is optimized during the training by the "Generalized Probabilistic Descent Algorithm\u27;, resulting in a minimum classification error. No explicit target values for the neural net output nodes are used, as in the usual backpropagation algorithm with a quadratic error function. In basic experiments up to 56% recognition rate were achieved on a vowel classification task and up to 69 % on a consonant cluster classification task

    Neural Network Analysis of Chemical Compounds in Nonrebreathing Fisher-344 Rat Breath

    Get PDF
    This research applies statistical and artificial neural network analysis to data obtained from measurement of organic compounds in the breath of a Fisher-344 rat. The Research Triangle Institute (RTI) developed a breath collection system for use with rats in order to collect and determine volatile organic compounds (VOCs) exhaled. The RTI study tested the hypothesis that VOCs, including endogenous compounds, in breath can serve as markers to exposure to various chemical compounds such as drugs, pesticides, or carcinogens normally foreign to living organisms. From a comparative analysis of chromatograms, it was concluded that the administration of carbon tetrachloride dramatically altered the VOCs measured in breath; both the compounds detected and their amounts were greatly impacted using the data supplied by RTI. This research will show that neural network analysis and classification can be used to discriminate between exposure to carbon tetrachloride versus no exposure and find the chemical compounds in rat breath that best discriminate between a dosage of carbon tetrachloride and either a vehicle control or no dose at all. For the data set analyzed, 100 percent classification accuracy was achieved in classifying two cases of exposure versus no exposure. The top three marker compounds were identified for each of three classification cases. The results obtained show that neural networks can be effectively used to analyze complex chromatographic data

    Combined optimization algorithms applied to pattern classification

    Get PDF
    Accurate classification by minimizing the error on test samples is the main goal in pattern classification. Combinatorial optimization is a well-known method for solving minimization problems, however, only a few examples of classifiers axe described in the literature where combinatorial optimization is used in pattern classification. Recently, there has been a growing interest in combining classifiers and improving the consensus of results for a greater accuracy. In the light of the "No Ree Lunch Theorems", we analyse the combination of simulated annealing, a powerful combinatorial optimization method that produces high quality results, with the classical perceptron algorithm. This combination is called LSA machine. Our analysis aims at finding paradigms for problem-dependent parameter settings that ensure high classifica, tion results. Our computational experiments on a large number of benchmark problems lead to results that either outperform or axe at least competitive to results published in the literature. Apart from paxameter settings, our analysis focuses on a difficult problem in computation theory, namely the network complexity problem. The depth vs size problem of neural networks is one of the hardest problems in theoretical computing, with very little progress over the past decades. In order to investigate this problem, we introduce a new recursive learning method for training hidden layers in constant depth circuits. Our findings make contributions to a) the field of Machine Learning, as the proposed method is applicable in training feedforward neural networks, and to b) the field of circuit complexity by proposing an upper bound for the number of hidden units sufficient to achieve a high classification rate. One of the major findings of our research is that the size of the network can be bounded by the input size of the problem and an approximate upper bound of 8 + √2n/n threshold gates as being sufficient for a small error rate, where n := log/SL and SL is the training set

    Development of soft computing and applications in agricultural and biological engineering

    Get PDF
    Soft computing is a set of “inexact” computing techniques, which are able to model and analyze very complex problems. For these complex problems, more conventional methods have not been able to produce cost-effective, analytical, or complete solutions. Soft computing has been extensively studied and applied in the last three decades for scientific research and engineering computing. In agricultural and biological engineering, researchers and engineers have developed methods of fuzzy logic, artificial neural networks, genetic algorithms, decision trees, and support vector machines to study soil and water regimes related to crop growth, analyze the operation of food processing, and support decision-making in precision farming. This paper reviews the development of soft computing techniques. With the concepts and methods, applications of soft computing in the field of agricultural and biological engineering are presented, especially in the soil and water context for crop management and decision support in precision agriculture. The future of development and application of soft computing in agricultural and biological engineering is discussed

    Multilayer probability extreme learning machine for device-free localization

    Get PDF
    Device-free localization (DFL) is becoming one of the new techniques in wireless localization field, due to its advantage that the target to be localized does not need to attach any electronic device. One of the key issues of DFL is how to characterize the influence of the target on the wireless links, such that the target’s location can be accurately estimated by analyzing the changes of the signals of the links. Most of the existing related research works usually extract the useful information from the links through manual approaches, which are labor-intensive and time-consuming. Deep learning approaches have attempted to automatically extract the useful information from the links, but the training of the conventional deep learning approaches are time-consuming, because a large number of parameters need to be fine-tuned multiple times. Motivated by the fast learning speed and excellent generalization performance of extreme learning machine (ELM), which is an emerging training approach for generalized single hidden layer feedforward neural networks (SLFNs), this paper proposes a novel hierarchical ELM based on deep learning theory, named multilayer probability ELM (MP-ELM), for automatically extracting the useful information from the links, and implementing fast and accurate DFL. The proposed MP-ELM is stacked by ELM autoencoders, so it also keeps the very fast learning speed of ELM. In addition, considering the uncertainty and redundant links existing in DFL, MP-ELM outputs the probabilistic estimation of the target’s location instead of the deterministic output. The validity of the proposed MP-ELM-based DFL is evaluated both in the indoor and the outdoor environments, respectively. Experimental results demonstrate that the proposed MP-ELM can obtain better performance compared with classic ELM, multilayer ELM (ML-ELM), hierarchical ELM (H-ELM), deep belief network (DBN), and deep Boltzmann machine (DBM)

    An Optimized Recursive General Regression Neural Network Oracle for the Prediction and Diagnosis of Diabetes

    Get PDF
    Diabetes is a serious, chronic disease that has been seeing a rise in the number of cases and prevalence over the past few decades. It can lead to serious complications and can increase the overall risk of dying prematurely. Data-oriented prediction models have become effective tools that help medical decision-making and diagnoses in which the use of machine learning in medicine has increased substantially. This research introduces the Recursive General Regression Neural Network Oracle (R-GRNN Oracle) and is applied on the Pima Indians Diabetes dataset for the prediction and diagnosis of diabetes. The R-GRNN Oracle (Bani-Hani, 2017) is an enhancement to the GRNN Oracle developed by Masters et al. in 1998, in which the recursive model is created of two oracles: one within the other. Several classifiers, along with the R-GRNN Oracle and the GRNN Oracle, are applied to the dataset, they are: Support Vector Machine (SVM), Multilayer Perceptron (MLP), Probabilistic Neural Network (PNN), Gaussian NaEF;ve Bayes (GNB), K-Nearest Neighbor (KNN), and Random Forest (RF). Genetic Algorithm (GA) was used for feature selection as well as the hyperparameter optimization of SVM and MLP, and Grid Search (GS) was used to optimize the hyperparameters of KNN and RF. The performance metrics accuracy, AUC, sensitivity, and specificity were recorded for each classifier. The R-GRNN Oracle was able to achieve the highest accuracy, AUC, and sensitivity (81.14%, 86.03%, and 63.80%, respectively), while the optimized MLP had the highest specificity (89.71%)

    Optimization of distributions differences for classification

    Full text link
    In this paper we introduce a new classification algorithm called Optimization of Distributions Differences (ODD). The algorithm aims to find a transformation from the feature space to a new space where the instances in the same class are as close as possible to one another while the gravity centers of these classes are as far as possible from one another. This aim is formulated as a multiobjective optimization problem that is solved by a hybrid of an evolutionary strategy and the Quasi-Newton method. The choice of the transformation function is flexible and could be any continuous space function. We experiment with a linear and a non-linear transformation in this paper. We show that the algorithm can outperform 6 other state-of-the-art classification methods, namely naive Bayes, support vector machines, linear discriminant analysis, multi-layer perceptrons, decision trees, and k-nearest neighbors, in 12 standard classification datasets. Our results show that the method is less sensitive to the imbalanced number of instances comparing to these methods. We also show that ODD maintains its performance better than other classification methods in these datasets, hence, offers a better generalization ability
    corecore