167 research outputs found

    Mouse Genome Informatics (MGI): latest news from MGD and GXD.

    Get PDF
    The Mouse Genome Informatics (MGI) database system combines multiple expertly curated community data resources into a shared knowledge management ecosystem united by common metadata annotation standards. MGI\u27s mission is to facilitate the use of the mouse as an experimental model for understanding the genetic and genomic basis of human health and disease. MGI is the authoritative source for mouse gene, allele, and strain nomenclature and is the primary source of mouse phenotype annotations, functional annotations, developmental gene expression information, and annotations of mouse models with human diseases. MGI maintains mouse anatomy and phenotype ontologies and contributes to the development of the Gene Ontology and Disease Ontology and uses these ontologies as standard terminologies for annotation. The Mouse Genome Database (MGD) and the Gene Expression Database (GXD) are MGI\u27s two major knowledgebases. Here, we highlight some of the recent changes and enhancements to MGD and GXD that have been implemented in response to changing needs of the biomedical research community and to improve the efficiency of expert curation. MGI can be accessed freely at http://www.informatics.jax.org

    More than a decade of developmental gene expression atlases: where are we now?

    Get PDF
    To unravel regulatory networks of genes functioning during embryonic development, information on in situ gene expression is required. Enormous amounts of such data are available in literature, where each paper reports on a limited number of genes and developmental stages. The best way to make these data accessible is via spatio-temporal gene expression atlases. Eleven atlases, describing developing vertebrates and covering at least 100 genes, were reviewed. This review focuses on: (i) the used anatomical framework, (ii) the handling of input data and (iii) the retrieval of information. Our aim is to provide insights into both the possibilities of the atlases, as well as to describe what more than a decade of developmental gene expression atlases can teach us about the requirements of the design of the ‘ideal atlas’. This review shows that most ingredients needed to develop the ideal atlas are already applied to some extent in at least one of the discussed atlases. A review of these atlases shows that the ideal atlas should be based on a spatial framework, i.e. a series of 3D reference models, which is anatomically annotated using an ontology with sufficient resolution, both for relations as well as for anatomical terms

    aGEM: an integrative system for analyzing spatial-temporal gene-expression information

    Get PDF
    Motivation: The work presented here describes the ‘anatomical Gene-Expression Mapping (aGEM)’ Platform, a development conceived to integrate phenotypic information with the spatial and temporal distributions of genes expressed in the mouse. The aGEM Platform has been built by extending the Distributed Annotation System (DAS) protocol, which was originally designed to share genome annotations over the WWW. DAS is a client-server system in which a single client integrates information from multiple distributed servers

    EMAGE—Edinburgh Mouse Atlas of Gene Expression: 2008 update

    Get PDF
    EMAGE (http://genex.hgu.mrc.ac.uk/Emage/database) is a database of in situ gene expression patterns in the developing mouse embryo. Domains of expression from raw data images are spatially integrated into a set of standard 3D virtual mouse embryos at different stages of development, allowing data interrogation by spatial methods. Sites of expression are also described using an anatomy ontology and data can be queried using text-based methods. Here we describe recent enhancements to EMAGE which include advances in spatial search methods including: a refined local spatial similarity search algorithm, a method to allow global spatial comparison of patterns in EMAGE and subsequent hierarchical-clustering, and spatial searches across multiple stages of development. In addition, we have extended data access by the introduction of web services and new HTML-based search interfaces, which allow access to data that has not yet been spatially annotated. We have also started incorporating full 3D images of gene expression that have been generated using optical projection tomography (OPT)

    4DXpress: a database for cross-species expression pattern comparisons

    Get PDF
    In the major animal model species like mouse, fish or fly, detailed spatial information on gene expression over time can be acquired through whole mount in situ hybridization experiments. In these species, expression patterns of many genes have been studied and data has been integrated into dedicated model organism databases like ZFIN for zebrafish, MEPD for medaka, BDGP for Drosophila or GXD for mouse. However, a central repository that allows users to query and compare gene expression patterns across different species has not yet been established. Therefore, we have integrated expression patterns for zebrafish, Drosophila, medaka and mouse into a central public repository called 4DXpress (expression database in four dimensions). Users can query anatomy ontology-based expression annotations across species and quickly jump from one gene to the orthologues in other species. Genes are linked to public microarray data in ArrayExpress. We have mapped developmental stages between the species to be able to compare developmental time phases. We store the largest collection of gene expression patterns available to date in an individual resource, reflecting 16 505 annotated genes. 4DXpress will be an invaluable tool for developmental as well as for computational biologists interested in gene regulation and evolution. 4DXpress is available at http://ani.embl.de/4DXpress
    corecore