7,968 research outputs found

    Labeling Uncertainty in Multitarget Tracking

    Get PDF
    In multitarget tracking, the problem of track labeling (assigning labels to tracks) is an ongoing research topic. The existing literature, however, lacks an appropriate measure of uncertainty related to the assigned labels that has a sound mathematical basis as well as clear practical meaning to the user. This is especially important in a situation where well separated targets move in close proximity with each other and thereafter separate again; in such a situation, it is well known that there will be confusion on target identities, also known as "mixed labeling." In this paper, we specify comprehensively the necessary assumptions for a Bayesian formulation of the multitarget tracking and labeling (MTTL) problem to be meaningful. We provide a mathematical characterization of the labeling uncertainties with clear physical interpretation. We also propose a novel labeling procedure that can be used in combination with any existing (unlabeled) MTT algorithm to obtain a Bayesian solution to the MTTL problem. One advantage of the resulting solution is that it readily provides the labeling uncertainty measures. Using the mixed labeling phenomenon in the presence of two targets as our test bed, we show with simulation results that an unlabeled multitarget sequential Monte Carlo (M-SMC) algorithm that employs sequential importance resampling (SIR) augmented with our labeling procedure performs much better than its "naive" extension, the labeled SIR M-SMC filter

    An analysis of the Bayesian track labelling problem

    Get PDF
    In multi-target tracking (MTT), the problem of assigning labels to tracks (track labelling) is vastly covered in literature, but its exact mathematical formulation, in terms of Bayesian statistics, has not been yet looked at in detail. Doing so, however, may help us to understand how Bayes-optimal track labelling should be performed or numerically approximated. Moreover, it can help us to better understand and tackle some practical difficulties associated with the MTT problem, in particular the so-called ``mixed labelling'' phenomenon that has been observed in MTT algorithms. In this memorandum, we rigorously formulate the optimal track labelling problem using Finite Set Statistics (FISST), and look in detail at the mixed labeling phenomenon. As practical contributions of the memorandum, we derive a new track extraction formulation with some nice properties and a statistic associated with track labelling with clear physical meaning. Additionally, we show how to calculate this statistic for two well-known MTT algorithms

    On the Monte Carlo marginal MAP estimator for general state space models

    Get PDF

    PPF - A Parallel Particle Filtering Library

    Full text link
    We present the parallel particle filtering (PPF) software library, which enables hybrid shared-memory/distributed-memory parallelization of particle filtering (PF) algorithms combining the Message Passing Interface (MPI) with multithreading for multi-level parallelism. The library is implemented in Java and relies on OpenMPI's Java bindings for inter-process communication. It includes dynamic load balancing, multi-thread balancing, and several algorithmic improvements for PF, such as input-space domain decomposition. The PPF library hides the difficulties of efficient parallel programming of PF algorithms and provides application developers with the necessary tools for parallel implementation of PF methods. We demonstrate the capabilities of the PPF library using two distributed PF algorithms in two scenarios with different numbers of particles. The PPF library runs a 38 million particle problem, corresponding to more than 1.86 GB of particle data, on 192 cores with 67% parallel efficiency. To the best of our knowledge, the PPF library is the first open-source software that offers a parallel framework for PF applications.Comment: 8 pages, 8 figures; will appear in the proceedings of the IET Data Fusion & Target Tracking Conference 201

    Efficient characterization of labeling uncertainty in closely-spaced targets tracking

    Get PDF
    In this paper we propose a novel solution to the labeled multi-target tracking problem. The method presented is specially effective in scenarios where the targets have once moved in close proximity. When this is the case, disregarding the labeling uncertainty present in a solution (after the targets split) may lead to a wrong decision by the end user. We take a closer look at the main cause of the labeling problem. By modeling the possible crosses between the targets, we define some relevant labeled point estimates. We extend the concept of crossing objects, which is obvious in one dimension, to scenarios where the objects move in multiple dimensions. Moreover, we provide a measure of uncertainty associated to the proposed solution to tackle the labeling problem. We develop a novel, scalable and modular framework in line with it. The proposed method is applied and analyzed on the basis of one-dimensional objects and two-dimensional objects simulation experiments

    Dynamic Occupancy Grid Prediction for Urban Autonomous Driving: A Deep Learning Approach with Fully Automatic Labeling

    Full text link
    Long-term situation prediction plays a crucial role in the development of intelligent vehicles. A major challenge still to overcome is the prediction of complex downtown scenarios with multiple road users, e.g., pedestrians, bikes, and motor vehicles, interacting with each other. This contribution tackles this challenge by combining a Bayesian filtering technique for environment representation, and machine learning as long-term predictor. More specifically, a dynamic occupancy grid map is utilized as input to a deep convolutional neural network. This yields the advantage of using spatially distributed velocity estimates from a single time step for prediction, rather than a raw data sequence, alleviating common problems dealing with input time series of multiple sensors. Furthermore, convolutional neural networks have the inherent characteristic of using context information, enabling the implicit modeling of road user interaction. Pixel-wise balancing is applied in the loss function counteracting the extreme imbalance between static and dynamic cells. One of the major advantages is the unsupervised learning character due to fully automatic label generation. The presented algorithm is trained and evaluated on multiple hours of recorded sensor data and compared to Monte-Carlo simulation

    A Bayesian solution to multi-target tracking problems with mixed labelling

    Get PDF
    In Multi-Target Tracking (MTT), the problem of assigning labels to tracks (track labelling) is vastly covered in literature and has been previously formulated using Bayesian recursion. However, the existing literature lacks an appropriate measure of uncertainty related to the assigned labels which has sound mathematical basis and clear practical meaning (to the user). This is especially important in a situation where targets move in close proximity with each other and thereafter separate again. Because, in such a situation it is well-known that there will be confusion on target identities, also known as “mixed labelling‿. In this paper, we provide a mathematical characterization of the labelling uncertainties present in Bayesian multi-target tracking and labelling (MTTL) problems and define measures of labelling uncertainties with clear physical interpretation. The introduced uncertainty measures can be used to find the optimal track label assignment, and evaluate track labelling performance. We also analyze in details the mixed labelling phenomenon in the presence of two targets. In addition, we propose a new Sequential Monte Carlo (SMC) algorithm, the Labelling Uncertainty Aware Particle Filter (LUA-PF), for the multi target tracking and labelling problem that can provide good estimates of the uncertainty measures. We validate this using simulation and show that the proposed method performs much better when compared with the performance of the SIR multi-target SMC filter

    A Survey of Recent Advances in Particle Filters and Remaining Challenges for Multitarget Tracking

    Get PDF
    [EN]We review some advances of the particle filtering (PF) algorithm that have been achieved in the last decade in the context of target tracking, with regard to either a single target or multiple targets in the presence of false or missing data. The first part of our review is on remarkable achievements that have been made for the single-target PF from several aspects including importance proposal, computing efficiency, particle degeneracy/impoverishment and constrained/multi-modal systems. The second part of our review is on analyzing the intractable challenges raised within the general multitarget (multi-sensor) tracking due to random target birth and termination, false alarm, misdetection, measurement-to-track (M2T) uncertainty and track uncertainty. The mainstream multitarget PF approaches consist of two main classes, one based on M2T association approaches and the other not such as the finite set statistics-based PF. In either case, significant challenges remain due to unknown tracking scenarios and integrated tracking management
    corecore