37,221 research outputs found

    Networking - A Statistical Physics Perspective

    Get PDF
    Efficient networking has a substantial economic and societal impact in a broad range of areas including transportation systems, wired and wireless communications and a range of Internet applications. As transportation and communication networks become increasingly more complex, the ever increasing demand for congestion control, higher traffic capacity, quality of service, robustness and reduced energy consumption require new tools and methods to meet these conflicting requirements. The new methodology should serve for gaining better understanding of the properties of networking systems at the macroscopic level, as well as for the development of new principled optimization and management algorithms at the microscopic level. Methods of statistical physics seem best placed to provide new approaches as they have been developed specifically to deal with non-linear large scale systems. This paper aims at presenting an overview of tools and methods that have been developed within the statistical physics community and that can be readily applied to address the emerging problems in networking. These include diffusion processes, methods from disordered systems and polymer physics, probabilistic inference, which have direct relevance to network routing, file and frequency distribution, the exploration of network structures and vulnerability, and various other practical networking applications.Comment: (Review article) 71 pages, 14 figure

    High performance computing of explicit schemes for electrofusion jointing process based on message-passing paradigm

    Get PDF
    The research focused on heterogeneous cluster workstations comprising of a number of CPUs in single and shared architecture platform. The problem statements under consideration involved one dimensional parabolic equations. The thermal process of electrofusion jointing was also discussed. Numerical schemes of explicit type such as AGE, Brian, and Charlies Methods were employed. The parallelization of these methods were based on the domain decomposition technique. Some parallel performance measurement for these methods were also addressed. Temperature profile of the one dimensional radial model of the electrofusion process were also given

    Exploiting replication in distributed systems

    Get PDF
    Techniques are examined for replicating data and execution in directly distributed systems: systems in which multiple processes interact directly with one another while continuously respecting constraints on their joint behavior. Directly distributed systems are often required to solve difficult problems, ranging from management of replicated data to dynamic reconfiguration in response to failures. It is shown that these problems reduce to more primitive, order-based consistency problems, which can be solved using primitives such as the reliable broadcast protocols. Moreover, given a system that implements reliable broadcast primitives, a flexible set of high-level tools can be provided for building a wide variety of directly distributed application programs

    CSP channels for CAN-bus connected embedded control systems

    Get PDF
    Closed loop control system typically contains multitude of sensors and actuators operated simultaneously. So they are parallel and distributed in its essence. But when mapping this parallelism to software, lot of obstacles concerning multithreading communication and synchronization issues arise. To overcome this problem, the CT kernel/library based on CSP algebra has been developed. This project (TES.5410) is about developing communication extension to the CT library to make it applicable in distributed systems. Since the library is tailored for control systems, properties and requirements of control systems are taken into special consideration. Applicability of existing middleware solutions is examined. A comparison of applicable fieldbus protocols is done in order to determine most suitable ones and CAN fieldbus is chosen to be first fieldbus used. Brief overview of CSP and existing CSP based libraries is given. Middleware architecture is proposed along with few novel ideas

    Doing-it-All with Bounded Work and Communication

    Get PDF
    We consider the Do-All problem, where pp cooperating processors need to complete tt similar and independent tasks in an adversarial setting. Here we deal with a synchronous message passing system with processors that are subject to crash failures. Efficiency of algorithms in this setting is measured in terms of work complexity (also known as total available processor steps) and communication complexity (total number of point-to-point messages). When work and communication are considered to be comparable resources, then the overall efficiency is meaningfully expressed in terms of effort defined as work + communication. We develop and analyze a constructive algorithm that has work O(t+plog⁥p (plog⁥p+tlog⁥t ))O( t + p \log p\, (\sqrt{p\log p}+\sqrt{t\log t}\, ) ) and a nonconstructive algorithm that has work O(t+plog⁥2p)O(t +p \log^2 p). The latter result is close to the lower bound Ω(t+plog⁥p/log⁥log⁥p)\Omega(t + p \log p/ \log \log p) on work. The effort of each of these algorithms is proportional to its work when the number of crashes is bounded above by c pc\,p, for some positive constant c<1c < 1. We also present a nonconstructive algorithm that has effort O(t+p1.77)O(t + p ^{1.77})
    • 

    corecore