2,149 research outputs found

    Modeling Land-Cover Types Using Multiple Endmember Spectral Mixture Analysis in a Desert City

    Get PDF
    Spectral mixture analysis is probably the most commonly used approach among sub-pixel analysis techniques. This method models pixel spectra as a linear combination of spectral signatures from two or more ground components. However, spectral mixture analysis does not account for the absence of one of the surface features or spectral variation within pure materials since it utilizes an invariable set of surface features. Multiple endmember spectral mixture analysis (MESMA), which addresses these issues by allowing endmembers to vary on a per pixel basis, was employed in this study to model Landsat ETM+ reflectance in the Phoenix metropolitan area. Image endmember spectra of vegetation, soils, and impervious surfaces were collected with the use of a fine resolution Quickbird image and the pixel purity index. This study employed 204 (=3x17x4) total four-endmember models for the urban subset and 96 (=6x6x2x4) total five-endmember models for the non-urban subset to identify fractions of soil, impervious surface, vegetation, and shade. The Pearson correlation between the fraction outputs from MESMA and reference data from Quickbird 60 cm resolution data for soil, impervious, and vegetation were 0.8030, 0.8632, and 0.8496 respectively. Results from this study suggest that the MESMA approach is effective in mapping urban land covers in desert cities at sub- pixel level.

    Linear mixing model applied to coarse resolution satellite data

    Get PDF
    A linear mixing model typically applied to high resolution data such as Airborne Visible/Infrared Imaging Spectrometer, Thematic Mapper, and Multispectral Scanner System is applied to the NOAA Advanced Very High Resolution Radiometer coarse resolution satellite data. The reflective portion extracted from the middle IR channel 3 (3.55 - 3.93 microns) is used with channels 1 (0.58 - 0.68 microns) and 2 (0.725 - 1.1 microns) to run the Constrained Least Squares model to generate fraction images for an area in the west central region of Brazil. The derived fraction images are compared with an unsupervised classification and the fraction images derived from Landsat TM data acquired in the same day. In addition, the relationship betweeen these fraction images and the well known NDVI images are presented. The results show the great potential of the unmixing techniques for applying to coarse resolution data for global studies

    Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches

    Get PDF
    Imaging spectrometers measure electromagnetic energy scattered in their instantaneous field view in hundreds or thousands of spectral channels with higher spectral resolution than multispectral cameras. Imaging spectrometers are therefore often referred to as hyperspectral cameras (HSCs). Higher spectral resolution enables material identification via spectroscopic analysis, which facilitates countless applications that require identifying materials in scenarios unsuitable for classical spectroscopic analysis. Due to low spatial resolution of HSCs, microscopic material mixing, and multiple scattering, spectra measured by HSCs are mixtures of spectra of materials in a scene. Thus, accurate estimation requires unmixing. Pixels are assumed to be mixtures of a few materials, called endmembers. Unmixing involves estimating all or some of: the number of endmembers, their spectral signatures, and their abundances at each pixel. Unmixing is a challenging, ill-posed inverse problem because of model inaccuracies, observation noise, environmental conditions, endmember variability, and data set size. Researchers have devised and investigated many models searching for robust, stable, tractable, and accurate unmixing algorithms. This paper presents an overview of unmixing methods from the time of Keshava and Mustard's unmixing tutorial [1] to the present. Mixing models are first discussed. Signal-subspace, geometrical, statistical, sparsity-based, and spatial-contextual unmixing algorithms are described. Mathematical problems and potential solutions are described. Algorithm characteristics are illustrated experimentally.Comment: This work has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensin

    An Image fusion algorithm for spatially enhancing spectral mixture maps

    Get PDF
    An image fusion algorithm, based upon spectral mixture analysis, is presented. The algorithm combines low spatial resolution multi/hyperspectral data with high spatial resolution sharpening image(s) to create high resolution material maps. Spectral (un)mixing estimates the percentage of each material (called endmembers) within each low resolution pixel. The outputs of unmixing are endmember fraction images (material maps) at the spatial resolution of the multispectral system. This research includes developing an improved unmixing algorithm based upon stepwise regression. In the second stage of the process, the unmixing solution is sharpened with data from another sensor to generate high resolution material maps. Sharpening is implemented as a nonlinear optimization using the same type of model as unmixing. Quantifiable results are obtained through the use of synthetically generated imagery. Without synthetic images, a large amount of ground truth would be required in order to measure the accuracy of the material maps. Multiple band sharpening is easily accommodated by the algorithm, and the results are demonstrated at multiple scales. The analysis includes an examination of the effects of constraints and texture variation on the material maps. The results show stepwise unmixing is an improvement over traditional unmixing algorithms. The results also indicate sharpening improves the material maps. The motivation for this research is to take advantage of the next generation of multi/hyperspectral sensors. Although the hyperspectral images will be of modest to low resolution, fusing them with high resolution sharpening images will produce a higher spatial resolution land cover or material map

    Evaluation of two applications of spectral mixing models to image fusion

    Get PDF
    None provided

    Spectral unmixing of Multispectral Lidar signals

    Get PDF
    In this paper, we present a Bayesian approach for spectral unmixing of multispectral Lidar (MSL) data associated with surface reflection from targeted surfaces composed of several known materials. The problem addressed is the estimation of the positions and area distribution of each material. In the Bayesian framework, appropriate prior distributions are assigned to the unknown model parameters and a Markov chain Monte Carlo method is used to sample the resulting posterior distribution. The performance of the proposed algorithm is evaluated using synthetic MSL signals, for which single and multi-layered models are derived. To evaluate the expected estimation performance associated with MSL signal analysis, a Cramer-Rao lower bound associated with model considered is also derived, and compared with the experimental data. Both the theoretical lower bound and the experimental analysis will be of primary assistance in future instrument design

    Joint Bayesian endmember extraction and linear unmixing for hyperspectral imagery

    Get PDF
    This paper studies a fully Bayesian algorithm for endmember extraction and abundance estimation for hyperspectral imagery. Each pixel of the hyperspectral image is decomposed as a linear combination of pure endmember spectra following the linear mixing model. The estimation of the unknown endmember spectra is conducted in a unified manner by generating the posterior distribution of abundances and endmember parameters under a hierarchical Bayesian model. This model assumes conjugate prior distributions for these parameters, accounts for non-negativity and full-additivity constraints, and exploits the fact that the endmember proportions lie on a lower dimensional simplex. A Gibbs sampler is proposed to overcome the complexity of evaluating the resulting posterior distribution. This sampler generates samples distributed according to the posterior distribution and estimates the unknown parameters using these generated samples. The accuracy of the joint Bayesian estimator is illustrated by simulations conducted on synthetic and real AVIRIS images

    Cartografía de severidad de incendios forestales a partir de la combinación del modelo de mezclas espectrales y la clasificación basada en objetos

    Get PDF
    This study shows an accurate and fast methodology in order to evaluate fire severity classes of large forest fires. A single Landsat Enhanced Thematic Mapper multispectral image was utilized in this study with the aim of mapping fire severity classes (high, moderate and low) using a combined-approach based in an spectral mixing model and object-based image analysis. A large wildfire in the Northwest of Spain is used to test the model. Fraction images obtained by Landsat unmixing were used as input data in the object-based image analysis. A multilevel segmentation and a classification were carried out by using membership functions. This method was compared with other simplest ones in order to evaluate the suitability to distinguish between the three fire severity classes above mentioned. McNemar’s test was used to evaluate the statistical significance of the difference between approaches tested in this study. The combined approach achieved the highest accuracy reaching 97.32% and kappa index of agreement of 95.96% and improving accuracy of individual classes.Este estudio presenta una metodología rápida y precisa para la evaluación de los niveles de severidad que afectan a grandes incendios forestales. El trabajo combina un modelo de mezclas espectrales y un análisis de imágenes basado en objetos con el objetivo de cartografiar distintos niveles de severidad (alto, moderado y bajo) empleando una imagen multiespectral Landsat Enhanced Thematic Mapper. Este modelo es testado en un gran incendio forestal ocurrido en el noroeste de España. Las imágenes fracción obtenidas tras aplicar el modelo de mezclas a la imagen Landsat fueron utilizadas como datos de entrada en el análisis basado en objetos. En este se llevó a cabo una segmentación multinivel y una posterior clasificación usando funciones de pertenencia. Esta metodología fue comparada con otras más simples con el fin de evaluar su conveniencia a al hora de distinguir entre los tres niveles de severidad anteriormente mencionados. El test de McNemar fue empleado para evaluar la significancia estadística de la diferencia entre los métodos testados en el estudio. El método combinado alcanzó la más alta precisión con un 97,32% y un índice Kappa del 95,96%, además de mejorar la precisión de los niveles individualmente
    corecore