This paper studies a fully Bayesian algorithm for endmember extraction and
abundance estimation for hyperspectral imagery. Each pixel of the hyperspectral
image is decomposed as a linear combination of pure endmember spectra following
the linear mixing model. The estimation of the unknown endmember spectra is
conducted in a unified manner by generating the posterior distribution of
abundances and endmember parameters under a hierarchical Bayesian model. This
model assumes conjugate prior distributions for these parameters, accounts for
non-negativity and full-additivity constraints, and exploits the fact that the
endmember proportions lie on a lower dimensional simplex. A Gibbs sampler is
proposed to overcome the complexity of evaluating the resulting posterior
distribution. This sampler generates samples distributed according to the
posterior distribution and estimates the unknown parameters using these
generated samples. The accuracy of the joint Bayesian estimator is illustrated
by simulations conducted on synthetic and real AVIRIS images