23,915 research outputs found

    The lattice of embedded subsets

    Get PDF
    In cooperative game theory, games in partition function form are real-valued function on the set of so-called embedded coalitions, that is, pairs (S,π)(S,\pi) where SS is a subset (coalition) of the set NN of players, and π\pi is a partition of NN containing SS. Despite the fact that many studies have been devoted to such games, surprisingly nobody clearly defined a structure (i.e., an order) on embedded coalitions, resulting in scattered and divergent works, lacking unification and proper analysis. The aim of the paper is to fill this gap, thus to study the structure of embedded coalitions (called here embedded subsets), and the properties of games in partition function form.Partition; Embedded subset; Game; Valuation; k-monotonicity

    Sublattices of complete lattices with continuity conditions

    Full text link
    Various embedding problems of lattices into complete lattices are solved. We prove that for any join-semilattice S with the minimal join-cover refinement property, the ideal lattice IdS of S is both algebraic and dually algebraic. Furthermore, if there are no infinite D-sequences in J(S), then IdS can be embedded into a direct product of finite lower bounded lattices. We also find a system of infinitary identities that characterize sublattices of complete, lower continuous, and join-semidistributive lattices. These conditions are satisfied by any (not necessarily finitely generated) lower bounded lattice and by any locally finite, join-semidistributive lattice. Furthermore, they imply M. Ern\'e's dual staircase distributivity. On the other hand, we prove that the subspace lattice of any infinite-dimensional vector space cannot be embedded into any countably complete, countably upper continuous, and countably lower continuous lattice. A similar result holds for the lattice of all order-convex subsets of any infinite chain.Comment: To appear in Algebra Universali

    Sublattices of lattices of convex subsets of vector spaces

    Full text link
    For a left vector space V over a totally ordered division ring F, let Co(V) denote the lattice of convex subsets of V. We prove that every lattice L can be embedded into Co(V) for some left F-vector space V. Furthermore, if L is finite lower bounded, then V can be taken finite-dimensional, and L embeds into a finite lower bounded lattice of the form Co(V,Z)={XZXCo(V)}Co(V,Z)=\{X\cap Z | X\in Co(V)\}, for some finite subset ZZ of VV. In particular, we obtain a new universal class for finite lower bounded lattices

    Partial orderings for hesitant fuzzy sets

    Get PDF
    New partial orderings =o=o, =p=p and =H=H are defined, studied and compared on the set HH of finite subsets of the unit interval with special emphasis on the last one. Since comparing two sets of the same cardinality is a simple issue, the idea for comparing two sets A and B of different cardinalities n and m respectively using =H=H is repeating their elements in order to obtain two series with the same length. If lcm(n,m)lcm(n,m) is the least common multiple of n and m we can repeat every element of A lcm(n,m)/mlcm(n,m)/m times and every element of B lcm(n,m)/nlcm(n,m)/n times to obtain such series and compare them (Definition 2.2). (H,=H)(H,=H) is a bounded partially ordered set but not a lattice. Nevertheless, it will be shown that some interesting subsets of (H,=H)(H,=H) have a lattice structure. Moreover in the set BB of finite bags or multisets (i.e. allowing repetition of objects) of the unit interval a preorder =B=B can be defined in a similar way as =H=H in HH and considering the quotient set View the MathML sourceB¿=B/~ of BB by the equivalence relation ~ defined by A~BA~B when A=BBA=BB and B=BAB=BA, View the MathML source(B¿,=B) is a lattice and (H,=H)(H,=H) can be naturally embedded into it.Peer ReviewedPostprint (author's final draft

    Sublattices of lattices of order-convex sets, I. The main representation theorem

    Get PDF
    For a partially ordered set P, we denote by Co(P) the lattice of order-convex subsets of P. We find three new lattice identities, (S), (U), and (B), such that the following result holds. Theorem. Let L be a lattice. Then L embeds into some lattice of the form Co(P) iff L satisfies (S), (U), and (B). Furthermore, if L has an embedding into some Co(P), then it has such an embedding that preserves the existing bounds. If L is finite, then one can take P finite, of cardinality at most 2n25n+42n^2-5n+4, where n is the number of join-irreducible elements of L. On the other hand, the partially ordered set P can be chosen in such a way that there are no infinite bounded chains in P and the undirected graph of the predecessor relation of P is a tree
    corecore