103 research outputs found

    Algorithms for cartographic visualization

    Get PDF
    Maps are effective tools for communicating information to the general public and help people to make decisions in, for example, navigation, spatial planning and politics. The mapmaker chooses the details to put on a map and the symbols to represent them. Not all details need to be geographic: thematic maps, which depict a single theme or attribute, such as population, income, crime rate, or migration, can very effectively communicate the spatial distribution of the visualized attribute. The vast amount of data currently available makes it infeasible to design all maps manually, and calls for automated cartography. In this thesis we presented efficient algorithms for the automated construction of various types of thematic maps. In Chapter 2 we studied the problem of drawing schematic maps. Schematic maps are a well-known cartographic tool; they visualize a set of nodes and edges (for example, highway or metro networks) in simplified form to communicate connectivity information as effectively as possible. Many schematic maps deviate substantially from the underlying geography since edges and vertices of the original network are moved in the simplification process. This can be a problem if we want to integrate the schematized network with a geographic map. In this scenario the schematized network has to be drawn with few orientations and links, while critical features (cities, lakes, etc.) of the base map are not obscured and retain their correct topological position with respect to the network. We developed an efficient algorithm to compute a collection of non-crossing paths with fixed orientations using as few links as possible. This algorithm approximates the optimal solution to within a factor that depends only on the number of allowed orientations. We can also draw the roads with different thicknesses, allowing us to visualize additional data related to the roads such as trafic volume. In Chapter 3 we studied methods to visualize quantitative data related to geographic regions. We first considered rectangular cartograms. Rectangular cartograms represent regions by rectangles; the positioning and adjacencies of these rectangles are chosen to suggest their geographic locations to the viewer, while their areas are chosen to represent the numeric values being communicated by the cartogram. One drawback of rectangular cartograms is that not every rectangular layout can be used to visualize all possible area assignments. Rectangular layouts that do have this property are called area-universal. We show that area-universal layouts are always one-sided, and we present algorithms to find one-sided layouts given a set of adjacencies. Rectangular cartograms often provide a nice visualization of quantitative data, but cartograms deform the underlying regions according to the data, which can make the map virtually unrecognizable if the data value differs greatly from the original area of a region or if data is not available at all for a particular region. A more direct method to visualize the data is to place circular symbols on the corresponding region, where the areas of the symbols correspond to the data. However, these maps, so-called symbol maps, can appear very cluttered with many overlapping symbols if large data values are associated with small regions. In Chapter 4 we proposed a novel type of quantitative thematic map, called necklace map, which overcomes these limitations. Instead of placing the symbols directly on a region, we place the symbols on a closed curve, the necklace, which surrounds the map. The location of a symbol on the necklace should be chosen in such a way that the relation between symbol and region is as clear as possible. Necklace maps appear clear and uncluttered and allow for comparatively large symbol sizes. We developed algorithms to compute necklace maps and demonstrated our method with experiments using various data sets and maps. In Chapter 5 and 6 we studied the automated creation of ow maps. Flow maps are thematic maps that visualize the movement of objects, such as people or goods, between geographic regions. One or more sources are connected to several targets by lines whose thickness corresponds to the amount of ow between a source and a target. Good ow maps reduce visual clutter by merging (bundling) lines smoothly and by avoiding self-intersections. We developed a new algorithm for drawing ow trees, ow maps with a single source. Unlike existing methods, our method merges lines smoothly and avoids self-intersections. Our method is based on spiral trees, a new type of Steiner trees that we introduced. Spiral trees have an angle restriction which makes them appear smooth and hence suitable for drawing ow maps. We study the properties of spiral trees and give an approximation algorithm to compute them. We also show how to compute ow trees from spiral trees and we demonstrate our approach with extensive experiments

    Subadditive Euclidean Functionals and Nonlinear Growth in Geometric Probability

    Get PDF
    A limit theorem is established for a class of random processes (called here subadditive Euclidean functionals) which arise in problems of geometric probability. Particular examples include the length of shortest path through a random sample, the length of a rectilinear Steiner tree spanned by a sample, and the length of a minimal matching. Also, a uniform convergence theorem is proved which is needed in Karp\u27s probabilistic algorithm for the traveling salesman problem

    Shortest Paths and Steiner Trees in VLSI Routing

    Get PDF
    Routing is one of the major steps in very-large-scale integration (VLSI) design. Its task is to find disjoint wire connections between sets of points on a chip, subject to numerous constraints. This problem is solved in a two-stage approach, which consists of so-called global and detailed routing steps. For each set of metal components to be connected, global routing reduces the search space by computing corridors in which detailed routing sequentially determines the desired connections as shortest paths. In this thesis, we present new theoretical results on Steiner trees and shortest paths, the two main mathematical concepts in routing. In the practical part, we give computational results of BonnRoute, a VLSI routing tool developed at the Research Institute for Discrete Mathematics at the University of Bonn. Interconnect signal delays are becoming increasingly important in modern chip designs. Therefore, the length of paths or direct delay measures should be taken into account when constructing rectilinear Steiner trees. We consider the problem of finding a rectilinear Steiner minimum tree (RSMT) that --- as a secondary objective --- minimizes a signal delay related objective. Given a source we derive some structural properties of RSMTs for which the weighted sum of path lengths from the source to the other terminals is minimized. Also, we present an exact algorithm for constructing RSMTs with weighted sum of path lengths as secondary objective, and a heuristic for various secondary objectives. Computational results for industrial designs are presented. We further consider the problem of finding a shortest rectilinear Steiner tree in the plane in the presence of rectilinear obstacles. The Steiner tree is allowed to run over obstacles; however, if it intersects an obstacle, then no connected component of the induced subtree must be longer than a given fixed length. This kind of length restriction is motivated by its application in VLSI routing where a large Steiner tree requires the insertion of repeaters which must not be placed on top of obstacles. We show that there are optimal length-restricted Steiner trees with a special structure. In particular, we prove that a certain graph (called augmented Hanan grid) always contains an optimal solution. Based on this structural result, we give an approximation scheme for the special case that all obstacles are of rectangular shape or are represented by at most a constant number of edges. Turning to the shortest paths problem, we present a new generic framework for Dijkstra's algorithm for finding shortest paths in digraphs with non-negative integral edge lengths. Instead of labeling individual vertices, we label subgraphs which partition the given graph. Much better running times can be achieved if the number of involved subgraphs is small compared to the order of the original graph and the shortest path problems restricted to these subgraphs is computationally easy. As an application we consider the VLSI routing problem, where we need to find millions of shortest paths in partial grid graphs with billions of vertices. Here, the algorithm can be applied twice, once in a coarse abstraction (where the labeled subgraphs are rectangles), and once in a detailed model (where the labeled subgraphs are intervals). Using the result of the first algorithm to speed up the second one via goal-oriented techniques leads to considerably reduced running time. We illustrate this with the routing program BonnRoute on leading-edge industrial chips. Finally, we present computational results of BonnRoute obtained on real-world VLSI chips. BonnRoute fulfills all requirements of modern VLSI routing and has been used by IBM and its customers over many years to produce more than one thousand different chips. To demonstrate the strength of BonnRoute as a state-of-the-art industrial routing tool, we show that it performs excellently on all traditional quality measures such as wire length and number of vias, but also on further criteria of equal importance in the every-day work of the designer

    Routing congestion analysis and reduction in deep sub-micron VLSI design

    Get PDF
    Congestion is one of the main optimization objectives in global routing. However, the optimization performance is constrained because the cells are already fixed at this stage. Therefore, designer can save substantial time and resources by detecting and reducing congested regions during the planning stages. An efficient and yet accurate congestion estimation model is crucial to be included in the inner loop of floorplanning and placement design. In this dissertation, we mainly focus on routing congestion modeling and reduction during floorplanning and placement

    Large bichromatic point sets admit empty monochromatic 4-gons

    No full text
    We consider a variation of a problem stated by Erd˝os and Szekeres in 1935 about the existence of a number fES(k) such that any set S of at least fES(k) points in general position in the plane has a subset of k points that are the vertices of a convex k-gon. In our setting the points of S are colored, and we say that a (not necessarily convex) spanned polygon is monochromatic if all its vertices have the same color. Moreover, a polygon is called empty if it does not contain any points of S in its interior. We show that any bichromatic set of n ≥ 5044 points in R2 in general position determines at least one empty, monochromatic quadrilateral (and thus linearly many).Postprint (published version

    Geometric Dilation and Halving Distance

    Get PDF
    Let us consider the network of streets of a city represented by a geometric graph G in the plane. The vertices of G represent the crossroads and the edges represent the streets. The latter do not have to be straight line segments, they may be curved. If one wants to drive from a place p to some other place q, normally the length of the shortest path along streets, d_G(p,q), is bigger than the airline distance (Euclidean distance) |pq|. The (relative) DETOUR is defined as delta_G(p,q) := d_G(p,q)/|pq|. The supremum of all these ratios is called the GEOMETRIC DILATION of G. It measures the quality of the network. A small dilation value guarantees that there is no bigger detour between any two points. Given a finite point set S, we would like to know the smallest possible dilation of any graph that contains the given points on its edges. We call this infimum the DILATION of S and denote it by delta(S). The main results of this thesis are - a general upper bound to the dilation of any finite point set S, delta(S) - a lower bound for a specific set P, delta(P)>(1+10^(-11))pi/2, which approximately equals 1.571 In order to achieve these results, we first consider closed curves. Their dilation depends on the HALVING PAIRS, pairs of points which divide the closed curve in two parts of equal length. In particular the distance between the two points is essential, the HALVING DISTANCE. A transformation technique based on halving pairs, the HALVING PAIR TRANSFORMATION, and the curve formed by the midpoints of the halving pairs, the MIDPOINT CURVE, help us to derive lower bounds to dilation. For constructing graphs of small dilation, we use ZINDLER CURVES. These are closed curves of constant halving distance. To give a structured overview, the mathematical apparatus for deriving the main results of this thesis includes - upper bound: * the construction of certain Zindler curves to generate a periodic graph of small dilation * an embedding argument based on a number theoretical result by Dirichlet - lower bound: * the formulation and analysis of the halving pair transformation * a stability result for the dilation of closed curves based on this transformation and the midpoint curve * the application of a disk-packing result In addition, this thesis contains - a detailed analysis of the dilation of closed curves - a collection of inequalities, which relate halving distance to other important quantities from convex geometry, and their proofs; including four new inequalities - the rediscovery of Zindler curves and a compact presentation of their properties - a proof of the applied disk packing result.Geometrische Dilation und Halbierungsabstand Man kann das von den Straßen einer Stadt gebildete Netzwerk durch einen geometrischen Graphen in der Ebene darstellen. Die Knoten dieses Graphen repräsentieren die Kreuzungen und die Kanten sind die Straßen. Letztere müssen nicht geradlinig sein, sondern können beliebig gekrümmt sein. Wenn man nun von einem Ort p zu einem anderen Ort q fahren möchte, dann ist normalerweise die Länge des kürzesten Pfades über Straßen, d_G(p,q), länger als der Luftlinienabstand (euklidischer Abstand) |pq|. Der (relative) UMWEG (DETOUR) ist definiert als delta_G(p,q) := d_G(p,q)/|pq|. Das Supremum all dieser Brüche wird GEOMETRISCHE DILATION (GEOMETRIC DILATION) von G genannt. Es ist ein Maß für die Qualität des Straßennetzes. Ein kleiner Dilationswert garantiert, dass es keinen größeren Umweg zwischen beliebigen zwei Punkten gibt. Für eine gegebene endliche Punktmenge S würden wir nun gerne bestimmen, was der kleinste Dilationswert ist, den wir mit einem Graphen erreichen können, der die gegebenen Punkte auf seinen Kanten enthält. Dieses Infimum nennen wir die DILATION von S und schreiben kurz delta(S). Die Haupt-Ergebnisse dieser Arbeit sind - eine allgemeine obere Schranke für die Dilation jeder beliebigen endlichen Punktmenge S: delta(S) - eine untere Schranke für eine bestimmte Menge P: delta(P)>(1+10^(-11))pi/2, was ungefähr der Zahl 1.571 entspricht Um diese Ergebnisse zu erreichen, betrachten wir zunächst geschlossene Kurven. Ihre Dilation hängt von sogenannten HALBIERUNGSPAAREN (HALVING PAIRS) ab. Das sind Punktpaare, die die geschlossene Kurve in zwei Teile gleicher Länge teilen. Besonders der Abstand der beiden Punkte ist von Bedeutung, der HALBIERUNGSABSTAND (HALVING DISTANCE). Eine auf den Halbierungspaaren aufbauende Transformation, die HALBIERUNGSPAARTRANSFORMATION (HALVING PAIR TRANSFORMATION), und die von den Mittelpunkten der Halbierungspaare gebildete Kurve, die MITTELPUNKTKURVE (MIDPOINT CURVE), helfen uns untere Dilationsschranken herzuleiten. Zur Konstruktion von Graphen mit kleiner Dilation benutzen wir ZINDLERKURVEN (ZINDLER CURVES). Dies sind geschlossene Kurven mit konstantem Halbierungspaarabstand. Die mathematischen Hilfsmittel, mit deren Hilfe wir schließlich die Hauptresultate beweisen, sind unter anderem - obere Schranke: * die Konstruktion von bestimmten Zindlerkurven, mit denen periodische Graphen kleiner Dilation gebildet werden können * ein Einbettungsargument, das einen zahlentheoretischen Satz von Dirichlet benutzt - untere Schranke: * die Definition und Analyse der Halbierungspaartransformation * ein Stabilitätsresultat für die Dilation geschlossener Kurven, das auf dieser Transformation und der Mittelpunktkurve basiert * die Anwendung eines Kreispackungssatzes Zusätzlich enthält diese Dissertation - eine detaillierte Analyse der Dilation geschlossener Kurven - eine Sammlung von Ungleichungen, die den Halbierungsabstand zu anderen wichtigen Größen der Konvexgeometrie in Beziehung setzen, und ihre Beweise; inklusive vier neuer Ungleichungen - die Wiederentdeckung von Zindlerkurven und eine kompakte Darstellung ihrer Eigenschaften - einen Beweis des angewendeten Kreispackungssatzes
    corecore