1,867 research outputs found

    On the representation theory of Galois and Atomic Topoi

    Get PDF
    We elaborate on the representation theorems of topoi as topoi of discrete actions of various kinds of localic groups and groupoids. We introduce the concept of "proessential point" and use it to give a new characterization of pointed Galois topoi. We establish a hierarchy of connected topoi: [1. essentially pointed Atomic = locally simply connected], [2. proessentially pointed Atomic = pointed Galois], [3. pointed Atomic]. These topoi are the classifying topos of, respectively: 1. discrete groups, 2. prodiscrete localic groups, and 3. general localic groups. We analyze also the unpoited version, and show that for a Galois topos, may be pointless, the corresponding groupoid can also be considered, in a sense, the groupoid of "points". In the unpointed theories, these topoi classify, respectively: 1. connected discrete groupoids, 2. connected (may be pointless) prodiscrete localic groupoids, and 3. connected groupoids with discrete space of objects and general localic spaces of hom-sets, when the topos has points (we do not know the class of localic groupoids that correspond to pointless connected atomic topoi). We comment and develop on Grothendieck's galois theory and its generalization by Joyal-Tierney, and work by other authors on these theories.Comment: This is a revised version of arXiv.org/math.CT/02008222 to appear in JPA

    Molecular toposes

    Get PDF

    Nonradiating Photonics with Resonant Dielectric Nanostructures

    Get PDF
    Nonradiating sources of energy have traditionally been studied in quantum mechanics and astrophysics, while receiving a very little attention in the photonics community. This situation has changed recently due to a number of pioneering theoretical studies and remarkable experimental demonstrations of the exotic states of light in dielectric resonant photonic structures and metasurfaces, with the possibility to localize efficiently the electromagnetic fields of high intensities within small volumes of matter. These recent advances underpin novel concepts in nanophotonics, and provide a promising pathway to overcome the problem of losses usually associated with metals and plasmonic materials for the efficient control of the light-matter interaction at the nanoscale. This review paper provides the general background and several snapshots of the recent results in this young yet prominent research field, focusing on two types of nonradiating states of light that both have been recently at the center of many studies in all-dielectric resonant meta-optics and metasurfaces: optical {\em anapoles} and photonic {\em bound states in the continuum}. We discuss a brief history of these states in optics, their underlying physics and manifestations, and also emphasize their differences and similarities. We also review some applications of such novel photonic states in both linear and nonlinear optics for the nanoscale field enhancement, a design of novel dielectric structures with high-QQ resonances, nonlinear wave mixing and enhanced harmonic generation, as well as advanced concepts for lasing and optical neural networks.Comment: 22 pages, 9 figures, review articl

    Evolutionary game theory: Temporal and spatial effects beyond replicator dynamics

    Get PDF
    Evolutionary game dynamics is one of the most fruitful frameworks for studying evolution in different disciplines, from Biology to Economics. Within this context, the approach of choice for many researchers is the so-called replicator equation, that describes mathematically the idea that those individuals performing better have more offspring and thus their frequency in the population grows. While very many interesting results have been obtained with this equation in the three decades elapsed since it was first proposed, it is important to realize the limits of its applicability. One particularly relevant issue in this respect is that of non-mean-field effects, that may arise from temporal fluctuations or from spatial correlations, both neglected in the replicator equation. This review discusses these temporal and spatial effects focusing on the non-trivial modifications they induce when compared to the outcome of replicator dynamics. Alongside this question, the hypothesis of linearity and its relation to the choice of the rule for strategy update is also analyzed. The discussion is presented in terms of the emergence of cooperation, as one of the current key problems in Biology and in other disciplines.Comment: Review, 48 pages, 26 figure

    Glassy dynamics of kinetically constrained models

    Full text link
    We review the use of kinetically constrained models (KCMs) for the study of dynamics in glassy systems. The characteristic feature of KCMs is that they have trivial, often non-interacting, equilibrium behaviour but interesting slow dynamics due to restrictions on the allowed transitions between configurations. The basic question which KCMs ask is therefore how much glassy physics can be understood without an underlying ``equilibrium glass transition''. After a brief review of glassy phenomenology, we describe the main model classes, which include spin-facilitated (Ising) models, constrained lattice gases, models inspired by cellular structures such as soap froths, models obtained via mappings from interacting systems without constraints, and finally related models such as urn, oscillator, tiling and needle models. We then describe the broad range of techniques that have been applied to KCMs, including exact solutions, adiabatic approximations, projection and mode-coupling techniques, diagrammatic approaches and mappings to quantum systems or effective models. Finally, we give a survey of the known results for the dynamics of KCMs both in and out of equilibrium, including topics such as relaxation time divergences and dynamical transitions, nonlinear relaxation, aging and effective temperatures, cooperativity and dynamical heterogeneities, and finally non-equilibrium stationary states generated by external driving. We conclude with a discussion of open questions and possibilities for future work.Comment: 137 pages. Additions to section on dynamical heterogeneities (5.5, new pages 110 and 112), otherwise minor corrections, additions and reference updates. Version to be published in Advances in Physic
    • …
    corecore