Evolutionary game dynamics is one of the most fruitful frameworks for
studying evolution in different disciplines, from Biology to Economics. Within
this context, the approach of choice for many researchers is the so-called
replicator equation, that describes mathematically the idea that those
individuals performing better have more offspring and thus their frequency in
the population grows. While very many interesting results have been obtained
with this equation in the three decades elapsed since it was first proposed, it
is important to realize the limits of its applicability. One particularly
relevant issue in this respect is that of non-mean-field effects, that may
arise from temporal fluctuations or from spatial correlations, both neglected
in the replicator equation. This review discusses these temporal and spatial
effects focusing on the non-trivial modifications they induce when compared to
the outcome of replicator dynamics. Alongside this question, the hypothesis of
linearity and its relation to the choice of the rule for strategy update is
also analyzed. The discussion is presented in terms of the emergence of
cooperation, as one of the current key problems in Biology and in other
disciplines.Comment: Review, 48 pages, 26 figure