90 research outputs found

    Digital Factory – Theory and Practice

    Get PDF

    Dimensional Accuracy of Parts Manufactured by 3D Printing for Interaction in Virtual Reality

    Full text link

    Virtual Prototyping (VP) In Construction

    Get PDF
    ABSTRACT: VP means virtual prototyping is a computer aided design process. It is the latest and cost effective way to visualize real circumstances that enhance effective communication of design and ideas without manufacturing physical samples. Virtual prototyping involves the integration of different design softwares during each and every stages of a construction process, visualizing the construction site environment in different stages. This process enhance the capability of engineers to detect the problem areas. Now a days construction safety is a serious problem in construction industry worldwide, especially in the case of large scale construction projects. We can adopt the VP technology to improve the safety management performance through the identification of key factors that cause accident.. This report is an overview of virtual prototyping technique, its application for simulating construction process for the easy and effective execution, life cycle management of a construction process and to improve the safety management in construction projects

    PRODUCT LIFECYCLE DATA SHARING AND VISUALISATION: WEB-BASED APPROACHES

    Get PDF
    Both product design and manufacturing are intrinsically collaborative processes. From conception and design to project completion and ongoing maintenance, all points in the lifecycle of any product involve the work of fluctuating teams of designers, suppliers and customers. That is why companies are involved in the creation of a distributed design and a manufacturing environment which could provide an effective way to communicate and share information throughout the entire enterprise and the supply chain. At present, the technologies that support such a strategy are based on World Wide Web platforms and follow two different paths. The first one focuses on 2D documentation improvement and introduces 3D interactive information in order to add knowledge to drawings. The second one works directly on 3D models and tries to extend the life of 3D data moving these design information downstream through the entire product lifecycle. Unfortunately the actual lack of a unique 3D Web-based standard has stimulated the growing up of many different proprietary and open source standards and, as a consequence, a production of an incompatible information exchange over the WEB. This paper proposes a structured analysis of Web-based solutions, trying to identify the most critical aspects to promote a unique 3D digital standard model capable of sharing product and manufacturing data more effectively—regardless of geographic boundaries, data structures, processes or computing environmen

    Exploring how to use virtual tours to create an interactive customer remote experience

    Get PDF
    This paper investigates the use of Virtual Reality (VR) to develop virtual tour applications for marketing purposes. The aim is to explore how virtual technologies can support the creation of knowledge about a specific food product and the achievement of user engagement by a multi-sensory virtual tour of the real production site. The study provides design guidelines to create a valuable, multisensory experience by VR tours and demonstrate how the adoption of a user-driven approach, instead of a technology-driven approach, allows to achieve a positive intention to buy. The case study was represented by one of the excellences among Italian food products, the Parmigiano Reggiano (PR) cheese. The PR virtual tour was validated by a user testing campaign, involving more than 70 users: users' reactions and feedback were collected by human physiological data monitoring and questionnaires' administration. The research results demonstrated how virtual technologies could effectively help people to create a solid knowledge about a food product to support the marketing process and to form an intention to buy thanks to a better understanding of the quality of the local and traditional productions

    The Application of Polynomial Response Surface and Polynomial Chaos Expansion Metamodels within an Augmented Reality Conceptual Design Environment

    Get PDF
    The engineering design process consists of many stages. In the conceptual phase, potential designs are generated and evaluated without considering specifics. Winning concepts then advance to the detail design and high fidelity simulation stages. At this point in the process, very accurate representations are made for each design and are then subjected to rigorous analysis. With the advancement of computer technology, these last two phases have been very well served by the software community. Engineering software such as computer-aided design (CAD), finite element analysis (FEA), and computational fluid dynamics (CFD) have become an inseparable part of the design process for many engineered products and processes. Conceptual design tools, on the other hand, have not undergone this type of advancement, where much of the work is still done with little to no digital technology. Detail oriented tools require a significant amount of time and training to use effectively. This investment is considered worthwhile when high fidelity models are needed. However, conceptual design has no need for this level of detail. Instead, rapid concept generation and evaluation are the primary goals. Considering the lack of adequate tools to suit these needs, new software was created. This thesis discusses the development of that conceptual design application. Traditional design tools rely on a two dimensional mouse to perform three dimensional actions. While many designers have become familiar with this approach, it is not intuitive to an inexperienced user. In order to enhance the usability of the developed application, a new interaction method was applied. Augmented reality (AR) is a developing research area that combines virtual elements with the real world. This capability was used to create a three dimensional interface for the engineering design application. Using specially tracked interface objects, the user\u27s hands become the primary method of interaction. Within this AR environment, users are able perform many of the basic actions available within a CAD system such as object manipulation, editing, and assembly. The same design environment also provides real time assessment data. Calculations for center of gravity and wheel loading can be done with the click of a few buttons. Results are displayed to the user in the AR scene. In order to support the quantitative analysis tools necessary for conceptual design, additional research was done in the area of metamodeling. Metamodels are capable of providing approximations for more complex analyses. In the case of the wheel loading calculation, the approximation takes the place of a time consuming FEA simulation. Two different metamodeling techniques were studied in this thesis: polynomial response surface (PRS) and polynomial chaos expansion (PCE). While only the wheel loading case study was included in the developed application, an additional design problem was analyzed to assess the capabilities of both methods for conceptual design. In the second study, the maximum stresses and displacements within the support frame of a bucket truck were modeled. The source data for building the approximations was generated via an FEA simulation of digital mockups, since no legacy data was available. With this information, experimental models were constructed by varying several factors, including: the distribution of source and test data, the number of input trials, the inclusion of interaction effects, and the addition of third order terms. Comparisons were also drawn between the two metamodeling techniques. For the wheel loading models, third order models with interaction effects provided a good fit of the data (root mean square error of less than 10%) with as few as thirty input data points. With minimal source data, however, second order models and those without interaction effects outperformed third order counterparts. The PRS and PCE methods performed almost equivalently with sufficient source data. Difference began to appear at the twenty trial case. PRS was more suited to wider distributions of data. The PCE technique better handled smaller distributions and extrapolation to larger test data. The support frame problem represented a more difficult analysis with non-linear responses. While initial third order results from the PCE models were better than those for PRS, both had significantly higher error than in the previous case study. However, with simpler second order models and sufficient input data (more than thirty trials) adequate approximation results were achieved. The less complex responses had error around 10%, and the model predictions for the non-linear response were reduced to around 20%. These results demonstrate that useful approximations can be constructed from minimal data. Such models, despite the uncertainty involved, will be able to provide designers with helpful information at the conceptual stage of a design process

    A modular modeling approach to simulate interactively multibody systems with Baumgarte/Uzawa formulation

    Get PDF
    International audienceIn this paper, a modular modeling approach of multibody systems adapted to interactive simulation is presented. This work is based on the study of the stability of two Differential Algebraic Equations solvers. The first one is based on the acceleration-based augmented Lagrangian formulation and the second one on the Baumgarte formulation. We show that these two solvers give the same results and have to satisfy the same criteria to stabilize the algebraic constraint acceleration error. For a modular modeling approach, we propose to use the Baumgarte formulation and an iterative Uzawa algorithm to solve external constraint forces. This work is also the first step to validate the concept of two types of numerical components for Object-Oriented Programming

    Visualising lighting simulations for automotive design evaluations using emerging technologies

    Get PDF
    Automotive design visualisation is at a turning point with the commercial development of immersive technologies such as virtual reality, among other displays and visual interfaces. A fundamental objective of this research is to assess how seamlessly the integration of emerging visualisation technologies can be implemented into the new product development methodologies, with the use of lighting simulation, design review applications and the use of immersive hardware and software. Optical automotive considerations such as display legibility, veiling glare, and perceived quality among other current processes of Systemic Optical Failure (SOF) modes are analysed, to determine how the application of new immersive visualisation technologies could improve the efficiency of new product development, in particular reducing time and cost in early stages while improving decision making and quality. Different hardware and software combinations were investigated in terms of their ability to realistically represent design intent. Following on from this investigation, a user study was carried out with subjects from various automotive engineering disciplines, to evaluate a range of potential solutions. Recommendations are then made as to how these solutions could be deployed within the automotive new product development process to deliver maximum value

    Development of design tools for the evaluation of complex CAD models

    Get PDF
    The goal of this thesis is to invent means to enable 3D-models, created in SOLIDWORKS CAD-software, to be explored in a low-cost head-mounted display device Oculus Rift. Such a design tool would make possible to study 3D CAD-models in Virtual Reality with a very low cost and share design information for people who are not so familiar with CAD-models. As a result this can lower the product development effort for new products enabling, lower working time and improve both the quality of the final product and customer satisfaction. CAD-models as well as exported graphics format from SOLIDWORKS can’t directly be imported to Oculus Rift device. Therefore transformation pipeline need to be invented between the SOLIDWORKS and Oculus Rift. There are some options for this and their issues are studied in this thesis. As a best option it was found to use a conversion plugin tool to SOLIDWORKS which convert CAD-models to FBX-format. This format can be imported to Unity game engine software which is supported by Oculus Rift device. Graphics file conversion process in known to be imperfect. Therefore conversion of three SOLIDWORKS CAD-models have been analyzed; a Crane, a Pipe system, and a Hydraulic cylinder. This testing gave a good overview of possibilities and limitations of the graphics pipeline. It was found that ordinary CAD-models can be transferred to Oculus Rift without problems. However, there are some special features in CAD models which cause problems for in graphics file conversion

    VR Technologies in Cultural Heritage

    Get PDF
    This open access book constitutes the refereed proceedings of the First International Conference on VR Technologies in Cultural Heritage, VRTCH 2018, held in Brasov, Romania in May 2018. The 13 revised full papers along with the 5 short papers presented were carefully reviewed and selected from 21 submissions. The papers of this volume are organized in topical sections on data acquisition and modelling, visualization methods / audio, sensors and actuators, data management, restoration and digitization, cultural tourism
    • …
    corecore