9,668 research outputs found

    Compact thermal models of semiconductor devices – a review

    Get PDF
    In the paper the problem of modelling thermal properties of semiconductor devices with the use of compact models is presented. This class of models is defined and their development over the past dozens of years is described. Possibilities of modelling thermal phenomena both in discrete semiconductor devices, monolithic integrated circuits, power modules and selected electronic circuits are presented. The problem of the usefulness range of compact thermal models in the analysis of electronic elements and circuits is discussed on the basis of investigations performed in Gdynia Maritime University

    High-temperature optically activated GaAs power switching for aircraft digital electronic control

    Get PDF
    Gallium arsenide high-temperature devices were fabricated and assembled into an optically activated pulse-width-modulated power control for a torque motor typical of the kinds used in jet engine actuators. A bipolar heterojunction phototransistor with gallium aluminum arsenide emitter/window, a gallium arsenide junction field-effect power transistor and a gallium arsenide transient protection diode were designed and fabricated. A high-temperature fiber optic/phototransistor coupling scheme was implemented. The devices assembled into the demonstrator were successfully tested at 250 C, proving the feasibility of actuator-located switching of control power using optical signals transmitted by fibers. Assessments of the efficiency and technical merits were made for extension of this high-temperature technology to local conversion of optical power to electrical power and its control at levels useful for driving actuators. Optical power sources included in the comparisons were an infrared light-emitting diode, an injection laser diode, tungsten-halogen lamps and arc lamps. Optical-to-electrical power conversion was limited to photovoltaics located at the actuator. Impedance matching of the photovoltaic array to the load was considered over the full temperature range, -55 C to 260 C. Loss of photovoltaic efficiency at higher temperatures was taken into account. Serious losses in efficiency are: (1) in the optical source and the cooling which they may require in the assumed 125 C ambient, (2) in the decreased conversion efficiency of the gallium arsenide photovoltaic at 260 C, and (3) in impedance matching. Practical systems require improvements in these areas

    Reliability-Oriented Strategies for Multichip Module Based Mission Critical Industry Applications

    Get PDF
    The availability is defined as the portion of time the system remains operational to serve its purpose. In mission critical applications (MCA), the availability of power converters are determinant to ensure continue productivity and avoid financial losses. Multichip Modules (MCM) are widely adopted in such applications due to the high power density and reduced price; however, the high number of dies inside a compact package results in critical thermal deviations among them. Moreover, uneven power flow, inhomogeneous cooling and accumulated degradation, potentially result in thermal deviation among modules, thereby increasing the temperature differences and resulting in extra temperature in specific subset of devices. High temperatures influences multiple failure mechanisms in power modules, especially in highly dynamic load profiles. Therefore, the higher failure probability of the hottest dies drastically reduces the reliability of mission critical power converters. Therefore, this work investigate reliability-oriented solutions for the design and thermal management of MCM-based power converters applied in mission critical applications. The first contribution, is the integration of a die-level thermal and probabilistic analysis on the design for reliability (DFR) procedure, whereby the temperature and failure probability of each die are taken into account during the reliability modeling. It is demonstrated that the dielevel analysis can obtain more realistic system-level reliability of MCM-based power converters. Thereafter, three novel die-level thermal balancing strategies, based on a modified MCM - with more gate-emitter connections - are proposed and investigated. It is proven that the temperatures inside the MCM can be overcame, and the maximum temperate reduced in up to 8 %

    How to protect a wind turbine from lightning

    Get PDF
    Techniques for reducing the chances of lightning damage to wind turbines are discussed. The methods of providing a ground for a lightning strike are discussed. Then details are given on ways to protect electronic systems, generating and power equipment, blades, and mechanical components from direct and nearby lightning strikes

    Frequency domain temperature model :a new method in on-line temperature estimation for power modules in drives applications

    Get PDF
    D. Eng.The operating temperature of the components within an electronic device has a significant impact on the reliability of a product. In a variable speed drive the power semiconductors in the inverter stage are often operated close to their maximum temperature when the inverter is operating at a low output frequency or during an overload. The temperature of these components must be continuously monitored to prevent them from overheating, but direct measurement of the temperature is only possible if a special test configuration can be used. This is not practicable in a commercial drive and to protect the inverter the temperature of the power semiconductors must be estimated by an on-line thermal model. The work presented in this thesis describes the development of a novel thermal model that can be implemented using the existing computational resources available in a commercial variable speed drive. The thermal model is based on the transient thermal impedance measured between each device and the internal thermistor in a power module. These form a thermal impedance matrix which can be used to calculate the instantaneous temperature of every device in the inverter. However, with the existing computational resources it is not possible to implement the complete matrix without aliasing. To reduce the risk of aliasing the number of calculations performed during each sample period must be reduced. This is achieved by using a frequency domain model that has been developed to calculate the peak temperature of the hottest devices. To validate the thermal model it has been implemented in a commercial drive. The drive has been modified to allow the temperature of the power semiconductors in the inverter to be measured using a high speed thermal camera. This allows the temperature estimated by the on-line thermal model to be compared directly with the temperatures measured when the inverter is operating under typical load conditions. Comparisons of the measured and estimated temperatures in several operating conditions are presented. These conditions were chosen to highlight the advantages and disadvantages of the frequency domain model

    Study and analysis of state-of-the-art FCS-MPC strategies for thermal regulation of power converters

    Get PDF
    La degradación en los convertidores de potencia basados en silicio, enmarcados en sistemas de tracción eléctrica y fuentes de energías renovables, es un tema de estudio de especial interés para aquellas aplicaciones donde los fallos amenazan la seguridad de personas o donde el mantenimiento es particularmente costoso. Motivado por la influencia de los fallos en IGBTs sobre los fallos habituales en los convertidores de potencia comunes, este trabajo utiliza la herramienta software PLECS como marco de trabajo para la simulación de algoritmos de control predictivo basado en modelo con conjunto finito de acciones de control (FCS-MPC) que pretenden -simultáneamente a conseguir el seguimiento eléctrico- extender directa o indirectamente la vida útil de los IGBTs. El trabajo se enfoca principalmente a la simulación en ordenador de los algoritmos controlando un inversor de dos niveles conectado a una carga RL. Además, pretende también introducir la implementación de éstos sobre un microcontrolador para su estudio controlando el inversor simulado en la plataforma PLECS RT Box 1, con el fin último de poder desarrollar validaciones de los controladores basadas en técnicas Hardware-In-the-Loop.Degradation of silicon-based power electronics converters in traction and renewable energy systems is a topic of interest particularly where module failure supposes a safety threat or where maintenance becomes especially expensive. Motivated by the influence of IGBT aging in usual power converters, this work uses the software tool PLECS as framework to simulate Finite Control Set Model Predictive Control (FCSMPC) algorithms that, simultaneously to achieving a certain current tracking, aim to directly or indirectly extend IGBTs’ lifetime. Whilst the work focuses on offline simulation of the algorithms on PLECS, it also targets to pave the way to implement algorithms in a micro-controller and to study how they control a two-level inverter connected to a RL load simulated on a PLECS RT Box 1 platform. The ultimate goal is to develop validations based on Hardware-In-the-Loop techniques of the control algorithms.Universidad de Sevilla. Máster Universitario en Ingeniería Electrónica, Robótica y Automátic
    corecore