168 research outputs found

    The influence of pseudo conductivities on the EEG forward computation for human head modelling

    Get PDF
    In brain imaging, the accuracy involved in calculating scalp potentials due to cerebral electric sources depends on the realism of the head model. Existing methods assume homogeneous conductivity throughout each component tissue. This assumption introduces inaccuracies in computing the potentials. This paper proposes a new approach based on the use of pseudo-conductivity values in place of the uniform conductivity values assigned to tissues. Simulation results reveal that the conductivity values have a significant effect on the computed potentials, thereby invalidating the uniform conductivity assumption

    A pseudo-conductivity inhomogeneous head model for computation of EEG

    Get PDF
    Human head models for the forward computation of EEG using FEM require a large set of elements to represent the head geometry accurately. Anatomically, the electrical property of each element is different, even though they may represent the same type of tissue (white matter, grey matter, etc.). Since it is impossible to obtain the electrical properties of the cranial tissues for every element in the head model, most algorithms which claim to deal with inhomogeneity can, in reality, only implement the computation for the homogeneous case. This paper presents a new numerical approach which can more precisely model the head by using a set of pseudo conductivity values for the computation of the inhomogeneous case. This set of values is extrapolated from the limited amount of real conductivity values available in the literature. Simulation studies, based on both this proposed approach and the homogeneous approach which utilises mean-valued conductivities, are performed. The studies reveal that the computation results for the potential distribution on the surface of the scalp, obtained using both approaches, are significantly different

    Review on solving the forward problem in EEG source analysis

    Get PDF
    Background. The aim of electroencephalogram (EEG) source localization is to find the brain areas responsible for EEG waves of interest. It consists of solving forward and inverse problems. The forward problem is solved by starting from a given electrical source and calculating the potentials at the electrodes. These evaluations are necessary to solve the inverse problem which is defined as finding brain sources which are responsible for the measured potentials at the EEG electrodes. Methods. While other reviews give an extensive summary of the both forward and inverse problem, this review article focuses on different aspects of solving the forward problem and it is intended for newcomers in this research field. Results. It starts with focusing on the generators of the EEG: the post-synaptic potentials in the apical dendrites of pyramidal neurons. These cells generate an extracellular current which can be modeled by Poisson's differential equation, and Neumann and Dirichlet boundary conditions. The compartments in which these currents flow can be anisotropic (e.g. skull and white matter). In a three-shell spherical head model an analytical expression exists to solve the forward problem. During the last two decades researchers have tried to solve Poisson's equation in a realistically shaped head model obtained from 3D medical images, which requires numerical methods. The following methods are compared with each other: the boundary element method (BEM), the finite element method (FEM) and the finite difference method (FDM). In the last two methods anisotropic conducting compartments can conveniently be introduced. Then the focus will be set on the use of reciprocity in EEG source localization. It is introduced to speed up the forward calculations which are here performed for each electrode position rather than for each dipole position. Solving Poisson's equation utilizing FEM and FDM corresponds to solving a large sparse linear system. Iterative methods are required to solve these sparse linear systems. The following iterative methods are discussed: successive over-relaxation, conjugate gradients method and algebraic multigrid method. Conclusion. Solving the forward problem has been well documented in the past decades. In the past simplified spherical head models are used, whereas nowadays a combination of imaging modalities are used to accurately describe the geometry of the head model. Efforts have been done on realistically describing the shape of the head model, as well as the heterogenity of the tissue types and realistically determining the conductivity. However, the determination and validation of the in vivo conductivity values is still an important topic in this field. In addition, more studies have to be done on the influence of all the parameters of the head model and of the numerical techniques on the solution of the forward problem.peer-reviewe

    Incorporation of anisotropic conductivities in EEG source analysis

    Get PDF
    The electroencephalogram (EEG) is a measurement of brain activity over a period of time by placing electrodes at the scalp (surface EEG) or in the brain (depth EEG) and is used extensively in the clinical practice. In the past 20 years, EEG source analysis has been increasingly used as a tool in the diagnosis of neurological disorders (like epilepsy) and in the research of brain functionality. EEG source analysis estimates the origin of brain activity given the electrode potentials measured at the scalp. This involves solving an inverse problem where a forward solution, which depends on the source parameters, is fitted to the given set of electrode potentials. The forward solution are the electrode potentials caused by a source in a given head model. The head model is dependent on the geometry and the conductivity. Often an isotropic conductivity (i.e. the conductivity is equal in all directions) is used, although the skull and white matter have an anisotropic conductivity (i.e. the conductivity can differ depending on the direction the current flows). In this dissertation a way to incorporate the anisotropic conductivities is presented and the effect of not incorporating these anisotropic conductivities is investigated. Spherical head models are simple head models where an analytical solution to the forward problem exists. A small simulation study in a 5 shell spherical head model was performed to investigate the estimation error due to neglecting the anisotropic properties of skull and white matter. The results show that the errors in the dipole location can be larger than 15 mm, which is unacceptable for an accurate dipole estimation in the clinical practice. Therefore, anisotropic conductivities have to be included in the head model. However, these spherical head models are not representative for the human head. Realistic head models are usually made from magnetic resonance scans through segmentation and are a better approximation to the geometry of the human head. To solve the forward problem in these head models numerical methods are needed. In this dissertation we proposed a finite difference technique that can incorporate anisotropic conductivities. Moreover, by using the reciprocity theorem the forward calculation time during an dipole source estimation procedure can be significantly reduced. By comparing the analytical solution for the dipole estimation problem with the one using the numerical method, the anisotropic finite difference with reciprocity method (AFDRM) is validated. Therefore, a cubic grid is made on the 5 shell spherical head model. The electrode potentials are obtained in the spherical head model with anisotropic conductivities by solving the forward problem using the analytical solution. Using these electrode potentials the inverse problem was solved in the spherical head model using the AFDRM. In this way we can determine the location error due to using the numerical technique. We found that the incorporation of anisotropic conductivities results in a larger location error when the head models are fully isotropical conducting. Furthermore, the location error due to the numerical technique is smaller if the cubic grid is made finer. To minimize the errors due to the numerical technique, the cubic grid should be smaller than or equal to 1 mm. Once the numerical technique is validated, a realistic head model can now be constructed. As a cubic grid should be used of at most 1 mm, the use of segmented T1 magnetic resonance images is best suited the construction. The anisotropic conductivities of skull and white matter are added as follows: The anisotropic conductivity of the skull is derived by calculating the normal and tangential direction to the skull at each voxel. The conductivity in the tangential direction was set 10 times larger than the normal direction. The conductivity of the white matter was derived using diffusion weighted magnetic resonance imaging (DW-MRI), a technique that measures the diffusion of water in several directions. As diffusion is larger along the nerve fibers, it is assumed that the conductivity along the nerve fibers is larger than the perpendicular directions to the nerve bundle. From the diffusion along each direction, the conductivity can be derived using two approaches. A simplified approach takes the direction with the largest diffusion and sets the conductivity along that direction 9 times larger than the orthogonal direction. However, by calculating the fractional anisotropy, a well-known measure indicating the degree of anisotropy, we can appreciate that a fractional anisotropy of 0.8715 is an overestimation. In reality, the fractional anisotorpy is mostly smaller and variable throughout the white matter. A realistic approach was therefore presented, which states that the conductivity tensor is a scaling of the diffusion tensor. The volume constraint is used to determine the scaling factor. A comparison between the realistic approach and the simplified approach was made. The results showed that the location error was on average 4.0 mm with a maximum of 10 mm. The orientation error was found that the orientation could range up to 60 degrees. The large orientation error was located at regions where the anisotropic ratio was low using the realistic approach but was 9 using the simplified approach. Furthermore, as the DW-MRI can also be used to measure the anisotropic diffusion in a gray matter voxel, we can derive a conductivity tensor. After investigating the errors due to neglecting these anisotropic conductivities of the gray matter, we found that the location error was very small (average dipole location error: 2.8 mm). The orientation error was ranged up to 40 degrees, although the mean was 5.0 degrees. The large errors were mostly found at the regions that had a high anisotropic ratio in the anisotropic conducting gray matter. Mostly these effects were due to missegmentation or to partial volume effects near the boundary interfaces of the gray and white matter compartment. After the incorporation of the anisotropic conductivities in the realistic head model, simulation studies can be performed to investigate the dipole estimation errors when these anisotropic conductivities of the skull and brain tissues are not taken into account. This can be done by comparing the solution to the dipole estimation problem in a head model with anisotropic conductivities with the one in a head model, where all compartments are isotropic conducting. This way we determine the error when a simplified head model is used instead of a more realistic one. When the anisotropic conductivity of both the skull and white matter or the skull only was neglected, it was found that the location error between the original and the estimated dipole was on average, 10 mm (maximum: 25 mm). When the anisotropic conductivity of the brain tissue was neglected, the location error was much smaller (an average location error of 1.1 mm). It was found that the anisotropy of the skull acts as an extra shielding of the electrical activity as opposed to an isotropic skull. Moreover, we saw that if the dipole is close to a highly anisotropic region, the potential field is changed reasonable in the near vicinity of the location of the dipole. In reality EEG contains noise contributions. These noise contribution will interact with the systematical error by neglecting anisotropic conductivities. The question we wanted to solve was “Is it worthwhile to incorporate anisotropic conductivities, even if the EEG contains noise?” and “How much noise should the EEG contain so that incorporating anisotropic conductivities improves the accuracy of EEG source analysis?”. When considering the anisotropic conductivities of the skull and brain tissues and the skull only, the location error due to the noise and neglecting the anisotropic conductivities is larger then the location error due to noise only. When only neglecting the anisotropic conductivities of the brain tissues only, the location error due to noise is similar to the location error due to noise and neglecting the anisotropic conductivities. When more advanced MR techniques can be used a better model to construct the anisotropic conductivities of the soft brain tissues can be used, which could result in larger errors even in the presence of noise. However, this is subject to further investigation. This suggests that the anisotropic conductivities of the skull should be incorporated. The technique presented in the dissertation can be used to epileptic patients in the presurgical evaluation. In this procedure patients are evaluated by means of medical investigations to determine the cause of the epileptic seizures. Afterwards, a surgical procedure can be performed to render the patient seizure free. A data set from a patiënt was obtained from a database of the Reference Center of Refractory Epilepsy of the Department of Neurology and the Department of Radiology of the Ghent University Hospital (Ghent, Belgium). The patient was monitored with a video/EEG monitoring with scalp and with implanted depth electrodes. An MR image was taken from the patient with the implanted depth electrodes, therefore, we could pinpoint the hippocampus as the onset zone of the epileptic seizures. The patient underwent a resective surgery removing the hippocampus, which rendered the patient seizure free. As DW-MRI images were not available, the head model constructed in chapter 4 and 5 was used. A neuroradiologist aligned the hippocampus in the MR image from which the head model was constructed. A spike was picked from a dataset and was used to estimate the source in a head model where all compartments were isotropic conducting, on one hand, and where the skull and brain tissues were anisotropic conducting, on the other. It was found that using the anisotropic head model, the source was estimated closer to the segmented hippocampus than the isotropic head model. This example shows the possibilities of this technique and allows us to apply it in the clinical practice. Moreover, a thorough validation of the technique has yet to be performed. There is a lot of discussion in the clinical community whether the spikes and epileptical seizures originate from the same origin in the brain. This question can be solved by applying our technique in patient studies

    Reconstruction of electric fields and source distributions in EEG brain imaging

    Get PDF
    In this thesis, three different approaches are developed for the estimation of focal brain activity using EEG measurements. The proposed approaches have been tested and found feasible using simulated data. First, we develop a robust solver for the recovery of focal dipole sources. The solver uses a weighted dipole strength penalty term (also called weighted L1,2 norm) as prior information in order to ensure that the sources are sparse and focal, and that both the source orientation and depth bias are reduced. The solver is based on the truncated Newton interior point method combined with a logarithmic barrier method for the approximation of the penalty term. In addition, we use a Bayesian framework to derive the depth weights in the prior that are used to reduce the tendency of the solver to favor superficial sources. In the second approach, vector field tomography (VFT) is used for the estimation of underlying electric fields inside the brain from external EEG measurements. The electric field is reconstructed using a set of line integrals. This is the first time that VFT has been used for the recovery of fields when the dipole source lies inside the domain of reconstruction. The benefit of this approach is that we do not need a mathematical model for the sources. The test cases indicated that the approach can accurately localize the source activity. In the last part of the thesis, we show that, by using the Bayesian approximation error approach (AEA), precise knowledge of the tissue conductivities and head geometry are not always needed. We deliberately use a coarse head model and we take the typical variations in the head geometry and tissue conductivities into account statistically in the inverse model. We demonstrate that the AEA results are comparable to those obtained with an accurate head model.Open Acces

    Reduction of conductivity uncertainty propagations in the inverse problem of EEG source analysis

    Get PDF
    In computer simulations, the response of a system under study depends on the input parameters. Each of these parameters can be assigned a fixed value or a range of values within the input parameter space for system performance evaluations. Starting from values of the input parameters and a certain given model, the so-called forward problem can be solved that needs to approximate the output of the system. Starting from measurements related to the output of the system model it is possible to determine the state of the system by solving the so-called inverse problem. In the case of a non-linear inverse problem, non-linear minimization techniques need to be used where the forward model is iteratively evaluated for different input parameters. The accuracy of the solution in the inverse problem is however decreased due to the noise available in the measurements and due to uncertainties in the system model. Uncertainties are parameters for which their values are not exactly known and/or that can vary in time and/or depend on the environment. These uncertainties have, for given input parameter values, an influence on the forward problem solution. This forward uncertainty propagation leads then to errors in the inverse solutions because the forward model is iteratively evaluated for recovering the inverse solutions. Until now, it was assumed that the recovery errors could not be reduced. The only option was to either quantify the uncertain parameter values as accurate as possible or to reflect the uncertainty in the inverse solutions, i.e. determination of the region in parameter space wherein the inverse solution is likely to be situated. The overall aim of this thesis was to develop reduction techniques of inverse reconstruction errors so that the inverse problem is solved in a more robust and thus accurate way. Methodologies were specifically developed for electroencephalography (EEG) source analysis. EEG is a non-invasive technique that measures on the scalp of the head, the electric potentials induced by the neuronal activity. EEG has several applications in biomedical engineering and is an important diagnostic tool in clinical neurophysiology. In epilepsy, EEG is used to map brain areas and to receive source localization information that can be used prior to surgical operation. Starting from Maxwell’s equations in their quasi-static formulation and from a physical model of the head, the forward problem predicts the measurements that would be obtained for a given configuration of current sources. The used headmodels in this thesis are multi-layered spherical head models. The neural sources are parameterized by the location and orientation of electrical dipoles. In this thesis, a set of limited number of dipole sources is used as source model leading to a well posed inverse problem. The inverse problem starts from measured EEG data and recovers the locations and orientations of the electrical dipole sources. A loss in accuracy of the recovered neural sources occurs because of noise in the EEG measurements and uncertainties in the forward model. Especially the conductivity values of scalp, skull and brain are not well known since these values are difficult to measure. Moreover, these uncertainties can vary from person to person, in time, etc. In this thesis, novel numerical methods are developed so to provide new approaches in the improvement of spatial accuracy in EEG source analysis, taking into account model uncertainties. Nowadays, the localization of the electrical activity in the brain is still a current and challenging research topic due to the many difficulties arising e.g. in the process of modeling the head and dealing with the not well known conductivity values of its different tissues. Due to uncertainty in the conductivity value of the head tissues, high values of errors are introduced when solving the EEG inverse problem. In order to improve the accuracy of the solution of the inverse problem taking into account the uncertainty of the conductivity values, a new mathematical approach in the definition of the cost function is introduced and new techniques in the iterative scheme of the inverse reconstruction are proposed. The work in this thesis concerns three important phases. In a first stage, we developed a robust methodology for the reduction of errors when reconstructing a single electrical dipole in the case of a single uncertainty. This uncertainty concerns the skull to soft tissue conductivity ratio which is an important parameter in the forward model. This conductivity ratio is difficult to quantify and depends from person to person. The forward model that we employed is a three shell spherical head model where the forward potentials depend on the conductivity ratio. We reformulated the solution of the forward problem by using a Taylor expansion around an actual value of the conductivity ratio which led to a linear model of the solution for the simulated potentials. The introduction of this expanded forward model, led to a sensitivity analysis which provided relevant information for the reconstruction of the sources in EEG source analysis. In order to develop a technique for reducing the errors in inverse solutions, some challenging mathematical questions and computational problems needed to be tackled. We proposed in this thesis the Reduced Conductivity Dependence (RCD) method where we reformulate the traditional cost function and where we incorporated some changes with respect to the iterative scheme. More specifically, in each iteration we include an internal fitting procedure and we propose selection of sensors. The fitting procedure makes it possible to have an as accurate as possible forward model while the selection procedure eliminates the sensors which have the highest sensitivity to the uncertain skull to brain conductivity ratio. Using numerical experiments we showed that errors in reconstructed electrical dipoles are reduced using the RCD methodology in the case of no noise in measurements and in the case of noise in measurements. Moreover, the procedure for the selection of electrodes was thoroughly investigated as well as the influence of the use of different EEG caps (with different number of electrodes). When using traditional reconstruction methods, the number of electrodes has not a high influence on the spatial accuracy of the reconstructed single electrical dipole. However, we showed that when using the RCD methodology the spatial accuracy can be even more increased. This because of the selection procedure that is included within the RCD methodology. In a second stage, we proposed a RCD method that can be applied for the reconstruction of a limited number of dipoles in the case of a single uncertainty. The same ideas were applied onto the Recursively Applied and Projected Multiple Signal Classification (RAP-MUSIC) algorithm. The three shell spherical head model was employed with the skull to brain conductivity ratio as single uncertainty. We showed using numerical experiments that the spatial accuracy of each reconstructed dipole is increased, i.e. reduction of the conductivity dependence of the inverse solutions. Moreover, we illustrated that the use of the RCD-based subspace correlation cost function leads to a high efficiency even for high noise levels. Finally, in a third stage, we developed a RCD methodology for the reduction of errors in the case of multiple uncertainties. We used a five shell spherical head model where conductivity ratios with respect to skull, cerebrospinal fluid, and white matter were uncertain. The cost function as well as the fitting and selection procedure of the RCD method were extended. The numerical experiments showed reductions in the reconstructed electrical dipoles in comparison with the traditional methodology and also compared to the RCD methodology developed for dealing with a single uncertainty

    Functional Brain Imaging by EEG: A Window to the Human Mind

    Get PDF
    • …
    corecore