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English summary

The electroencephalogram (EEG) is a measurement of brain activity over a
period of time by placing electrodes at the scalp (surface EEG) or in the brain
(depth EEG) and is used extensively in the clinical practice. In the past 20
years, EEG source analysis has been increasingly used as a tool in the di-
agnosis of neurological disorders (like epilepsy) and in the research of brain
functionality. EEG source analysis estimates the origin of brain activity given
the electrode potentials measured at the scalp. This involves solving an inverse
problem where a forward solution, which depends on the source parameters,
is fitted to the given set of electrode potentials. The forward solution are the
electrode potentials caused by a source in a given head model. The head model
is dependent on the geometry and the conductivity. Often an isotropic con-
ductivity (i.e. the conductivity is equal in all directions) is used, although the
skull and white matter have an anisotropic conductivity (i.e. the conductivity
can differ depending on the direction the current flows). In this dissertation a
way to incorporate the anisotropic conductivities is presented and the effect of
not incorporating these anisotropic conductivities is investigated.

Spherical head models are simple head models where an analytical solution to
the forward problem exists. A small simulation study in a 5 shell spherical head
model was performed to investigate the estimation error due to neglecting the
anisotropic properties of skull and white matter. The results show that the
errors in the dipole location can be larger than 15 mm, which is unacceptable
for an accurate dipole estimation in the clinical practice. Therefore, anisotropic
conductivities have to be included in the head model.

However, these spherical head models are not representative for the human
head. Realistic head models are usually made from magnetic resonance scans
through segmentation and are a better approximation to the geometry of the
human head. To solve the forward problem in these head models numerical
methods are needed. In this dissertation we proposed a finite difference tech-
nique that can incorporate anisotropic conductivities. Moreover, by using the
reciprocity theorem the forward calculation time during an dipole source esti-
mation procedure can be significantly reduced.

By comparing the analytical solution for the dipole estimation problem with
the one using the numerical method, the anisotropic finite difference with reci-
procity method (AFDRM) is validated. Therefore, a cubic grid is made on
the 5 shell spherical head model. The electrode potentials are obtained in the
spherical head model with anisotropic conductivities by solving the forward
problem using the analytical solution. Using these electrode potentials the in-
verse problem was solved in the spherical head model using the AFDRM. In
this way we can determine the location error due to using the numerical tech-
nique. We found that the incorporation of anisotropic conductivities results in
a larger location error when the head models are fully isotropical conducting.
Furthermore, the location error due to the numerical technique is smaller if the
cubic grid is made finer. To minimize the errors due to the numerical technique,
the cubic grid should be smaller than or equal to 1 mm.
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Once the numerical technique is validated, a realistic head model can now
be constructed. As a cubic grid should be used of at most 1 mm, the use
of segmented T1 magnetic resonance images is best suited the construction.
The anisotropic conductivities of skull and white matter are added as follows:
The anisotropic conductivity of the skull is derived by calculating the normal
and tangential direction to the skull at each voxel. The conductivity in the
tangential direction was set 10 times larger than the normal direction.

The conductivity of the white matter was derived using diffusion weighted mag-
netic resonance imaging (DW-MRI), a technique that measures the diffusion
of water in several directions. As diffusion is larger along the nerve fibers, it is
assumed that the conductivity along the nerve fibers is larger than the perpen-
dicular directions to the nerve bundle. From the diffusion along each direction,
the conductivity can be derived using two approaches. A simplified approach
takes the direction with the largest diffusion and sets the conductivity along
that direction 9 times larger than the orthogonal direction. However, by calcu-
lating the fractional anisotropy, a well-known measure indicating the degree of
anisotropy, we can appreciate that a fractional anisotropy of 0.8715 is an over-
estimation. In reality, the fractional anisotorpy is mostly smaller and variable
throughout the white matter. A realistic approach was therefore presented,
which states that the conductivity tensor is a scaling of the diffusion tensor.
The volume constraint is used to determine the scaling factor. A comparison
between the realistic approach and the simplified approach was made. The
results showed that the location error was on average 4.0 mm with a maximum
of 10 mm. The orientation error was found that the orientation could range
up to 60 degrees. The large orientation error was located at regions where
the anisotropic ratio was low using the realistic approach but was 9 using the
simplified approach.

Furthermore, as the DW-MRI can also be used to measure the anisotropic
diffusion in a gray matter voxel, we can derive a conductivity tensor. After
investigating the errors due to neglecting these anisotropic conductivities of the
gray matter, we found that the location error was very small (average dipole
location error: 2.8 mm). The orientation error was ranged up to 40 degrees,
although the mean was 5.0 degrees. The large errors were mostly found at the
regions that had a high anisotropic ratio in the anisotropic conducting gray
matter. Mostly these effects were due to missegmentation or to partial volume
effects near the boundary interfaces of the gray and white matter compartment.
After the incorporation of the anisotropic conductivities in the realistic head
model, simulation studies can be performed to investigate the dipole estimation
errors when these anisotropic conductivities of the skull and brain tissues are
not taken into account. This can be done by comparing the solution to the
dipole estimation problem in a head model with anisotropic conductivities with
the one in a head model, where all compartments are isotropic conducting. This
way we determine the error when a simplified head model is used instead of
a more realistic one. When the anisotropic conductivity of both the skull and
white matter or the skull only was neglected, it was found that the location
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error between the original and the estimated dipole was on average, 10 mm
(maximum: 25 mm). When the anisotropic conductivity of the brain tissue
was neglected, the location error was much smaller (an average location error
of 1.1 mm). It was found that the anisotropy of the skull acts as an extra
shielding of the electrical activity as opposed to an isotropic skull. Moreover,
we saw that if the dipole is close to a highly anisotropic region, the potential
field is changed reasonable in the near vicinity of the location of the dipole.
In reality EEG contains noise contributions. These noise contribution will in-
teract with the systematical error by neglecting anisotropic conductivities. The
question we wanted to solve was “Is it worthwhile to incorporate anisotropic
conductivities, even if the EEG contains noise?” and “How much noise should
the EEG contain so that incorporating anisotropic conductivities improves the
accuracy of EEG source analysis?”. When considering the anisotropic conduc-
tivities of the skull and brain tissues and the skull only, the location error due
to the noise and neglecting the anisotropic conductivities is larger then the
location error due to noise only. When only neglecting the anisotropic conduc-
tivities of the brain tissues only, the location error due to noise is similar to
the location error due to noise and neglecting the anisotropic conductivities.
When more advanced MR techniques can be used a better model to construct
the anisotropic conductivities of the soft brain tissues can be used, which could
result in larger errors even in the presence of noise. However, this is subject to
further investigation. This suggests that the anisotropic conductivities of the
skull should be incorporated.

The technique presented in the dissertation can be used to epileptic patients in
the presurgical evaluation. In this procedure patients are evaluated by means
of medical investigations to determine the cause of the epileptic seizures. Af-
terwards, a surgical procedure can be performed to render the patient seizure
free. A data set from a patiént was obtained from a database of the Refer-
ence Center of Refractory Epilepsy of the Department of Neurology and the
Department of Radiology of the Ghent University Hospital (Ghent, Belgium).
The patient was monitored with a video/EEG monitoring with scalp and with
implanted depth electrodes. An MR image was taken from the patient with
the implanted depth electrodes, therefore, we could pinpoint the hippocampus
as the onset zone of the epileptic seizures. The patient underwent a resective
surgery removing the hippocampus, which rendered the patient seizure free.
As DW-MRI images were not available, the head model constructed in chapter
4 and 5 was used. A neuroradiologist aligned the hippocampus in the MR
image from which the head model was constructed. A spike was picked from a
dataset and was used to estimate the source in a head model where all compart-
ments were isotropic conducting, on one hand, and where the skull and brain
tissues were anisotropic conducting, on the other. It was found that using the
anisotropic head model, the source was estimated closer to the segmented hip-
pocampus than the isotropic head model. This example shows the possibilities
of this technique and allows us to apply it in the clinical practice. Moreover, a
thorough validation of the technique has yet to be performed. There is a lot of



XXXVi English Summary

discussion in the clinical community whether the spikes and epileptical seizures
originate from the same origin in the brain. This question can be solved by
applying our technique in patient studies.

The research was performed in the MEDical Image and SIgnal Processing (ME-
DISIP) research group, part of the department of ELectronics and Information
Systems (ELIS) of the faculty of Engineering (FIRW) of the Ghent University,
Ghent, Belgium. The work was done in close collaboration with the Reference
Center for Refractory Epilepsy (RCRE) of the Department of Neurology and
the Department of Radiology at the Ghent University Hospital. The work re-
sulted in 2 publications [70, 64] as first author and 3 publications [33, 32] as
second author in international A1l journals, 3 publications [60, 68, 69] as first
author in international peer-reviewed journals (A2) and many of these results
[56, 61, 62, 57, 65, 58, 63, 59, 66, 30, 5] were submitted and presented at

national and international conferences.
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Het elektroencefalogram (EEG) is een registratie van de hersenactiviteit
gedurende een tijdsperiode. De hersenactiviteit kan gemeten worden door
het plaatsen van elektrodes aan het hoofdoppervlak (oppervlakte EEG) of
in de hersenen (diepte EEG). Het EEG wordt intensief gebruikt in de klin-
ische praktijk. In de laatste 20 jaar is EEG bronanalyse veelvuldig gebruikt
als onderzoek in de diagnose van neurologische aandoeningen (zoals epilep-
sie) en in fundamenteel onderzoek naar de werking van de hersenen. EEG-
bronanalyse schat de oorsprong van hersenactiviteit gegeven de elektrodepo-
tentialen gemeten aan het hoofdoppervlak en bestaat uit twee problemen. Het
voorwaarts problem bepaalt de elektrodepotentialen gegeven een bron in een
welbepaald hoofdmodel. Het inverse probleem schat de bronparameters die
het best overeenkomen met de gemeten elektrodepotentialen. Het hoofdmodel
is afthankelijk van de geometrie en de geleidbaarheden. In de realiteit zijn de
schedel en de witte materie van de hersenen anisotroop geleidend (i.e. de gelei-
dbaarheden zijn niet even groot in verschillende richtingen). Dit proefschrift
handelt over de incorporatie van deze geleidbaarheden en over de fouten die
gemaakt worden indien deze anisotrope geleidbaarheden niet in rekening ge-
bracht worden.

In bolvormige hoofdmodellen kan een analytische formule gebruikt worden om
het voorwaarts probleem op te lossen. Een kleine studie in een vijfvoudig
bolvormig hoofdmodel toont immers aan dat het niet in rekening brengen van
de anisotrope geleidbaarheden een schattingsfout op de locatie kan geven van
meer dan 15 mm. Dergelijke fouten zijn onaanvaardbaar voor een nauwkeurige
localizatie in de klinische praktijk. Anisotrope geleidbaarheden moeten dus in
het hoofdmodel geincorporeerd worden.

Bolvormige hoofdmodellen zijn echter een vereenvoudiging van de echte geome-
trie van het menselijk hoofd. Realistische hoofdmodellen kunnen geconstrueerd
worden aan de hand van magnetische resonantie scans. Hierdoor kan de ge-
ometrie van het menselijk hoofd beter benaderd worden, maar moet het voor-
waarts probleem opgelost worden door middel van een numerieke techniek. In
dit proefschrift stellen we eindige differentie methode voor die anisotrope gelei-
dbaarheden in rekening kan brengen. Te meer, kan het reciprociteitstheorema
gebruikt worden om de berekening van het voorwaarts probleem tijdens de
dipoolbronschatting aanzienlijk te versnellen.

Numerieke technieken veroorzaken echter wel een fout te wijten aan de dis-
cretizatie. Door de oplossing van de dipoolbronbepaling in een bolvormig
hoofdmodel door middel van de analytische formule te vergelijken met deze
in een gediscretizeerd bolvormig hoofdmodel door middel van de anisotrope
eindige differentie met reciprociteit methode (AFDRM). Er werd getoond dat
er een fout is te wijten aan de discretizatie van de potentialen en een fout
te wijten aan de discretizatie van de anisotrope geleidbaarheden. Om de dis-
cretizatiefouten te minimalizeren moet immers een kubisch berekeningsrooster
van kleiner of gelijk aan 1 mm gebruikt worden.

Na de validatie van de numerieke techniek, kan deze gebruikt worden in een real-



XXXViii Nederlandse samenvatting

istisch hoofdmodel. Hiervoor worden T1 gewogen magnetische resonantie scans
gesegmenteerd in compartimenten, die in een realitisch hoofdmodel gecombi-
neerd worden. De anisotrope geleidbaarheden van de schedel en witte materie
worden dan als volgt bepaald. De anisotrope geleidbaarheid van de schedel
wordt bekomen door de tangentiele geleidbaarheid aan een schedelsegment 10
keer groter te maken dan de loodrechte geleidbaarheid.

De geleidbaarheid van de witte materie kan afgeleid worden met een recente
techniek dat de diffusierichtingen van water kan meten: diffusie gewogen mag-
netische resonantie beeldvorming (DW-MRI). De diffusie van water is immers
groter in de richting van de zenuwbundels. Hierdoor veronderstelt men dat
geleidbaarheid langs de zenuwbundels groter is dat loodrecht op de zenuwbun-
del. Een eenvoudig model stelt dat de geleidbaarheid 9 keer groter is langs
de zenuwbundel dan loodrecht. Echter, een vizualisatie van de fractionele
anisotropie, een maat voor de anisotropie, toont aan dat de overeenkomende
fractionele anistropie van 0.8715 een overschatting is. In de realiteit is de
fractionele anisotropie variabel en meestal lager dan 0.8715. Realistischer zou
zijn dat de geleidbaarheidstensor een schaling is van de diffusietensor. De vol-
ume beperking is gebruikt om de onbekende schalingsfactor te bepalen. Het
vereenvoudig model gebruiken in plaats van een realistisch model veroorzaakt
dipoolestimatiefouten van gemiddeld 4.0 mm met een maximum van 10 mm.
De fout in orientatie kan tot 60 graden bedragen. Grote fouten in de orientatie
kwamen meestal voor in regio’s die een lage fractionele anisotropie hebben
gebruik makend van het realistisch model maar 0.8715 indien het eenvoudig
model wordt gebruikt.

De resultaten van DW-MRI kunnen ook gebruikt worden geleidbaarheidsten-
sor te construeren in de grijze materie. Wanneer de anisotrope geleidbaarhe-
den van de grijze materie niet in rekening gebracht worden, kunnen er fouten
gemaakt worden die slechts heel klein zijn (gemiddelde localizatiefout: 2.8
mm). De orientatiefout kan maximaal 40 graden bedragen, het gemiddelde
is echter 5.0 graden. Grote fouten kwamen voor in regio’s die een hoge frac-
tionele anisotropie hadden in de anisotroop geleidende grijze materie. Deze
resultaten zijn belangrijk voor de constructie van het hoofdmodel aangezien
er fouten kunnen optreden in de segmentatie tussen witte en grijze materie.
Hierdoor kunnen stukken witte materie met een hoge anisotropie verkeerdelijk
tot de grijze materie geklassificeerd worden.

Wanneer anisotrope geleidbaarheden in het hoofdmodel kunnen geincorporeerd
worden, kunnen simulaties uitgevoerd worden die de fout te wijten aan het niet
in rekening brengen van de anisotrope geleidbaarheden onderzoeken. Hierdoor
gaan we na welke fouten er gemaakt worden indien een eenvoudig hoofdmodel
zonder anisotrope geleidbaarheden gebruikt wordt in plaats van een realistisch
hoofdmodel wel anisotrope geleidbaarheden bevat. Het niet in rekening bren-
gen van de anisotrope geleidbaarheden van schedel veroorzaakt immers fouten
van gemiddeld 10 mm (maximaal: 25 mm). De schedel is dus een belangrijke
parameter in het hoofdmodel en dus in EEG-bronanalyse. Wanneer enkel de
anisotrope geleidbaarheden van de zachte hersenweefsels (witte en grijze ma-
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terie) niet in rekening gebracht worden, is de fout in de localizatie veel kleiner,
namelijk 1.1 mm gemiddeld. De anisotrope geleidbaarheid van de schedel werkt
immers als een extra afscherming van de elektrische activiteit in vergelijking
met een isotroop geleidende schedel. Bovendien wordt het potentiaalveld in
de nabijheid van de dipoolbron aanzienlijk beinvloed wordt door de anisotrope
geleidbaarheden van de zachte hersenweefsels.

In realiteit bevat het EEG ruis. Deze ruisbijdragen zullen interageren met de
systematische fout te wijten aan het niet in rekening brengen van anisotrope
geleidbaarheden. De vraag die we willen beantwoorden is “Is het de moeite
om anisotrope geleidbaarheden te incorporeren, zelfs bevat het EEG ruis?”
en “Hoeveel ruis kan het EEG maximaal bevatten zodat het incorporeren
van anisotrope geleidbaarheden kan bijdragen tot een nauwkeurigere bron-
schatting?”. Wanneer de anisotrope geleidbaarheden van de schedel en zachte
hersenweefsels of deze van enkel de schedel niet in rekening gebracht worden en
ruis is toegevoegd aan de elektrode potentialen, is de localizatiefout groter dan
wanneer enkel ruis is toegevoegd. Wanneer enkel de anisotrope geleidbaarheden
van de zachte hersenweefsels beschouwd worden, is de fout te wijten aan ruis
en het niet in rekening brengen van de anisotrope geleidbaarheden gelijkaardig
aan de fout te wijten door enkel ruis. Dit suggereert dat de anisotrope gelei-
dbaarheden van de zachte hersenweefsels weinig invloed hebben op de dipool-
bronestimatie.

Het model gebruikt in dit proefschrift is best geschikt voor DW-MRI scans
met een resolutie van 2 mm bij 2 mm bij 2 mm. Wanneer er geavanceerde MR
technieken gebruikt worden, kan een beter model voor de constructie van de
geleidbaarheidstensor in zachte weefsels gebruikt worden. Hierdoor kunnen er
grotere fouten optreden wanneer de anisotrope geleidbaarheden van de zachte
hersenweefsels niet in rekening gebracht worden, dan hier beschreven.

De techniek beschreven in dit proefschrift kan toegepast worden in de
prechirugische evaluatie van patiénten met epilepsie. In deze evaluatie wor-
den patiénten geévalueerd door middel van onderzoeken wat de oorsprong is
van de epileptische aanvallen. Nadien kan een chirurgische ingreep uitgevoerd
worden die de patient aanvalsvrij kan maken. Een dataset werd geselecteerd
uit de databank van het ReferentieCentrum voor Refractaire Epilepsie van de
Afdeling Neurologie van het Universitair Ziekenhuis Gent. De patiént onderg-
ing een video/EEG monitoring met oppervlakte en diepte-electroden. Een MR
scan werd genomen van de patiént met de geimplanteerde diepte-electroden.
Hierdoor kon de linker hippocampus gedetermineerd worden als oorsprong van
de epilepsie-aanvallen. De patiént werd gedpereerd waarbij de linker hippocam-
pus weggenomen werd. Hierdoor werd de patiént aanvalsvrij. Een spike (i.e.
een kortstondig epileptisch fenomeen in het EEG dat zich typisch voordoet
tussen de aanvallen) werd uitgekozen en gebruikt in de dipoolbronschatting in
een hoofdmodel met isotrope geleidbaarheden enerzijds en in een hoofdmodel
met anisotrope geleidbaarheden anderzijds. In het anisotroop geleidende hoofd-
model was de bronschatting dichter bij de gesegmenteerde linker hippocampus.
Dit voorbeeld toont de mogelijkheden en laat ons toe om deze techniek toe te
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passen in de klinische praktijk. Een grondige validatie van deze techniek is nog
deel van toekomstig onderzoek. Er is namelijk nog steeds een grote discussie in
de klinische wereld dat spikes en aanvallen hun oorsprong vinden uit eenzelfde
regio in de hersenen. Met deze techniek kan deze klinische dialoog opgelost
worden.

Dit onderzoek werd uitgevoerd in de MEDical Image and SIgnal Processing on-
derzoeksgroep (MEDISIP) van het departement ELektronica en InformatieSys-
temen (ELIS) van de faculteit ingenieurswetenschappen (FIRW) van de Uni-
versiteit Gent te Gent, Belgie. Dit werk kwam tot stand mits een hechte
samenwerking met het Referentie Centrum voor Refractaire Epilepsy (RCRE)
van de dienst Neurologie en de dienst Radiologie van het Universitair Zieken-
huis Gent (UZGent). Bovendien resulteerde dit werk in 2 publicaties [70, 64]
als eerste auteur en2 publicaties [33, 32] als tweede auteur in internationale Al
tijdschriften, 3 publicaties als eerste auteur [60, 68, 69] in internationale (A2)
tijdschriften. Veel van deze resultaten [56, 61, 62, 57, 65, 58, 63, 59, 66, 30, 5]
werden ingediend en gepresenteerd in internationale en nationale congressen en
symposia.
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Chapter 1

General Introduction

An idea that is developed and put into action is more important than an idea that
exists only as an idea.
—BUDDHA

1.1 Situation

The electroencephalogram (EEG) measures potentials at electrodes at the scalp
of a human head over a period of time. These potential differences are gen-
erated by electrical activity inside the brain. The EEG is particularly useful
for diagnostic purposes, where a neurologist wants to determine the origin of a
neurologic disorder (e.g. epilepsy). Typically, 20 to 40 electrodes are placed at
the scalp. Furthermore, measuring the EEG is useful in fundamental research
in the functionality of the brain. This is investigated by an event-related po-
tential (ERP), a potential waveform in time generated by a specific task or
stimulus. In this case, 64 to 256 electrodes are typically used.

Starting from a given set of potential differences measured at the scalp and a
volume conductor model (VCM) or head model, we can estimate the source,
which causes the potential differences, which is called EEG source analysis.
This is done by finding the source parameters which best represents the mea-
sured potential differences. In literature this also often called as FEG source
localization or EEG source estimation.

The potential differences caused by the activity in the brain are dependent on
the conductivities of the tissue types of the head. Commonly used head models
define the conductivity as isotropic. This means the conductivity is equal in
each direction. However, recently it has been shown that some brain tissues
have a direction dependent conductivity, which means the conductivity is dif-
ferent depending on the direction. These tissues have a so-called anisotropic
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conductivity. The incorporation of these anisotropic conductivities of in EEG
source analysis will be the main topic of this dissertation.

EEG source analysis has been proven to be useful in the diagnosis of neuro-
logical disorders like epilepsy. Patients with epilepsy have an characteristic
waveform which can be detected by a neurologist. In special cases of epilepsy,
the waveforms are generated by a specific focal region or multiple focal regions
in the brain. EEG source analysis estimates the origin of these waveforms non-
invasively using electrodes placed at the scalp. The determination of the origin
can help the neurologist to pinpoint the origin of the epilepsy and evaluate the
patient for resective surgery. In the latter, the brain region responsible for the
epileptic phenomena is surgically removed, which could reduce the epileptic
seizures or render the patient seizure free.

Another field where EEG source analysis can be useful is the research of brain
functionality during a specific task. Since the 1960s the EEG has also been used
to measure event-related potentials (ERPs). Here, brain waves are triggered by
a stimulus. These stimuli could be of visual, auditory and somatosensory na-
ture. Different ERP protocols are now routinely used in a clinical neurophysiol-
ogy lab. Researchers nowadays are still searching for new ERP protocols which
may be able to distinguish between ERPs of patients with a certain condition
and ERPs of normal subjects. This is used in disorders, such as psychiatric
and developmental disorders, where there is often a lack of biological objective
measures.

1.2 Outline

In chapter 2 an introduction to the EEG source analysis is given. Through-
out the beginning of the chapter we build a model for the generators of the
EEG and how we can estimate the parameters of this model using the EEG.
Therefore, we start with a brief overview of the anatomy of the brain and
the neurophysiological processes behind the activity generated in the brain. A
mathematical description is given of the dipole model, which will represent the
source of our brain activity. Next, we focus on EEG source analysis problem,
which consists of two subproblems. The so-called forward problem calculates
the potentials at the scalp electrodes for given source of brain activity. The
problem will be stated as mathematical formulation, in which the anisotropic
conductivity is introduced. In spherical head models an analytical solution to
the forward problem exist. A solution that can incorporate these anisotropic
conductivities is illustrated. For realistic head models, which better represent
the actual geometry of the human head, numerical methods must be applied.
Different numerical methods are discussed. The anisotropic finite difference
reciprocity method (AFDRM) is introduced and will be used throughout the
remainder of the dissertation. Next, the chapter deals with the so-called in-
verse problem. The inverse problem tries to find the source parameters that
best describe the measured potentials. The inverse problem is introduced as
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an optimization problem in the least squares sense. An algorithm is presented
which solves the inverse problem for a single time instant and for multiple time
series. Finally, the different causes of estimation errors are discussed. The
focus will be head model related errors concerning the conductivity. The skull
and white matter (i.e. a specific brain tissue which consists of fibers which
connect brain regions) as anisotropic conductors are introduced.

In chapter 3 the anisotropic finite difference reciprocity method (AFDRM) will
be validated in a spherical head model. We start by illustrating the need to
incorporate anisotropic conductivities in head models by a simulation study in
a spherical head model. A current dipole was placed in an spherical head model
where the skull and white matter were anisotropic conductors. By performing
one forward calculation using the analytical solution, we obtain the electrode
potentials which are used to estimate the source in a spherical head model
where each compartment was set to isotropic. The result is a current dipole, of
which parameters deviate from the original ones due to assuming a simplified
conductivity. The simulation is repeated for a set of uniformly distributed
current dipoles. Next, the numerical method (AFDRM) is applied to estimate
the source in a spherical head model. The method requires that the volume
conductor is subdivided in cubic elements and computational points between
the elements. However, a large number of computational points is used. This
leads to iterative solvers for large sparse linear systems as will be explained.
Reciprocity is used to decrease the computing time of the forward problem. The
AFDRM is validated as follows: (i) a current dipole is placed in a spherical
head model and the electrode potentials are calculated using the analytical
solution; (ii) the electrode potentials are used to solve the inverse problem in a
spherical head model using the AFDRM method. This was repeated for a grid
of dipoles with different orientation and in different slices of the spherical head
model.

In chapter 4 we discuss a methodology to construct a realistic head model
and to incorporate realistic anisotropic conductivities in the head model. We
start with a brief introduction of magnetic resonance imaging (MRI) and diffu-
sion weighted magnetic resonance imaging (DW-MRI). The first technique was
used to image the structural geometry of the human head. Using segmentation
techniques and image processing techniques the compartments representing the
different tissue types are constructed. The geometry of the skull is also used to
construct the anisotropic conductivity of the skull. The conductivity tangential
to a segment of the skull was set to 10 times larger than the conductivity along
the normal direction. DW-MRI measures the diffusion of water in the brain.
Because of the microscopic fiber structure of the white matter in the brain the
diffusion is anisotropic. Using the anisotropic information of the diffusion, the
anisotropic conductivities of the white matter can be derived. A realistic and
simplified approach to derive the anisotropic conductivity is discussed. Using
the simplified approach instead of the realistic approach, errors in the dipole
estimation can occur. These errors are investigated by performing simulation
studies in which the AFDRM method is used to calculated the forward problem
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where the conductivity was derived using the realistic approach. The inverse
problem was solved using the AFDRM in a realistic head model where the
conductivity was derived using the simplified approach. Finally, the DW-MRI
images can also be used to derive the conductivity in the gray matter compart-
ment in a similar way as in white matter. The influence of not incorporating
the anisotropic conductivities of gray matter are also investigated by simulation
studies using the AFDRM.

In chapter 5 the AFDRM is used to investigate the effect of neglecting the
anisotropic conductivities in EEG source estimation. A simulation study was
done to quantify the estimation errors due to neglecting the anisotropic con-
ductivities of skull and/or brain compartments. Therefore, a dipole was placed
in an anisotropic head model and the forward problem was calculated yielding
the electrode potentials. The electrode potentials are then used to solve the
inverse problem in an isotropic head model. For one simulation this procedure
is repeated for a set of dipole locations organized in a grid and orientations
along three orthogonal axes. Furthermore, the simulation is repeated for a
different anisotropic head model. The estimation errors due to neglecting the
anisotropic properties of the skull and brain tissues are discussed. Next, a
qualitative study was done. The influence of the anisotropic conductivities on
the potential distribution is discussed and a physical explanation of the dipole
estimation errors determined in the first part is given. Finally, a simulation
study to determine the dipole location errors due to neglecting anisotropic con-
ductivities in the presence of noise was done. The question we want to solve is
the following: “Is it still worthwhile to incorporate anisotropy in the presence of
noisy EEG?” and “At what amount of noise is it still worthwhile to incorporate
anisotropic conductivities in the head model?”. Inferring noise on the electrode
potentials contributes to a random error in the dipole location error. When a
simplified isotropic head model was used then the total dipole location error
consists of a error due to neglecting the anisotropy and due to the inferred
noise. The amount of noise will be quantified by the noise level. The larger the
amount noise in the EEG signal, the larger the contribution to the total error
will be as the systematical error is fixed.

In chapter 6 a prospective study is performed. The EEG source analysis is
applied to a neurological disorder, epilepsy. Moreover, the patient suffered
from a special kind of epilepsy, which is characterized by a focal onset zone of
the epileptic attacks. A patient was chosen from the extensive database of the
Reference center of Epilepsy at the department of Neurology at the Ghent Uni-
versity Hospital (Ghent, Belgium). The patient underwent extensive studies
such as video/EEG monitoring, intracranial depth electrodes and several MR
investigations. However, a diffusion weighted image was not available. There-
fore, the head model constructed in chapter 4 was used to estimate a specific
waveform related to epilepsy. The aim of this chapter is to demonstrate an
application of the method using real data. Hence, we discuss how a validation
study can be performed and what kind of information is needed based on the
results of this dissertation.
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Finally, In chapter 7 the methodology and the findings of the dissertation are
summarized. Furthermore, future work will be discussed.






Chapter 2

EEG source analysis

Sufficiently advanced technology is indistinguishable from magic.
—ARTHUR C. CLARKE

2.1 Introduction

Since the 1930s electrical activity of the brain has been measured by surface
electrodes connected to the scalp [22]. These electrode position are carefully
placed at the scalp according to the 10-20 international system electrode place-
ment, illustrated at figure 2.1. Potential differences between these electrodes
were then plotted as a function of time in a so-called electroencephalogram
(EEG) . An illustration of such a registration is shown in figure 2.2. The infor-
mation extracted from these brain waves was, and still is used in the diagnoses
of neurological diseases, such as epilepsy [107].

During the last two decades, increasing computational power has given re-
searchers the tools to go a step further and try to find the underlying sources
which generate the EEG. This technique is called EEG source analysis or EEG
source estimation . It consists of solving a forward and inverse problem. Solving
the forward problem starts from a given electrical source configuration repre-
senting active neurons in the head. Then the potentials at the electrodes are
calculated for this configuration. The inverse problem attempts to find the
electrical source which generates a measured EEG.

First we will give a short introduction of neurophysiology and anatomy of the
human brain. Next, a mathematical description of the EEG source analysis
problem will be given. A model will be given of the source based on the
neurophysiological processes. Techniques to solve the EEG source analysis
problem are described next. The chapter ends with an overview of which kind
of errors may occur during the EEG source analysis and what the causes are.
Here the skull and white matter as an anisotropic conductor will be introduced.
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Figure 2.1: The 10-20 international system for the placement of the electrodes at
the scalp.

FP1-F3 s WA MM A A A A VA S NN A AN A AA ]
F 3-8 [ e e e e
C3-P3 e e e e e e e T L e
P3-01 e e e e ST o
P P e~
F4-C4

C4-P4 — e e
P4-02 [ e e Ty
Fp1-F7 WMWW
e T e Sww
T 3= T D e e e e i e T e P e e e s P e o]
T5-01 e T T e e ey
PR N e
F8-T4

T4-T6 e T e e e e g
T6-02 [

FTO-TO e ]
T9-TP9
T10-TP10

0 0.5

L
1.5 2 25 3
time (seconds)

N

Figure 2.2: An example of an EEG of 3 seconds. Potential differences are measured
between electrodes, indicated by a label according to figure 2.1.
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2.2 Physiology and anatomy of the neuron

In order to understand the EEG source analysis problem, it is, in our opinion,
important to know the underlying mechanisms of the EEG . Moreover, forward
modeling also involves a good model for the generators of the EEG. The mecha-
nisms of the neuronal action potentials, excitatory post synaptic potentials and
inhibitory post synaptic potentials are very complex. In this section we want
to give a very concise overview of the anatomy of the brain and the underlying
neurophysiology behind brain activity.

2.2.1 Anatomy of the brain and neuron

The human brain is the most important organ in the central nervous system
(CNS). In the brain, different regions can be designated according to their mo-
tor or higher cognitive function. For example, a specific region in the brain is
responsible for hand movement, while another region processes the information
concerning language. The main task of the brain is the processing and commu-
nication of information. This information can be sent to or received from parts
of the human body or other designated regions of the human brain. The brain
is situated inside the skull and scalp, which act as a protective layer against
shock and impact (see figure 2.3). Moreover, it floats in the ventricular system
which is drained with the cerebro-spinal fluid (CSF). The CSF provides essen-
tial substances for the metabolism of the brain and some protection to shock.
Concerning tissue types, the actual brain tissues can be divided in three parts:
white matter, gray matter and the ventricles (see figure 2.4).

The white matter mainly consists of connections from and to different parts of
the gray matter. An important connection contained in the white matter is the
corpus callosum which connects the right and left hemisphere (see figure 2.4).
The actual brain activity is generated in the gray matter. The gray matter at
the edge of the brain has a folded structure to increase the surface so complex
connections can be made. The outer layer is also called the cortex or cortical
gray matter. In the gray matter many structures can be identified according to
their function in the processing of information. An example of such a structure
is the hippocampus, which is related to the short term memory (see figure 2.3).
The hippocampus has very complicated folded structure. Specific types of
epilepsy are related to this structure. In the gray matter nerve cells are the
generators of the electro-chemical activity.

Neurons or nerve cells are the building blocks of the human central nervous
system. The brain consists of about 10'° nerve cells or neurons. The neuron’s
task is to process signals coming from other neurons and transmit signals to
other neurons or tissue (muscle or organs). The shape and size of the neurons
vary but all neurons possess the same anatomical subdivision. Neurons can be
subdivided in 3 parts: the dendrites, the cell body or soma and the axon (see
figure 2.5). The dendrites, originating from the soma and repeatedly branching,
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Figure 2.3: A coronal slice of the human head. Adopted from Mai et al. [93]

are specialized in receiving inputs from other nerve cells. The soma or cell body
contains the nucleus of the cell and processes the incoming signals and decides if
a signal has to be transmitted to the axon. In that case the neuron fires and an
action potential is generated which propagates through the axon. Via the axon,
impulses are sent to other neurons or tissue (muscles or organs). The axon’s
end is divided into branches which connect to other neurons or tissues. An axon
can only transmit a signal to another neuron via the dendrites. Therefore, a
physiological connection has to be made. This is called a synapse. The larger
the dendrites, the more connections from other neurons can be made.

The synapse is a specialized interface between two nerve cells. The synapse
consists of a cleft between a presynaptic and postsynaptic neuron. At the end
of the branches originating from the axon, the presynaptic neuron contains
small rounded swellings which contain the neurotransmitter substance. Further
readings on the anatomy of the neuron and the brain can be found in Kiloh
et al. [87] and Gray [51].

2.2.2 Physiology of the neuron

At rest the intracellular environment of a neuron is negatively polarized at ap-
proximately -70 mV compared with the extracellular environment. A neuron
can depolarize or hyperpolarize. A depolarization means that the potential dif-
ference between the intra- and extracellular environment increases. Instead of
—70mV the potential difference becomes —40mV. A hyperpolarization means
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Figure 2.4: The brain where the upper half the left hemisphere is cut out. Adopted
from Gray [51].

that the potential difference between intra- and extracellular environment de-
creases. After a depolarization or hyperpolarization occurred, the neuron re-
turns to the resting state. This is called a repolarization and takes some time.
This is called the refractory period and the neuron cannot fire an action poten-
tial during this period. The potential difference at rest is due to an unequal
distribution of Na™, K*and Cl™ -ions across the cell membrane. This unequal
distribution is maintained by the NaTand K*-ion pumps located in the cell
membrane.

The processing and the transmission of the signals are done by an alternating
chain of electrical and chemical reactions. Neurons activated by an action
potential will secrete a chemical substance called a neurotransmitter, at the
synaptical side. The secretion of neurotransmitter at the presynaptic neuron
(the neuron at the axon side) is generated by action potentials.

A postsynaptic neuron (the neuron at the dendrite side) has a large number
of receptors on its membrane that are sensitive for this neurotransmitter. The
neurotransmitter in contact with the receptors changes the permeability of the
membrane for charged ions. Two kinds of neurotransmitters exist. On the one
hand there is a neurotransmitter which lets signals proliferate. These molecules
cause an influx of positive ions. Hence depolarization of the intracellular space
takes place. This depolarization is also called an excitatory postsynaptic po-
tential (EPSP) . On the other hand there are neurotransmitters that stop the
proliferation of signals. These molecules will cause an outflow of positive ions.
Hence a hyperpolarization can be detected in the intracellular volume. This po-
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Figure 2.5: The neuron. Signals are sent through the dendrites to the cell body and
when a depolarization occurs, an action potential is transmitted through the axons
to other neurons or to muscles.
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Figure 2.6: An illustration of the action potentials and post synaptic potentials
measured at different locations at the neuron. On the left a neuron is displayed and
three probes are drawn at the location where the potential is measured. The top
graph on the right shows the incoming excitatory action potentials measured at the
probe at the top, at the probe in the middle the incoming inhibitory action potential
is measured and shown. The neuron processes the incoming potentials: the excita-
tory action potentials are transformed into excitatory post synaptic potentials, the
inhibitory action potentials are transformed into inhibitory post synaptic potentials.
When two excitatory post synaptic potentials occur in a small time frame, a threshold
is reached and the neuron fires. This is shown at the bottom figure. The dotted line
shows the EPSP, in case there was no second excitatory action potential following.
Adopted from Speckmann and Elger [137]
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tential change is also called an inhibitory postsynaptic potential (IPSP). There
are a large number of synapses from different presynaptic neurons in contact
with one postsynaptic neuron. At the cell body all the EPSP and IPSP signals
are integrated. When a net depolarization of the intracellular compartment at
the cell body reaches a certain threshold, an action potential is generated. An
action potential then propagates along the axon to other neurons. Figure 2.6
illustrates the excitatory and inhibitory postsynaptic potentials. It also shows
the generation of an action potential. Further readings on the electrophysiology
of neurons can be found in Niedermeyer and Lopez da Silva [106], Gulrajani
[54], Johnston and Wu [84].

2.3 The generators of the EEG

The electrodes used in scalp EEG are large and are attached to the scalp, which
is distant from the neurons compared to the size of the neuron. Consequently,
an electrode only detects summed activities of a large number of neurons which
are synchronously electrically active . The action potentials can be large in am-
plitude (70-110 mV) but they have a small time course (0.3 ms). A synchronous
firing of action potentials of neighboring neurons is unlikely. The postsynaptic
potentials are the generators of the extracellular potential field which can be
recorded with an EEG. Their time course is larger (10-20 ms). This enables
the detection and measurements of summed activity of neighboring neurons.
However their amplitude is smaller (0.1-10 mV) [54, §].

Apart from having more or less synchronous activity, the neurons need to be
regularly arranged to result in a measurable scalp EEG signal. The spatial
properties of the neurons must be so that they amplify each other’s extracellu-
lar potential fields. Pyramidal neuron cells are a special type of neuron which
consist of a large dendrite branch (so-called apical dendrite) which is oriented
orthogonally to the surface of the gray matter. An example of such an pyra-
midal neuron is shown in figure 2.5. Neighboring pyramidal cells are organized
so that the axes of their dendrite tree are parallel with each other and normal
to the cortical surface. Figure 2.7 illustrates these pyramidal neurons. Figure
2.7a shows a coloring of the pyramidal neurons. A schematic of these pyramidal
neurons in the human brain is given in figure 2.7b. We can see the orthogonal
direction of the apical dendrite to the edge of the grey matter cortex. Hence,
these cells are suggested to be the generators of the EEG.

The following is focused on excitatory synapses and EPSP, located at the apical
dendrites of a pyramidal cell. An analog reasoning can be made for IPSPs .

As mentioned before, at the resting state there is a potential difference between
the inside and outside of the cell (shown as V; in figure 2.8). The incoming ac-
tion potential shown in figure 2.8(b) releases the neurotransmitters in the cleft.
The neurotransmitters causes an influx of positive ions at the post synaptic
membrane as illustrated in figure 2.8(b) and depolarizes the local cell mem-
brane. Positive ions will enter the cell. This causes a lack of extracellular



2.3 The generators of the EEG 15

(a)

Figure 2.7: (a) a cortical slice is shown, the black coloring shows the pyramidal
neurons which are orthogonal to the surface. (b) a schematic picture of the alignment
of the pyramidal neurons in the cortex.

positive ions at the apical dendrites of the post synaptic neuron. A redistribu-
tion of positively charged ions also takes place at the intracellular side. These
ions flow from the apical dendrite to the cell body and depolarize the mem-
brane potentials at the cell body. Subsequently positively charged ions become
available at the extracellular side at the cell body and basal dendrites. The
neuron is thus an element that withdraws current from the extracellular space
(a so-called current sink) and that injects a current with the same intensity
(current source). The electrical activity can be modeled as a current dipole
(see figure 2.9). The current flow causes an electric field and also a potential
field inside the human head, which extends to the scalp.

One neuron generates a small amount of electrical activity in the order of femto-
Ampere. This small amount cannot be picked up by surface electrodes, as it
is overwhelmed by other electrical activity from neighboring neuron groups.
When a large group of neurons (approximately 1000) is simultaneously active,
the electrical activity is large enough to be picked up by the electrodes at the
surface, thus generating a meaningful EEG signal. Moreover, in order to pro-
duce a detectable signal the dipoles corresponding to each of the neurons should
be oriented in the same direction, as shown in figure 2.7. The superposition of
all these dipoles creates a sufficiently strong potential field that is sensed by
the surface electrodes. A large group of electrically active pyramidal cells in
a small patch of cortex can be represented as one equivalent dipole on macro-
scopic level [41, 74]. Tt is very difficult to estimate the extent of the active area
of the cortex as the potential distribution on the scalp is almost identical to
that of an equivalent dipole [71].
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Figure 2.8: The generation of the EPSP is illustrated. If we start from the resting
state (a), there is a potential difference between inside and outside the cell. If an
incoming EPSP is generated, the synapse will release neurotransmitters in the cleft
and the ion channels of the cell membrane will open. This causes an influx of positive
ions (Natand K1), which locally will cause a potential difference at neighboring sites
inside and outside the neuron, respectively (b). Therefore, an intracellular current
and an extracellular current will flow, which is the propagation of the EPSP (c).



2.3 The generators of the EEG 17

Excitatory

synaps
Apical ynap -1
dendrite

+/

Cell body ( .

\

Axon

(@) (b)

Figure 2.9: (a) An illustration of the post synaptic current flow in the intracellular
and extracellular space by a excitatory synapse. (b) The current sink and current
source as a model for the post synaptic current flow.

2.3.1 The current dipole

Current source and current sink inject and remove the same amount of cur-
rent I and they represent an active pyramidal cell at microscopic level. They
can be modeled as a current dipole as illustrated in figure 2.10(a). The posi-
tion parameter rg;;, of the dipole is typically chosen half way between the two
monopoles.

The dipole moment d is defined by a unit vector eq (which is directed from the
current sink to the current source) and a magnitude given by d = ||d|| = I.p,
with p the distance between the two monopoles. Hence one can write:

d:I.p eq. (2.1)

It is often so that a dipole is decomposed in three dipoles located at the same
position of the original dipole and each oriented along one of the Cartesian axes.
The magnitude of each of these dipoles is equal to the orthogonal projection
on the respective axis as illustrated in figure 2.10(b). one can write:

d =d,e; +dyey +d;e., (2.2)

with e;, e, and e, being the unit vectors along the three axes. Furthermore,
ds, dy and d, are often called the dipole components.
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Figure 2.10: (a) The dipole parameters for a given current source and current sink
configuration. (b) The dipole as a vector consisting of 6 parameters. 3 parameters are
needed for the location of the dipole. 3 other parameters are needed for the vector
components of the dipole. These vector components can also be transformed into
spherical components: an azimuth, elevation and magnitude of the dipole.

2.4 The source localization problem

As mentioned before, EEG source localization consists of two problems: a
forward problem and an inverse problem. The forward problem consists of
calculating the electrode potentials at the scalp given a source. In this section,
we describe how the electrode potentials can be calculated and a mathematical
description is derived to calculate the potential distribution caused by a dipole
source. Using the Maxwell equations, we will show that the potential field due
to a dipole can be written as a Poisson’s equation . Next, we derive a numerical
approximation to the dipole source. Finally, we describe the several techniques
(analytical and numerical) to solve Poisson’s equation.

2.4.1 The forward problem
2.4.1.1 Maxwell equations and the continuity equation

Electromagnetic fields in media or in vacuum can be described by the Maxwell
equations [81], which can be written as :

vE=L (Gauss’ Law) (2.3)
€0
OE
B— —— =puoJ 2.4
v X 2ot M0 24)
0B
VxE+ T 0 (Faraday’s Law) (2.5)

V-B=0 (2.6)
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where E and B are the electric and magnetic field respectively. €y and pg are
the permeability and susceptibility of vacuum, respectively, which can be relate
to the speed of light ¢ = |/éopg. p is the charge density, which is the amount
of charge in a volume G (unit C/m?).

As shown in the previous section the generators of the EEG can be described
by a current source and sink or a current dipole source. A current corresponds
to charges in motion and can be described by a current density, which is the
current passing through an elementary surface. The current density J(z, y, z) is
a 3D position-dependent vector field, where the direction of the vector indicates
the direction of motion of the charges. The unit of the current density is 4/m?.
The divergence of a vector field J is defined as follows :

1
V.-J= Cl;linoang Jds (2.7)

The integral over a closed surface G represents a flux or a current through
the volume G. This integral is positive when a net current leaves the volume
G and is negative when a net current enters the volume G. The vector dS
for a surface element of G with area dS and outward normal e,,, can also be
written as e,dS. The unit of V- J is A/m? and is often called the current
source density which in Plonsey [113] is symbolized with I,,,.

From the Maxwell equations the continuity equation can be derived

dp

at—l—V-J—O, (2.8)
where p is the charge density and V - J is the current source density. Equation
2.8 states that the change in charge inside a volume conductor with time must
correspond to a flow of charge out through the surface of the volume conductor.
In other words, a current leaving or entering the volume conductor G causes a
change in the total amount of charges in G.

2.4.1.2 Quasi-static conditions

It is shown in Plonsey and Heppner [114] that no charge can be piled up in the
conducting extracellular volume for the frequency range of the signals measured
in the EEG . At one moment in time all the fields are triggered by the active
electric source. Hence, no time delay effects are introduced. All fields and
currents behave as if they were stationary at each instance in time. These
conditions are also called quasi-static conditions. They are not static because
the neural activity changes with time, but the changes are slow compared to the
propagation effects. Therefore the charge density in the volume G is constant,
thus equation 2.8 yields:

vV-J=0, (2.9)
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2.4.1.3 Derivation of Poisson’s equation using Ohm’s law

Due to the linearity of the Maxwell equations the current density inside the
volume conductor, representing the human head, consists of the current density
imposed by the dipole source or primary current density J, and the current
density flowing in the volume conductor or return current density J,:

J=J,+17J,. (2.10)

The return current density generates an electric field. The relationship between
the return current density J, in A/m? and the electric field E in V/m is given
by Ohm’s law :

J.=3E, (2.11)

with 3 being the position dependent conductivity. The conductivity X depends
entirely on the nature of the material of which the conductor is composed,
the state of aggregation of its parts and its temperature [97]. In the case of
isotropic conductivities the conductivity is position-dependent scalar, o(z, y, z).
For anisotropic conductivities the conductivity can be written as a position-
dependent second order tensor ¥, whose matrix representation X(z,y,z) €
R3*3 according to a basis (e;,ey,e) given by :

Oxx Oxy Oxz
Y= | 0gyOyy 0y | , (2.12)

Ozz Oyz Ozz

and with units A/(Vm) = S/m. There are tissues in the human head that
have an anisotropic conductivity. This means that the conductivity is not
equal in every direction and that the electric field can induce a current density
component perpendicular to it. Combining equation 2.11 with equation 2.10
yields :

J=J,+3E. (2.13)

The scalar potential field V', having volt as unit, is now introduced. This is
possible due to Faraday’s law (see equation 2.5) in which the time derivative
of B is zero under quasi-static conditions (V x E = 0) [123]. The link between
the potential field and the electric field is given utilizing the gradient operator,

E=-VV. (2.14)

The vector VV at a point gives the direction in which the scalar field V', having
volt as its unit, most rapidly increases. The minus sign in equation (2.14)
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4

Figure 2.11: The boundary between two compartments, with conductivity o1 and
o03. The normal vector e,, to the interface is also shown.

indicates that the electric field is oriented from an area with a high potential
to an area with a low potential. Figure 2.12 also illustrates some equipotential
lines generated by a current source and current a sink.

When equation 2.13, equation 2.9 and equation 2.14 are combined, Poisson’s
differential equation is obtained in general form:

V- (ZVV)=V-J,. (2.15)

Notice that Poisson’s equation (2.15) is linear. Due to a dipole at a position
rqip and dipole moment or orientation d, a potential V' at an arbitrary scalp
measurement point r can be decomposed in:

V(r,raqip,d) = dV(r,raip, €z) + dyV(r,vaip, €y) + AV (r,raip, ;).  (2.16)

where r and rg;;, are the locations of the measurement electrode and the dipole
source respectively. This decomposition will be used to solve the inverse prob-
lem and will be explained later on.

2.4.1.4 Boundary conditions

At the interface between two compartments, two boundary conditions are
found. Figure 5 illustrates such an interface. A first condition is based on
the inability to pile up charge at the interface. All charge leaving one compart-
ment through the interface must enter the other compartment. In other words,
all current (charge per second) leaving a compartment with conductivity 3
through the interface enters the neighboring compartment with conductivity
221

Jl.en = Jz.en,
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(Z1VVi).en = (Z2VVh) ey, (2.17)

where e,, is the normal component on the interface.

In particular no current can be injected into the air outside the human head
due to the very low conductivity of the air. Therefore the current density at
the surface of the head reads:

Jl.en = 0,
(21.VV1).e, = 0. (2.18)

Equations (2.17) and (2.18) are called the Neumann boundary condition and
the homogeneous Neumann boundary condition, respectively.

The second boundary condition only holds for interfaces between non-air com-
partments. By crossing the interface the potential cannot have discontinuities,

Vi =Va. (2.19)

This equation represents the Dirichlet boundary condition.

2.4.1.5 Applying the divergence operator to the extracellular cur-
rent density

In this paragraph, we will focus on the right hand side of the equation 2.15. We
will apply the divergence operator on the current density keeping the dipole
model in mind. In particular, we want to approximate the dipole model into
a numerical representation, which will be used to solve the forward problem in
realistic head model using numerical techniques.

First a small volume in the extracellular space, which encloses a current source
and current sink, is investigated. The current flowing into the infinitely small
volume, must be equal to the current leaving that volume. This is due to the
fact that no charge can be piled up in the extracellular space. The surface
integral of equation (2.7) is then zero, hence V - J, = 0.

In the second case a volume enclosed by the current sink with position param-
eters ry(z1,y1,21) is assumed (see figure 2.12). The current sink represents
the removal of positively charged ions at the apical dendrite of the pyramidal
cell. The integral of equation (2.7) remains equal to —I while the volume G
in the denominator becomes infinitesimally small. This gives a singularity for
the current source density. This singularity can be written as a delta function:
—I0(r — r1). The negative sign indicates that current is removed from the
extracellular volume. The delta function indicates that current is removed at
one point in space.

For the third case a small volume around the current source at position
r2(x2,y2,22) is constructed. The current source represents the injection of
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Figure 2.12: The current density and equipotential lines in the vicinity of a current
source and current sink is depicted. Equipotential lines are also given. Boxes are
illustrated which represent the volumes G.

positively charged ions at the cell body of the pyramidal cell. The current
source density equals Id(r — r2). Figure 2.12 represents the current density
vectors for a current source and current sink configuration. Furthermore, three
boxes are presented corresponding with the three cases discussed above.

Uniting the three cases given above, one obtains:

V-J, =16(r —r3) — Ié(r —r1). (2.20)

2.4.1.6 General formulation of Poisson’s equation

In the Cartesian coordinate system equation (2.15) becomes for isotropic con-
ductivities and when substituting the right hand side by equation 2.20:

o, oV o, oV o, oV
%(U%)Jr@(aa—ywr@(g%)
—10(z — 22)0(y — y2)0(2 — 22) + [6(x — 1)d(y — y1)d(2 — 21)

and for anisotropic conductivities:

% 8%V 8%V 8%V 8%V
y2 + 033 022 +2 <012 Oxdy +o13 Ox0z + 023 Oydz

v 3?2
011 55z T 0227
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do11 doy Joi: oV
+ (W + %t Ti) 3
+ (g + 0gm 4 Oz ) OL 4 (221a 4 Ogm g D2 ) OV
—16(x — 22)6(y — y2)0(2 — 22) + I6(x — 21)0(y — y1)d(z — 21),
(2.21)

where ro = (z2, yo, ZQ)T and r; = (z1, y1, zl)T is the location of the current sink
and current source respectively. o;; are the elements of the tensor 3. Moreover,
in media where the anisotropic conductivity tensor is constant, equation 2.21
becomes:

2 2 2 2 2 2
011%7‘;{ + 022%7‘; + 033%2‘2/ +2 (012—59;“;2 + 013—(%5/2 + 023—gygz)
—I6(x — 22)0(y — y2)6(2 — 22) + [6(x — 21)0(y — y1)6(2 — 21).
(2.22)

2.4.1.7 General algebraic formulation of the forward problem

In symbolic terms, the EEG forward problem is that of finding, in a reasonable
amount of time, the scalp potential V(r,rg;p,d) at an electrode positioned at
r due to a single dipole with dipole moment d and position rg;,. Due to the
linearity of the Poisson’s equation, the potential due to multiple dipole sources
can be written as a superposition of the potential due to each dipole source.
Hence, the potential due to a arbitrary dipole can be written as the sum of the
potential the three orthogonal components of the dipole d = d, e, +dye,+d.e;:

V(r,rqip,d) = dzV(r,aip, €2) + dyV(r,raip, €y) + A,V (r,raip, €2).
(2.23)

where r and rg;;, are the locations of the measurement electrode and the dipole
source respectively.

For M electrodes carefully placed at the scalp at positions r; withi=1,..., M,
the electrode potentials can be written as:

V(r1)
v=|
LV (rar)
[ V(r1,raip,ez) V(ri,raip,e,) V(ri,raip,ez) d,
= dy
LV (rar, Taip.€2) V(rar, Taip, €y) V(rar, Taip, €2) d,

~L(r)-d (2.24)
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where the matrix operator L(r) € RM*3 is the so-called lead field matriz, which
is dependent on the dipole position, electrode positions and the properties of the
head model. The lead field matrix can also be written as L(r) = (V,, V,, V)
where V, € RM*! represents the electrode potentials for a unity dipole, ori-
ented along the z-axis and similar V, and V,

2.4.2 Solving the forward problem

In the next paragraph we will give an overview of methods to solve the forward
problem given by equations 2.21, 2.21 and 2.22 in a head model with isotropic or
anisotropic conductivities respectively. First, we will focus on analytical meth-
ods that can be used in simple head models consisting of concentric spheres.
Next, several numerical methods will be discussed that can solve the forward
problem in more realistic and complex head models. This results in a linear
system of equations, which is large and sparse. In order to solve this system,
an iterative method, successive over-relaxation (SOR), is briefly explained.

2.4.2.1 Notational conventions

In the following paragraph we will describe techniques to solve the forward
problem. Simple head models with a spherical shape can use an analytical
formula, while realistic head models need numerical techniques. For now on,
we will denote the continuous potential as V(x,y,z), where x,y and z are
continuous. For the numerical techniques the potential field has to be dis-
cretized in points. We will denote the discrete potential ¢; = V(x4 s, 2i),
wherei =1...N. z;,y; and z; are the points where the potential is discretized.
N is the number of points used to discretize the geometry.

2.4.2.2 Dipole field in an infinite homogeneous isotropic conductor

The potential field generated by a current dipole with dipole moment d = d eq
at a position rg;, in an infinite conductor with conductivity o, is introduced.
The potential field is given by:

d.(r —ra;p)

V(r,rap, d) = dmol|r — raip|?’

(2.25)

with r being the position where the potential is calculated. Assume that the
dipole is located in the origin of the Cartesian coordinate system and oriented
along the z-axis. Then we can write:

dcosf

dnor?’

V(r,0,de,) = (2.26)

where 6 represents the angle between the z-axis and r and r = ||r||.
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Figure 2.13: The equipotential lines of a dipole oriented along the z-axis. The
numbers correspond to the level of intensity of the potential field generated of the
dipole. The zero line divides the dipole field into two parts: a positive one and a
negative one.

Equation (2.26) shows that a dipole field attenuates with 1/r2. It is significant
to remark that V, from equation (2.25), added with an arbitrary constant,
is also a solution of Poisson’s equation. A reference potential must be chosen.
One can choose to set one electrode to zero or one can opt for average referenced
potentials. The latter result in electrode potentials that have a zero mean.

2.4.2.3 The N-shell concentric spherical head model

The first volume conductor models of the human head consisted of a homo-
geneous sphere [46]. However it was soon noticed that the skull tissue had a
conductivity significantly lower than scalp and brain tissue. Therefore the vol-
ume conductor model of the head needed further refinement and a three-shell
concentric spherical head model was introduced.

In this model, the inner sphere represents the brain, the intermediate layer
represents the skull and the outer layer represents the scalp. For this geometry
a semi-analytical solution of Poisson’s equation exists . The derivation is based
on Ary et al. [4], Sarvas [132] and Salu et al. [131]. Variants of the three-shell
spherical head model, such as the Berg-Scherg approximation [21], in which a
single-sphere model is used to approximate a three- (or four-) layer sphere, have
also been used to further improve the computational efficiency of multi-layer
spherical models.

There are also semi-analytical solutions available for layered spheroidal ani-
sotropic volume conductors [78, 40, 159]. Here the conductivity in the tan-
gential direction can be chosen differently than in the radial direction of the
sphere. Analytic solutions also exist for eccentric spheres and ellipsoidal models
[98, 85, 147].
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In this dissertation we use the analytical solution in a layered anisotropic
spheroidal volume according to de Munck [39]. The spherical head model
consists of concentric spheres with radii 71 < ro < ... < ry_1 < ry. The
layers S; for i = 1,..., N are defined as the regions between the boundaries of
two spheres as shown in figure 2.14. In each layer S; a radial conductivity &;
and tangential conductivity 7); is defined. A dipole with moment d is located

at rq;p within the innermost layer Si, ||raip|| = 74ip < r1. Then, the observed
electrode potential on the outermost surface at re (||re]| =7 =) is
d =241 g\
V (ragip,d,re) = —=£
(rap e) Am&nr? Z n Te
n=1
(fan cos aPy(cosy) + gn cos BsinaPp(cos 7)) (2.27)

where d is the Ly-norm of the dipole moment d, « is the angle between the
dipole location rg and the dipole moment d. 7 is the angle between rg;;, and
r.. (0 is the angle between the planes P1 and P2. P1 is the plane defined
by the vectors rg;, and d and P2 the plane is defined by the vectors rq;, and
re. P, and P! are the Legendre and the associated Legendre polynomials,
respectively. The other symbols are defined as:

1
fo=—0n
n

g = ’n(QVN + 1) Tdip Zn-n ﬂ Th—1 Yk
" (21/]\] + 1)(1/ng2 + (I/N + ].)mgl) Te Tk

k=1
v = \/Hm(”;l)m/&*l (i=1,2,...,N)
-1
[ B e R PP
k=1 K Gorr " o "
(e85 D)= +1) (32) 7
(e gibpn] (3) "5

(2.28)

Equation (2.27) gives the scalp potentials generated by a dipole. In practice, the
infinite sum is transformed into a finite one. de Munck and Peters [40] simplified
the computation, which significantly reduces the number of terms needed for
computing the potentials. Zhang [159] used different fast computation method,
which is based Berg and Scherg approximation in the three spherical head
model [21].

Recently however, it is becoming more apparent that the actual geometry of
the head [124, 125, 80] together with the varying thickness and curvatures
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Figure 2.14: Illustration of the N-layered anisotropic spherical head model. The
outermost layer radius of the sphere is rn. The potential at r. due to a dipole
located at ro within the innermost layer with moment d is computed. The dotted
line indicates that the dipole moment d may not be in the plane defined by ro and
Te.
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of the skull [34, 28], affects the solutions appreciably. So-called realistic head
models are becoming much more common in the literature, in conjunction with
either boundary-element, finite-element, or finite-difference methods. However,
the computational requirements for a realistic head model are higher than that
for a multi-layer sphere.

An approach which is situated between the spherical head model approaches
and realistic ones is the sensor-fitted sphere approach [42]. Here a multilayer
sphere is fitted to each sensor located on the surface of a realistic head model.

2.4.2.4 The boundary element method (BEM)

The boundary element method (BEM) is a numerical technique for calculat-
ing the surface potentials generated by current sources located in a piecewise
homogeneous volume conductor. Although it restricts us to use only isotropic
conductivities, it is still widely used because of its low computational needs.
The method originated in the field of electrocardiography in the late sixties
and made its entrance in the field of EEG source localization in the late eight-
ies [73]. As the name implies, this method is capable of providing a solution
to a volume problem by calculating the potential values at the interfaces and
boundary of the volume induced by a given current source (e.g. a dipole). The
interfaces separate regions of differing conductivity within the volume, while
the boundary is the outer surface separating the non-conducting air with the
conducting volume.

In practice, a head model is built from surfaces, each encapsulating a particular
tissue. Typically, head models consist of 3 surfaces: brain-skull interface, skull-
scalp interface and the outer surface (see figure 2.15. The regions between the
interfaces are assumed to be homogeneous and isotropically conducting. To
obtain a solution in such a piecewise homogeneous volume, each interface is
tessellated with small boundary elements.

The integral equations describing the potential V(r) in a piecewise volume con-
ductor G, divided by a R interfaces S; C G, at any point r on the r-th interface
(Sr) were described in Geselowitz [49], Barnard et al. [13, 14], Sarvas [132]:

20’0
Vir)=—W
(I’) 0_7‘—_’_0_7_?. O(r)

R - + /
1 0, — 0% / N T—r
+ — E e V(') 7——=dS;, 2.29
2r i—jor + o r'es; ( )Hr’ —r3 ( )

where oy corresponds to the medium in which the dipole source is located (the
brain compartment) and Vp(r) is the potential at r for an infinite medium with
conductivity og as in equation (2.25). o; and a;-r are the conductivities of,
respectively, the inner and outer compartments divided by the interface S;. dS
is a vector oriented orthogonal to a surface element and ||dS|| the area of that
surface element.
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Figure 2.15: Triangulated surfaces of the brain, skull and scalp compartment used
in BEM. The surfaces indicate the different interfaces of the human head: air-scalp,
scalp-skull and skull-brain.

Each interface S; with j = 1,..., R is digitized in Ng, triangles, (see figure
2.15) and in each triangle center the potentials are calculated using equation
(2.29). The integral over the surface S; is transformed into a summation of
integrals over triangles on that surface. Assume the scalp surface is the outer
surface Sg. The potential values on surface Sr can be written as

20‘0
V(r) = ——=W(r
)= =Vl
R _— + Vs /
1 o, — 0% / , r'—r
TR o/ V)2t ds., (230
2 e~ op + ot ; Asy s [ — |3

where the integral is over Ag; , the j-th triangle on the surface Sj, R is the
number of interfaces in the volume. An exact solution of the integral is generally
not possible, therefore an approximated solution V*(r) on surface Sj, may be
defined as a linear combination of Ng, simple basis functions

Nsk

VE(r) =3 okhi(r). (2.31)
i=1

The basis functions h;(r) can be defined in several ways. The “constant-
potential” approach for triangular elements uses basis functions defined by

ha(r) = {éi ; 22 (2.32)

where A; denotes the ith planar triangle on the tessellated surface. The collo-
cation points are typically the centroids of the surface elements or the vertices
[38]. The coefficients ¢ represent unknowns on surface Sy whose values are
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determined by constraining V(x) to satisfy (2.30) at discrete points, also known
as collocation points. Moreover, equation (2.30) can be rewritten as

20’0

Vi(r) = Vo(r)

or +Uff

1 r —r)
. 2.
*%Zm +a,+ Z / Hr’fr||3 e —p S (2.33)

jod
This equation can be transformed into a set of linear equations:
P =Ad+ V,, (2.34)

where ® € RV*XL & = (¢, p1,...,0n5)T and Vo € RV*! are column vectors
denoting at every node the wanted potential value and the potential value
in an infinite homogeneous medium due to a source, respectively. N is the
total amount of discretization points of all the surfaces. Thus, A is a matrix
generated from the integrals, which depends on the geometry of the surfaces
and the conductivities of each region.

2.4.2.5 The finite element method (FEM)

Another method to solve Poisson’s equation in a realistic head model is the
finite element method (FEM). The Galerkin approach [83] is used to equation
(2.15) with boundary conditions (2.17), (2.18), (2.19). First, equation (2.15)
is multiplied with a test function (or Ansatz-function) v and then integrated
over the volume G representing the entire head. Using Green’s first identity
for integration:

/wV-(E-VV)dG: w(E-VV)dS—/ V- (2-VV)dG,  (2.35)
G G

oG

in combination with the boundary conditions (2.18), yields the ‘weak formula-
tion’ of the forward problem:

- / Ve - (8- VV)dG = / PIndG. (2.36)
G G

If (v,w) = [5v(z,y,2)w(x,y,2)dG and a(u,v) = —(Vv,X - Vu), this can be

written as:

a(V,v) = (Im, ¥) (2.37)
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The entire 3D volume conductor is digitized in small elements. Figure 2.16
illustrates a 2D volume conductor digitized with triangles. Here I,,, denotes
the source configuration. Solving the above equation for an ideal dipole would
result in a singularity at the position of the dipole. However, many approaches
exist to circumvent this. One can model the dipole by monopoles distributed in
the neighboring nodes (Saint Venant’s principle) [154] or using partial integra-
tion approach of the right hand side of equation 2.37 [133, 101]. An alternative
approach is the subtraction method in which the total potential at the elec-
trodes is divided into a singularity potential (dipole in infinite medium with
homogeneous conductivity) and a correction potential [158].

The computational points ¢;, with ¢ = 1,..., N can be identified with the
vertices of the elements (n is the number of vertices). The unknown potential
V(z,y, z) is given by

V(z,y,z Zwm z,y,2), (2.38)

where ; with ¢ = 1,..., N denotes a set of test functions also called basis
functions. They have a local support, i.e. the area in which they are non-zero
is limited to adjacent elements. Moreover, the basis functions span a space of
piecewise polynomial functions.

Furthermore, they have the property that they are each equal to unity at the
corresponding computational point and equal to zero at all other computational
points. Substituting equation 2.38 in equation 2.37 produces n equations in n
unknowns:

a(d " pithi, ;) = (I, ;) (2.39)
i=1
Za 1/%,% = ( mawj) (240)
=1

Due to the local support of the basis function, each equation consists only of
a linear combination of ¢;’s for the point itself and its adjacent computational
points. Hence the system A € R™*™, A;; = a(v;,1;) is sparse. The matrix A
is the so-called stiffness matriz. In matrix notation one can obtain:

Ad=1, (2.41)

with I € R™*! being the column vector of the source terms obtained by the
right hand side of equation 2.40.

In general the stiffness matrix is very big, making the computation of the
electrode potentials very computationally intensive. To solve equation (2.41),
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Figure 2.16: A digitization of the 2D coronal slice of the head. The 2D elements
are the triangles.

iterative solvers for large sparse systems are used as given in Saad [128]. Some
techniques have been proposed to reduce the computational burden and in-

crease efficiency [6]. A freely licensed software package that implements both
FEM and BEM is NEUROFEM [152, 155, 151, 1].

2.4.2.6 The finite difference method (FDM)

2.4.2.6.1 Basics and notations

For the sake of simplicity and better understanding, some basics are ex-
plained and some notations are mentioned in this paragraph. A finite differ-
ence formulation of a partial differential equation uses a uniform cubic grid,
which covers the domain. The partial differential domain is approximated at

the nodes of the grid by a finite difference operator. In the one dimensional
case the Poisson’s equation can be written as:

2
887‘2/ = f(z) in Q=1[0,¢] withe>0 (2.42)
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where u is the potential. A grid has to be defined over the domain 2. For
the sake of simplicity we divide Q2 with n equidistant subintervals with nodes
at [0, hy, 2hy, 3Ry, . .., (n — 1)h,, ¢ = nhy] such that ©; = i - h, where h, is the
constant grid size over the domain and ¢ = 1,2,3,...,(n — 1),n. An example
of this discretization of the domain is shown in 2.17. Moreover, we use the
notation ; to indicate the potential at point x;. Hence, p; = V(z;) = V(i-hy)
and f; = f(x;) = f(i- ha).

Assuming that V' is Lipshitz continuous, we can write ¢; 1 and ;1 as Taylor
expansion series with respect to ¢;:

P T R T2 922, 6 0a |, T 24 02|,
V| h2 V| K3 V| b 9tV

i1 =Pi—hy —| + = m=| — = 5| +t 5 = +--- (244

Pt =0 e 5 T2 aZ|, T 6 028, T 24 B2t |, T (2.44)

where the subscript ¢ denotes an evaluation of the values at node i. The second

derivative %1‘; can then be approximated by adding equations 2.43 and 2.44:

0*V
Ox?

1 h2 0V

2
= — (i1 — 20+ pip1) — 224 2.4
12 (pi1 Pi + Pit1) 12 9t + (2.45)

i

2
If we allow a truncation error of % . %i‘i + ... the Poisson equation 2.42 can
be written as:

Yi—1 — 2¢; + Qi1

12 =fifori=1,2,....(n—1). (2.46)
e,
i //
W;C il i i1 ¢
s

Figure 2.17: The 1D grid

2.4.2.6.2 The finite difference method in isotropic media (iFDM)

The differential equation (2.21) with boundary conditions (2.17), (2.18),
(2.19) is transformed into a linear equation utilizing the ‘box integration’
scheme [100] for the cell-centered iFDM. This numerical technique was used
in Vanrumste et al. [146, 144, 145].
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Figure 2.18: A typical node P in an FDM grid with its neighbours Q; (i =1---6).
The volume Gj is given by the box.

Consider a typical node P in a cubic grid with internode spacing h. The six
neighboring nodes are @; (i = 1,...,6) as illustrated in figure 2.18.

Introducing «; and ag as,

000;
a; = 2h——
oo + 0;

6
ap = ZO&Z‘, (247)
i=1

a finite difference approximation of (2.21) is obtained:

6
> aigq, — aopp = Ip, (2.48)
=1

with
Ip =16(r —r1) — Ié(r —ra). (2.49)

The current injected or removed is denoted by I and the location of the current
source and sink is denoted by r; and ro, respectively. The location of node at P
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is denoted by r. For volumes (G, which contain a current monopole, Ip becomes
I or —I. a4 has the dimension of Q7! and corresponds with the conductance
between P and ();. Furthermore, for Ip = 0 Kirchoff’s law holds at the node
P.

2.4.2.6.3 Finite difference formulation of the Poisson equation in
anisotropic media (aFDM)

In this paragraph we introduce a finite difference method that can incorpo-
rate anisotropic conductivities. It was first used in the field of electrocardiogra-
phy by Saleheen and Kwong [129], where it was used to calculate potential field
due to a defibrilation procedure. Originally Malik et al. [94] also applied finite
difference method for the same purpose, as the heart is a highly anisotropic
tissue.

The approach to obtain the finite difference formulation in the 3D domain is
similar to the formulation in 1D. In 3D the Poisson equation is written as:

V- (2 (IL’,y,Z) -VV (CL’,y,Z))) =f (m,y,z) in)C R? (250)

where f (x,y, z) is the representation of the dipole source in 2. X is a position
dependent, symmetric, positive definite, conductivity tensor:

Oxx Oxy Oxz
Y = | Opy Oyy Oy (2.51)

Oxz Oyz Ozz
Expanding equation 2.50 yields

%V v 9%V
Oz ggz T Oyy 92 T 0t
2%V 9%V 9*v 00z | 902y | 90y, \ OV
2 (nyaxay t0s25.0; TO0yzgp9: ) T\ Toa- T 3y T 05 ) s
90y Ooyy 9oy ov. 0042 90y Qo., \ OV __
+<81‘+8y+8z 8y+ 63;+8y+8z 9z

—I6(x — 22)6(y — y2)0(2 — 22) + I6(x — 21)0(y — y1)d(z — 21),

(2.52)

where the right-hand-side, source term representing the dipole, is substituted
by the approximation as a source term and sink term at ry = [z1,1,21]7 and
ro = [T2, %2, 22]7, respectively.

A cubic grid is defined over the domain 2 as illustrated in figure 2.19. In order
to obtain the finite difference formulation of equation (2.52), the potential in
points 1 to 18 are expanded into a Taylor series with respect to the potential
in point 0 (see figure 2.19). The expansions are done for o - ; fori =1,...,18.
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Figure 2.19: The 3D cubic grid. The potential in points 1 to 18 are expanded in to
Taylor series with respect to the potential in 0 in order to obtain the finite difference
formulation of the partial differential equation 2.52

To express the partial derivatives from equation (2.52) in terms of finite dif-
ference formula using the potential in the neighboring points, Taylor series
expansions are made in this case for eighteen neighbors to the central node.
More precisely, expansions are done with respect to the central node for the
following products:

OzxPl, OyyP2, OxzP3, OyyP4, 02295, 02¥6,
OxyP7, OxyP8, OxzyP9, OxyP10,022P11,0y2zP12, (2-53)
022013, 0yzP14, 0xzP15, OyzP16, OxzP17, OyzL18-

However, before expanding the expression o.. - ¢; in a Taylor series, a diffi-
culty has to be overcome. As the cubic grid is defined over the domain, the
conductivity tensor X is defined on a regular grid. Consequently the domain
can be described as discrete, inhomogeneous and anisotropic. The conductivity
tensor can be discontinuous, which can lead to singularities in the Taylor series
expansion. In order to circumvent this problem, a transition layer of thickness
t is introduced between the elements. This idea was adopted from Panizo et al.
[111] and Saleheen and Kwong [129]. Using that technique the potential can be
calculated in 8 nodes at a very small (¢ << h;) distance from the central node.
This is illustrated in figure 2.20. If we denote the eight neighboring nodes as
Vi)t = a,...,h, it is clear from the linearity of the Maxwell equations that
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44

Figure 2.20: The 3D cubic grid with the transition layer. The transition layers are
interposed between the elements to circumvent the discontinuity of the conductivity
tensors. The central node is therefore replaced by 8 neighboring nodes, indicated by
the little center cube.
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the potential at the center node can be written as a limit ¢t — 0:

h
— & i)
o = lim > =3

1=a

(2.54)

The Taylor expansions of the aforementioned products are derived with respect
to each of the 8 central nodes. As in each element the conductivity tensors are
assumed to be constant, the partial derivatives in the third, fourth and fifth
term in the left hand side of equation 2.52 vanishes. In that way eight different
expressions for the partial differentials are obtained and are substituted into
equation (2.52). Equation (2.52) is written eight times in function of the po-
tential in the 18 neighboring nodes. The final difference formula is obtained by
applying the formula (2.54) and taking the limit of the transition layer ¢ — 0.
This results in the following formula:

18 18
> Aip = (Z Ai) w0+ Ip (2.55)
=1

i=1

where (g is the potential at the central discrete point and ¢; is the potential at
the i-th neighboring point. A; are coefficients depending on the conductivity
tensors of the elements shown in figure 2.19. Note that the cubes indicate the
conductivity tensors and the geometry of the head model, but the potential
values are computed at the nodes between the voxels. Ip denotes the cur-
rent depending on the position of the center node. If the center node is at a
monopole of the current source or sink, than Ip =1 or Ip = —1, respectively,
else Ip = 0.

For nodes at the corners of the compartments as illustrated in figure 2.19,
for example node 11, the boundary normal cannot be unambiguously defined.
Therefore, the Neumann boundary equations (2.18) and (2.17) contain sin-
gularities in spatial derivatives of the conductivities. The method presented
in Hallez et al. [64] and Saleheen and Kwong [129] has an advantage if one
wants to enforce such a Neumann boundary condition: the formulation allows
a discrete change or discontinuity in conductivity between neighboring ele-
ments and will automatically incorporate the boundary between two different
materials. In short, the boundary condition is already implicitly formulated in
equation (2.55) under the condition that a natural boundary is in the calcu-
lation grid. In our case, the head model should be surrounded with elements
representing the air, which have a zero conductivity.

The coefficients A; for i = 1, ..., 18 are factors that can be written as a function
of the elements of the conductivity tensors in each element. This is due to the
transition layer. The A;(k =1,...,18) in equation 2.55 can be expressed as:

1
A= o o + o + o) +oue)]



40 Chapter 2

1
Ay = W [0’11(2) + 011(3) + J11(6) + 011(7)}
As = =5 [02201) + 02200) + 020(3) + T22(8)]
152
1
Ay = — [o2a(s) + 72200 + 02207) + 0225
152

1
As = 4h2 [33(1) + 033(2) + T33(5) + O33(6)]

1
AG = m [033(3) + 0'33(4) + 033(7) + 033(8)]
1
A7 = m [012(3) + 012(2)]
Ag = _4hmhy [012(6) + 012(7)}

1
Ag = ——
9 Thah, [012(5) + 012(8)]

A = ﬁ [012(1) + 012(4)}
An = _Fihz [o13(2) + T13(6)]
A = ﬁ [0133) + 013(7)]
Az = *mlhz [o13(4) + T13(8)]
Ay = ﬁ [o1301) + 013(5)]

1
Ais = “hyh. [023(1) + 023(2)]

1
Ayg = ——
16 hyh. [023(3) + 023(4)}

1
Ay = ———+
17 i [023(7) + 023(8)}

VTS [023(5) + 023(6)] (2.56)
yllz
(2.57)

where o, () is the mn-th element of matrix representation of the conductivity
tensor defined at element p.

For each node of a cubic grid we obtain a linear equation given by (2.48) in
the isotropic case and (2.55) in the anisotropic case. The unknown potentials
at the n computational points are represented by ® € R”*!. The source terms
represented by I € R™*! are calculated in each of the n cubes utilizing equation
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(2.49). Notice that in the linear equations (2.48) or (2.55) only the neighboring
computational points are included. The system matrix A € R"*" is a sparse
matrix, as each row has 19 non-zero elements. In matrix notation one can
write:

A®=1 (2.58)

where ® = (¢1,...,¢j,..., gaN)T is a vector with the potential values at each
computational point. I is a vector indicating the current source and sink.
If the current source (sink) monopole is placed at the k-th (I-th) node of the
computational grid, then I, = I (I; = —1I), else I, = 0 with p # k,l. A € R™*"
is a stiffness matrix, with A;; is the i-th coefficient if the j-th point is assigned
as the center node.

The linear system (2.58) can be solved using direct or iterative techniques. In
this dissertation an iterative method (successive over-relaxation) will be used.

2.4.2.7 Comparing the various numerical methods

The three methods BEM, FEM and FDM can all be used to solve the forward
problem of EEG source analysis in a realistic head model.

A first difference between BEM and FEM or FDM is the domain in which
the solutions are calculated. In the BEM the solutions are calculated on the
boundaries between the homogeneous isotropic compartments while in the FEM
and FDM the solution of the forward problem is calculated in the entire volume.
Consequently, the FEM and FDM lead to a larger number of computational
points than the BEM. Furthermore, the potential at an arbitrary point can be
determined with FEM and FDM by interpolation of computational points in
its vicinity, while for the BEM it is necessary to reapply the Barnard formula
[13] and numerical integration.

Another important aspect is the computational efficiency. In the BEM, a full
matrix needs to be inverted. Hence once the matrix is inverted, only a matrix
multiplication is needed to obtain the scalp potentials. This limited computa-
tional load is an attractive feature when solving the inverse problem, where a
large number of forward evaluations need to be performed.

For the FEM and the FDM, a direct inversion of the large sparse matrices
found in (2.41) and (2.58) is not possible due to the dimension of the matrices.
Typically at least 500,000 computational points are considered which leads to
system matrices of 500,000 equations with 500,000 unknowns which cannot be
solved in a direct manner with the computers now available. However matrices
found in FEM and FDM can be inverted for a given source configuration or
right-hand side term, utilizing iterative solvers such as the successive over-
relaxation method, the conjugate gradient method [128], or algebraic multigrid
methods [25, 76, 102, 151]. A disadvantage of the iterative solvers is that
for each source configuration the solver has to be reapplied. The FEM and
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FDM would be computationally inefficient when for each dipole an iterative
solver would need to be used. To overcome this inefficiency the reciprocity
theorem can be used, as will be explained in chapter 3 and appendix A. An
alternative approach is transforming the inverse of the stiffness matrix so that
only the electrode potentials at the nodes corresponding with the electrodes
are calculated [152, 2].

When a large number of conducting compartments are introduced, a large
number of boundaries need to be sampled for the BEM. This leads to a large
full system matrix, thus a lower numerical efficiency. The FEM and FDM
are sensitive to the conductivity of the different compartments. If the con-
ductivity differs too much, then it may happen that the eigenvalues of the
stiffness matrix become more separated. In FDM modeling, the heterogeneous
nature of realistic head models will make the stiffness matrix less sparse and
badly conditioned. Moreover, the incorporation of anisotropic conductivities
will decrease the sparseness of the stiffness matrix. While in FEM, the stiff-
ness matrix only becomes more ill-conditioned. This can lead to very slow
convergence if iterative methods are used. However the skull has the lowest
conductivity of all brain tissues and a solution can still be obtained, moreover
this will not pose a problem to solve the system. In short, the spectrum of
the stiffness matrix is narrow enough so the iterative system converges to a
solution. In these methods it is possible to give each tetrahedron or cube a
different conductivity. = To obtain a fast convergence or a better condition
number of the stiffness matrix, preconditioning should be used. Precondition-
ing transforms the system of equations Az = b into a preconditioned system
M~'Ax = M~'b, which has the same solution as the original system. M is a
preconditioning matrix or a preconditioner and its goal is to reduce the condi-
tion number (ratio of the largest eigenvalue to the smallest eigenvalue) of the
stiffness matrix toward the optimal value 1. Basic preconditioning can be used
in the form of Jacobi, Gauss-Seidel, Successive Over-Relaxation (SOR) and
Symmetric Successive Over-Relaxation (SSOR). These are easily implemented
as shown in Saad [128] or Datta [37]. More advanced methods use incomplete
LU factorization and polynomial preconditioning [128, 104].

For the FDM in contrast with the BEM and FEM, the computational points
lie fixed in the cube centers for the isotropic approach and at the cube cor-
ners for the anisotropic approach. In the FEM and BEM, the computational
points, the vertices of the tetrahedrons and triangles, respectively, can be cho-
sen more freely. Therefore, the FEM can better represent the irregular inter-
faces between the different compartments than the FDM, for the same amount
of nodes. Moreover, in Pruis et al. [117] it was shown that FEM needed less
computational points than FDM to obtain the same accuracy. However, the
segmented medical images used to obtain the realistic volume conductor model
are constructed out of cubic voxels. It is straightforward to generate a struc-
tured grid used in FDM from these segmented images. In the FEM and the
BEM, additional tessellation algorithms [138] need to be used to obtain the
tetrahedron elements and the surface triangles, respectively. However, recent
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approaches in FEM with cubic elements have shown that shifting the nodes of
the cubic elements to better represent the boundaries of the scalp and skull,
yields a smaller error due to discretization [157].

Finally, it is known that the conductivities of some tissues in the human head
are anisotropic such as the skull and the white matter tissue. Anisotropy can
be introduced in the FEM [110] and in the FDM [129], but not in the BEM.
Because of its simplicity and the ability to incorporate anisotropic conductivi-
ties, the FDM is used in this dissertation and, from now on, the focus will be
on this method.

2.4.2.8 Solving the linear system of equations using Successive
Over-relaxation

Properties of the system matrix If the linear system te be solved is rewrit-
ten from equations (2.48) and (2.55) in algebraic form as A® = I, the system
matrix A = {a;;} has the following properties

Lemma 2.4.1. A is a symmetric matrix.

Proof. From the coefficients in the linear equations one can see that the co-
efficient connecting a computational point V; to a neighbouring point Vj is
identical to the coefficient connecting Vi, to V;, thus A is symmetric. O

Lemma 2.4.2. The linear system of equations Ax = b has infinite number
solutions differing only in an additive constant, if > . b; = 0.

Proof. For FDM in isotropic or anisotropic media, it can be shown from equa-
tion (2.48) or (2.55) that the sum of all entries in a row/column of A equals
zero. Therefore, the vector e = [1,...,1]" is an eigenvector with associated
eigenvalue 0. The matrix (A) of the FDM in both isotropic and anisotropic
media has rank n — 1, with n the number of unknowns, and the eigenspace of
the eigenvalue 0 is of dimension one. Note that for a singular problem to have
a solution at all, the right-hand side I must be consistent, i.e. I € Range(A),
Range(A) being the range of A and defined as the space spanned by the inde-
pendent eigenvectors of A. The kernel of A, Kernel(A), is the set of vectors a
that if multiplied by A returns zero. In this case the problem A® = I possesses
an infinite set of solutions. An iterative method that converges from each ini-
tial guess toward an element of this solution set is said to be semi-convergent
([128]). In our case, A is symmetric, thus Range(A) = Kernel(A)L where -
stands for the orthogonal complement. Since Kernel(A) is spanned by the vec-
tor e = (1,...,1)” containing only ones as entries, a vector v lies in Range(A)
if and only if

e'v=> u.=0. (2.59)
k=1
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O

From equations (2.48) and (2.55) it is easy to see that the right-hand side of our
problem satisfies the above condition. The summation of the elements of the
vector I in equation 2.58 results to zero because of the monopoles of the current
source and sink. The vector, I, represent a dipole or a multipole. According
to the definition given in equation 2.58 the sum of the elements are zero. Thus
the problem A® = T possesses infinitely many solutions differing only in an
additive constant.

Successive Over-relaxation (SOR) The SOR method is a representative
of classical stationary methods. It is known to be a non-optimal choice as far
as convergence is concerned, but has a very simple structure.

A linear system of equations A® =1,
apnpr + -+ aipi + - Faimen =1, i=1,...,N,

can be rewritten as

1 n
Y = — I’L., Z aijcpj . iil,...,N,
j=1,j#i

Let ¢ be an approximation to the solution after k iterations. The SOR
(k+1)

%

method updates the unknowns in the following fashion. To compute ¢
first an intermediate value

1 i—1 n

_(k k k

905 +1) _ Iz _ ZaijSDE- +1) _ Z aij(pg' ) (260)
=1

s
" j=it1

is determined. Here new values of ¢(*+1) are used as soon as they are available.
The new approximation then becomes

k+1 _(k+1 k k _(k+1 k
P = v )+(1*w)s0§):s0§)+w(s0§ '} )) . (261
The over-relaxation parameter w is a weighting parameter used to put more
weight onto the correction in order to improve convergence. According to the
Young theorem, the optimal value for w can be computed and can be shown to
be equal to:

2
Wopt = —, (262)

1+4/1—p(B)?
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where p (B) is the spectral radius or the maximum of the absolute eigenvalues
of the Jacobi iteration matrix. During the SOR procedure, the w can be altered
using this formula to obtain a faster convergence [128].

After j iterations, the node potentials, gag withi=1,..., N (N is the number of
computational points in the cubic grid) will be equal to ®7 = [(p{, e @%} . The

iteration is terminated when the residual (r; = HA{)j — IH) stops decreasing.
An optimal extrapolation factor w, which yields a minimum of iterations to
satisfy the termination criterion, is dependent on the grid size. From tests, we
have found that the extrapolation factor used in SOR with values w = 1.93,
w = 1.95 and w = 1.97 for a grid size of 3, 2 and 1 mm, respectively, yields in
general the smallest number of iterations. An implementation has been made
in Matlab. If the computation grid of 195 by 195 by 195 elements (total number
of 7414857 elements) are used, the calculation time for a grid size of 3, 2 and
1 mm takes typically 15 minutes, 2 hours and 6 hours respectively(Pentium 4,
2.6 GHz, 2 GBytes RAM). An implementation in C was also made, there the
calculation times are 30 seconds, 2 minutes and 20 minutes.

2.4.3 The inverse problem

In this section we explain how the source parameters can be estimated using
the electrode potentials measured at the scalp electrodes. This is known as
the inverse problem and is basically an iterative procedure where the source
parameters are adjusted until a cost function (indicating the difference between
the measured electrode potentials and those caused by the estimated source)
is minimal.

In von Helmholtz [148] it was shown that the potential distribution at the
scalp can be a result of an infinite number of different source configurations.
Therefore, the inverse problem has an infinite number of solutions. To impose
unicity of the inverse problem, source models can be used. In this work we
focus on dipole source models. Dipole sources are the building elements for
more complex source models. Furthermore, the investigation of those simple
models provides us with more insight on the effect of head model parameters.
First, we will focus on the dipole estimation by means of minimization of a
cost function in the least squares sense. Second, we will explain a dipole source
estimation technique by means of signal subspace scanning.

In this section, V € R™*™ denotes the electrode potentials measured or
calculated (indicated by the subscript) at the m electrode positions over a
period of ¢ samples. Relating the notation in previous section, the elec-
trode potentials calculated by a numerical method can be expressed as V =
{@k|k is an index associated with an electrode position}.
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2.4.3.1 Dipole source localization at one time instance (n = 1)

The parameters to be estimated in a dipole source localization problem are the
three location parameter r = (z,y, z)T € R3>*! and three component param-
eters d = (dg, dy, dZ)T € R3*!, where T denotes the transpose operator. The
potential values at [ electrodes at the scalp caused by a dipole at location r
and with components d can be calculated solving the forward problem and are
represented by Vodei-

From equation 2.24 we could see that the potential values can be decomposed
into 3 sets of potential values caused by dipoles at the same location r but
with unitary dipole components oriented along the X-, Y- and Z-axis. Let
L = (Vinodel (T, €2)), Vinodet (T, €y)); Vinodel (T, €2))) € R™*3 denote the lead field
matrix. Due to the linearity of the Maxwell equations, the potential values can
be written as a linear combination:

Vmodel (I‘7 d) = L(I’) -d (2.63)

where d are the dipole components and L is the lead field matrix, which is de-
pendent on the head model parameters, the electrode positions and the location
of the dipole.

Given a set of electrode potentials V;, € R™*! the inverse problem is solved
by minimizing the relative residual energy (RRE):

HV'Ln - Vmodel” Hvzn - L(I‘)d”
RRE = , = , (2.64)
[Vinll [Vin
where ||| is the Lo-norm. During the optimization process the dipole param-

eters r and d are found so that the relative residual energy is at its global
minimum. The relative residual energy is the amount of energy that cannot be
explained by the dipole model.

In equation 2.64 six parameters have to be optimized. The number of param-
eters can be reduced by deriving the optimal dipole components dop:

dopt =L* (I‘) “Vin (265)

where LT (r) is the Moore-Penrose pseudo inverse of the lead field matrix.
Substituting dop: in equation 2.64 results in:

Vin — L(r)dopt|
[Vinl|
_ Vi = LE@)L*(r) - Vin|
[Vin|
(I - L(r)L*(r)) Vin|

= : (2.66)
Vil

RRE = H
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where I € R"*™ is the unity matrix and m is the number of electrodes. In this
way, the location of the dipole r is the only remaining parameter to be opti-
mized. The dipole orientation can be determined by substituting the estimated
dipole location in equation 2.65.

2.4.3.2 Dipole estimation at multiple time instances (n > 1)

When estimating the sources over a period of time, stationary sources are
assumed during that period of time. Therefore, the electrode potentials over a
period of time [tg, 1] can be written:

V(t) = L(r)e(s,0)d(t) (2.67)

where ¢ is the time in the interval [to,t1[, € (¢,0) is the unitary dipole orienta-
tion and d(t) is the time-varying magnitude of the dipole. At a specific sampling
frequency the time dependent dipole intensities can be written in vector form
as tg € R'™"™ Note that the time dependence of the electrode potentials trans-
lates to a time dependence of the dipole components, as stationary sources are
assumed. In that case the RRE can be written as:

[Vin — L (r) e(¢, 0)tal
[[Vinl

B H (I — (L(r)e(4,0)) (L(r)e(¢, 9))+> V,,
- Vanl

RRE = (2.68)

(2.69)

Dipole estimation using the first component of the SVD The set of
electrode potentials can decomposed using the singular value decomposition
resulting:

V = USVT, (2.70)

where U is the set of topographies, S are the singular values and V are the
source signals. The matrix S is a diagonal matrix with the singlular values
ordered from large to small. A large singular value indicates the dominance
of the source in the EEG in terms of energy. Therefore, one can estimate the
dominant source assuming that the other sources are due to noise contributions.
By substituting V;;,, in equation 2.66 by the first column of U, the relative
residual energy can then be written as:

UG, 1) — L(r)-d]
UG, D

RRE = (2.71)



48 Chapter 2

where U(:, 1) is the first column of the U matrix, which corresponds with the
larges singular value. This technique is only valid if one and only one singular
value is large compared with the other singular values.

2.4.3.3 Distributed sources

In this dissertation a single dipole is used to represent the focal electric activity.
In the neurophysiological sense, the representation is reasonable. Alternatively,
distributed sources can be used to represent sources that are not confined to
a focal area. In this case more widespread activity is targeted. Distributed
sources usually exist on multiple dipoles uniformly distributed in the brain
compartment. Due to the linearity of the Poisson’s equation, the potential can
be written as a superposition of the potential caused by each individual dipole
source. However, this leads to an underdetermined system, which has to be
solved in the minimum norm sense and regularization techniques are needed

[112, 134, 99].

2.5 Errors in EEG source localization

Dipole estimation errors (i.e. wrong estimate of neural sources in the brain
for a given set of measured scalp potentials) can be due to two major groups
of errors: data related errors (i.e. these are errors due to additive noise in the
EEG signals) and model related errors (i.e. these are errors due to geometrical
errors and errors in material properties such as conductivity).

2.5.1 Data related errors

The EEG is contaminated with measurement noise. During the acquisition
of an EEG in a clinical environment different sources of noise contaminate the
EEG: environment noise, instrumentation noise and biological noise. The major
contributor to environment noise is the 50 or 60 Hz power-line activity, which
is illustrated in figure 2.21(a). This activity can be suppressed by filtering.
However, state-of-the-art acquisition systems use active shielding techniques to
cancel the environment noise. Recently, EEG can be simultaneously measured
during an MR scan. During the acquisition of the MR image the EEG is dis-
torted due gradient switching of the MR scanner, which is illustrated in figure
2.21(d). These errors are called gradient switching artifacts [52]. Moreover,
small movements of the electrodes due to blood volume pulse (BallistoCardio-
Graphic Artifacts or BCGa), respiration or movement of the patient inside the
static field will also distort the EEG. An illustration of the BCGa is shown
in figure 2.21(c). Advanced signal processing techniques can filter out these
artifacts of the MR-scanner [52].
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Typical example of instrumentation noise occurs in the quantization process
during the conversion of an analog to a digital signal. Modern equipment uses
16 or 22 bit analog-to-digital converters, which generates noise smaller than
1.5uV or 71.5nV. A typical EEG signal has a RMS value of approximately
50V and higher.

Biological noise consists of signals produced by brain activity or non-brain ac-
tivity that does not correspond to the focal activity we are looking for. One
example is alpha activity (i.e. 8-12 Hz activity in the parietal channels). Other
biological noise contributors are the electrocardiogram, eye movement or blink
artifacts and electromyogram artifacts. The eyeblink artefact and muscle arte-
fact are illustrated in figure 2.21(b).

2.5.2 Model related errors

To make the EEG source estimation feasible, some assumptions have to be
made. These simplifications allow us to solve the forward problem or inverse
problem in a reasonable amount of time and with respect to the available data
at hand. In this case geometrical and conductivity parameters deviate from
their real values.

However, these simplification contribute to the dipole position or orientation
error. Here we discuss three types of modeling errors: source modeling errors,
head modeling errors and conductivity errors.

2.5.2.1 Source modeling errors

As explained in section 2.3.1 dipolar sources are an adequate model to represent
brain activity. However, this is only valid if the activity itself is limited to a
focal region and stays focal over a period of time. If the actual source covers
a large area over the surface of the brain, it will produce a widespread EEG
pattern on the scalp that is similar to a single dipole deep inside the brain.
Therefore, an inverse solution for a single dipolar source can produce a dipole
that is several centimeters away from the actual distribution [35].

The solution to that problem is to use more complex source models. Two
known approaches exist to extend the single dipole model. A first approach
consists of placing sources in a grid in the brain compartment. Usually the grid
as a resolution of 0.5 to 10 mm. Moreover, it was shown in section 2.16 the
electrode potentials can be written as a superposition of the electrode potentials
caused by 3 orthogonal dipoles at the same location. Thus, in each point in
the cubic source grid, 3 orthogonal dipoles are placed. This approach results
in more than 1000 dipoles. The inverse problem in this case is linear, since
the only unknowns are the amplitudes of the dipoles in each point of the cubic
grid. Given that the number of sensors in a clinical practice is of the order
of 30 and in a experimental setup of the order of 100, the problem is highly
underdetermined and regularization methods are required [8].
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A second approach consists of limiting the number of parameters of the mul-
tidipolar sources to be less than the number of electrodes. In this case a few
equivalent dipole sources of unknown location and moment are to be estimated
with a nonlinear method. A fundamental problem with this approach is the
number of sources, which has to be decided a priori. Furthermore, as the
number of sources increases, the non-convexity of the cost function results in
increased chances of trapping in undesirable local minima. These problems can
be solved by scanning a region of interest that ranges from a single location to
the whole brain volume for possible sources. An estimator for the contribution
of each possible source location to the data can be derived using spatial filtering
techniques (e.g. beamformers as in Sekihara et al. [134]) or signal classification
indices (e.g. RAP-MUSIC as in Mosher and Leahy [103]).

2.5.2.2 Errors due to inaccurate geometry modeling

When a head model is used, which does not accurately represent the real head
geometry, errors are induced. In Vanrumste et al. [146] and Huiskamp et al. [80]
the importance was shown of using realistic head models instead of the more
simplified spherical head models. Indeed, the real human head is not a sphere,
but more complex. Not only the boundary of the head model should resemble
the human head, but also the internal structure of the brain tissues. Cuffin [34]
and Eshel et al. [43] showed that variation of skull and scalp thicknesses results
in dipole estimation errors. In Vanrumste et al. [144] it was shown that a hole
in the skull (e.g. occurring after brain surgery) yielded estimation errors near
the hole. Moreover, it was also shown that omitting the ventricular system
also resulted in localization errors in the regions near the omitted ventricular
system. In Ramon et al. [121] it was shown that the scalp potentials are highly
sensitive to the complexity of the head model. Moreover, the CSF plays an
important role in the EEG source analysis both the layer at the boundary of
the brain [120] as well as the ventricular system [143].

2.5.2.3 Errors due to inaccurate position of electrodes

The electrode positions are placed according to the standard 10-20 system.
However, it can happen that these electrodes deviate from the standard position
due to interpatient variability of head geometry or due to inaccurate placement
of the electrodes on the scalp. Therefore, dipole estimation errors can occur.
In Van Hoey et al. [140] it was shown that a one to one relationship existed
between the dipole location error and the average displacement of the electrode
positions. In other words, if the electrode positions used in the head model
deviated on average 1 cm from the actual electrode positions, then the dipole
location was shifted on average 1 cm from the real electrode position. This can
be circumvented using fiducial markers on the electrodes that have a strong
signal in the MR image acquisition, as electrodes themselves do not generate
a signal on an MRI scan. Using image processing techniques the coordinates
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of each marker can then be deduced and used as such in the head model [136].
Pohlmeier et al. [115] showed that the dipole location error diminishes when
more electrodes are used, however they also suggested that there is an optimal
number of electrodes as more electrodes will create an electrode-shunt effect
which will decrease the accuracy.

2.5.2.4 Errors due to inaccurate modeling of conductivities of brain
tissues

The skull conductivity has been subject to debate among researchers. In
vivo measurements give very different from in vitro measurements. On top
of that, the measurements are very patient specific. In Awada et al. [7], it was
stated that the skull conductivity has a large influence on the forward problem.
Pohlmeier et al. [115] showed by simulation studies that small inhomogeneities
in the skull results in a dipole location error of up to 1 cm when these are not
incorporated in the EEG source analysis.

It was believed that the conductivity ratio between skull and soft tissue (scalp
and brain) was on average 80 [48]. Oostendorp et al. used a technique with
realistic head models by which they passed a small current by means of 2
electrodes placed on the scalp. A potential distribution is then generated on the
scalp. Because the potential values and the current source and sink are known,
only the conductivities are unknown in the head model. Hence, equation 2.15
(or in general form equation (2.21)) can be solved for isotropic o. Using this
technique they could estimate the skull-to-soft tissue conductivity ratio to be 15
instead of 80 [109]. At the same time, Ferree et al. [44] did a similar study using
spherical head models. Here, skull-to-soft tissue conductivity was calculated
as 25. It was shown in Vanrumste et al. [144] that using a ratio of 80 instead
of 16, could yield EEG source localization errors of an average of 3 cm up to 5
cm.

One can repeat the previous experiment for a large number of different electrode
pairs and an image of the conductivity can be obtained. This technique is
called electric impedance tomography (EIT). In short, EIT solves an inverse
problem, by estimating the conductivities instead of the source parameters.
Using this technique, the skull-to-soft tissue conductivity ratio was estimated
to be around 20-25 [50, 31]. However in Gongalves et al. [50], it was shown that
the skull-to-soft tissue conductivity ratio could differ from patient to patient
with a factor of up to 2.4. In Chen et al. [30] it was shown that this variability
in the skull-to-soft tissue conductivity variability resulted in errors of 10 to 30
mm. In Gutiérrez et al. [55], maximum likelihood and maximum a posteriori
techniques are used to simultaneously estimate the different conductivities.
There the skull-to-soft tissue ratio was estimated to be 26.

Another study came to similar results using a different technique. In Lai et al.
[90], the authors used intracranial and scalp electrodes to get an estimation
of the skull-to-soft tissue ratio conductivity. From the scalp measures they
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Table 2.1: The reference values of the absolute and relative conductivity of the
compartments incorporated in the human head.

compart- Geddes & Oostendorp | Hoekema | Gongalves | Guttierrez Lai
ments Baker
(1967) (2000) (2001) (2003) (2004) (2005)
scalp 0.43 0.22 0.33 0.33 0.749 0.33
skull 0.006 - 0.015 0.032- 0.0081 0.012 0.0132
0.015 0.080
cerebro- - - - - 1.79 -
spinal fluid
brain 0.12 - 0.22 0.33 0.33 0.313 0.33
0.48
Zscalp 80 15 10-40 20-50 26 25
Tskull

estimated the cortical activity by means of a cortical imaging technique. The
conductivity ratio was adjusted so that the intracranial measurements were con-
sistent with the result of the imaging from the scalp technique. This resulted in
a ratio of 25 with a standard deviation of 7. One has to note however that the
study was performed on pediatric patients aged between 8 and 12. Their skull
tissue normally contains a larger amount of ions and water and so may have
a higher conductivity than the adults calcified cranial bones [90]. In a more
experimental setting, the authors of Hoekema et al. [77] performed conductiv-
ity measures on the skull itself in patients undergoing epilepsy surgery. Here
the authors estimated the skull conductivity to be between 0.032 and 0.080
S/m, which corresponds to a soft-tissue to skull conductivity of 10 to 40. An
overview of the conductivities of brain tissues with a focus on the skull-to-soft
tissue ratio can be found in table 2.1.

In the gray matter, scalp and cerebro-spinal fluid (CSF) the conductivity is
equal in all directions. In this case, the conductivity of the tissues is isotropic.
Thus the position dependent conductivity tensor becomes a position depen-
dent scalar . The conductivity of CSF is quite accurately known to be 1.79
S/m [20].

2.5.3 Anisotropic conductivities

This dissertation is focused around EEG source localization in anisotropically
conducting media. Therefore, the topic of anisotropic conductivities and the
related source localization errors are dealt with in a separate section.

The skull forms a protective layer between the brain and the outside. Further-
more, it contains the structural integrity of the brain. Therefore, the skull is
made of a hard structure. The hard structure acts as a low conductive medium
and has a layered structure (see figure 2.22), which consists of 3 layers: a
spongiform layer between two hard layers. Water, and also ionized particles,
can move easily through the spongiform layer, but not through the hard lay-
ers [156]. This is illustrated in figure 2.23. At the skull, for example, the
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Figure 2.22: A sagittal view of the skull with the soft and hard layers of the skull.
Some characteristic points at the skull are indicated. The inion and nasion are used
in the clinical practice to place the electrodes on the scalp. Adopted from Putz and
Pabst [119]

conductivity tangential to the surface is 10 times the conductivity perpendic-
ular to the surface [126]. Wolters et al. stated that skull anisotropy has a
smearing effect on the forward potential computation. Also Chauveau et al.
[28] investigated the anisotropy of the skull by means of a resistor mesh model.

White matter consists of different nerve bundles (groups of axons) connecting
cortical gray matter (mainly dendrites and cell bodies). Some important struc-
tures in the white matter consist of nerve bundles which are aligned parallel to
each other (see figure 2.24a. The corpus callosum (see figure 2.24b) connects
the two hemispheres of the brain. This structure consists of many parallel nerve
bundles and is thus highly anisotropic. The capsula interna is another example
of such a structure, which connects the nerve fibers coming from the center of

hard layer

Figure 2.23: The anisotropic properties of the conductivity of skull. The skull
consists of 3 layers: a spongiform layer between two hard layers. The conductivity
tangentially to the skull surface is 10 times larger than the radial conductivity.
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Figure 2.24: (a) a cross-section of the brain, where white matter fibres are displayed.
(b) a coronal slice of the brain with some important brain structures with parallel
nerve fibres. Adopted from Gray [51].

the brain to regions in the cortical gray matter.

The nerve bundles consist of nerve fibers or axons (see figure 2.25). Water and
ionized particles can move more easily along the nerve bundle than perpendic-
ular to the nerve bundle. Therefore, the conductivity along the nerve bundle
is measured to be 9 times higher than perpendicular to it [105, 48]. The nerve
bundle direction can be estimated by a recent magnetic resonance technique:
diffusion tensor magnetic resonance imaging (DT-MRI)[19]. This technique
provides directional information on the diffusion of water. It is assumed that
the conductivity is the highest in the direction in which the water diffuses most
easily [139]. Authors [72, 60, 118] have shown that anisotropically conducting
compartments should be incorporated in volume conductor models of the head
whenever possible. We will elaborate further on this technique in chapter 4.

2.6 Summary and Contributions

In this chapter we discussed the EEG source analysis. First, we went into detail
on the generating source of the EEG. The EEG that represents the activity
originates from a superposition of synchronously active neurons. Moreover
these neurons have to be alligned orthogonal to the cortex. With this in mind,
the dipole source was proposed as a model for the EEG generator.



56 Chapter 2

intercellular
region

intracellular
region

Figure 2.25: White matter consist of axons, grouped in bundles. The conductivity
along the nerve bundle is 9 times larger than perpendicular to the nerve bundle.

Next, we discussed the EEG source estimation problem, which consists of a
forward and inverse problem. Solving the forward problem yields the electrode
potentials caused by a given dipole in a given head model. We discussed several
techniques to solve the forward problem in a variety of head models. The inverse
problem estimates the source parameters by iteratively solving the forward
problem and comparing the results with a given set of electrode potentials.

Finally, a short overview of the influence of the different parameters in EEG
source estimation was given. The literature search performed for this chap-
ter resulted in a review paper [69] and two proceedings at an international
conference [5, 30].



Chapter 3

Validation of FDM used to
incorporate of anisotropic
conductivities in EEG source
estimation

Bashir : It’s not our place to decide who lives and who dies. We’re not gods.
Jack: Maybe not, but we are the next best thing!
—Star Trek Deep Space Nine (Episode 133), Statistical Probabilities

3.1 Introduction

In EEG source estimation, isotropic head models are often used. In reality
however, the skull and brain tissues have anisotropic conductivities. The ani-
sotropic conductivities can be incorporated in spherical or more realistic head
models. Neglecting these anisotropic properties will generate errors. The aim
of this chapter is twofold.

First, we will determine if the incorporation of anisotropy is relevant to improve
the accuracy of the EEG source estimation. This is done using simulations
in the spherical head model, which was explained in 2.4.2.3. A large error
would justify the development and implementation of a numerical method that
can incorporate anisotropy. We determined the dipole estimation errors when
anisotropic conductivities are not taken into account. This was done doing
simulation studies. We concluded that the errors due to not taking into account
anisotropic conductivities of skull and white matter are not negligible and that
anisotropic conductivities should be incorporated in the head model.
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Figure 3.1: The 5 shell spherical head model. The different compartments are
indicated by the different grayscale values. In the present study the skull and the
white matter compartment can be set to isotropic or anisotropic conductivity. The
other compartments are all set to isotropic conductivity.

Second, we will use the finite difference method (see section 2.4.2.6) that can
incorporate anisotropic conductivities. The numerical method is applied in a
discretized spherical head model and compared with the analytical solution by
means of the differences in dipole estimation.

3.2 Dipole localization errors due to not incor-
porating anisotropic conductivities: simu-
lation study in spherical head models

3.2.1 Rationale

Spherical head models enable us to use an analytical formula to solve the
forward problem. Although the head models are very simplified, we use a
spherical model since this enables us to perform fast studies to investigate the
behavior of not incorporating or neglecting the anisotropic properties of the
skull and/or brain tissues.

Before we can introduce a numerical technique to solve the forward problem
in EEG source analysis, we have to assess the error due neglecting anisotropic
head models. A simulation study in a spherical head model is suited for this, as
an analytical formula exists to solve the forward problem in anisotropic media.
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Figure 3.2: the 5 shell spherical head model and the placement of electrodes ac-
cording to the international 10-20 system + 6 extra electrodes.

3.2.2 Simulation Setup

Here we use a 5 shell spherical head model (see figure 3.1): scalp shell (radius 92
mm), skull shell (radius 86 mm), cortical shell (radius 80 mm), white matter
shell (radius 70 mm) and thalamic shell (radius 20 mm). The scalp shell,
cortical shell and thalamic shell have an isotropic conductivity of 0.33 S/m.
The skull shell and white matter shell can be made isotropic or anisotropic.
The isotropic conductivity is 0.020 S/m and 0.33 S/m, respectively.

The values for the radial and tangential direction can be calculated from the
isotropic conductivity by imposing the volume constraint [153]. The volume
constraint is explained in appendix B. The anisotropic conductivity of the
skull shell is 0.0043 S/m in the radial direction and 0.043 S/m in the tangential
direction to the skull surface. The white matter has been modeled as follows:
the nerve fibers start from the thalamic shell and go in the radial direction to
the cortical sphere. Here the conductivity along the nerve fibers was set to be
9 times larger than the conductivity perpendicular to the nerve fiber. In this
way the white matter sphere also has a radial and tangential conductivity of
1.42 S/m and 0.15 S/m respectively. The electrodes were placed according to
the international 10-20 system, with 6 extra electrodes located at the temporal
region, resulting in a total of 27 electrodes. The placement of the electrodes is
also shown in figure 3.2.
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Figure 3.3: A flow chart of the simulation study where the dipole localization error
due to the differences between the head models used in the forward problem and in
the inverse problem is investigated.

First we investigated dipole localization errors due to assuming an isotropic
head model instead of a head model with anisotropic conducting compartments.
The setup of this simulation study is shown in figure 3.3, a setup which can
easily be extended to other problems. The potentials at the electrodes are
calculated by using the analytical expression for a given dipole in the brain
compartments in a 5 shell spherical head model with skull or white matter
compartment being anisotropic. Next, for the set of potential values at the 27
electrodes, the dipole parameters were estimated for a 5 shell spherical head
model but with the initial anisotropic conducting compartment set to isotropic.
The dipole localization errors were then inspected.

3.2.3 Results

3.2.3.1 Skull Anisotropy

Figure 3.4 shows the dipole localization error as an arrow. The start of the
arrow denotes the position of the original dipole and the tip points to the
estimated dipole location. We can see that the estimated dipoles are shifted
towards the center. The average dipole localization error for all test dipoles
and the three orientations in the cortical shell is 20.16 mm with a maximum
error of 27.23 mm. In the thalamic shell the average dipole localization error
is 4.14 mm, with a maximum of 6.67 mm.

3.2.3.2 White matter anisotropy

Figure 3.5 shows the dipole localization error when white matter anisotropy
is neglected. The dipoles are estimated away from the center. The dipole
localization error in the cortical sphere is on average 4.23 mm with a maximum
of 11.08 mm. In the thalamic sphere this error increases to an average of 17.05
mm; with a maximum of 26.34 mm.
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Figure 3.4: The dipole localization error when the conductivity of the skull com-
partment was assumed to be isotropic, while the original test dipole was set in a head
model with an anisotropically conducting skull compartment. The other compart-
ments were kept isotropic. The arrows represent the dipole localization error in an
axial (XY) plane. The tail is the original position, the tip is the fit position. The
original dipoles were oriented along the X axis. The horizontal line in the bottom left
corner represents a distance of 5 mm.
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Figure 3.5: The dipole localization error when the conductivity of the white matter
was assumed to be isotropic, while the original test dipoles were set in a head model
with anisotropically conducting white matter compartment. The other compartments
were kept isotropic. The arrows represent the dipole localization error in an axial (XY)
plane. The tail is the original position, the tip is the fitted position. The original
dipoles were oriented along the X axis. The horizontal line in the bottom left corner
represents a distance of 5 mm.
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Figure 3.6: The dipole localization error when the conductivity of the skull compart-
ment and white matter compartment were assumed to be isotropic, while the original
test dipoles were set in a head model with an anisotropically conducting skull and
white matter compartments. The arrows represent the dipole localization error in an
axial (XY) plane. The tail is the original position, the tip is the fit position. The
original dipoles were oriented along the X axis. The horizontal line in the bottom left
corner represents a distance of 5 mm.
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3.2.3.3 Skull and white matter anisotropy

In figure 3.6 we can see the dipole localization error when skull and white
matter anisotropy are neglected. The dipoles, located in the thalamic shell, are
estimated away from the center. The dipoles in the cortical shell are estimated
toward the center of the head. In the cortical shell the dipole localization error
is on average 22.54 mm and has a maximum of 32.33 mm. In the thalamic
region the error is on average 7.62 mm and has a maximum of 13.82 mm.

3.2.4 Discussion and Conclusions

We investigated the influence of not incorporating an anisotropic compartment
in the spherical head model and quantified the influence in terms of the dipole
location error. From figure 3.7 we can appreciate that the errors due to using
a more simplified head model (with isotropic conductivities) instead of a more
realistic one (with anisotropic conductivities) for most of the test dipoles are
larger than 15 mm. Errors may rise up to 30 mm, which is unacceptable
for EEG source analysis. It is therefore necessary to incorporate anisotropic
information for a more accurate localization of the dipole.

The skull remains a difficult obstacle to perform EEG dipole localization.
Therefore, a correct modeling of the skull is needed. In this study we showed
that a correct modeling of the anisotropic conductivities is also important, es-
pecially for the cortical focal activity (see figure 3.7). Although white matter
fibers are not directed in the radial direction in a real human head, this study
suggests that the anisotropic conductivity of white matter fibers should also be
incorporated.

The localization was done in a spherical head model, which is also a simplifica-
tion of the head model. More realistic head models can be constructed which
accurately represent the actual geometry of the human head. However, these
realistic head models require numerical techniques. The results from this part
of this chapter will be used as a reference for the next part of this chapter,
where a numerical technique based on finite differences that can incorporate
anisotropic conductivities is compared to the analytical formula.

3.3 Validation of the finite difference method
with anisotropic conductivities

3.3.1 Aim of the study

In the previous paragraph, because the geometry consisted of concentric spheres
an analytical formula can be used, which calculates the electrode potentials in a
fast way. However, in reality the human head is not spherical. It has a irregular
shape and the inside is heterogeneous. Studies have shown the importance
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Figure 3.7: The dipole localization in coronal planes (XZ) of the 5 shell spherical
head model. Coronal planes are arranged column wise according to dipole orientation
and row-wise according to compartments for which anisotropy was neglected. The
dipole localization error is shown as a color, according to the color bar below.
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of correctly modeling the geometry of the human head [80, 146]. However,
calculating the forward problem in a realistic head model requires numerical
methods, which locally solves the forward problem in small elementary volumes
or surfaces. In this study, we used the aFDM, introduced in 2.4.2.6.3, to
compare it with the analytical formula. As an error measure we used the
difference between the dipole location in a spherical head model calculated
with the analytical formula and the dipole location in a spherical head model
calculated with the aFDM.

3.3.2 Solving the forward problem using forward differ-
ences

Numerical methods use a computational grid or lattice to solve the forward
problem. For FDM the head is tessellated in a cubic grid, where each cube
has the same size. A conductivity tensor was assigned to each cubic element,
depending to which compartment it belongs (air, scalp, skull, cortical gray
matter, white matter and thalamic gray matter). The modelling of the air is
done by putting the matrix reprentation of the conductivity tensor to a zero
matrix. In this way, we create a natural boundary around the head model. In
this study we used four kinds of compartments : scalp, skull, white matter and
gray matter. The scalp and gray matter compartments are considered isotropic
throughout this study. For isotropic tissues the conductivity tensor becomes
a scalar. However, for anisotropic conducting tissues, the conductivity tensor
can vary for different positions in the anisotropic compartment.

In the multi shell spherical head model the conductivity tensor in the skull and
white matter compartment is a diagonal matrix. If we assume that the local
coordinate system is oriented along the radial and tangential direction, then
the conductivity tensor at an element j can be written as follows:

' ol 00
Eiph = 0 Ug 0‘ ’
0 0do]

where a{ and o’ are the conductivities in the tangential and radial direction
at element j, respectively. The matrix representation has to be transformed
to a global cartesian coordinate system of the head, equal for all elements.
Therefore a rotation matrix has to be applied. The matrix representation of
the conductivity tensor at element j in the cartesian system of the head is then
given by 37 = T; ZZMTJ-T, where Tj is a rotation transfer matrix at element
j from the local coordinate system to the global coordinate system [75].

The radial o, and tangential conductivities o, are calculated using the volume
constraint, which is explained in appendix B. This states that the volume of the
anisotropic conductivity ellipsoid is equal to the volume of the isotropic con-

ductivity sphere. For the isotropic conductivities we use afggfﬁ)mc =0.33 5/m
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for the brain compartment, oji4ll . = obraim . /16 = 0.020 S/m for the
skull compartment and o5, :tlfomc = 0.33 S/m for the scalp [50, 44]. For the

skull we use a radial conductivity of o34/ = 0.004309 S/m and a tangential
conductivity of opkull = 1003%u!! = 0.04309 S/m. In the white matter com-
partment we modeled the white matter anisotropy as nerve fibers that originate
at the edge of the inner gray matter compartment and go radial to the edge
of the outer gray matter compartment. Here we use a radial conductivity of
obrain = 1.4278 S/m and a tangential conductivity of o7 = 0.15864 S/m.

A finite difference method which can handle these properties has been presented
by Saleheen and Kwong [130] and introduced in 2.4.2.6.3. The method differs
from the traditional finite difference method (see section 2.4.2.6.2, which puts
the computational points at the center of the elements, in that it calculates the
potential values at the nodes of the elements.

Basically, the method states that in a 3D cubic lattice, the potential value
at point 0 can be written as a linear combination of potential values at 18
neighbors according to figure 2.19 and 2.55. Thus, Poisson’s equation (2.21)
can be approximated in a finite difference calculation scheme as follows:

18 18
ZAicpif <ZA1> wo=1I6(r —r) — Id(r — 1y), (3.1)

where ¢; is the discrete potential value at node i. A; are the coefficients de-
pending on the conductivity tensor of the elements and the internode distance.
These coefficients are given in Saleheen and Kwong [130] and are shown in
equations 2.57. The dipole source is characterized by the right hand side of the
equation. The current injected or removed is denoted by I and the location of
the current source and sink is denoted by ri and r;, respectively. Equation 3.1
can be represented as a stencil, where the central node (node 0) can be placed
at an arbitrary node of the head model at location r.

For each computational point a linear equation can be written as in equation
3, and for all computational points we obtain a set of linear equations which
can be written as follows: A - ® = I. The matrix A € R™*" is the stiffness
matrix and it is dependent of the isotropic or anisotropic conductivities at the
elements. I € R™*! is the array who denotes the current source and sink.
The current source and current sink at k and [ is indicated by I(k) = I and
I(l) = —I, respectively. All remaining elements are zero. n is the number of
computational points. Furthermore, the stiffness matrix A is sparse as for each
row there are at most 18 off-diagonal non-zero elements . We wish to solve this
system for & € R™*!,
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3.3.3 Successive Over-Relaxation

To solve this large sparse linear system, iterative methods need to be used. We
have utilized successive OverRelaxation (SOR) [15]. The SOR is a method for
solving a linear system of equations and is derived from an extrapolation to the

Gauss-Seidel method. This extrapolation takes the form of a weighted average

between the previous iterate, <pz(-k71)

successively for each component:

, and the computed Gauss-Seidel iterate

k _(k k—1
oM = wepl® + (1 - w)pltY, (3.2)

where @; is the Gauss-Seidel iterate, and w is the extrapolation factor. Af-
ter j iterations, the node potentials, <p(-]) V1l < ¢ < n, will be equal to
el = (ap(j) (J) ...,gp( )). The iteration is terminated when the residual

(7“(]) = HA<I>(]) — IH stops decreasing. An optimal extrapolation factor wept,
which yields a minimum of iterations to satisfy the termination criterium, is

dependent on the grid size.

3.3.4 Reciprocity

Since the solution is non-linear with repect to the dipole location, the forward
calculation has to be done during the minimization of the cost function of the
invers problem. During a dipole source reconstruction, it would be too time-
consuming to solve the forward problem for each dipole position and orientation
utilizing successive over-relaxation. Therefore, the reciprocity theorem is used
to reduce the number of forward calculations. Reciprocity was introduced in
EEG source analysis by Rush and Driscoll [127]. Reciprocity describes the re-
lation of mutual dependence of the input and the output of the linear system:
the voltage between two electrodes at the surface due to a current source and
current sink infinitesimally close to each other (dipole configuration), equals the
voltage between these two points due to a unit current at the initial electrodes
[95]. The use of reciprocity in solving the forward problem using finite differ-
ences was validated by Vanrumste et al. [145]. By solving only one forward
calculation numerically, by introducing current monopoles at an electrode pair,
and storing the obtained node potentials or lead field (which is the gradient of
the potential field) in a data structure, one can obtain the potential difference
at the electrode pair for every dipole position and orientation as follows:

d” - vV(r)

UAB(I',d) = IAB

, (3.3)

with Uap the potential difference between the scalp electrodes A and B gen-
erated by the dipole at position r and with moment d. Isp is a fictive unit
current which enters at electrode A and leaves at electrode B. When r does not
coincide with a node, then VV(r) is obtained with tri-linear interpolation.
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If I scalp electrodes are used to measure the EEG, [ — 1 electrode pairs can be
found with linearly independent potential differences. Therefore [ —1 numerical
forward calculations are performed and stored. The | — 1 potential differences
at the [ — 1 electrode pairs are then transformed into [ average referenced
potentials at the [ electrodes. Together with the anisotropic finite difference
with reciprocity method (AFDRM) we will use this to perform simulations,
described further on. For the remainder of this dissertation, we will call the
finite difference incorporated with anisotropic conductivities in combination
with reciprocity, the Anisotropic Finite Differences with Reciprocity Method
(AFDRM).

3.3.5 Inverse problem

The inverse problem was solved via a minimization the RRE:

||Vzn - Vmodel(r; d)

RRE =
[Vinll

+C(r) (3.4)

where V;,, are the electrode potentials used as input in the source estimation
and V,,04e1(r, d) are those solved by the forward problem due to a dipole source
at location r and with moment d. C(r) is a penalty term which is small when
the dipole location is inside the brain compartments (white and gray matter)
and large otherwise. The minimization is done by a Nelder-Mead simplex
method, which can find the global minimum if the cost function is smooth.
Hence, the method succeeds in finding the correct dipole parameters, when the
electrode potentials obtained by a dipole in an isotropic head model and the
same head model is used for the dipole estimation.

3.3.6 Simulation setup

In this paragraph we will discuss the methodology that was used to compare
the numerical method, AFDRM, with the analytical method in the 5 shell
spherical head model.

For the AFDRM method we divided the 5 compartment spherical head model
into cubic grids of 3,2 and 1 mm. By using a fine grid we can assume that the
dipole localization errors due to electrode mislocation is negligible, hence there
will always be a lattice point at an electrode location. test dipoles were placed
in the gray matter inner sphere, white matter sphere and gray matter outer
sphere, distributed along the axial (XY), sagittal (YZ) and coronal (XZ) plane.
The X, Y and Z axis are oriented along the left-right, back-front and bottom-
top direction of the head model, respectively. The distance between the test
dipoles was 5 mm. In the XY plane there were 777 test dipoles and in the XZ
and YZ plane there were 586 dipoles. We did not consider test dipoles that
were inferior to the most inferior electrode position. For each location, we also
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considered 3 orientations according to the Cartesian coordinate system: X-,
Y-, Z-orientation. The total number of test dipoles is (7774 2% 586) 3 = 5847,
for each head model.

The radial o, and tangential conductivities o; are calculated using the vol-
ume constraint, which is explained in appendix B. The volume constraint
states that the volume of the anisotropic conductivity ellipsoid should be
equal to the volume of the isotropic conductivity sphere. For the isotro-
pic conductivity values we use o27%" . = 0.33 S/m for the brain compart-

] isotropic
ment, ofkull = obrain /16 = 0.020 S/m for the skull compartment and
afggffomc = 0.33 S/m for the scalp [50, 44]. For the skull we use a ra-

dial conductivity of os¥“! = 0.004309 S/m and a tangential conductivity of
okl = 1003k = 0.04309 S/m. In the white matter compartment we mod-
eled the white matter anisotropy as nerve fibers that originate at the edge of
the inner gray matter compartment and go radial to the edge of the outer gray
matter compartment. Here we use a radial conductivity of ¢27 %" = 1.4278 S/m
and a tangential conductivity of o?"4" = 0.15864 S/m.

3.3.6.1 Dipole localization errors due to using AFDRM in a spher-
ical head model with isotropic conducting compartments

First, we want to validate the numerical method AFDRM, described in 2.4.2.6.3
in isotropic media. Consider a dipole at location r and with orientation d.
We calculated the electrode potentials Vgipole in an isotropic head model by
the analytical expression. Using Vgjpole We solve the inverse problem in the
isotropic head model, but we use the numerical method instead of the analytical
expression. We obtain an estimated dipole location  and orientation a, and
we can calculate the Euclidean norm between the original and the estimated
dipole. By doing this simulation we can investigate how accurate the numerical
method is compared to the analytical expression.

By using the isotropic 5-shell spherical model in both the forward and the
inverse problem, we can validate the numerical method discussed in 2.4.2.6.3
in isotropic media. We calculated the dipole localization error for different grid
sizes.

3.3.6.2 Dipole localization errors due to using AFDRM in a 5 shell
spherical head model with skull or white matter being ani-
sotropic conducting compartments

In this part, we want to validate the aforementioned numerical method, AF-
DRM, in the 5 shell spherical head model with skull or white matter compart-
ments set to anisotropic conductivity values. The flow chart of the simulation
study can be derived from figure 3.9: the potentials at the electrodes were
calculated by using the analytical expression for a given dipole in the brain
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Figure 3.8: A flow chart of the simulation study where the dipole localization error is
investigated due to the discretization error in isotropic head models. A dipole is used
to perform one forward calculation in an isotropic head model with the analytical
formula. The resulting electrode potentials are then used to estimate the dipole
parameters in a isotropic head model using the numerical method, AFDRM.
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Figure 3.9: A flowchart of the simulation study where the dipole localization error
is investigated due to the discretization error in isotropic head models. A dipole
is used to perform one forward calculation in an anisotropic head model with the
analytical formula. The resulting electrode potentials are then used to estimate the
dipole parameters in a anisotropic head model using the numerical method, AFDRM.

compartments in a 5 shell spherical head model with skull or white mat-
ter compartments set to anisotropically conducting values and all other com-
partments set to isotropic. Next, using the AFDRM the inverse problem was
solved for the set of potentials in a 5 shell spherical head model with the initial
anisotropically compartment set to anisotropic conducting values. The dipole
localization errors were then inspected and compared with the localization er-
ror when anisotropic conductivities of the skull or white matter is neglected.
In the latter, the test dipole configuration described above was used so that
the results are obtained from test dipoles of the same simulation setup.

3.3.6.3 Error measures

Applying the above simulations to one dipole at location r with components d,
will result in an estimated dipole at location © with components d. The dipole
location error due to discretization (using the numerical method instead of the
analytical formula) can then be written as the euclidean distance:

d(r,d) = |r - ¢ (3.5)
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3.3.7 Results

3.3.7.1 Dipole localization errors due to using AFDRM in a 5 shell
spherical head model with isotropic conducting compart-
ments

The results of the first simulation study are summarized in table 3.1, figure 3.10
and figure 3.11. Each row in figure 3.10 represents the dipole localization error
for a given grid size. We distinguish a 1, 2 and 3 mm grid. The three columns
represent the errors for a fixed dipole orientation. The mean localization errors
of all dipoles (see table 3.1) are 1.43 mm, 0.78 mm, 0.48 mm for 3 mm, 2 mm
and 1 mm grid size respectively. The color indicates the dipole localization
error. We can see that at a 3 mm grid size, the dipole localization errors are
greater then a 2 mm grid size, which has greater dipole localization errors as a
1 mm grid size. From table 3.1 the maximum error in a 3 mm cubic grid was
larger than 10 mm, while in a 1 mm cubic grid the largest error was no more
than 4 mm. These large errors are mostly situated near the edges of the brain
compartment, as is shown in 3.10.

Figure 3.11 shows the histogram of the dipole localization error for (a) 1 mm
grid size, (b) 2 mm grid size and (c) 3 mm grid size. The finer the grid, the
more the distribution is skewed to the left. This means that the dipole location
error in a finer grid is smaller. Note that for a 1 mm grid size there is no larger
dipole localization error than 3 mm.

Other studies obtain mean localization errors of 3.4 mm and 2.2 mm, for a 3
and 2 mm grid size in a spherical head model [145]. By using AFDRM, we can
obtain a smaller mean localization error of 1.43 mm, 0.78 mm and 0.48 mm
for a 3mm, 2mm and 1 mm grid size respectively. The reason for the better
accuracy, is probably due to the fact that the calculation is done on the nodes
between the elements, instead of the center of the elements (like the traditional
FDM).

3.3.7.2 Dipole localization errors due to using AFDRM in a 5 shell
spherical head model with skull or white matter being ani-
sotropic conducting compartments

Figure 3.12 shows the dipole localization error when only skull anisotropy is
incorporated in the AFDRM and spherical head model, and this for dipole
orientations along the Cartesian axes and different grid sizes. Table 3.2 sum-
marizes the dipole location errors. We obtain a mean dipole localization error
of 9.229 mm for a 3 mm grid size (standard deviation: 3.905 mm, maximum:
21.765 mm), 6.086 mm for a 2 mm grid size (standarddeviation: 2.765 mm,
maximum: 16.541 mm) and 2.551 mm for a 1 mm grid size (standard deviation:
1.192 mm, maximum: 6.793 mm). For a 3 mm grid size we see large dipole
localization errors, which are located near the interface of the white matter
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Figure 3.10: The dipole localization error mapped on the XZ planes for AFDRM
in an isotropic spherical head model. The first, second and third column are the
dipole localization errors of all dipoles oriented along the X axis, Y axis and Z axis,
respectively. The upper, middle and bottom row represent grid sizes of 3 mm, 2 mm
and 1 mm, respectively.
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Figure 3.11: The histogram of the dipole localization error in the isotropic 5-
spherical head model using AFDRM at a grid size of (a) 3 mm, (b) 2 mm and
(¢) 1 mm. The dipole localization error is shown on the X axis in mm. The Y axis
indicates the percentage of dipoles which belongs to a range of dipole localization
error indicated by the bins.
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Dipole mean standard maximum minimum
Orientation deviation
resolution of the cubic grid : 3 mm
X 1.0444 0.8302 5.2001 0.0133
Y 1.3351 1.0116 8.2438 0
7 1.8566 1.0609 11.6861 0.0067
total 1.4269 1.0334 11.6861 0
resolution of the cubic grid : 2 mm
X 0.73883 0.47164 4.2093 0.022135
Y 0.78455 0.77757 4.8591 0.021664
Z 0.80921 0.52187 4.6955 0
total 0.77753 0.60597 4.8591 0
resolution of the cubic grid : 1 mm
X 0.46736 0.24567 1.4562 0.017365
Y 0.46966 0.33159 1.9061 0.008766
7 0.49904 0.43434 3.8836 0.012705
total 0.47868 0.34615 3.8836 0.008766

Table 3.1: Dipole estimation error due to discretization when using the AFDRM in
a isotropic spherical head model. The error is expressed in mm. The first column
indicates the selection of dipole with a specific orientation (along X,Y or Z direction)
or all dipoles (indicated as total).

shell and the gray matter outer shell. As the grid size decreases, the dipole
localization errors decrease.

The histogram of the dipole localization error is given in figure 3.13. We can
appreciate that the distribution of the errors shifts to the left, when moving
from a coarse to a fine grid. Important to note is that at a 1 mm grid size
the dipole localization error has an upper boundary equal to 7 mm. To place
these results in a broader context, we also repeated the histogram of the dipole
localization error due using isotropic instead of an anisotropic compartment
(see figure 3.13 (d)). Here the results from the first part of this chapter 3.2
were used as a reference. However, the simulation was redone to the same
dipoles as in the simulation.

Figure 3.14 shows the dipole localization error when only white matter ani-
sotropy is incorporated in the AFDRM and spherical head model, and this
for dipole orientations along the three cartesian axes and different grid sizes.
We obtain a mean dipole localization error of 3.078 mm for a 3 mm grid size
(standard deviation: 3.171 mm, maximum: 34.142 mm), 1.695 mm for a 2 mm
grid size (standard deviation: 1.434 mm, maximum: 12.047 mm) and 1.044
mm for a 1 mm grid size (standard deviation: 1.107 mm, maximum: 11.606
mm). These results are summarized in table 3.3 The dipole localization errors
are smaller than the ones when only skull anisotropy is incorporated in the
AFDRM. At a 3 mm grid size the dipole localization is worst at the basal part
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Figure 3.12: The dipole localization error for an anisotorpically conducting skull
layer is shown. The color bar shows the distance from the original dipole to the
estimated dipole in mm. The rows show the dipole localization error at a same grid
size, while the columns show the dipole localization error when the original dipole
orientation is considered fixed.
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Figure 3.13: The histogram of the dipole localization errors for using AFDRM in
a 5 shell spherical head model with a skull anisotropic conducting compartment is
shown at a grid size of (a) 3 mm, (b) 2mm and (¢) 1 mm, respectively. The dipole
localization error is denoted in the X axis in mm. The Y axis indicates the percentage
of dipoles which belongs to a range of dipole localization error indicated by the bin.
To place these results in a broader context, we also showed (d) the histogram of
the dipole localization errors due to using an isotropic instead of an anistropic skull
compartment.
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Dipole mean standard maximum minimum
Orientation deviation
resolution of the cubic grid : 3 mm
X 8.1562 3.5399 18.9942 0.62284
Y 9.7125 3.856 21.765 0.62477
Z 9.8194 4.0781 19.8436 0.2575
total 9.2294 3.905 21.765 0.2575
resolution of the cubic grid : 2 mm
X 5.4779 2.6432 14.6548 0.14975
Y 6.2032 2.7731 16.5408 0.21969
7 6.5775 2.7651 13.6852 0.15533
total 6.0862 2.7653 16.5408 0.14975
resolution of the cubic grid : 1 mm
X 2.2508 1.0897 5.8161 0.2315
Y 2.6754 1.1707 6.793 0.023478
7 2.7281 1.2525 5.3978 0.050511
total 2.5514 1.1919 6.793 0.023478

Table 3.2: Dipole estimation error due to discretization when using the AFDRM in
a spherical head model with an anisotropic conducting skull compartment. The error
is expressed in mm. The first column indicates the selection of dipole with a specific
orientation (along X,Y or Z direction) or all dipoles (indicated as total).

of the brain, below the center. The histogram of the dipole localization error
is shown in figure 3.15. We can see that the anisotropy is modelled very ade-
quately. Moreover, the upper boundary of the dipole localization error at a 1
mm grid size is 6 mm.

From figure 3.14 and table 3.3 we can appreciate the large error at the bottom
of the white matter compartment in the third column (original dipole has an
orientation along the Z axis). As the electrodes are mainly situated in the
upper half of the spherical head model, they only measure one half of the
dipolar electric field caused by the dipole in that region. Moreover, due to the
illposedness of the inverse problem, large errors occur at places that have poor
spatial sampling of the electrodes.

As shown in figure 3.16 the dipole localization error when assuming anisotropic
compartments is bigger than the dipole localization error when assuming iso-
tropic compartments. In the anisotropic head models, there is not only a dis-
cretization of the potential values, like in the isotropic head models, but there
is also a discretization of the conductivity tensors. In a numerical head model,
an element belonging to an anisotropic compartment has a fixed matrix repre-
sentation of the conductivity tensors. The conductivity tensors are dependent
on the direction of the anisotropy, which is dependent on the vectors tangential
to the skull surface for the skull anisotropy. These vectors are only calculated
on discrete places in the skull layer. In reality the vectors can be written as
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Figure 3.14: The dipole localization error if the white matter layer is anisotropic
is shown at different grid sizes. The color denotes the distance between the original
dipole and the estimated dipole in mm. The rows show the dipole localization error
at a same grid size, while the columns show the dipole localization error when the
original dipole orientation is considered fixed.
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Figure 3.15: The histogram of the dipole localization errors for using AFDRM in a
5 shell spherical head model with white matter anisotropic conducting compartment
is shown at a grid size of (a) 3 mm, (b) 2mm and (c) 1 mm, respectively. The dipole
localization error is denoted in the X axis in mm. The Y axis indicates the percentage
of dipoles which belongs to a range of dipole localization error indicated by the bin.
To place these results in a broader context, we also (d) repeated the histogram of
the dipole localization errors due to using an isotropic instead of an anistropic white
matter compartment. Here the results from the first part of this chapter 3.2 were
used as a reference.



3.4 Summary and Conclusions 81

Dipole mean standard maximum minimum
Orientation deviation
resolution of the cubic grid : 3 mm
X 2.3627 1.7038 9.8343 0.040344
Y 2.6185 2.4492 16.9984 0.064512
Z 4.2522 4.379 34.1415 0.04224
total 3.0778 3.1711 34.1415 0.040344
resolution of the cubic grid : 2 mm
X 1.5581 1.207 7.3888 0
Y 1.7454 1.601 11.3254 0
7 1.7803 1.4562 12.047 0
total 1.6946 1.4338 12.047 0
resolution of the cubic grid : 1 mm
X 0.94259 0.6123 3.5759 0.008382
Y 0.89426 0.83761 5.5383 0.019556
7 1.2955 1.5823 11.6095 0.025203
total 1.0441 1.1068 11.6095 0.008382

Table 3.3: Dipole estimation error due to discretization when using the FDM in
a spherical head model with an anisotropic conducting white matter compartment.
The error is expressed in mm. The first column indicates the selection of dipole with
a specific orientation (along X,Y or Z direction) or all dipoles (indicated as total).

continuous functions.

3.4 Summary and Conclusions

In a first instance, we investigated the influence of the anisotropic conductivities
of brain tissues on EEG dipole analysis. Neglecting the skull anisotropy and
white matter anisotropy, yield mean dipole localization errors of 13.73 mm and
11.21 mm, respectively. These errors are not negligible and the anisotropic
conductivities have to be considered in the forward problem.

A validation of the AFDRM has been performed in isotropically conducting
media. We found that the mean dipole localization errors are very small: a 3
mm grid yields 1.48 mm, a 2 mm grid 0.78 mm and a 1 mm grid 0.48 mm.
The error due to the discretization is thus very small (~ grid spacing/2) and
acceptable to do EEG dipole analysis. From this study we can conclude that
the method works for isotropically conducting head models.

The next step was to incorporate anisotropic data. In this case we also com-
pared the analytical head model with the numerical head model, both with the
anisotropic skull layer of with the anisotropic white matter layer by means of
the dipole localization error. For a grid size larger than 1 mm, the mean dipole
localization is bigger than 3 mm. This means that the above AFDRM method
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Figure 3.16: The mean dipole location error versus the size of the cubes in the
cubic grid. We see that the smaller the cubes (the finer the computational grid), the
smaller the discretization error is. The discretization of the anisotropic conductivity
tensors also introduces an error as the error due to discretization of the anisotropic
head model is larger than the one due to discretization in the isotropic head model.

cannot adequately model the skull anisotropy if the grid size is bigger than 1
mm. In order to model the anisotropy adequately, we must consider the grid
size of the lattice of the AFDRM to be 1 mm or less.

The results shown in this study indicate that AFDRM can be used for realistic
head models. One way to do this is by dividing the head in cubes of a specific
grid size. The smaller the grid size, the smaller the dipole localization error due
to using AFDRM, but the larger the memory and computational needs. The
latter is not an issue anymore, as 64-bit computing in a cluster environment
enables the increase of the computational possibilities. Once the head model
is made, the inverse problem can be solved. With the use of reciprocity, the
number of forward calculations, needed to solve the inverse problem, can be
reduced very significantly. On a PC (3 GHz, 2 GBytes RAM), one forward
calculation using the SOR lasted approximately 20 minutes, whereas using
reciprocity the forward calculation lasted less than a second.

These results were presented in a publication in an Al journal [64], a publication
in an A2 journal [60], an abstract in a Al journal [57] and several proceedings
at international [61, 62] and national conferences [56, 63, 58, 59].



Chapter 4

Construction of a realistic
head model with anisotropic
conductivities using magnetic
resonance imaging

The most exciting phrase to hear in science, the one that heralds new discoveries, is
not Eureka! (I found it) but rather, “hmm... that’s funny...”
—Isaac Asivov

4.1 Introduction

In the previous chapter we developed a numerical method that can incorporate
anisotropic conductivities. This was validated using a spherical head model
with a spherically symmetric anisotropic conductivity profile. The human head
however is not spherical and the anisotropic conductivity profile is not known a
priori. In this chapter we will discuss a methodology to measure the geometry
of the human head using magnetic resonance images. A similar technique will
be used to measure the direction dependence of the brain tissues. This is done
using diffusion weighted imaging, which measures the amount of free diffusion
of water in brain tissues along different directions. From this information, the
anisotropic conductivity profile can be constructed.

In the first part of this chapter, we will discuss the construction of the head
model and the acquisition of the magnetic resonance images. The second part
of the chapter will investigate in a realistic head model how the modeling of
the anisotropy in white matter will affect the dipole estimation. Moreover,
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the effect of neglecting the anisotropic properties of the conductivity of several
brain tissues will be investigated.

4.2 Introduction to Magnetic Resonance Imag-
ing

4.2.1 Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is a well-known medical imaging technique
to study the structural anatomy or functional behavior of the human body.
MRI is a non-invasive procedure that uses the behavior of different soft tissues
in magnetic fields to visualize contrast differences. The MR scan results in a set
of images. Each image represents a slice of the human head. An example of such
an image can be seen in figure 4.1. Specific tissue types can be deduced from
that image. Taking into account some a priori knowledge of anatomy of the
head, one can distinguish the scalp, soft bone of the skull, cerebro-spinal fluid
(CSF), white and gray matter. From these images the anatomical information
can be derived using segmentation techniques.

An elementary volume of the image is a pizel, which depicts the MR signal
measured at a specific coordinate. In a traditional T1 MR scan, the pixel
becomes more white, if the tissue contains more fat. Most tissues contain fat
and are thus visible in the image. However, the hard parts of the bone are
difficult to see on a T1 MR scan. By stacking these image slices a 3D volume
can be obtained. Hence, the elementary volume is a vozel (derived from volume
pixel). The voxel has a specific dimension, depending on the MR scan. In a
Siemens Trio 3 tesla MR scanner of the radiology department of the Ghent
University Hospital, a commonly used MR scan (T1 MPRAGE) results in a
three dimensional image with a voxel size of 0.98 mm x 0.98 mm x 0.98 mm.

From the image 4.1 we can see that the soft tissue of the brain consists of 2 parts.
First, the gray matter contains the neuron structures. The gray matter at the
outside of the brain (also known as cortex) is responsible for the processing
of the information and execution of complicated motoric and cognitive tasks,
such as movement, reading, interpretation, etc...The white matter (the soft
tissue between the gray matter structures) contains neuron fibers that connect
several regions of the brain. The white matter is thus responsible for the
communication between the brain regions. Among others the corpus callosum
(see also figure 2.4) is the largest interconnection between the left and right half
of the brain. This structure can be seen as a hook-shaped light gray structure
at the center of the image in figure 4.1 and consists of many nerve fibers lying
parallel and packed closely together.
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Figure 4.1: A sagittal plane of an MR image.

4.2.2 Diffusion weighted imaging

A recent MRI technique also enables us to visualize neuron fibers in the brain.
Diffusion weighted Magnetic Resonance Imaging (DW-MRI) measures the free
diffusion length of water molecules inside the brain [19]. Water molecules diffuse
more easily along the nerve fibers than orthogonal to the nerve fiber. This
diffusion is more explicit at the corpus callosum, where many nerve fibers are
lying parallel to each other. Using a special MR sequence, the diffusion can be
measured. One Diffusion Weighted Image (DWI) measures the diffusion length
in one particular direction. The total diffusion in an orthogonal basis can be
expressed by means of a second order tensor. To construct the order diffusion
tensor in each voxel, one needs at least 6 images in different directions and a
reference image [16, 18]. The whole process of deriving the diffusion tensor from
diffusion weighted imaging is also called Diffusion Tensor Magnetic Resonance
Imaging (DT-MRI) [91]. From this tensor information we can calculate the
fibers that are most likely to actually be present in the brain. This is illustrated
in figure 4.2.

The degree of anisotropy can be quantified using several measures. The most
common measure is the fractional anisotropy (FA). Let di,ds and ds be the
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Figure 4.2: A visualization of the neuron fibers fused with an MR image of the
brain. Here only the fibers from the corpus callosum are drawn.
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eigenvalues of the diffusion tensor at a specific voxel:

FA= \/7\/ (dy —d)? + (dp — d)? + (d3 — d)° (4.1)

¥+¥+ﬁ

where d is the mean diffusivity or d = (dy + da + d3)/3. The FA is 0 in the
isotropic case and 1 in the hypothetical case that the diffusion is directed only
in 1 direction and zero in the other directions [17].

In our introduction we stated that, for the skull, the tangential conductivity
is factor 10 larger than the normal conductivity. Furthermore, in white mat-
ter, the conductivity along a nerve bundle was set to be 9 times larger then
the conductivity along the two directions perpendicular to the nerve bundle.
Therefore, a more intuitive measure was constructed. We define the anisotropic
ratio (AR) of the white matter as:

dy
AR= ——— —— 4.2
R mean (dz, ds)’ (4.2)

where d; is the largest eigenvalue and ds , ds the two smallest eigenvalues of the
diffusion tensor at a specific voxel (see figure 4.8). As diffusion weighted images
do not image the diffusion in the skull, the measure is only used for white matter
voxels. The above measures only depicts the anisotropy in prolate tensors or
cigar-shaped tensors. It has been shown however that over 90% of the fibers in
white matter are prolate.

4.3 Aim of the study

The remainder of this chapter will consist of two parts. First, a realistic head
model is constructed. We will focus on the construction of the anisotropic con-
ductivities of the skull and white matter. The anisotropic conductivity tensor
of an element belonging to the skull will be derived using traditional image
processing and the geometry of the skull. For the derivation of the white mat-
ter, the diffusion weighted images will be used. Here, two approaches exist as
will be discussed. The second part of the chapter will consist of two simulation
studies. A first simulation study will compare the two approaches to derive
the anisotropic conductivities of white matter using the DW-MRI. A second
simulation will discuss the importance of also incorporating the conductivity
tensor in gray matter regions.
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»Cerebro-spinal fluid
Grey matter
White matter

Figure 4.3: The coronal, sagittal and axial plane of the head model. The different
compartments are indicated: scalp, skull, cerebro-spinal fluid, gray matter and white
matter. The test dipoles were placed in each voxel of the gray.

4.4 Construction of the realistic head model
with anisotropic conductivities

4.4.1 Construction of compartments

In our study we used a realistic head model that was derived from segmented
T1 weighted MRI images. The MRI images were obtained on a 3 Tesla MRI
scanner (Siemens Trio, Erlangen, Germany) using a 3 dimensional MP RAGE
sequence with a repetition time (TR) of 1550ms and an echo time (TE) of
2.48ms (bandwidth = 210 Hz per pixel). The image consisted of 256 x 256 x
176 matrix of isotropic voxels of 0.9 mm X 0.9 mm x 0.9 mm. SPMS5 was
used to segment the white matter, gray matter and cerebro-spinal fluid [47].
The segmentation results in three values for each voxel, each indicating its
probability of belonging to white matter, gray matter or cerebro-spinal fluid
(CSF). The voxels are then assigned to the compartment for which the voxel
had the highest probability. A median filtering was applied to exclude isolated
voxels that had outlier probabilities. This procedure allowed us to classify each
voxel to a compartment. Note that the gray matter compartment consisted of
a cortical part and a center part. The skull compartment was constructed by a
dilation operation of the brain compartment and was on average 6 mm thick.
The scalp compartment was obtained by subsequently applying an opening,
closing and hole filling operation on the thresholded MR image. This way we
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could make a distinction between head and air. The skull, CSF and brain
compartments were then added to the head model. Figure 4.3 shows an axial,
sagittal and coronal plane of the head model. The conductivities of the CSF
and scalp remain isotropic through the remainder of this dissertation and were
set to 1.0 .S/m and 0.33 S/m, respectively.

4.5 Anisotropic conductivity of the skull

As mentioned in 2.5.3, the skull has an anisotropic conductivity. The con-
ductivity tangential to the surface of a skull segment is 10 times larger than
the normal conductivity . The tangential and normal direction can be derived
using the geometry of the skull surface.

A T1 MR image using the MPRAGE sequence was used to segment the 3D
image in a white matter, gray matter and cerebro-spinal fluid (CSF) compart-
ment, using SPM5 [47]. Results are shown in panel (a) of figure 4.4. The
ensemble of the white matter, gray matter and CSF was set to be the brain
compartment. As skull has no signal on a T1 MR image and is difficult to
segment, a dilated image of the brain was used as the skull (see panel (b) in
figure 4.4). Using the geometry of the skull, the normal direction was found as
follows.

The skull compartment was dilated with an 6 neighborhood structural element.
The dilation was only performed on the outward surface of the skull. The
dilated image is subtracted with the original image, resulting in a thin outline
around the skull surface (see panel (c) in figure 4.4). In a voxel of the skull
VOX Rl the nearest 8 voxels of the subtracted dilated image were chosen
and the point of gravity of these voxels was calculated, indicated as POG. The
vector pointing from the voxel of the skull VOka“” to the point of gravity
POG was chosen to represent the normal direction of the skull segment. These
normals are shown in panel (d) of figure 4.4.

The normalized normal n; at the i-th voxel from the skull, was then used to
construct two vectors t;(1) and t;) orthogonal to the normal. When the skull
was set to be anisotropic conducting, the conductivity along the tangential
directions, t;(1) and t;(), was set to be 10 times larger than the normal con-
ductivity (along the normal direction, n;) at the i-th voxel of the skull [126].
Let 0, and o be the normal conductivity and tangential conductivity at the
i-th voxel. A tensor at each voxel can be constructed, which can be represented
as an ellipsoid as shown in 4.5.

Using the volume constraint we can determine the conductivity values along the
normal and tangential directions. This constraint states that the isotropic con-
ductivity of the skull should be the geometric mean of the conductivity values
along the normal and tangential directions [156]. The isotropic conductivity is
known to be variable among patients and in time, but can be measured by Elec-
tric Impedance Tomography (EIT) techniques. We started from a a isotropic



90 Chapter 4

(d)

Figure 4.4: An overview of the construction of the anisotropic conductivity of the
skull. Panel (a) shows the an axial slice of the head model constructed using T1 MR
images. Panel (b) shows the skull compartment at the same slice. Panel (c) shows
the dilated image subtracted with the original skull image. The dilation was only
performed on the outward surface. Panel (d) shows the outward normals at each
voxel.
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Figure 4.5: An illustration of the conductivity tensors at the skull. The different
gray-scales denote the compartments of the head model. The diffusion tensors are
represented as ellipsoids in red.

skull conductivity of gfFull . — gbrain . /16 =0.33/16 = 0.020 S/m.

1sotropic 1sotropic

Using the relations above, we can calculate the conductivity values in the nor-
mal and tangential directions, o, = 0.0043 S/m and oy = 0.043 S/m. The
calculation is shown in appendix B.

4.6 Anisotropic conductivity of white matter

4.6.1 Acquisition of the diffusion tensor using diffusion
weighted magnetic resonance imaging (DW-MRI)

The anisotropic conductivities were derived from diffusion weighted images
(DWIs). All diffusion weighted images were acquired with a 3 tesla MRI scan-
ner (Siemens Trio, Erlangen, Germany) equipped with an 8-element head coil.
Diffusion weighted imaging was performed in 60 directions with an echopla-
nar spin echo sequence with a band width of 1300 Hz per pixel. A total of
60 slices was acquired with a repetition time (TR) of 10400 ms and an echo
time of 105 ms. To minimize the influence of eddy currents, a twice-refocused
spin echo (TRSE) preparation was used with b-factors of 0 and 1000 s/mm?
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Figure 4.6: An illustration of the diffusion ellipsoids in white matter is shown. We
can notice that the diffusion ellipsoids in the corpus callosum (left bottom panel) are
very prolate, meaning that the diffusion is mainly in one direction. Indeed the parallel
nerve bundles of the corpus callosum connect the left and right hemisphere. In the
white matter near the gray matter cortex the diffusion ellipsoids are more spheroids,
which indicate that the anisotropy is less than in the corpus callosum.

[122]. The results consisted a of 128 x 128 x 60 matrix of isotropic voxels of
2mmx2mmx2mm.

The DWIs were aligned and smoothed with a 3D scalar partial-differential-
equation filter [29]. The RESTORE technique corrects for physiological noise
such as cardiac pulsation [27]. An altered version of the RESTORE method was
used to robustly estimate the diffusion tensors: first the original non-smoothed
DWIs were used to identify outliers in the data and then these outliers were
rejected during the final tensor fitting of the smoothed DWIs. A registration
was done between the T1 MR image (source) and the DWTs (target) by applying
a affine transformation (linear transformation) on the T1 MR image to register
with the DWIs. Note that the DWIs were not transformed as a transformation
of these images causes a change in the diffusion tensor. This change of basis
can be taken into account, but this was beyond the scope of this dissertation.

An accurate solution of the forward problem with anisotropic conductivities of
white matter requires a fine grid of 1 mmx1mmx1mm voxels [64]. The T1
volume and the diffusion tensor images were therefore linearly interpolated to
a lmmx1mmx1mm cubic grid. Figure 4.6 illustrates a T1 MR image with
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the diffusion ellipsoids in each white matter voxel. From the 3D segmented
images we extract a grid with the same resolution (1 mmx1mmx1mm). This
grid is used to solve the forward problem. The total head model consisted of
4499621 cubic voxels. However for solving the forward problem, the potentials
were calculated in the nodes between the elements. The calculation grid of
the AFDRM consisted of 4599754 nodes. By consequence, the system of linear
equations, which had to be solved in section 2.4.2.8, had more than 4599754
equations with as many unknowns, as the calculation is done on the node points
and not on the elements.

4.6.2 From diffusion tensor to conductivity tensor

The T1 MR (MPRAGE) images, which are used to construct the geometry
of the human head, do not provide information about the direction of the
nerve fibers in a voxel. Therefore we use diffusion weighted MR imaging to
determine the direction of the nerve bundles in white matter. The DW-MRI
image was made using a 2 mm X2 mm x2 mm grid. Therefore, the T1 MR
(MPRAGE) image was coregistered with the DW-MRI. The T1 MR image was
then interpolated to a cubic grid of 1 mm x1 mm x1 mm voxel size. From
the diffusion weighted images one can estimate a diffusion tensor in each voxel
of the white matter. By construction the tensor D € R3*? is symmetric, full
rank. Therefore, it can be represented as an ellipsoid and can be written as:

D-v=A v, (4.3)

where v € R3*3 is a matrix where each column, v;, is an eigenvector and form
an orthonormal basis. A € R3*3 is a diagonal matrix, where d; = (A),; is the
eigenvalue associated with eigenvector v;. v; are the unitary vectors pointing
in the direction of the principal axes and d; are the magnitudes of the principal
axes of the diffusion ellipsoid. To derive a diffusion tensor in each voxel of the
1 mm x1 mm x1 mm T1 MR image a linear interpolation of the neighboring
matrix representations of the diffusion tensors was used.

Nicholson [105] determined the conductivity along a nerve bundle to be nine
times larger than perpendicular to the bundle. In this case, the fractional an-
isotropy is 0.8715 and equal in every voxel. However, when we take a closer
look to the FA, we can appreciate that the ratio is not a fixed but a variable
value. The FA in an axial plane is plotted in figure 4.7. We can see that the
anisotropic ratio is not constant over the axial slice. At the corpus callosum we
can see a very large FA of on 0.7 to 0.9 average 8 - 10, which would indicate a
strongly anisotropic diffusion is present. Indeed, the corpus callosum consists
of a large number of nerves bundled parallel to each other. In other parts
of the white matter, the bundles separate along different directions yielding a
lower FA. When a nerve bundle exits the corpus callosum, the bundle splits
up in two or more directions to the cortical areas. In this case, the diffusion
is less prominent in one direction. The largest eigenvalue will decrease, while
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Figure 4.7: (a) The color coded fractional anisotropy (FA) in an axial slice. Black
indicates a region of high FA (high anisotropy), white indicates a low FA (near iso-
tropic). An illustration of three possible nerve bundle configurations is shown. The
arrows indicate in which regions of anisotropic ratio they might occur. (b) The FA
when the diffusion along the nerve bundle is nine times larger than perpendicular
to the nerve bundle. In this case, the fractional anisotropy is equal at every white
matter voxel.
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Figure 4.8: Schematic of the methods A and B. Method A shows the derivation
of the conductivity tensor from the diffusion tensor when using a fixed anisotropic
ratio of 9:1. The resulting ellipsoid is then related to the isotropic conductivity
sphere using the volume constraint. Method B shows the linear relationship between
the eigenvalues of the diffusion and conductivity ellipsoid. The resulting ellipsoid is
identical to the diffusion ellipsoid up to an unknown scaling factor, which can be
derived using the volume constraint with the isotropic conductivity sphere of white
matter.

the other eigenvalues will increase in value. This translates into a less aniso-
tropic diffusion tensor, as Wolters et al. [153] also have observed in their direct
measurements. Near the gray matter, the nerve bundles split up again into
smaller nerve bundles to make connections with local cortical gray matter ar-
eas. Moreover, cortical gray matter areas are connected to neighboring cortical
gray matter areas. Therefore, the diffusion tensor shows almost equal diffusiv-
ity along 3 orthogonal directions. Hence, the tissue becomes almost isotropic
(FA0).

4.6.3 The more realistic model A: proportional aniso-
tropic ratio

Basser et al. [19] were the first to propose that the conductivity tensor and
diffusion tensor might share eigenvectors . Sen and Torquato [135] described
the relationship between a general transport tensor and the underlying micro-
scopic structure of the medium using a perturbation expansion in the statistical
correlations of the microstructure. The presented framework was applied for
white matter anisotropy by Tuch et al. [139], Haueisen et al. [72] and Wolters
[156].

In Tuch et al. [139] it was shown that the diffusion tensor was strongly lin-
early related to the conductivity tensor. A more thorough validation was done
by Oh et al. [108]. This approach was also mentioned in studies in Wolters
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et al. [150], Wolters [156]. Although, being different processes, diffusion and
conductivity are governed by the same transport equations. Like the diffusion
of water, carriers of charged particles will propagate preferably along the nerve
fibers. We have shown above that the diffusion has a variable anisotropic ra-
tio throughout the white and gray matter. Now, we assume that the same
anisotropy will be valid for the conductivity tensor. There is a linear relation-
ship between the conductivity tensor eigenvalues, ¢;, and the diffusion tensor
eigenvalue, d;, which can be written as:

Oe

d.

g; =

d;, (4.4)

where 0. and d. denote the extracellular conductivity and diffusivity [139].
This linear approximation of the relationship between the eigenvalues of the
conductivity tensor and diffusion tensor assumes the intracellular conductiv-
ity to be negligible. Haueisen et al. [72] also used equation 4.4 to relate the
conductivity and the diffusion tensor. Here o./d. was empirically defined as
0.736 S-s/mm?>. Below, we will derive the scaling factor using the volume con-
straint. This constraint states that the volume of the ellipsoid derived from the
conductivity tensor and the volume of the sphere derived from the isotropic
conductivity tensor is equal. A more detailed explanation can be given in ap-
pendix B. Although, there is no physical theory behind it, for large resolution
DWI, it is a model best suited for large resolution DW-MR images. Other
models are more applicable to smaller resolution DW-MR images and have
theoretical foundation (e.g. transport equation model in Tuch et al. [139])

Let D € R?*3 be the matrix representation of the diffusion tensor in a voxel
belonging to white matter. We can decompose D into its eigenvalues accord-
ing to equation 4.3. The linear relationship between the eigenvalues of the
conductivity tensor and diffusion tensor in white matter can be expressed as:

di_dy_dy 45)
01 g9 0'37 '

where di,ds and d3 are the eigenvalues of the matrix representation of the
diffusion tensor at a voxel derived from the diffusion weighted images. o1, 02, 03
are the unknown eigenvalues of the matrix representation of the conductivity
tensor at the same voxel. This system with 3 unknowns and 2 equations can be
solved by applying the volume constraint (see appendix B) on the anisotropic
conductivity ellipsoid using the isotropic conductivity sphere in white matter:

4 Tain 3 4
37 (07 sstropic) = 37010203 (4.6)

where o1, 09,03 are the unknown eigenvalues of the conductivity tensor and

bTaZn . . . . . . . . .
Tisotropic 18 the isotropic conductivity of brain tissue which was set to 16 times
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larger than the isotropic skull conductivity. In our study, ofg&%mc is 0.33 S/m
[44, 50].

4.6.4 The simplified model B: fixed anisotropic ratio

Nicholson [105] determined the conductivity along a nerve bundle to be nine
times larger than perpendicular to the bundle. However, Wolters et al. [153]
performed measurements of the maximal ratio of largest to smallest diffusion
tensor eigenvalue, which was much lower than the ratio of 1:9. Therefore,
they considered a wide range of anisotropic conductivity ratios for the white
matter compartment and performed various simulations and visualizations to
investigate the impact of white matter anisotropy. In our study, we used the
anisotropic conductivity ratio of 1:9 (see figure 4.8 method A). Using the eigen-
vectors from the diffusion tensor in each voxel we can set the white matter to
have an anisotropic conductivity. In a voxel belonging to white matter, the
conductivity along the largest eigenvector oy is set 9 times larger than the one
along the perpendicular eigenvectors o2, 03:

01=9"-09,
09 =03, (47)

where o is the conductivity along the largest eigenvector vi of the diffusion
tensor. oo and o3 are the conductivity along the perpendicular eigenvectors vo
and vs, respectively. Equations 4.7 contain one remaining unknown which can
be solved using the volume constraint (see appendix B):

4
= —T010203. (4.8)

brain )3
3

_Tr(aisot'r‘opic

3

; : L brain
The isotropic conductivity o757,

previous paragraph 4.6.3 [44, 50].

is set to 0.33S5/m as mentioned in the

Both approaches, A and B, result in eigenvectors with conductivity values,
indicating the conductivity along the direction of that eigenvector. If we define
a local Cartesian basis with the axes along the eigenvectors, the tensor can be
represented by a diagonal matrix. For solving the forward problem, the tensors
have to be represented in the global Cartesian basis of the head model. This
can be done by a rotation of the Cartesian tensor:

0‘10 0
=T |00y 0| -T, (4.9)
0 00’3

where o1, 03, 03 are the conductivity eigenvalues and T is the rotation matrix
composed by putting the eigenvectors in the columns.
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V.

) Dipole estimation
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Method B
with fixed anisotropic
conductivity values
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Figure 4.9: A flow chart of the simulation setup used to compare the more realistic
approach A with the simplified approach B. First a dipole (r,d) is placed in a head
model with variable anisotropic conductivity values (approach A) and the forward
problem is solved. This results in a set of electrode potentials according to the forward
model, Vi,. This set of electrode potentials is then used to estimate the source
in a head model where a fixed ratio for the anisotropic conductivity was assumed
(approach B) by solving the inverse problem. This results in the estimated dipole

parameters (f', El) .

4.7 Influence of different modeling approaches
of the anisotropic conductivities of white
matter

4.7.1 Aim of the study

In section 4.6, a realistic and a simplified approaches to model the anisotropic
conductivity of the white matter are discussed. Due to using the simplified
approach dipole estimation errors are made. In our opinion, the simplified ap-
proach is an overestimation of the anisotropic conductivity of the white matter,
while the realistic approach takes into account the variable anisotropy through-
out the white matter.

4.7.2 Simulation Setup

Dipole location and orientation errors are investigated when a simplified head
model (model B) is assumed instead of a more realistic head model (model A).
A similar methodology was followed in [144, 153, 53, 120]. Simulation studies
were performed, which consisted of two steps (see figure 4.9).

First, one forward calculation was performed to obtain the electrode potentials,
Vin € R™*1 caused by a dipole in the more realistic head model. The dipole
was positioned at r and had the components d, where r,d € R3*1:

Vin =La (1) - d. (4.10)

where L4 is the lead-field matrix in the more realistic head model (model A).



4.7 Influence of different modeling approaches of the anisotropic
conductivities of white matter 99

Next, from the electrode potentials V,, the dipole was estimated in the sim-
plified head model. This was done by minimizing the following cost function:

HVzn - Umodel (I‘, d)||3
[Vinll3

RRE = +C(r), (4.11)

U.noder is the set of electrode potentials caused by a dipole in the simplified
head model:

U,nodet = LB (I‘) -d, (4.12)

where Lg(r) is the lead-field matrix of the simplified head model (model B).
Note that the dipole estimation process is an inverse problem in which the
forward problem needs to be solved iteratively. This is contrary to the first
step of the simulation, where only one forward calculation was done to obtain
a set of electrode potentials. Moreover, the forward calculation was solved in
a more realistic head model, whereas the forward calculations in the inverse
problem are solved in a simplified head model. Thus the error due to the use
of a simplified model during solving the inverse problem is investigated.

The starting point of the Nelder-Mead optimization was chosen to be the po-
sition r and the component d of the original dipole [116]. The set of dipole
parameters, T and él, which minimizes the cost function (see equation 4.11),
are the estimated dipole parameters in the simplified head model.

We evaluate the dipole location error using the Euclidean distance between the
original dipole location r and the estimated dipole location d:

DLE = | —1|. (4.13)

The angle between the vector components of the original dipole d and estimated
dipole d can be calculated by using the cosine rule:

. 3T
4 (d, d) = arccos (fjid> , (4.14)
Il d]]

where d”7 means the transpose of vector d.

4.7.3 Test dipoles

In the above simulation (see figure 4.9) the test dipole placed in the more
realistic head model (model A) represents the actual source, while the resulting
source parameters are the parameter estimates when a simplified head model
(model B) is used. We want to evaluate the estimation errors (i) with respect
to the location of the test dipole in the head model and (ii) with respect to the
orientation of the dipole at a specific location.
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Study I: Estimation errors with respect to the location of the test
dipole.

The test dipoles were located in three planes: an axial, coronal and sagittal
plane (see figure 4.3). In those 3 planes a uniform square grid was placed
with distance of 1 mm between each node. The nodes of the square grid were
chosen to be the locations of the dipole sources. Moreover, as brain activity
can originate from gray matter only, only the nodes situated in the gray matter
were considered. As a dipole can be decomposed into 3 orthogonal dipoles
along the main axes, for each dipole location three orthogonal orientations were
considered: along left-right (X orientation), along back-front (Y orientation)
and along bottom-top (Z orientation). Note that the simulation is done for
each test dipole at a time.

Due to the uniform grid the number of test dipoles was 23983. All of these
were situated in gray matter, because brain activity which can be measured
by the EEG can only originate from the gray matter. Moreover, the dipoles
were placed in the cortical gray matter as well as in the gray matter of the
deep structures. For each simulation the dipole location and orientation errors
between the original test dipole and the estimated dipole were calculated.

Study II: Estimation errors with respect to the orientation of the
test dipole. In this study, the location of the test dipoles was chosen at two
specific sites. A first location r; was chosen near the edge of the gray matter
cortex, near a region of the white matter where the anisotropic ratio was low
(AR was on average 1). A second location ry was chosen in the gray matter
near the center of the head model and near a region of the white matter where
the anisotropic ratio was moderate (AR was on average 3). The location of the
test dipole is indicated in figures 4.13 by a red star. The colors indicate the
anisotropic ratio in the more realistic head model. The blue arrow in figure 4.13
indicates the principal direction (largest eigenvector) of the diffusion tensor in a
voxel of the white matter. In the simplified approach, this direction is chosen to
construct the conductivity tensor, which sets the conductivity along the largest
eigenvector to be 9 times larger to the orthogonal eigenvectors. Thus in the
simplified approach all the voxels of the white matter have an anisotropic ratio
of 9.

The orientation of the test dipole at location r; and ry is chosen from a set
of uniformly distributed orientations indicated by an azimuth (in radians) 6 €
] — m, 7] and an elevation (in radians) ¢ €] — 7/2,7/2]. The magnitude of the
dipole was chosen to be one, thus we have unitary dipole components. 6 is the
angle between the projection of the dipole component onto the axial plane and
the left-right orientation. ¢ is the angle between the dipole component and
the XY-plane. The total number of orientations for each location was 2456.
In this way, we can visualize the dipole location error and orientation error
in function of the orientation of the test dipole. Moreover, we can compare
the errors with the orientation of the principal conductivity direction (largest
eigenvector), as it is along this direction that the conductivity is overestimated
when the simplified approach (or approach B) is used (the anisotropic ratio of
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the conductivity in white matter is set to 9 but should be less).

4.7.4 Results

Study I:Estimation errors with respect to the location of the test
dipole in the head model

Figure 4.10 shows the estimation error on the dipole location between the test
dipoles and the estimated dipole. The error is depicted as a color code and
ranges from 0 to 18 mm. We observe that the large errors (> 5mm) occur near
the center of the brain and also near the edges between white and gray matter.
This is due to the fact that in these regions of interest a large anisotropic ratio
was assumed (model A), while a more realistic lower anisotropic ratio (model
B) was used to calculate the electrode potentials. A large error (> 10 mm) was
also observed in the basal part of the brain. This is mainly due to the absence
of electrodes in the basal part of the brain (cerebellum). From figure 4.12 we
can appreciate that there is almost no error above 10 mm. A maximum error
of 17.7 mm was found in gray matter regions.

Concerning the errors on the dipole orientation, we can appreciate from figure
4.11 that the errors with a large magnitude (> 30 degrees) are concentrated near
the center of the brain and are mainly situated near white matter boundaries.
For the similar reason of the location error, this is due to the fact that the
electrode potentials are largely influenced by anisotropy when the test dipole is
placed in a highly anisotropic conducting region. At the center of the brain we
noted errors of over 60 degrees. From figure 4.12 we can see that on average 60
% of the errors in the orientation are above 10 degrees. The mean orientation
error was 11.6 degrees. The maximum orientation error was 60.9 degrees.

Study II: Estimation errors with respect to the orientation of the
test dipole.

Figure 4.13 shows the dipole location estimates as black dots for each orienta-
tion of the test dipole for the location r; and ry, respectively. The locations
of the test dipoles are shown as a red star. The arrows show the orientation of
the largest eigenvector of the diffusion tensor of each white matter voxel. From
figure 4.13a we can see that when the simulation was done for a test dipole at
location ry the estimated locations in the simplified head model is more situ-
ated toward the center. Whereas, when the simulation was done with a test
dipole at location rs, the estimated locations are near the original test dipole
location. We can also note that due to a different orientation of the original
dipole, the estimated location is also different.

Figures 4.14 and 4.15 show the dipole location and orientation error in function
of the azimuth and elevation of the dipole orientation when the study II was
done at location r; and ry respectively. Note that the figures should be seen on
the surface of a sphere and should be seen as an orientation distribution function
of the dipole location and orientation error with respect to the orientation of the
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Figure 4.10: Dipole location errors when using a head model in the inverse problem
where anisotropic conductivity was derived using method A while the electrode po-
tentials were calculated in a head model where anisotropic conductivity was derived
using method B. The range of the errors is given in the color bar below. The columns
illustrate the axial, coronal and sagittal planes, respectively. The rows (a), (b) and
(c) show the errors for the test dipoles oriented along the X-, Y-, and Z-direction,
respectively.
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Figure 4.11: Dipole orientation errors when using a head model in the inverse prob-
lem where anisotropic conductivity was derived using method A while the electrode
potentials were calculated in a head model where anisotropic conductivity was derived
using method B. The range of the error is given in the color bar below. The columns
illustrate the axial, coronal and sagittal planes, respectively. The rows (a), (b) and
(c) show the errors for the test dipoles oriented along the X-, Y-, and Z-direction,
respectively.
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Figure 4.12: Histogram of the dipole location (a) and orientation (b) errors for all
test dipoles found in the simulations described in section 4.7.2. The X-axes depicts
(a) the dipole location error in mm and (b) the dipole orientation error in degrees
(°). The bin sizes were 1 mm and 5 degrees (°) respectively.

test dipole. The black dots are the azimuth and elevation of the orientation of
the anisotropy of nearby white matter voxels. The orientation of the anisotropy
was calculated as the orientation of the largest eigenvector. Moreover, a pattern
is visible that is repetitive and symmetric. For example, in figure 4.14 the
location error is large when the azimuth is § = 0 and the elevation ¢ = 7 /4.
At the other side of the sphere ( = 7 and ¢ = —x/4) we also note the large
erTors.

4.7.5 Discussion and Conclusion

The results of this study show that using the simplified model (model B) in-
stead of the more realistic model (model A) for the anisotropic conductivity
profile of the white matter, introduces dipole location and orientation errors
in the EEG inverse problem. The dipole location errors due to using a differ-
ent model are moderate (< 10 mm), however the dipole orientation errors are
considerable. It was already known that the anisotropic conductivity of the
skull had a large influence on the potentials, calculated by the forward prob-
lem [153, 96]. Haueisen et al. stated the importance of white matter anisotropy
[72], with regard to the dipole magnitude and orientation. The results from
our study suggest that an accurate modeling is required for accurate source
estimation.

We also found that a highly anisotropic white matter, surrounding a dipole
source, has a big effect on the solution of the forward problem. In more detail
we see in figure 4.11 that the large errors (red or black colored regions) are
associated with simulations where test dipoles were placed in a moderate ani-
sotropic region (AR=3 near gray matter boundary) and the forward problem
was calculated using model A. Afterward, the electrode potentials were used
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Figure 4.13: Test dipole location and dipole location estimations when the simula-
tion was done for test dipoles at location (a) r1 and (b) r2 and the components of
the test dipoles were chosen from a set of components uniformely distributed from a
sphere around the dipole location. The red star in both figures denote the original
dipole location. The location of the dipole estimates are indicated by black dots. The
voxels of the white matter are coloured according to the fractional anisotropy and
the blue arrow indicates the largest eigenvector of the tensor of that voxel.
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Figure 4.14: The location error (a) and orientation error (b) as a function of the
dipole orientation represented by a azimuth and elevation when simulation II was
performed with a source at the cortex of teh brain (r1). The azimuth is ranged in
radians from —7 to 7 and the elevation from —7/2 to /2. The color code denotes
the location error and orientation error. The black dots denote the orientation of the

anisotropy in the nearest white matter voxels.
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Figure 4.15: The location error (a) and orientation error (b) as a function of the
dipole orientation represented by a azimuth and elevation when simulation II was
performed with a source near the center of the brain (rz2). The azimuth is ranged in
radians from —7 to 7 and the elevation from —7/2 to /2. The color code denotes
the location error and orientation error. The black dots denote the orientation of the

anisotropy in the nearest white matter voxels.
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to estimate the dipole in a head model where, according to model B, the an-
isotropy of the region was fixed to a high anisotropic ratio (AR=9). Similar
results were observed in Giillmar et al. [53]. There a relative difference mea-
sure was used to quantify discrepancies in the forward solution in a rabbit head
model.

From figures 4.13, 4.14 and 4.15 we can see that when the dipole is estimated
in the simplified head model, the estimates are displaced in the direction of the
anisotropy when the orientation of the test dipoles is situated along the orien-
tation of the anisotropy. In other words, the dipole location errors are mainly
large when the orientation of the test dipoles are similar to the orientation of
the anisotropy in the nearby white matter voxels. On the contrary, the orien-
tation error is small when the orientation of the test dipole is similar to the
orientation of the anisotropy in the neighboring white matter voxels. Thus it
seems that the location and orientation error is dependent on the orientation of
the test dipole relative to the orientation of the anisotropy. Similar studies did
observe the effect of anisotropic material on the dipole reconstruction, but did
not see a dependence of the test dipole orientation relative to the orientation
of the anisotropy. These studies only considered dipoles to be in 3 orthogo-
nal directions [53]. Moreover, performing study II for a reasonable amount of
possible locations and orientations would be very time consuming.

From figure 4.15b we can see that the orientation error is very small when
the orientation of the test dipole is similar to the orientation of the anisotropy
(angle difference is approximately 0° or 180°). In addition, the error is very
small when the orientation of the test dipole and the orientation of the ani-
sotropy is approximately perpendicular (angle difference is approximately 90°).
A similar study with magnetic measurements came to similar results [92]. They
suggested that at these orientations of the test dipole relative to the orientation
of the anisotropy, the electrical field becomes rotational invariant around the
direction of the anisotropy. However, these findings cannot be seen in figure
4.14a or b. Therefore, more similar studies on the influence of the dipole lo-
cation and orientation in the near vicinity of the anisotropic white matter will
be more thoroughly investigated in the future.

4.8 Influence of the anisotropic conductivities
of gray matter

4.8.1 Aim of the study

Diffusion weighted images are used to quantify the anisotropy in white matter.
The use of noise suppression techniques and the 60 directions provides us a
reliable estimate of the diffusion tensor in each voxel. However, these diffusion
images also provide an indication of anisotropic ratio in the gray matter region.
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Therefore, using the model explained in 4.6.2 an anisotropic conductivity tensor
can be derived in gray matter regions.

The rationale behind this study is that due to misclassification during the
segmentation or partial volume effects, white matter voxels are assigned to the
gray matter compartment. However, these white matter voxels can contain
highly anisotropic conductivity, but are set to isotropic, assuming the gray
matter has an isotropic conductivity. In figure 4.16 we can see the FA as a
color code. In the figure, the color ranged from 0 till 0.5 to visualize where the
gray matter has a high FA. Mostly the FA is very low (~ 1), which means that
gray matter is mostly isotropic. However, near the boundaries between white
and gray matter compartments, some voxels have a high FA but are assigned to
the gray matter. Near the corpus callosum, there are voxels that are assigned
to gray matter due to the partial volume effect, but that have a reasonably
high anisotropic ratio.

4.8.2 Simulation setup

The construction of the head model was similar as explained in the previous
study (see 4.7). However, the voxels that were assigned to the gray matter
compartment could be set to having an anisotropic conductivity which was
derived from the diffusion weighted images. The absolute value of anisotropic
conductivities was calculated using the volume constraint (see appendix B).
The isotropic gray matter conductivity in the volume constraint was set to 0, 33
S/m. The skull and white matter had an anisotropic conductivity according to
section 4.5 and 4.6. A more simplified head model was also constructed with
the same geometry and conductivities, except for the gray matter conductivity
that was set to having an isotropic conductivity. The isotropic conductivity of
the gray matter was again set to 0,33 S/m.

The forward problem is calculated using the AFDRM method where anisotropic
conductivities can be incorporated according to the realistic approach discussed
in 4.6.2. In an XY-, YZ- and XZ-plane, we placed 3 dipoles (along the X-,
Y- and Z-axis) in each voxel belonging to the white and gray matter of the
brain. For each dipole the forward problem was solved in a head model with
anisotropically conducting skull, white and gray matter compartments. This
resulted in a set of electrode potentials.

The electrode potentials were then used to solve the inverse problem in a head
model where the conductivity of gray matter was set to be isotropic. The
obtained estimate of the dipole location r and orientation d was used to evaluate
the dipole location error (or location shift) and orientation error due to not
incorporating the anisotropic conductivities of gray matter. By taking the
Euclidean distance between the estimated dipole and the original dipole, the
dipole localization error due to neglecting the anisotropic conductivity of gray
matter was investigated. The angle between the estimated and original dipole,
denotes the dipole orientation error due to not taking into account anisotropic
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Figure 4.16: The anisotropic ratio as a color code of the white and gray matter. The
black lines denote the interfaces between scalp, skull, CSF, white and gray matter.
The color code was ranged from an FA till 0.5 for the sake of visibility. We can see
that there is in some gray matter regions an anisotropic conductivity tensor can be
defined, although the FA is not high.
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Figure 4.17: A flow chart of the simulation setup. A dipole with location r and
moment d is used to for one forward calculation in a head model with anisotropic
gray matter. The resulting electrode potentials are then used to estimate the source
in an head model with gray matter anisotropic.

gray matter anisotropy. A schematic of the simulation setup is shown in figure
4.17.

4.8.3 Results

Figure 4.18 and 4.19 show the dipole location error and orientation error, re-
spectively. The dipole location error ranged between 0 and 10 mm, approxi-
mately. Table 4.1 summarizes the average, standard deviation, maximum and
minimum errors for not incorporating gray matter anisotropy. From the table
we can see that the dipole location error is very small. The largest error was
found at the bottom part of the cerebellum. However, these large errors can
be due to the absence of the electrode coverage, i.e. poor spatial sampling of
the electrodes in the bottom part of the head. Indeed, the voxels of the bot-
tom part of the cerebellum were lower inferior then the most inferior electrode.
These errors will increase the mean error. Thus, this suggests that neglecting
the anisotropy of gray matter does not have a large influence on the dipole
location.

The dipole orientation error was ranged between 0 and 40 degrees. In the
gray matter, the largest errors was found were at those regions where the
anisotropic ratio in the anisotropic head model of the forward calculation was
large. Indeed, the incorporation of the anisotropic conductivity changes the
potential field caused by a dipole in such a region very locally. This local
change in the potential field also affects the global potential field measured at
the surface of the scalp. This will be explained in the next chapter.

4.8.4 Discussion and conclusions

Using DW-MRI, we can define a anisotropic conductivity tensor in voxels be-
longing to gray matter. Furthermore, voxels with a high anisotropic ratio which
can originate from the white matter, can be assigned to the gray matter due to
segmentation errors or partial volume effects. In this study we determined the
dipole estimation error due to not incorporating the anisotropic conductivity
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Figure 4.18: The dipole location error due to not incorporating anisotropic conduc-
tivities of gray matter. A axial, coronal and sagittal plane is shown in the columns.
Each row depicts an orientation of the test dipole. The location error ranged from 0
to on average 10 mm. The largest error was found at the bottom of the brain, below

the cerebellum.
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Figure 4.19: The dipole orientation error due to not incorporating anisotropic con-
ductivities of gray matter. A axial, coronal and sagittal plane is shown in the columns.
Each row depicts an orientation of the test dipole. The error ranged from 0 to 40
degrees. The largest errors in the gray matter were found at regions where the an-
isotropic ratio was high, but an isotropic conductivity was assumed in the dipole

estimation.
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location of the mean standard maximum minimum
test dipole deviation

Dipole location error (mm)

gray matter 2.9202 1.2037 9.6441 0.1062

White matter 2.6101 1.0675 8.7640 0.1307

total 2.7879 1.1578 9.6441 0.1062
Dipole orientation error (degrees)

gray matter 5.0683 3.7919 34.4631 0.0000

White matter 4.9368 3.6392 40.2443 0.0197

total 5.0122 3.7281 40.2443 0.0000

Table 4.1: The dipole location (in mm) and orientation error (in degrees) due to
not incorporating the anisotropic conductivities of gray matter. The columns in both
tables indicate (from left to right) the average, standard deviation, maximum and
minimum value of the dipole location and orientation error, respectively. The rows
indicate the set of test dipoles according to their location: the test dipole located at
the gray matter, white matter or both (indicated as total).

of gray matter. The mean dipole location errors and orientation errors are low:
2.7 mm and 5.01 degrees, respectively. However, we can notice large errors
in the dipole location near the edges of the brain. The orientation error was
very large at regions where a high anisotropic ratio was neglected. Examples
of these regions are interfaces between the corpus callosum and the CSF.

4.9 Summary and contributions

In this chapter we discussed a formalism to incorporate an anisotropic conduc-
tivity profile into the skull and white matter compartment. Magnetic resonance
images and diffusion weighted magnetic resonance images can be used to derive
the anisotropic properties of the skull and white matter compartment. This
approach enables us to model many tissue types. Using segmented T1 MR
images and DW-MR image we can construct a head model with anisotropic
conductivities which we can use in the EEG source analysis.

However, we found that the modeling of the white matter is an important fac-
tor in the EEG source estimation procedure. Two approaches to derive the
conductivity tensors were discussed: a realistic one and a more simplified one.
The simplified approach states that the conductivity along the largest principal
direction is 9 times larger than the principal directions orthogonal to it. The
realistic approach states that the principal directions of the diffusion tensor
and the conductivity are the same, while preserving the ratios between the dif-
fusion and conductivity along each principal direction. By using the simplified
approach instead of the realistic one dipole estimation errors are made. We
found that the dipole location error was large (> 5 mm)at gray matter regions
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at the center of the brain and near the edges of white and gray matter. Indeed,
near those places the simplified approach causes an overestimation of the an-
isotropy compared with the realistic approach. The mean location error was
approximately 4,0 mm with a maximum of 17.7 mm.

Large orientation errors were found in the gray matter regions at the center of
the brain and near the interfaces with the white matter compartment. Again,
this is due to the fact that the electrode potentials are largely influenced by
anisotropy when the test dipole is placed in or near a highly anisotropic con-
ducting region. At the center of the brain we noted errors of over 60 degrees.
On average 60 % of the errors in the orientation are above 10 degrees. The
mean orientation error was 11.6 degrees. The maximum orientation error was
60, 9 degrees. The closer the dipole source is to a region with a large difference
in FA, the larger the dipole estimation errors.

Therefore, a qualitative study was done to investigate the influence of the
dipole orientation of the test dipole on using the simplified approach in the
source estimation. Depending on the orientation errors from approximately 2
to 7 mm were found. Moreover, we found that the location error is larger if the
test dipole is oriented along the largest principal direction of the nearest white
matter voxels. Thus it seems that the location and orientation is dependent on
the orientation of the test dipole relative to the orientation of the anisotropy
using the simplified approach.

The results from this study and from Giillmar et al. show that a local character-
ization of the anisotropy is crucial for the accuracy of the forward problem [53].
Indeed, putting the anisotropic ratio of white matter to the same fixed ratio
within that compartment will result in inaccuracies in the forward solution and
thus also in the inverse problem. Characterizing the anisotropic conductivity
tensor at the voxel level is required for accurate source localization.

In the second half of this chapter, we discussed the influence of not incorporat-
ing anisotropic conductivities in gray matter. Using DW-MRI, a conductivity
tensor can also be derived in voxels belonging to gray matter. Although these
regions have a very low anisotropic ratio (F'A ~ 0.1), we wanted to investigate
whether the anisotropic ratio of these gray matter voxels can be neglected. Due
to segmentation errors or partial volume effects, voxels with a larger FA (e.g.
white matter structures) can be assigned to be in the gray matter compart-
ment. This mainly happens near the boundaries of the white matter. The mean
dipole location errors and orientation errors are low: 2.7 mm and 5.01 degrees,
respectively. However, we can notice large errors in the dipole location near the
edges of the brain. The orientation error was very large at regions with a large
FA, as in these regions the anisotropic conductivities was neglected. Examples
of these regions are interfaces between the corpus callosum and the CSF.

This work resulted in an Al publication [70] and an A2 publication [68] in the
context of an international conference where an oral presentation was given.



Chapter 5

Dipole estimation errors due
to neglecting anisotropic
conductivities in EEG source
analysis

There are sadistic scientists who hurry to hunt down errors instead of establishing
the truth
—MARIE CURIE

5.1 Introduction

In the previous chapters we saw how anisotropic conductivities can be incor-
porated in realistic head models. Nowadays, isotropic head models are often
used. In reality the skull and brain tissues are anisotropic conducting. In this
chapter, we want to investigate the influence of neglecting these anisotropic
conductivities of the skull and brain tissue compartments on the dipole esti-
mation.

In a first part, we will investigate the effect of neglecting anisotropic conduc-
tivities on the dipole estimation. This is done by simulation studies where
compartments are set to isotropic, knowing that the electrode potentials are
derived from an anisotropic head.

In a second part, we will investigate what happens to the electrode potentials
at the scalp surface for anisotropically conducting compartments. In this way,
we want to learn more about the physics behind the influence of anisotropically
conducting compartments.
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In section 2.5 possible causes of dipole estimation errors were discussed. In the
third part of this chapter we will focus on the estimation error due to neglecting
anisotropy in the presence of noise. In this case, we combine two types of
error: (i) a systematical error due to neglecting anisotropy and (ii) a random
error due to noise. In a first simulation, the effect of neglecting anisotropic
conductivities will be discussed. There we will compare the errors made by
neglecting the anisotropic conductivity properties of several brain tissues. In a
second simulation, the systematical error of the anisotropic conductivities and
the random error due to noise will be investigated. In this case, we want to
determine to which level of noise the incorporation of anisotropic conductivities
can make EEG source localization more accurate.

5.2 Dipole location and orientation errors due
to neglecting anisotropic conductivities in
skull and brain tissues

In this study we want to determine the dipole location and orientation error
due to not incorporating the anisotropic conductivities of the skull and/or brain
compartment. In reality the electrode potentials are generated by sources in
the brain and the skull and brain tissues (more specific the white matter) are
anisotropic. If we want to estimate the source in a head model with isotropic
conductivities a location and an orientation error occurs. By determining these
errors we want to investigate the error we make if assume the head model to
be isotropic.

Brain matter and skull have an anisotropic conductivity. We can use the ge-
ometrical properties of the skull to determine the normal and tangential di-
rection in each cubic element of the skull compartment. The normal direction
is the direction perpendicular to the skull surface. The tangential direction
is the direction along the skull. DW-MR imaging can be used to determine
the anisotropic conductivity of the soft tissues of the brain. These anisotropic
properties can be used to construct the head model. The AFDRM is used to
solve the forward problem in the head model which is introduced in 2.4.2.6.3
and 3.3.4.

5.2.1 Simulation setup

The construction of the head model was done in a similar way as in chapter 4,
but we briefly repeat it in the following.

5.2.1.1 Construction of the head model

The head model consists of compartments which are derived from segmenting
the T1 MR image. A DW-MRI image was also performed and the T1 MR
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image was coregistered with the DW-MRI image. The T1 MR image was
measured using an MPRAGE sequence in a 3 Tesla Siemens Trio MR scanner
and had a dimension of 128 by 128 by 104 consisting of voxels of 2 mm x2
mm X2 mm. The image was resized and zero padded to have voxels of 1 mm
x1 mm X1 mm with a dimension of 255 by 255 by 255. From this image the
segmentation was preformed using SPM5 [47]. The diffusion tensors were also
linearly interpolated to an 3D array of 255 by 255 by 255, so that each voxel
of the resized image contained one diffusion tensor.

In this simulation we constructed 4 head models. A summary of the anisotropic
properties is given in table 5.1.

5.2.1.2 Incorporating anisotropic conductivities

In this paragraph the determination of the anisotropic conductivities of the
skull and brain tissues is given. This is a brief summary of the methodology
followed in chapter 4. In the head model we can incorporate two types of
anisotropy: skull and brain tissues. Hence we can construct 4 head models by
making combinations of the conductivity anisotropy given by table 5.1.

Anisotropic conductivities of the skull

From the segmented T1 MR images the skull compartment was made by a
dilation of the brain and the CSF compartment. The dilation was made so that
the average thickness of the skull was about 6 mm. In each voxel of the skull
the normal, n and two tangential directions, t; and ts, were derived. Then the
conductivity along the skull was set 10 times larger than the normal direction.
Using the volume constraint, the absolute values of the conductivity along n,t;
and to are calculated. An explanation and the derivation of the values of
these conductivities are given in appendix B. The matrix representation of the
conductivity tensor 3, with respect to the basis (n,tq,t2) becomes:

on 00
0 0 Ot
Model | Scalp | Skull | CSF | White matter | Gray matter
1 I A I A A
2 I A I I I
3 I I I A A
4 I I I I I

Table 5.1: Summarization of the conductivity parameters of the head models used
in the simulations.”I“ and ” A“ denote the compartment was set to have an isotropic
or anisotropic conductivity, respectively.
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where o,,,0; and oy is the conductivity along the directions given by the unitary
vectors n,t; and to respectively. The matrix representation of the conductivity
tensor is then transformed to the basis of the head model by:

on 0 0
X=T-{006,0] T, (5.2)
0 OO't

where o0,,0: are the conductivity eigenvalues and T is the rotation matrix
composed by putting the vectors n,t; and te in the columns. Here, o, =
0.004309 S/m and o = 10 - ,, = 0.04309 S/m.

Anisotropic conductivities of brain tissues (white and gray matter)

We derived the conductivity tensor in each voxel of the white and gray matter
using the realistic approach given in section 4.6.3 in chapter 4. The realistic
approach assumes that the conductivity tensor and diffusion tensor share the
same principal direction (or eigenvectors of the matrix representation). The
linear relationship between the eigenvalues of the conductivity tensor and dif-
fusion tensor in white matter is expressed as:

di_dy_dy 53)
01 g9 0'37 '

where di,ds and d3 are the eigenvalues of the matrix representation of the
diffusion tensor at a voxel derived from the diffusion weighted images. o1, 02, 03
are the unknown eigenvalues of the matrix representation of the conductivity
tensor at the same voxel. We can see that the conductivity tensor is merely a
scaling of the diffusion tensor. The scaling factor is derived using the volume
constraint as explained in 4.6.3 and appendix B.

5.2.1.3 Simulation

We want to investigate the dipole estimation errors due to not taking into
account the conductivity of skull and brain tissues. Therefore, we constructed 3
anisotropic head models, model 7, each one with a lead-field matrix L, ,; ot opic:
with ¢ € 1,2,3. Furthermore, an isotropic head model (model 4) with a lead-
field matrix Lfs otropic Was constructed where all the compartments had isotropic
conductivities. To investigate how large the error on the dipole location and/or
orientation due to using a more simplified head model, one has to compare head

models.

The comparison can be done by following a simulation according to figure 5.1.
We can do this by first setting a dipole in the more complex head model (e.g.
with anisotropic conductivity) and solve the forward problem. We obtain the
electrode potentials V gjecirodes € R™*! caused by a dipole with location r and
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rd td

Forward calculation| ° electrodes

Anisotropic model i

Dipole estimation
Isotropic model

Figure 5.1: A flowchart of the simulation. A dipole is put in an head model according
to model ¢ with ¢ = 1,...,3, given in table 5.1 and one forward calculation was done.
The resulting electrode potentials are then used to estimate the dipole parameters in
an isotropic head model (model 4 in table 5.1). This way, we estimate the source in a
simplified head model, when the electrode potentials are obtained by a more realistic
one.

components d with r,d € R3*1:
Veiectrodes = sznisot'r‘opic (I’) -d. (54)
where L, orropic 18 the lead-field matrix of a head model (referred below as

model ¢ and ¢ = 1,...,3) where one or more compartments have anisotropic
conductivities. As brain activity can neurophysiological speaking only occur in
gray matter, we only considered the test dipole to be in gray matter.

Using these electrode potentials Vjectrodes, We can estimate a dipole in a head
model where all compartments have isotropic conductivity by solving the in-
verse problem. The starting point of the Nelder-Mead optimization was chosen
to be the same as the test dipole. In our experience the cost function was
smooth enough to obtain a global optimum. Estimating a single dipolar source
results in a simple cost function which is smooth in the vicinity of the original
test dipole. We obtain an estimate of the dipole location r and components a,
which is different from the original dipole location r and components d due to
the simplified head model. In this way, we can investigate the dipole estima-
tion error due to changes of head model parameters. Table 5.2 summarizes the
simulations performed in this section.

Simulation | Forward Calculation | Inverse problem
A Model 1 Model 4
B Model 2 Model 4
C Model 3 Model 4

Table 5.2: Summarization of the simulations performed in this section. The head
models used in the forward calculation and the inverse problem have an anisotropic
conductivity according to table 5.1

Simulation A: Dipole estimation errors due to omitting anisotropic
conductivity from the skull and brain tissue (white and gray matter)

In a first simulation we want to investigate the dipole localization errors when
the skull and brain tissue (white and gray matter) compartments are assumed
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to be isotropic conducting. First, we simulated the electrode potentials origi-
nated a dipole source in an anisotropic head model where the skull and brain
tissue compartments were set to have an anisotropic conductivity. In other
words, Vejectrode are calculated by solving the forward problem in head model
1 in table 5.1. We used the resulting set of electrode potentials to estimate
the source in an isotropic head model, where the skull and brain tissues were
isotropic conducting. Here, the inverse problem is solved in an isotropic head
(model 4 in table 5.1) given Vejectrodes- The result is an estimate of the dipole
location # and orientation d. In this way, we can investigate the dipole local-
ization error due to neglecting the anisotropic properties of the conductivity in
a realistic head model.

Simulation B: Dipole estimation errors due to omitting anisotropic
conductivity from the skull

In a second simulation, we use the same setting as the first one, but in the
forward calculation we used an anisotropic head model where only the skull
compartment was set to have an anisotropic conductivity (head model 2 in
table 5.1). The inverse problem was solved using an isotropic head model (head
model 4 in table 5.1). Using this setup, the dipole location and orientation
error can be evaluated due to neglecting only the anisotropic properties of the
conductivity of the skull compartment.

Simulation C: Dipole estimation errors due to omitting anisotropic
conductivity of brain tissues (white and gray matter)

A third simulation was performed to calculate the dipole location and orien-
tation errors due to neglecting the anisotropic conductivity properties of brain
tissues. The compartments belonging to brain tissues are white and gray mat-
ter. Therefore, a head model with only the white matter and gray matter
compartment set to anisotropic conducting, was used in the forward calcula-
tion (Model 3 in 5.1). The calculated electrode potentials were then used in
the inverse problem with an isotropic head model (Model 4 in table 5.1).

5.2.1.4 Test dipoles and error measures

Each simulation summarized in table 5.2 are repeated for a set of test dipoles
constructed as follows: three planes (coronal, sagittal and axial) were chosen.
The locations of the test dipoles were set in each voxel of the gray matter
region. Moreover, three orientations were considered: X direction (left-right),
Y direction (front-back) and the Z direction (bottom-top). Hence, nine sets of
dipoles were constructed according to a plane and an orientation. The total
number of dipoles was 23983.

Each test dipole at a position r with orientation d was subjected to the sim-
ulations. This resulted in an estimated dipole at location # with orientation
d. Due to neglecting anisotropy a location and orientation error is made. The
dipole location error (DLE) is the Euclidean distance between the location of
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the estimated dipole and the one of the test dipole. The orientation error
(DOE) is the angle between the orientation of the estimated dipole and the
one of the original test dipole:

DLE = |lr — ¢, (5.5)
DOE = /(d,d).

5.2.2 Results

Simulation A: Dipole estimation errors due to omitting anisotropic
conductivity from the skull and brain tissue (white and gray matter)

Dipole location errors due to setting the conductivity to isotropic instead of
anisotropic of different compartments are shown in figure 5.2(a). In figure 5.2(a)
we see the dipole location error as a color coded map when both the skull and
brain tissues (white and gray matter) are not taken into account. The error
is very large (> 2cm) near the boundary of the brain tissues. Figures 5.3
shows the distribution of the dipole localization for test dipoles placed in gray
matter. The total of the dipole localization errors from all planes and each
with the original dipole along a main axis was ranged in bins of 1 mm width.
We can see that the distribution has a symmetrical shape around 10 mm. In
the gray matter regions, the average dipole location error was 10.0 mm. This
discrepancy is mainly due to the fact that the dipole localization at the edge
of the brain compartment is larger and the gray matter regions are mainly
situated at the boundary of the brain. An maximum error of more than 25
mm is observed in the lower part of the cerebellum, mainly due to the lack of
electrodes in the basal part of the brain.

The dipole orientation errors due to omitting anisotropic conductivity from the
skull and brain tissue is shown in figure 5.4(a). We can see large errors (> 30
degrees) at the fasciculi and the corpus callosum, which would indicate a large
influence of the anisotropic conductivities on the orientation when the source
originates in high anisotropic regions. A large error is also seen at the basal
part of the brain, mainly due to the lack of electrodes at the basal part of the
brain. Figures 5.5 show the distribution of the orientation errors from all test
dipoles. Here we can see that 80% or more of the orientation errors are below
10 degrees. In fact, the average orientation error due to neglecting skull and
brain tissue anisotropy is 6,4 degrees. A maximum error was found of 61,9
degrees.

Simulation B: Dipole localization errors due to omitting anisotropic
conductivity of the skull compartment

Figure 5.2(b) shows the dipole location error when only the skull compartment
is set to isotropic conductivities in stead of anisotropic conductivities. We see
similar errors if skull and brain tissues were neglected: the simulations with
test dipoles situated at the edge of the brain resulted in larger location errors.
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coronal sagittal
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dipole location error (mm)

Figure 5.2: Dipole location errors when the (a) skull and white matter compart-
ments, (b) skull compartment only and (c) white and gray matter compartments are
set to isotropic gray matter compartment is set to isotropic in an axial, coronal and
sagital plane.
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Figure 5.3: Histogram of the dipole location error when model 1,2 or 3 is used to

solve the one-time forward calculation and model 4 (isotropic head model) is used to
solve the inverse problem.

From figure 5.3(a) and (b) we can appreciate that the errors have a similar
distribution as the results from previous simulation. The mean location error
was 10.2mm. A maximum error of 35 mm was found at the basal part, due to
lack of electrode positions at the lower half of the head model.

With respect to the dipole orientation, large estimation errors were seen (> 30
degrees) at the corpus callosum and other neural pathways, where the an-
isotropic ratio was high. These errors are in accordance with the previous

simulation. Also here, the large part of the dipole orientation errors are below
10 degrees as seen in figure 5.5.

Simulation C: Dipole localization errors due to omitting anisotropic
conductivity of the brain compartment

From figure 5.2(c) we can see that the dipole location error is much lower,
than the previous simulations. Moreover, it is difficult to determine where the
large errors are situated. For test dipoles situated in white and gray matter
compartments the dipole location error is mostly below 5 mm (see figure 5.3(a)
and (b)). A mean error was found of 1.1 mm and the maximum error was
approximately 8.4 mm. The large errors were situated at the corpus callosum
and other parts, where the anisotropic conductivity ratio was high. The regions
were assumed to be isotropic conducting in the source estimation procedure.

The dipole orientation errors had similar proportions than those of the previous
simulations. Most test dipoles had a orientation error of less then 10 degrees
(see figure 5.5). The mean orientation error was 3,6 degrees. However, a
maximum orientation error was found over 40 degrees in regions that are highly
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coronal sagittal
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Figure 5.4: Dipole orientation errors when the (a) skull and white matter compart-
ments, (b) skull compartment only and (c¢) white and gray matter compartments are
set to isotropic gray matter compartment is set to isotropic in an axial, coronal and
sagittal plane.
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Figure 5.5: Histogram of the dipole location error when model 1,2 or 3 is used to
solve the one-time forward calculation and model 4 (isotropic head model) is used to
solve the inverse problem.

anisotropic.

5.2.3 Discussion

The results suggest that the anisotropic conductivity of the skull plays an
important role in EEG source analysis. Not incorporating the anisotropic con-
ductivities of the skull results in errors of on average 10 mm and in worst case
an error of 25 mm. These results are in concordance with results found in the
literature. However, most studies investigate the effect on the forward prob-
lem [153, 53, 72]. Few studies are performed in which the dipole is estimated
by solving the inverse problem in an isotropic head model, knowing that the
given electrode potentials are generated from an anisotropic head model, as was
done here [156, 96, 3]. In Haueisen et al. [72] it was found that small superficial
sources would lead to small errors. However, this study was done using only
7 dipoles positioned at various depths on a specific region of the brain. An
investigation over the whole brain was not done. Moreover, the skull was not
modeled as an anisotropic conductor, but as a layered conductor, where each
layer was isotropic.

In Wolters et al. [153] and Giillmar et al. [53] it was concluded that a high
anisotropic region had a large effect on forward problem. The deeper a source
lies, the more it is surrounded by anisotropic tissue, the larger the influence of
the anisotropy on the resulting electric field. Therefore, the presence of aniso-
tropic conducting tissues compromises the forward potential computation. By
consequence, it has a large effect on the inverse problem [153]. However, they
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used a high anisotropic ratio (AR=10) to model their white matter anisotropy.
In our case, the white matter is modeled according to in our opinion a more
realistic approach given in section 4.6. There it was also stated that the AR in
large parts of the white matter is approximately 2, which is much lower than
10.

5.3 Influence of anisotropic conductivities on
the forward problem: a qualitative analy-
sis

In the previous part, we can notice the location errors and orientation errors
due to neglecting the anisotropic conductivities of skull and brain tissues. In
this section, we will try to find an explanation of these errors. Therefore, two
sources, both placed in the gray matter, are depicted and the forward problem
is solved in each head model as given in table 5.1. The sources were placed (i)
in the gray matter in the fronto-temporal region and (ii) in the cingular cortex.

Due to a change in conductivity properties of the compartments of the dif-
ferent models, the three-dimensional potential field caused by a dipole source
will change. In this study we will investigate how neglecting the anisotropic
properties of the skull and brain tissues will affect the potential field.

5.3.1 Simulation I: fronto-temporal source

Figure 5.6 shows the equipotential lines caused by a source in the fronto-
temporal region. In panel (a) and (b) we see the potential field in head model
1 and 4 according to 5.1. In figure 5.6(a) we can notice the larger number of
equipotential lines along the skull than in figure 5.6(b). This indicates a rapid
decrease in the potential. Hence, an anisotropic skull has a more pronounced
shielding effect than an isotropic skull.

Figures 5.7 shows the potential field caused by a dipolar source in the fronto-
temporal region at the surface of the scalp (left column) and the brain (right
column). The first and second row indicate the potential field in an anisotropic
head model (model 1 in table 5.1) and an isotropic head model (model 4 in
table 5.1). The third row indicates the difference of the potential field in an
anisotropic head model and the isotropic head model. At the scalp, we can
notice that the difference of the electrode potentials is of the same magnitude
as the electrode potentials at the surface in both isotropic and anisotropic
cases. This suggests that for a superficial dipolar source, the potential field
is strongly influenced by the anisotropic conductivities. The smaller potential
values at the surface of the scalp in the anisotropic head model as opposed
to those in the isotropic head model suggests that the anisotropic conductivity
acts as a shielding and smears the potential field. The potentials at consecutive
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(a) (b)

Figure 5.6: The equipotential lines of the potential field caused by fronto-temporal
dipole source along the Z axis. The Z axis is the vertical direction in the figure. The
potential field was calculated in 2 realistic head models: (a) with skull and soft tissues
anisotropic conducting and (b) with all compartments isotropic conducting. These
head models correspond with head model 1 and 4 in table 5.1, respectively.

boundary points of the scalp (indicated by the dashed line in figure 5.7(a) and
(c)) are shown as one dimensional signal in figure 5.8. In this figure, we can see
that the normalized potentials at the boundary points are more smeared in the
anisotropic head model (model 1) compared to the the isotropic head model
(model 4). Due to this smearing the dipoles are estimated deeper if anisotropic
conductivities are neglected.

At the surface of brain (second column in figure 5.7) we see that the difference
is very local. The magnitude of the difference is a factor 10 lower than the
electrode potentials at the surface of the brain. However, the local change
in the potential field at the brain surface is smeared due to the anisotropic
conductivities of the skull.

Hence, making the skull anisotropic causes an extra smearing and shielding
effect. This causes a change in the topographies, which causes the dipole esti-
mation errors when anisotropic conductivities in the EEG source analysis is not
incorporated. The dipole estimate when neglecting the anisotropic conductivi-
ties can be determined in the same simulation setup as given in figure 5.1 and
are shown in figure 5.9. We can see that when the anisotropic conductivities
are neglected the dipole is estimated deeper than the actual dipole. The shift
in the location and orientation due to neglecting anisotropic conductivities was
11.9mm and 5.6 degrees.
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Figure 5.7: The potential distribution at the surface of the scalp (first column) and
the brain (second column) due to a superficial fronto-temporal source. The values are
in V.The dashed line in panel (a) and (c) indicate the potential measurement points
at the boundary surface used in figure 5.8

5.3.2 Simulation II: Medial source in the cingular cortex

The second source was placed in the cingular cortex, near the corpus callo-
sum, to see the effect of the highly anisotropic white matter on the potential
field caused by a dipole. Similar conclusions can be drawn from the previous
paragraph. Figure 5.10 shows the equipotential lines caused by a source in the
cingular cortex. Also here we can notice the more pronounced shielding effect
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Figure 5.8: The normalized potential at consecutive measurement boundary nodes
obtained by calculating the forward problem in model 1 (solid line) and model 4
(dashed line). These boundary surface points are also indicated in figure 5.7 by the
dashed line in panel (a) and (c).

Sagital Coronal Axial

Figure 5.9: An sagital, axial and coronal slice of the original test dipole (blue) and
the estimated dipole when anisotropic conductivities are neglected.

when the skull is modeled as an anisotropic conductor. The equipotential lines
are very close to each other, indicating a steep potential fall in the skull.
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(a) (b)

Figure 5.10: The equipotential lines of the potential field caused by fronto-temporal
dipole source along the Z axis. The Z axis is the vertical direction in the figure. The
potential field was calculated in 2 realistic head models: (a) with skull and soft tissues
anisotropical conducting and (b) with all compartments isotropic conducting. These
head model correspond with headmodel 1 and 4 in table 5.1, respectively.

If we compare panels (a) and (b) in figure 5.6 we can see some changes in the
potential field which are very pronounced near the dipolar source. Together
with previous results, this suggest that the local potential field is considerably
affected by the anisotropic conductivities. This can be beneficial for the study
of stimulation in brain regions in the treatment for epilepsy or Parkinson’s
disease.

Figure 5.11 shows the potential distribution at the surface of the scalp (first
column) and the brain (second column). The setup is explained in the previous
section for figure 5.7. At the scalp the difference in the potential distribution
(panel (e)) at the scalp is approximately a factor 2 smaller than the potential
distribution at the scalp in the isotropic (figure 5.11(a)) and anisotropic head
model (figure 5.11(b)). This suggests that a deeper source will have less effect
at the surface of the scalp, although it has a large effect near the source as seen
in figures 5.10.

In figure 5.12, the normalized potential is plotted for consecutive boundary
nodes. A dipole in this region will create a similartopography in both aniso-
torpic or isotropic head models. Although the topographies at the scalp are
attenuate, there is no smearing of the potential distribution. At this region,
we expect the dipole estimation errors to be low, as the dipole estimation pro-
cedure is sensitive to a scaling of the electrode potentials, but rather sensitive
to a change in topography. The shift in the location and orientation when
anisotropic conductivities are neglected at the position in this simulation were
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(a) Anisotropic (b) Anisotropic
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(c) Isotropic

%1 o*
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Figure 5.11: The potential distribution at the surface of the scalp (first column) and
the brain (second column) due to a deep source at the cingular cortex. The values
are in V. The dashed line in panel (a) and (c) indicate the potential measurement
points at the boundary surface used in figure 5.12

very low.
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Figure 5.12: The normalized potential at consecutive measurement boundary nodes
obtained by calculating the forward problem in model 1 (solid line) and model 4
(dashed line). These boundary surface points are also indicated in figure 5.11 by the
dashed line in panel (a) and (c).
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5.4 Dipole localization errors due to not incor-
porating anisotropic conductivities in the
presence of noise

5.4.1 Aim of the study

Assume simulation are done according to figure 5.1 when the head model used
in the dipole estimation and the forward calculation are the same. The dipole
estimation error should be zero, as the head models are exactly the same and no
additive noise is introduced to the electrode potentials. However, when noise
is introduced in to the electrode potentials, the dipole estimation may deviate
from its original position. This is an estimation error due to the noise. The
additive noise can be quantified.

5.4.1.1 Noise level

The noise level gives an idea of the amount of noise that occurs in the EEG
signal applied to perform EEG source analysis. The noise level can be written
as:

Ubs
| = 2 5.7
" Urms (5.7)

where Ub%,;s and Ugys is the root-mean-square (RMS) value of the back-
ground EEG and the fragment of EEG applied to perform EEG source anal-
ysis, respectively. To have an idea of the signal contribution the RMS value
Urns is calculated for the average referenced epoch of EEG, applied to solve
the inverse problem. This epoch consists of s time samples and [ electrode
potentials. The RMS value becomes:

Unas = (5.8)

where Uj; is the potential at electrode ¢ and time sample j.

To have an idea of the noise contribution, we can calculate the RMS value of
the average referenced EEG prior to the event we want to perform EEG source
analysis on. The RMS vlue of the background EEG then becomes:

s l
Uhars = || 7= S S U2 (59)

j=11i=1
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where Uy p, is the potential at electrode 4 and time sample j in a typical epoch
representing the background noise.

Depending on the neurological phenomenon on which we want to perform EEG
source analysis, the noise level may vary. In chapter 6 the noise level is calcu-
lated for a fragment of real data, where an patient suffering from epilepsy is
monitored. A patient suffering from epilepsy have a typical EEG, that consists
of ictal events (during a epileptic seizure) and inter-ictal episodes. The interic-
tal episodes contain so-called spikes, which are believed to occur from the same
onset zone as the epileptic seizure originates. A video/EEG monitoring is done
to investigate the patient in the clinical setup. Although the environment is
built to minimize the noise contributors, the patient still has the possibility to
move. In these circumstances, a noise level from 0.2 to 1 was measured from a
EEG registration, where the spikes were marked by a experienced neurologist.

During event related tasks, the EEG can also be measured to investigate the
brain functionality during a specific task (reading, visual interpretation,...).
During these tests, the conditions are well defined and the experiment is per-
formed inside a cage of Faraday to eliminate external noise contributions. More-
over, the test subject has to remain as still as possible. The task is repeated
several times of an amount of trials. The EEG measured over the different tri-
als are then averaged to eliminate sources in the brain, which are uncorrelated
with the task at hand. In these circumstances the noise level can be made lower
than 0.1.

5.4.1.2 Systematical errors vs errors due to noise

For a dipole placed in an anisotropic head model at position r and moment d,
a systematical error occurs when only errors due to ommitting the anisotropic
conductivity are considered. This results in a dipole shift |Argnisotropyl =
I — Fanisotropy (I mm). When the inverse problem is solved in the same head
model as the one-time forward calculation to obtain the electrode potentials
and the electrode potentials are inferred with noise, then an error due to noise
occurs. The amount of noise can be determined by the noise level. The larger
the noise level, the larger the amount of inferred noise. This results in a dipole
shift for each inference of noise. Hence, the mean dipole shift can then be
written as E (||Tnoise|) = E (||[r — #,0:5c||), where £, is the i-th estimate of
the dipole location with an inference of the noise.

When noise is added to the electrode potentials from the forward calculation in
the simulation, a random error is introduced. This will result in a mean dipole
shift E(HArnoise-i-anisot'r‘opy ||) = E(”I’ - fnoise-i—anisotropy H) (in mm). When the
noise level increases, so does the random error due to noise. At a specific point
the error due to neglecting anisotropy will be negligible compared to the error
due to noise. This point is reached when the error due to noise only is similar to
the error due to anisotropy and noise, E (|| Arpoisetanisotropy||) = E(||Armnoisell)-
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Figure 5.13: An illustration of the several errors due to noise and anisotropy. The
dotted sphere around the location of the test dipole indicates the expected value of the
dipole location error when only noise is inferred on the measurement potentials. The
dashed sphere indicates the expected value of the dipole location error when noise
and the anisotropic conductivities are negelected. When the noise level increases,
so will the radii of the spheres. Hence, at a certain noise level, the spheres will be
similar and thus the error due to noise only and the error due to noise and negecting
anisotropic conductivities will also be similar.

5.4.2 Materials

In this study we want to investigate the dipole estimation errors in the presence
of noisy EEG signals. Here noise is added to the electrode potentials calculated
by the solving the forward problem in one of the anisotropic head models caused
by a dipole at position r and moment d. The noise is sampled from a 20 second
fragment of background EEG. Nowadays, the quality of the instrument and the
experiment is very high and the instrumentation and environment noise are
reduced to minimal. Background EEG is EEG originating from brain activity
not related to the signal of our interest. The background EEG of a duration
of approximately 2 second (~ 600 samples) is chosen from a fragment of EEG
where no significant brain activity was detected (see figure 5.14).

5.4.3 Simulation Setup
5.4.3.1 Simulation Overview

A flow chart of the simulation is illustrated in figure 5.15. We started from a
dipole at a specific position r and with an orientation d. We studied the effects
on the dipole estimation due to neglecting anisotropy in the presence of noise
in a time window of 1 and 20 samples.
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Figure 5.14: A EEG fragment containing background activity of approximately 2
seconds.
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Figure 5.15: A flow chart of the simulation setup investigating the effect of not
incorporating anisotropic conductivities in the noiseless case. First a dipole (r,d) is
placed in a head model with anisotropic conductivities according to a model according
to table 5.1 and the forward problem is solved. The resulting electrode potentials
Veiectrodes are inferred with additive noise. This set of electrode potentials is then
used to estimate the dipole in an isotropic head model. This results in the estimated

dipole parameters (f‘, a) .
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Simulation using a single time instance

When a single time instance was modeled, the electrode potentials Vejectrodes €
R27*1 were calculated by:

Veiectrodes = Lﬁznisotropic (I‘)d (510)
where L, orropic 18 the lead-field matrix of a head model (referred below as
model ¢ where i = 1,...,3 in table 5.1). These are the lead-field matrices of the
head models where one or more compartments have anisotropic conductivities.

Next a set of electrode potentials Viyackground € R27%! of 1 time sample is

chosen from the full background EEG fragment, illustrated in figure 5.14 and
added to the electrode potentials. The amplitude of the background fragment
is scaled according to the noise value:

o RMS Vbackground
Vioise =nl - Uelectrodes ' RMS (511)
background
RMS : RMS :
where U/j2V)) oqes 1S the RMS value of the Viectrodes and Ubackgmund is the

RMS value of the fragment of the background EEG. nl is the predefined noise
level, which can be adjusted to control the amount of noise in the EEG. In
this way, the noise level indicates the amount of noise in the EEG signal. Let
Viotar € RZ7*1 be the set of electrode potentials with the added noise:

Vtotal = Velect'r'odes + Vnoise- (5'12)

The resulting electrode potentials Vot are then used the estimate a dipole in
the isotropic realistic head model (model 4 in table 5.1). The dipole estimation
is done in the traditional way and the RRE can be written as :

B L;lsot'r‘opic (r)L?sot'r'opic (r)+) Viotal ||

e
||Vtotal H

(5.13)

where T € R*™*7 is the identity matrix and Ly, ;o (r) is the lead-field matrix
due to a dipole in the isotropic head model (model 4) at location r. Here ||.||

denotes the Euclidean norm between two one dimensional signals.

Minimizing the cost function will yield a dipole location . Hence, for one
noise inference the dipole location error is ||r — #||. When the simulation is
repeated for 1000 inferences of noise, a mean dipole location can be calculated
as E(||r — ).

Simulation using a time window of 20 samples

When a time window of 20 samples was used, then the electrode potentials,
Veiectrodes € RZ7%20 are simulated using a dipole at position r and moment
d(t) = eq x s(t), with ¢ = 1,...,20 (in samples). e; € R3*! is a unitary vector
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indicating the orientation of the dipole. The values of the time series s(t) are
chosen to be uniformly distributed between 0 and 1. Thus one can write:

Velectrodes = sznisotropic (r)eds (t) (514)

Then Viyackground € R27%20 are 20 consecutive time samples from the full frag-
ment of background EEG. Viyecrgrouna is then scaled in the same way as in
equation 5.11. The after addition, Vigia € R27*20 is then a fragment of noisy
electrode potentials which are used in solving the inverse problem in an isotro-
pic head model (model 4 in table 5.1).

When a 20 sample time window is used, the dipole estimation is done on the
first component of the SVD decomposition of Vi, as explained in section
2.4.3.2. In this case the RRE can be written as:

H(I y (r)L4 (r)+)U1H

isotropic isotropic

RRE =
U4

(5.15)

where I € R?7%27 ig the identity matrix. U; denotes the first column of the
topographies in the SVD decomposition of Viotq-

Minimizing expression for the RRE will result in an estimated dipole location
t. Hence, we can calculate the mean dipole location error, F (||r — ¢|), due to
neglecting anisotropic conductivities in the presence of noise.

The error due to noise only

The error due to only noise are calculated by using the same anisotropic head
model (with skull and white matter anisotropic conducting compartments) as
used in the forward calculation. These results can act as a reference. In the
cost function RRFE in the above paragraphs the lead field matrix of the same

head model used in the forward calculation, L;nisotropic(r), is used.

5.4.3.2 Test dipoles

The above simulations are repeated for many instances of noise and for many
dipole positions. A three dimensional grid was constructed in the gray matter
compartment with a grid size of 10 mm. Location of the grid points were chosen
as dipole location. This resulted in 51 dipole locations. For each dipole location
and for each inference of V,,;se, the dipole orientation was sampled uniformly
along the unit sphere. For each dipole position r;, 1000 instances of Ve
are generated by randomly sampling over the EEG fragment of 600 samples.
Hence, the dipole orientation d;- = e(6;,¢;) with i = 1,...,1000 where ; and
¢ are uniformly chosen between [0,2x[ and [—m, [, respectively. Hence, the
total number of dipoles used in a simulation was 51 x 1000.

For each dipole at location rj, the simulation was done over 1000 instances of
V oise and d?, this resulted in an estimated dipole location and orientation.
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Solving the inverse problem with the 1000 noisy electrode potentials results
1000 estimated dipoles with location f'z and orientation &3 withé=1,...,1000
and j = 1,...,51. Hence, a mean dipole location error can be calculated as
follows

Yy St JIvs — £
o = = 7
E(DLE) = =T (5.16)

Moreover, The simulations are also repeated for 10 noise level values ranging
from 0 to 1. The resulting E(DLE) for each noise level is plotted in a graph. 3
graphs are made corresponding to the model used for in the forward calculation:
model 1, 2 and 3 in table 5.1. In each graph 4 curves are plotted: the simulation
using 1 time sample and 20 time sample and for each simulation the E(DLE)
due to noise only and due to neglecting anisotropy and noise as a function of
the noise level.

5.4.4 Results

Figures 5.16, 5.17 and 5.18 show the mean of the location error due to noise only
(dashed line) and due to noise and neglecting anisotropy (solid line). When
no noise is present, the noise level is 0 and the error due to noise is also zero.
However, when anisotropy is neglected then a systematical error is still present
in the noiseless case. When the anisotropic conductivities of the skull and brain
tissues a mean dipole location error of 10 mm can be observed. Similar results
were found when neglecting the anisotropic conductivities of the skull. When
only the anisotropy of the brain tissues are not incorporated, a dipole location
error was made of 1.3 mm. These results are in concordance with the results
found in the first part of this chapter.

When anisotropic conductivities of the skull and brain tissues are neglected
and noise is added to the electrode potentials at a low noise level (< 0.2), then
the error due to noise and using a simplified head model is about 5 till 10 mm
larger than the location error due to noise only, regardless of on how many
time samples the source estimation was performed. Hence, at these noise lev-
els, the localization can be made more accurate by incorporating anisotropic
conductivities. However, at higher noise levels (> 0.5) and the source estima-
tion is performed on one time sample, then the error due to noise only and the
error due noise and using an simplified head model have a difference of less
than 3 mm. Hence at a noise level of 0.4 and higher, incorporating anisotropic
conductivities will not increase much the accuracy.

When the source estimation is performed on a fragment of 20 time samples
using the first component of the SVD, then even at higher noise levels the
accuracy of the source estimation can be improved by incorporating anisotropic
conductivities. At a noise level of 0.7, the error due to neglecting anisotropy
and noise is 5 mm larger than the error due to noise only. When the noise
level is higher than 0.9, the difference between the error due to noise and due
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Figure 5.16: The dipole location error in function of the noise level when only noise
is inferred (dashed line) and when noise is inferred and skull and brain tissues are set
to isotropic conducting (solid line). The time samples indicated shows the number of
time samples used when solving the inverse problem.

to neglecting anisotropy and noise becomes smaller than 3 mm. At that noise
level, the incorporation of anisotropic conductivities will not improve much the
accuracy of the dipole location estimate.

When only skull anisotropy is neglected, we see a similar result as the previous
paragraph. The results from the previous paragraphs can thus be repeated
here. This suggests that the anisotropic skull has an important influence on
the dipole estimate, even using noisy EEG.

While if only the brain tissues are anisotropic, the systematical error (due to
neglecting the anisotropic properties of brain tissues) is already very small, as
seen in figure 5.18 when looking at the point where the noise level is equal to
zero. From a noise level of 0.1 the error due to anisotropy and noise is similar
than the error due to noise only. This suggests that the when a very small
amount of noise occurs, the error is mainly due to the noise and the error due
to neglecting anisotropy is negligible. The same holds when the anisotropy of
gray matter is not incorporated. At a noise level of 0.2 the error due to noise
is similar to the error due to noise and neglecting anisotropy. This suggests
that the error in the source estimation is mainly due to the noise of the EEG.
Therefore, the incorporation of anisotropic conductivity of the white and/or
gray matter is not necessary, even if the noise level is low.
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Figure 5.17: The dipole location error in function of the noise level when only noise
is inferred (dashed line) and when noise is inferred and the skull compartment is set
to isotropic conducting (solid line). The time samples indicated shows the number of
time samples used when solving the inverse problem.

5.5 Summary and conclusions

The aim of this chapter was to study the effect of neglecting anisotropic con-
ductivities in realistic head models. Neglecting the anisotropic conductivities
of the skull and brain tissues can causes dipole location errors in the gray
matter regions of on average 10 mm. A maximum dipole location error of 25
mm found at the lower part of the cerebellum. The dipole location errors are
largest at the edge of the brain compartment. A similar magnitude of errors
were found if only the anisotropic properties of the skull are neglected. In-
deed the distribution of the dipole location error for test dipole in the gray
and white matter when neglecting the anisotropic conductivity of the skull and
brain tissues and when neglecting the anisotropic conductivity of the skull only
are similar. These histograms indicate that 50% of the dipole location errors
are larger than 10 mm. Neglecting the anisotropic conductivities of the brain
tissues causes small estimation errors. Here the mean dipole location error
was 1.1 mm for the test dipoles put in gray matter. The maximum error was
approximately 8.4 mm.

Concerning the dipole orientation error, the errors are very small. In all sim-
ulations, the dipole orientation error of 80% of the test dipoles are below 10
degrees. The mean dipole orientation error was 6.4 degrees. However, large
dipole orientation errors were found when neglecting the anisotropic conduc-
tivities of the skull and brain tissues at the bottom part of the brain. There a
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Figure 5.18: The dipole location errorin function of the noise level when only noise is
inferred (dashed line) and when noise is inferred and the white matter compartment is
set to isotropic conducting (solid line). The time samples indicated shows the number
of time samples used when solving the inverse problem.

maximum error of 61.9 degrees was found.

In the second part, a qualitative study of the influence of the anisotropic con-
ductivities was done using simulation study. We found that setting the con-
ductivity of the skull to anisotropic, causes a shielding effect. Therefore, the
potential values in an anisotropic skull are more attenuated compared to the
isotropic skull. Setting the conductivity of the brain compartments to aniso-
tropic causes very local changes in the potential field. These local changes can
affect the dipole estimation, mainly if the dipole is close to anisotropic regions
with a high FA. These local changes in the potential field can be interesting for
studies on deep-brainstimulation

When anisotropic conductivities of the skull and brain tissues are neglected
and noise is added to the electrode potentials at a low noise level (< 0.4),
then the error due to noise and using a simplified head model is about 5 till
10 mm larger than the location error due to noise only, regardless of on how
many time samples the source estimation was performed. Hence, at these noise
levels, the localization can be made more accurate by incorporating anisotropic
conductivities.

However, at higher noise levels (> 0.7) and the source estimation is performed
on one time sample, then the error due to noise only and the error due noise
and using an simplified head model are similar. In that case, incorporating
anisotropic conductivities will not increase much the accuracy. However, when
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the source estimation is performed on a fragment of 20 time samples using the
first component of the SVD, then even at higher noise levels the accuracy of
the source estimation can be improved by incorporating anisotropy.

A similar reasoning can be made if only the anisotropic conductivities of the
skull and noise is added. However when only the conductivities of the brain
tissues are neglected in the presence of noise, then the error due to noise and
due to neglecting anisotropy almost coincide with the error due to noise only.
Only in the noiseless case and at very low noise levels (< 0.1) and a very accu-
rate source estimation is wanted, then incorporating white matter anisotropy
can be beneficial for the accuracy of the source estimation. However, if the
amount of noise is reasonable, the incorporation of anisotropic conductivities
of the brain compartments is not necessary. These results suggest that the ani-
sotropic conductivity of the skull is the most important influence on the source
estimation and the need for an adequate characterization of the skull.

Although these results suggest that the anisotropic conductivities of the brain
are not necessary to incorporate in the head model, they are dependent on the
model used to approximate the white and gray matter anisotropy. In our case,
we presented a model which is best suited for low resolution DW-MR images.
Nowadays, advanced MR techniques within a 7 Tesla scanner are emerging
which enables to acquire high resolution DW-MR images.

The results shown in this chapter led to several proceedings presented in inter-
national conferences [65, 67]. An article describing these results is in prepara-
tion.
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Chapter 6

Example of an application in
epilepsy

It is the tension between creativity and skepticism that has produced the stunning
and unexpected findings of science
—CARL SAGAN

6.1 Introduction

In this chapter we want to show an application in which EEG source analysis
with the AFDRM method can be used. The application in mind is epilepsy,
which will be explained later. Although this is a example, this setup can be
used to validate the AFDRM method. Collecting the data is a time consuming
process, which was beyond the scope of this dissertation. At the end of this
chapter we will provide a methodology that enables us to validate the method.

6.2 Background

Epilepsy is a neurological disorder, which involves the abnormal synchronous
electrical activity of a focal or large brain area. This activity is often called
an epileptic discharge. The most common examination for the diagnosis of
epilepsy is the EEG. Patients with epilepsy can have special features in their
EEG. The EEG measured during an epileptic seizure is called the ictal EEG.
An illustration af an ictal EEG is shown in figure 6.1. The amplitude is higher
than when no seizure occurs.

The EEG of a patient between the epileptic seizures is called the interictal
EFEG. Examples of interictal epileptic EEG features include a spike with a time
duration of 20 to 70 ms, a sharp wave with a time duration of 70 to 200 ms and
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Figure 6.1: An fragment of an epileptic seizure of 10 seconds.
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Figure 6.2: A fragment of interictal EEG of 5 seconds. Two spikes occur very short
after each other. The spikes are marked with a black vertical line.
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a spike-wave-complex, consisting of a spike followed by a wave. It is believed
that the brain areas generating the interictal EEG are the same as the ones
generating the ictal EEG [79]. An example of a spike is shown in figure 6.2.

In most cases epilepsy can be treated by anti-epileptic drugs. In 30% of the
cases the epileptic seizures cannot be controlled. This is called refractory
epilepsy. Those patients can be treated with resective surgery, however the
epileptogenic zone (the area causing the epilepsy) should be focal and very
clear. Furthermore, it is clear that the resective surgery should not lead to a
neurological deficit. To detect the epileptogenic zone and to decide whether
surgery can be performed, a presurgical evaluation is needed. In this evaluation
several techniques are performed on the patient. If these techniques yield the
same conclusion on the epileptogenic focus, then a surgery can take place.

The presurgical evaluation usually starts with a long-term (3 to 5 days)
Video/EEG monitoring. The analysis of the seizure on video and EEG, both
presented on a split-screen, is of major importance to localize the epileptogenic
zone [23]. Neuroimaging techniques, such as computed tomography (CT) and
MRI, may detect structural abnormalities in the brain at the epileptogenic site.
Positron Emission Tomography (PET) provides information on cerebral blood
flow and oxygen and glucose metabolism. Areas of glucose hypometabolism
are often associated with epileptogenic zones [142]. Single Photon emission
computed tomography (SPECT) can be used to evaluate regional blood flow
changes which may suggest for an epileptogenic zone [142]. Neuropsychological
tests investigate the higher cognitive functionality of the brain, such as speech
and memory. These tests may also reveal a dysfunction of certain brain areas.

When these investigations indicate the same epileptogenic zone, and when no
major neurological deficit is expected from a surgical procedure, a multidisci-
plinary team decides to perform surgery and remove the area responsible for
the epileptic seizures. On the other hand, when these investigations are not
congruent, a long-term invasive EEG monitoring may be considered. Rigid or
flexible depth electrodes are surgically implanted in the brain through a hole
in the skull. These electrodes have a variable amount of contact points which
can be used to measure the activity. The invasive electrodes are placed near
areas that have a high probability of being the epileptogenic zone. When by
inspecting the invasive recordings, an epileptogenic zone can be distinguished,
resective surgery may be performed.

Both surface EEG and the EEG measured at the scalp can be used to perform
a localization of the generating electrical source. The dipole model can be
used to represent the focal epileptogenic zone. EEG source estimation can
thus be considered as an additional noninvasive examination in the presurgical
evaluation of epilepsy. This additional noninvasive technique is introduced in
the hope that further invasive recordings can be reduced in the future [24].

Depth electrodes can be used to validate the source estimation procedure ret-
rospectively. The depth electrodes are inserted at regions which are candidates
for the epileptic onset zone. As the depth electrode measures very locally, the
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Figure 6.3: A fragment of a seizure of 15 seconds. The EEG measured at the depth
electrodes implanted in the left hippocampus (LH) are also shown. We can see some
rythmic activity of the depth electrode.

seizure can be measured with a very good time resolution. In figure 6.3 an illus-
tration is shown of a simultaneous surface and depth EEG registration. During
a seizure, the depth electrodes have a rhythmic activity. The same fragment
as in figure 6.1, was depicted. The six lower electrodes are depth electrodes
implanted in the left hippocampus. Hence, the position of the electrode where
the seizure occurs first, pinpoints the onset zone.

6.3 Patient Information

A patient from the database of the reference center of epilepsy of the depart-
ment of neurology of the Ghent University Hospital (Ghent, Belgium) was cho-
sen. The patient had a favorable outcome and had a resective surgery. Since
then, the patient has been seizure free. The recordings and the MR images
used in the presurgical evaluation are a unique dataset as the patient had to
undergo the complete presurgical evaluation. A female patient of age 51 was
chosen from an extensive database who had a history of temporal lobe epilepsy,
with seizures of approximately 30-60 seconds. The MR image revealed sclerosis
of the hippocampus. However, a localization from the EEG was not conclusive
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Figure 6.4: (a) A MR image of the patient with the implanted depth electrodes.
A coronal, sagittal and axial slice are shown. The red line intersect at the electrode
(LH4) where the seizure onset started. (b) A 3D rendered image of a computed
tomography (CT) image from the patient with the implanted depth electrodes.

as the seizures was not unilateralized. Therefore the patient was submitted
to an intracranial EEG registration. The patient had depth electrodes in the
left and right hippocampus (amygdalo-occipital electrodes). Furthermore, grid
electrodes (electrodes fixated on a plastic patch) were inserted in the left and
right temperobasal area. During the intracranial investigation, several seizures
were recorded and analysed. The seizures started with rhythmic spiking at the
electrode (LH4) which was inserted in the left hippocampus. An MR image
was taken while the depth electrodes were implanted, from which we could
determine the exact location of the electrode LH4 and thus the seizure onset
(see figure 6.3a).

Based on the good localization of the depth electrode, the patient underwent
a selective amgydalo-hippocampectomy and has been seizure free since one
year and three months. An invasive recording was done as an ictal seizure
localization was not lateralized. A post-operative MR image was made to
image the resection of the hippocampus.

6.4 Estimation of epileptic activity using the
AFDRM method

6.4.1 Materials

The EEG fragment of 2 seconds shown in figure 6.2 was used to estimate a
dipolar source. The EEG was recorded using a video/EEG monitoring system
of Micromed (Italy). The sampling frequency was 256 Hz.
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Figure 6.5: The EEG fragment of 2 seconds containing a spike, indicated by a red
dashed line. The fragment of the background and the signal for the calculation of the
noise level is also shown between two black lines.

The noise level was calculated as follows. The fragment was filtered between
0.05 and 40 Hz and the potentials at each electrode were average referenced.
A window of 30 ms (8 samples), shown in figure 6.5 as Ve, around the tip
of the spike was used to calculate the RMS value of the EEG signal, Urpss.
The RMS value of the background, U% Ms» is calculated using a background
fragment prior to the spike of approximately 250 ms (100 samples) (see figure
6.5). This gives us an idea of the noise contribution to the EEG. The noise
level according to equation 5.7 yields 0.42. In section 5.4 it was shown that
incorporating anisotropic conductivities of the skull and brain tissues at that
noise level, does provide a more accurate estimation of the source estimation.

The scalp EEG of the patient was recorded during a video/EEG monitoring.
During a seizure, the EEG is contaminated with noise. Therefore, we use an
epileptic spike to perform source estimation. Spikes are believed to originate
from the same focal zone as the onset of a seizure [79]. An EEG fragment of 0.3
seconds was used to perform source localization (see figure 6.6). The fragment
had a sampling rate of 256 Hz was filtered with a bandpass filter between 0.05
Hz and 45 Hz to eliminate noise.
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Figure 6.6: The fragment containing an epileptic spike is shown. The spike is shown
between the bars. The time window between the bars is 0.3 seconds.
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Figure 6.7: The MR image of the head model with the segmented hippocampus
structure in red.

6.4.2 Using the MR image of the head model to estimate
the sources

As a diffusion weighted image of the patient was not available, a source estima-
tion was done using the head model as constructed and used in chapters 4 and
5. The head model was constructed using segmentation techniques The left
hippocampus was the brain structure where the seizure originated. Therefore,
we asked a neuroradiologist to segment the hippocampus on the MR image
of the head model. Therefore, we can visualize the dipole estimates with the
hippocampus structure in an MR image.

6.4.3 EEG source analysis: constraining the search space
to the gray matter

As generators of the EEG are mainly situated in the gray matter where the
neurons are concentrated, we want to constrain the source estimation to the
gray matter. However, due to the irregularity and the high non-convexity of the
boundary of the gray matter compartment, the source estimation using a clas-
sical optimization like Nelder-Mead simplex method can be easily be trapped
in local minima. Therefore we solved the inverse problem using space mapping
(SM) techniques, which were introduced in the field of EEG in Crevecoeur et al.
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[32, 33]. These techniques are explained in appendix C. Here a coarse and a
fine model are used. The three shell spherical is used as a coarse model and the
realistic head model as the fine model. The three shell spherical head model is
fitted in the realistic head model as the geometric link between the coarse and
the fine model. In our case, the Hybrid Aggressive Space Mapping (HASM)
technique with the Trust Region Aggressive Space Mapping (TRASM) is used.
The trust region is defined as the gray matter compartment.

6.5 Results

In figure 6.8 the dipole source estimated from the spike fragment is shown.
The red structure is a three dimensional visualization of the segmented hip-
pocampus. The cyan dipole is the estimate in a isotropic head model, while
the green dipole is the estimate using an anisotropic head model. We can see
that the estimate in an anisotropic head model is closer to the hippocampus.
The distance between the location of the dipoles in isotropic and anisotropic
head model is 8.9 mm.

6.6 Limitations of the study

Although this study suggests that incorporating the anisotropic conductivities
improves the accuracy of the EEG source estimation, some limitation have to
be kept in mind. Due to the absence of a DW-MRI image of the patient, a
true head model from the MR image of patient could not be made. Therefore,
a mapping was made from the MR image of the patient with the implanted
electrodes and the MR image of the head model. Because of another geometry,
dipole location errors will occur. A better accuracy would have been obtained
if the geometry of the head model is as close as possible to the actual geometry
of the head model.

Another limitation that is to be considered are the electrode positions. The
exact electrode positions were not known as an MR image with fiducial markers
at the electrodes was not available. It is known that an average mislocation of
the electrode position of 10 mm, will result in a dipole location error of 10 mm
[140]. Hence, if the electrode positions are exactly known with respect to the
head model, a better localization accuracy can be obtained.

The EEG fragment used in the EEG source estimation containing the spike had
a noise level of approximately 0.4. The noise level can be reduced if advanced
signal processing techniques can be used prior to the source estimation. Also
combining several spike waveforms would reduce the noise in the spike waveform
considerably.

Finally, this patient is a single case study and a thorough validation study
should consist of multple patients. Moreover, the collection of the dataset
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(b)

Figure 6.8: Figure (a) shows three projections of the dipole estimates in a sagital,
coronal and axial slice and figure (b) shows a three three dimensional representation
of the head model with the dipole estimates. The region of interest (ROI) depicted in
red indicates the manually segmented hippocampus, which was resected and rendered
the patient seizure free. The cyan dipole is the location of the estimate in an isotropic
head model. The green dipole is the location of the estimate using an anisotropic head
model. The 3D coordinates are also projected on the slices, this is indicated by the
dotted line.
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usually takes more than a year as the patient is first subjected to the simplest
investigations first. If a solution for the patient is obtained for the patient at
early investigation, a more complex or invasive investigation is thus not needed.

6.7 Future work

In the ideal case for a thorough validation study a dataset should include a T1
MR image where the head model can be constructed from. Moreover, an exact
location of the electrodes at the scalp surface should be known. Therefore,
little spheres filled with vitamins can be glued on the electrodes. In an MR
scan these littles spheres will light up, which can be used to pinpoint the exact
positions of the electrodes on the MR image.

From chapter 5 we saw that the incorporation of anisotropic conductivities of
brain tissues is not necessary for an accurate source localization. Hence, a DW-
MRI of a 2 mm by 2mm by 2 mm resolution is not necessary. However, this
could change of higher resolutin DW-MRI images are taken. If this is possible,
than other approaches that model the anisotropic conductivities will be more
accurate instead of the volume constraint.

The incorporation of anisotropic conductivity of the skull is important for an
accurate source localization. We want to note that if one wants to study the
electric field caused by stimulation in the brain, the anisotropic conductivities
of the brain tissues might be useful to incorporate. As the skull does not have a
signal on a MRI scan, an alternative is needed. A computed tomography (CT)
scan images very accurately the skull. If a CT image can be fused with a MRI
scan, then the skull can be accurately modeled. It has been shown in Cuffin
[34],Marin et al. [96] and in Vanrumste et al. [144] that the skull has a large
effect on the EEG source analysis. Knowing the exact geometry of the skull
and the exact location of the electrodes is known together with the soft tissues
of the head using the MR image, an accurate head model can be constructed.

Furthermore, when an invasive recording is performed, the MR image with the
implanted electrodes can be used to determine the seizure onset zone. More-
over, a CT image with implanted electrodes fused with the MR image with the
implanted electrodes offers an accurate localization of the depth electrodes.

During the video/EEG recording and the invasive recordings, epileptic seizures
and spikes can be recorded. These epileptic phenomena can be correlated with
the location of these implanted electrodes. Therefore, we can accurately depict
the ictal onset zone based on the MR images of the implanted electrodes. An
alternative investigation that can provide useful information in pinpointing the
seizure onset zone is ictal SPECT. In this investigation the patient is injected
with a radioactive tracer as early as possible in the seizure onset. After the
seizure the image shows the activation during that seizure, which depicts the
onset zone with a propagation of activity.
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Finally, if resective surgery was done, using an post operative MR image coreg-
istered on the pre-operative MR image we draw regions of interest that depict
the exact amount of removed brain tissue. The outcome of the surgery is ac-
tually known on a long term basis. The patient can be seizure free early after
the resective surgery. However, it is not uncommon that patients start having
seizures again.

This collection of data requires a good collaboration several instances of the
Ghent University Hospital. Moreover, in order to have complete dataset, the
patient should undergo the full investigations of the presurgical evaluation. The
first steps in defining the protocol in the collection of the data sets have been
made.

6.8 Summary and Contributions

In this chapter we applied our method in a prospective study in which we
used realistic data measured during a video/EEG monitoring session at the
Reference center of Epilepsy at the Department of Neurology of the Ghent
University Hospital. The data used in the source estimation represented a spike,
which is a characteristic phenomenon in interictal EEG (i.e. EEG measured
between epileptic seizures).

Using a two-level approach to solve the inverse problem, a search space could
be constrained to the gray matter compartment. A spike is believed to be
generated by synchronously active neurons and it is plausible that the origin
is located in the gray matter. However, it possible that dipoles are situated
in the white matter. An estimation was done in the isotropic head model
and the anisotropic head model with both skull and brain tissues anisotropic
conducting. We found that the estimate of the dipole location in the realistic
head model with anisotropic conductivities is 8.9 mm closer than the dipole
location estimated in the isotropic head model. This study suggests that the
anisotropic head model increases the accuracy with approximately 9 mm, which
is in concordance with the results shown in section 5.2 and section 5.4 taking
into account the noise level of 0.42 (see section 6.4.1).

This large error may contributed to the volume constraint which decreases the
conductivity perpendicular to the skull o,, = 0.0043 .S/m while in the isotropic
case off;il,fomc = 0.02 S/m. Therefore future investigations and data is needed
to investigate this validity of this model and to determine if other models are
more plausible.



Chapter 7

General conclusions and
further research

hic opus, hic labor est
—VERGILIUS, “Aeneis, book VI”

In this chapter a global overview and a general conclusion is given of this
dissertation.

EEG source analysis consists of two subproblems, a forward problem calcu-
lates the electrode potentials at the scalp by a dipolar source, while the inverse
problem estimates the source parameters which best represent a given set of
electrode potentials. The forward problem requires a head model, which rep-
resents the human head and which is subdivided into compartments according
to the tissue types. An important parameter of these tissue types is the con-
ductivity, which is often modelled as isotropic (i.e. the conductivity is equal in
all directions). In reality the conductivity of these tissue types are anisotropic.
The main topic of the dissertation is the incorporation of anisotropic conduc-
tivities for EEG source analysis. Throughout the dissertation we discussed how
we can incorporate the anisotropic conductivities of the skull and white matter
in the EEG source estimation problem and the effect of not taking into account
these anisotropic properties on the source estimation.

7.1 General conclusions

Errors due to not neglecting anisotropic conductivities: study in a
spherical head model

In chapter 3 we started with a simple study in a spherical head model in which
the skull and white matter conductivity could be set to anisotropic or isotropic.
Neglecting the anisotropic conductivities of the skull and white matter yielded
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location errors of on average 22.36 mm in the cortical shell and 7.32 mm in the
thalamic shell. Maximum error of 32.33 mm were found. The magnitude of
these errors (order of centimeter) are unacceptable for an accurate EEG source
analysis. This suggest that if anisotropic conductivities are not incorporated
an error of more than 15 mm exists on the dipole estimate. Therefore, it was
concluded that anisotropic conductivities have to be incorporated. Realistic
head models are a more accurate representation of the human head, but require
numerical methods. This study expresses the need for a numerical method
which can incorporate anisotropic conductivities to solve the forward problem.

Validation of the numerical method to use with realistic head model
In this thesis the finite difference method was chosen because of its ease of use
and implementation. The anisotropic finite difference with reciprocity method
(AFDRM), numerical technique that can incorporate, was introduced in chap-
ter 2 and validated in chapter 3. In the isotropic case, the mean location error
due to discretization was 1.78 mm, 0.73 mm and 0.48 mm in a cubic grid of
size 3 mm, 2 mm and 1 mm, respectively, which is an improvement compared
to traditional FDM. When anisotropic conductivities of the skull are incorpo-
rated, the mean location error due to using the AFDRM was 9.2 mm, 6.1 mm
and 2.6 mm in a cubic grid of grid size 3 mm, 2 mm and 1 mm, respectively.
When the anisotropic conductivities of the white matter are incorporated, a
mean location error was found of 3.1 mm, 1.6 mm and 1.0 mm when the grid
size was 3 mm, 2 mm and 1 mm, respectively. The finer the cubic grid, the
smaller the location error due to discretization. From the result, we could con-
clude that a cubic grid of 1 mm or less is needed to minimize the errors due to
discretization when the AFDRM is used.

Construction of the head model: different approaches to model the
white matter

In chapter 4 we discussed the construction of a realistic head model and the
application of the AFDRM in the realistic head model. The focus was on
the construction of the anisotropic conductivities of skull and white matter.
For the skull, a segmented MRI image can be used to derive a tangential and
normal direction in each voxel. Then the conductivity along the tangential
direction was set to 10 times larger than the normal direction. Deriving the
anisotropic conductivity of the white matter was done using a technique called
diffusion weighted magnetic resonance imaging (DW-MRI). A diffusion tensor
can be derived. The conductivity tensor can be derived from the diffusion
tensor using two possible approaches. A simplified approach states that the
conductivity along the largest principal diffusion direction is 9 times larger than
the orthogonal directions. However, we have demonstrated that the fractional
anisotropy in white matter is not fixed and mostly smaller than 9. Hence,
using the simplified approach to model an anisotropic conductivities of white
matter might be an overestimation of the anisotropy. Therefore, a more realistic
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approach was discussed, where the diffusion along each principle direction is
scaled to obtain the conductivity tensor.

We compared both approaches by means of the dipole location and orientation
error of the estimates in a realistic head model. We found that using the dipole
location error due to using the realistic approach was relatively small; a mean
error of 4,04 mm was found with a maximum error of 17.7 mm. Concerning
the errors on the dipole orientation, we found that the errors with a large mag-
nitude (> 30degrees) are concentrated near the center of the brain and are
mainly situated near white matter boundaries. Similarly as for the location
error, this is due to the fact that the electrode potentials are largely influenced
by anisotropy when the test dipole is placed near a highly anisotropically con-
ducting region. Moreover, more than 60% of the dipole estimation errors were
above 10 degrees.

Although only two approaches to model the white matter anisotropy are pre-
sented here and compared, there are more approaches which have been more
founded by a theory. Due to the low resolution of the DW-MRI, these models
are not valid as the low resolution causes a homogenization of the anisotropy.
A higher resolution DWI-MR could cause a more heterogeneous distribution
in the FA values and thus the anisotropy of each voxel. It has yet to be es-
tablished whether this has an effect on the dipole estimation. Moreover, it has
yet to be established which approach to model the anisotropic conductivities
of white matter is more valid.

Construction of the head model: errors due to neglecting anisotropic
conductivities of gray matter

Next we investigated the dipole location and orientation error due to neglecting
gray matter errors. DW-MRI also images the diffusion in gray matter regions,
therefore the anisotropic conductivity tensor can also be derived in these re-
gions. Neglecting the anisotropic conductivities of gray matter results in dipole
location errors on average 2.7 mm with a maximum of 9.8 mm. The orienta-
tion error was found to be on average 5.05 degrees and had a maximum of 40
degrees. The largest orientation errors were found in places where the gray
matter region was highly anisotropic. Although gray matter can be considered
isotropic, due to segmentation errors and the partial volume effect, some highly
anisotropic regions can be assigned to the gray matter compartment while in
fact these regions belong to white matter.

If DW-MRI are present, one might just use them to constuct the anisotropic
conductivities. However, modelling a compartment as anisotropic while it is
in reality isotropic also introduces an error. An accurate model thus greatly
depends on an accurate segmentation of the MR images and accurate measure-
ments of the anisotropic properties of the white matter.

Error due to not incorporating anisotropic conductivities: study in
a realistic head model
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In chapter 5 we used the AFDRM to study the effects of not incorporating
the anisotropic conductivities of the skull and brain (white and gray matter)
in EEG source analysis. The chapter consists of 3 parts. First, we determined
the dipole location and orientation error when anisotropic conductivities of
the skull and/or brain tissues are neglected. The results showed that when
the anisotropic conductivities of the skull or both the skull and brain tissues
are not taken into account an average dipole location of 10 mm error can
occur. With respect to the dipole orientation, large estimation errors were
seen (> 30 degrees) at the corpus callosum and other neural pathways, where
the anisotropic ratio was high. When only the anisotropic conductivities of the
brain tissues are neglected, a mean location error was found of 1.1 mm. The
dipole orientation error was found to be very low (< 10 degrees).

Second, the influence of making the skull or brain tissues anisotropically con-
ducting on the potential field distribution is inspected visually. A fronto-
temporal source and a source near the highly-anisotropic region were placed
in each of the head model and the potential field caused by each source is
calculated. Making the skull more anisotropic causes an extra electrostatic
shielding effect. Furthermore, making the brain tissues anisotropically con-
ducting changes the potential field in the vicinity of the dipole source. This
effect is very noticeable near regions with a high anisotropic ratio (such as the
corpus callosum).

In the third part of the study we investigated the dipole location error when
not taking into account the anisotropic conductivities in the presence of noise.
For this purpose, we applied background noise on the electrode potentials.
The electrode potentials are caused by a dipole source in a head model with
anisotropic conductivities. The noisy electrode potentials are used to estimate
the dipole source in a isotropic head model. The amount of noise could be
quantified by the noise level. The location error due to neglecting anisotropy
and noise was compared to the one due to noise only. It was found that
incorporating the anisotropy of the skull will improve the accuracy of the EEG
source analysis, however due to noise the incorporation of the brain tissues
shows a small improvement of the accuracy of the EEG source estimation.
Although these results suggest that the anisotropic conductivities of the brain
are not necessary to incorporate in the head model, they are dependent on the
model used to approximate the white and gray matter anisotropy. Depending
on the model of anisotropy and the resolution of the DW-MRI, these results can
change significantly. In our case, we presented a model which is best suited for
low resolution DW-MR, images. Nowadays, advanced MR techniques within a
7 Tesla scanner are emerging which enables to acquire high resolution DW-MR
images. When a high resolution DW-MRI (e.g. 1 mm by 1 mm by lmm or
even 0.5 mm by 0.5 mm by 0.5 mm) is available, other approaches might be
more valid [139].

Moreover, the incorporation of the anisotropic conductivities of the brain tis-
sues could be useful for the simulation of the potential field to study the effects
of deep brain stimulation. In therapeutic applications for epilepsy or parkin-
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son’s desease, neurologists and neurophysiologists are interested in which re-
gions in the brain are actually stimulated.

Example of an application

An example of an application using the AFDRM is shown in chapter 6. The
application in mind is epilepsy and is demonstrated by means of a prospective
study using a data set obtained from an extensive database of the Reference
Center of Refractory Epilepsy of the Department of Neurology and the Depart-
ment of Radiology of the Ghent University Hospital (Ghent, Belgium). The
patient was monitored with a video/EEG monitoring with both scalp and with
implanted depth electrodes. An MR image was taken from the patient with the
implanted depth electrodes, therefore, we could pinpoint the onset zone of the
epileptic seizures. Surgery was performed, which removed the hippocampus
from the patient and rendered the patient seizure free. As DW-MRI images
were not available, the left hippocampus was aligned on an MR image by a
neuroradiologist. The patient had a resective surgery where the left hippocam-
pus was removed and rendered the patient seizure free since. A spike was
picked from a dataset and was used to estimate the source in an head model
with isotropic conductivities and with the skull and brain tissues anisotropi-
cally conducting. It is believed that spikes and epileptic seizures originate from
the same onset zone. The dipole estimate in the anisotropic head model was
closer to the manually segmented hippocampus than the one using the isotro-
pic head model. Although this study is very preliminary and needs further
investigation, it suggests that using the anisotropic head model the accuracy of
the EEG source estimation increases. In this chapter we wanted to show how
the AFDRM can be used in the clinical practice and how a thorough validation
study can be performed.

7.2 Future work

Validation

As discussed in chapter 6 a thorough validation study has yet to be performed.
In the same chapter we discussed how we can do this and which data has to be
collected. These datasets can be very extensive for each patient. Unfortunately,
the collection of these extensive data sets is time consuming and requires a
factor of luck that the patient has to undergo the full presurgical evaluation
with the invasive recordings.

As a side project of the validation study, one could determine the necessity for
individually patient-based head models. For the EEG source analysis, we can
use one generic head model for each patient or an individually made head model
for each patient. By determining the difference in location and orientation
of the estimated dipoles we can determine if it is important to model the
head individually for each patient or a standard head model can be used for
application of EEG source analysis in epilepsy.
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Not only is the head model an important parameter of the EEG source analysis,
so is the source model. In this dissertation we limited ourselves to a single dipole
model. For complex brain activity this model is insufficient and more complex
models (multiple dipoles or distributed dipoles) have to be used. This requires
a complex cost function in the source estimation and thus makes the EEG
source analysis very complex. The feasibility of estimating a complex source
model in a complex head model has yet to be investigated. Performing such
a complex source analysis may come at the cost of the smoothness of the cost
function and thus other minimization techniques have to be used to obtain the
global minimum [33].

The source estimation procedure is also dependent on the number of electrodes
used. The more electrodes are used, the lesser the ill-posedness of the problem
becomes. Although the problem will always remain ill-posed, using more elec-
trodes improves the accuracy of the source estimation up to a certain point.
Depending on the noise level of the measured EEG, an upper limit of the
amount of electrodes can be found above which the improvement of the source
estimation compared to the upper boundary is negligible.

Applicability in other domains

EEG source analysis can also be used in other applications than epilepsy. Event
Related Potentials (ERPs) is an EEG signal waveform associated with a specific
task or stimulus and allows us to study the functionality of the brain. A task
or a stimulus causes an activation pattern in time at distinct brain regions.
EEG source analysis can be used to determine these brain regions as well in
space as in time. As the signal-to-noise ratio is very low in ERPs, anisotropic
conductivities should be included for an accurate source estimation. However,
this needs to be thoroughly validated yet.

The threedimensional AFDRM modeling enables us to model many tissue
types. Many patients have an MR scan which is abnormal due to the pres-
ence of tumors or due to absence of some brain regions by a previous surgical
operation. Using advanced segmentation techniques these abnormalities can
be incorporated in the head model. In neonatal studies, for example, the skull
has a more cartilage structure at the fontanelles. An accurate source estima-
tion depends on an accurate modeling of the skull. Hence, these fontanelles
can be modelled as holes in the skull which can be done by the technique pre-
sented here. Numerical techniques based on the surfaces of large structures
(e.g. BEM) are less suited to perform EEG source analysis in such complex
head models.

Improvements to the model

A major unknown parameter of the head models is the absolute value of the
conductivities. A lot of effort has been done in measuring or calculating the
conductivity of the different tissues of the human head. However, a large
inter-patient variability on the conductivity values exist. Electric Impedance
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Tomography (EIT) has shown a lot of promise in determining these conduc-
tivity values. The problem of EIT is similar to the problem of EEG source
estimation. The electrode potentials measured at the scalp in EIT are caused
by a known source, which usually consists of injecting a current at an electrode
pair. In this case, the unknowns are the conductivity values at the brain tis-
sues. Unfortunately, analog to the EEG source estimation problem, EIT is an
ill-posed problem. Determining the anisotropic conductivity values, makes the
EIT problem even more ill-posed.

The volume constraint is only a model to construct the anisotropic conduc-
tivities of brain tissues, which is best suited when only a DW-MRI scan with
resolution 2 mm by 2mm by 2mm is available. Advanced MR techniques in 3
and 7 Tesla scanners are emerging, enabling us the possibility of higher reso-
lution DW-MRI and higher Signal-to-Noise Ratio. In this case, the resolution
could be 1 mm by 1mm by 1 mm or even 0.5mm by 0.5mm by 0.5mm. When
such a fine resolution is used, other models to determine the conductivity tensor
from diffusion tensor images might be better suited.

Multimodality

In the diagnosis of neurological disorders or the study of brain functionality, a
broad range of investigations or medical imaging techniques exist next to EEG
source analysis. Medical imaging techniques can be subdivided into 2 types.
Structural imaging techniques only image the anatomical or tissue type related
information inside the human head. Examples of such techniques are MRI,
DW-MRI and EIT. Functional imaging techniques highlight the metabolic or
oxigen related changes due to the manifestation of a neurological disorder or
an task or stimulus. Examples of these imaging techniques are nuclear imaging
techniques, like PET and SPECT, and functional MRI, which images the blood
oxygenation level at a high spatial resolution. EEG source analysis can also be
a functional imaging technique based on the electrophysiological activation in
the brain. Combining all these channels of information together could provide
us with more insight in how the brain works or how a particular neurological
disorder manifests.

In this dissertation we combined several structural imaging techniques (MRI,
DW-MRI) to increase the accuracy of a functional imaging technique (EEG). It
is well known that the EEG source analysis has a low spatial resolution due to
the noise in the EEG. The EEG source analysis can be made more accurate if
other modalities are incorporated. Other functional modalities can act as priori
information which can be incorporated in the EEG source analysis. The very
high time resolution of the EEG enables us to track the source estimations in
time. The timing information of the source estimations can reveal connectivity
patterns between brain regions. These brain regions can be pinpointed by
functional MRI (fMRI), a technique that measures the functionality of the
brain. Ultimately, these connectivity patterns can be made more robust by
including the anatomical connections, derived by fiber tracking using DW-MRI.
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In the clinical practice in epilepsy, there is still a discussion whether spikes and
seizures originate from the same onset zone. The technique presented in this
dissertation is a tool to confirm of refute this hypothesis. Functional magnetic
resonance imaging is a recent MR technique that images consumption of oxygen
in brain area’s due to an event, triggered by an condition (e.g. spikes). It
involves a statistical processing of triggered events, such as spikes. However,
this technique is not feasible to image the activity of a epileptic seizure, as
the patient has to be inside an MR scanner and the decreased consumption of
oxygen is only visible in a small time period of time (order of seconds).

Ictal SPECT has been shown to have high diagnostic value in epilepsy [142].
Here a radiopharmacon is injected at start of the seizure and perfuses in brain
regions with high activity. The radiopharmacon remains in the activated region
even when the seizure has ended. Due to the long half-life of the radiophar-
macon, it is still possible to visualize the activated regions when the patient
has rested from the seizure. To relate the ictal SPECT activity with the fMRI
activity would be difficult as they are both based on different physiological
processes and have different time resolutions. However, both modalities can be
used as a prior in the EEG source estimation procedure. Hence by comparing
the source estimations in space and in time when both modalities are used as
a priori information, one can relate the activity of a seizure with the one of a
spike.

Ideally, both prevouis modalities, fMRI and SPECT, in combination with EEG
source analysis as described in this dissertation can be used in the presurgical
evaluation of patients suffering from epilepsy. If all the information is combined
into a tool that can determine the origin of brain activity, neurologists and
psychologists could diagnose and precribe treatment in a more reliable and
accurate way. This could be useful in the diagnosis of, for instance, epileptic
seizures or spikes but also other neurologic disorders could benefit from it.
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Reciprocal Approaches

In the literature one finds two approaches to solve the forward problem. In the
conventional approach, the transfer-coefficients making up the leadfield matrix
L in equation (2.24) are obtained by calculating the surface potentials from
dipole sources via Poisson’s equation. The calculations are made for each dipole
position within the head model and the potentials at the electrode positions
are recorded.

In the reciprocal approach introduced in Rush and Driscoll [127], Helmholtz’
principle of reciprocity is used. The electric field that results at the dipole lo-
cation within the brain due to current injection and withdrawal at the surface
electrode sites is first calculated. The forward transfer-coefficients are obtained
from the scalar product of this electric field and the dipole moment. Calcula-
tions are thus performed for each electrode position rather than for each dipole
position. This speeds up the time necessary to do the forward calculations since
the number of electrodes is much smaller than the number of possible dipoles.

A.1 The general idea of reciprocity

Consider a resistor circuit, with two clamps AB and r, as illustrated in fig-
ure A.1. The clamp AB represents a pair of scalp electrodes. The clamp r,, is
located in the brain region.

First a current I, at clamp r; is introduced. This source will generate a
potential Usp(I,,) at AB as illustrated in figure A.1(a). Next, current I4p at
AB is set. This will give rise to a potential difference V,. (I4p) at r,, illustrated
in figure 13(b). The reciprocity theorem in circuit analysis states:

Uap Iap =V, I,,. (A.1)
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(a) (b)

Figure A.1l: A schematic representation of the reciprocity theorem. A resistor
network where a current source is introduced in the brain and the potential difference
is measured at an electrode pair, and visa versa: (a) a current source I, is introduced
and the potential Uap is measured, and (b) a current source Iap is introduced and
a potential V., is measured.

A.2 Mathematical treatment

A mathematical treatment for a digitized volume conductor model is developed
in this section. Consider a digitized volume conductor model with n computa-
tional points or nodes. At each of the nodes the potential V; with¢=1...nis
calculated for given sources which are the current monopoles I; withi=1...n.
Poisson’s equation can then be transformed to a linear equation at each node,
as illustrated for the FEM and FDM in subsections 2.4.2.5 and 2.4.2.6. This set
of linear equations can be written in matrix notation. The system matrix then
becomes A € R™*"™ and has the following properties: it is sparse, symmetric
and regular. One can write:

AV =1,

with V.= [Vi...V,]T € Rt and I = [I;...[,)T € R™! and with T the
transpose operator. The desired potential difference Vj;, — V; between nodes k
and [ can be obtained for a current source Iy at node f and a current sink I,
at node g with Iy = —I;. All other sources are zero. Cramer’s solution for a
linear system then becomes:

Tel(—1)etf+1 4, — (—1)etatlg
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Ip[(=1)H T Ay — (1)t Ay

Vi= det A ’

(A.3)

with A, the minor for row * and column o.

On the other hand the potential V; and V, for a current source Ij and current
sink I; with I, = —1I;, are:

L[(=D)T Ay — ()T Ay

- A4
Vi TiA : (A4)
Tp[(=1)9H 1 Ay, — (=1)9H14 1Ay,
= . A-
Vo det A ( 5)

Furthermore, A,, is equal to A, due to the fact that A is symmetric. Hence,
(eqn.(A.2) — eqn.(A.3))/I; equals (eqn.(A.4) — eqn.(A.5))/Ix. Subsequently
the reciprocity theorem is deduced:

Li(Vie = Vi) = 1 (Vy — V).

A.3 Reciprocity for a dipole source with ran-
dom orientation

Considering equation (A.l), a dipole can be represented as two current
monopoles, a current source and sink, providing I, and —I,_, separated by a
distance 2h. The dipole is oriented from the negative to the positive current
monopole and is assumed to be along the z-axis of the resistor network with
node spacing h. The magnitude of the dipole moment is then 2hI. . The
centre r of the two monopoles can then be seen as the dipole position. The
scalp electrodes are located sufficiently far from the sources compared with the
distance 2h between the sources so that we can assume a dipole field. Equation
(A.1) can be rewritten as:

Vi, Ir,

— (A.6)

Uap =

The forward problem in EEG source analysis gives the potential U4p for a cur-
rent dipole located at r and oriented along the z-axis. Rewriting equation(A.6)
with d, = 2hI,, and

OV Vi (r+ hew) = Vi, (v — hey)]
or 2h )
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gives:

d;c oV

EN AT
o (A7)

Uap =

In a similar way, Uap can be calculated for a dipole located at r oriented along
the y-axis and the z-axis.

Consider a dipole at position r and with dipole components
d = (dy,dy,d,)" € R¥*1. The potential Usp reads:
d? - vV(r)

UAB(I',d) = IAB

, (A8)

with VV (r) = (0V (r)/dx,0V (r)/dy, 0V (r)/0z)T € R3*1,
The flowchart in figure A.2 shows the consecutive steps that are necessary in
the reciprocity approach in conjunction with FDM.

rd

UAB

Reciprocity —

IAB

FDM V(hi,hj,hkL

Figure A.2: The consecutive steps when applying reciprocity in conjunction with
FDM is shown. First a current dipole Iap is set on the electrode pair AB. Using
FDM the potential field is calculated in each point V (ih, jh,kh). With the dipole
parameters and the potential field, the reciprocity theorem can be applied. This
results in a potential difference at the electrode pair AB.

e A fictive current I4p of arbitrary value is introduced which enters the
head at electrode A and leaves the head at electrode B.

e Utilizing the FDM the potentials V' (hi, hj, hk) can be calculated
with h the internode spacing and 4,7,k the node numbers along
the Cartesian axes. Figure A.3 illustrates the equipotential lines
and current density vectors J = —oVV in the brain region, with
VV = (0V/3z,0V/0y,0V/0z)T. The partial derivative 9V/dx is ap-
proximated by [V (h(i + 1), hj, hk) — V(h(i — 1), hj, hk)]/2h. The partial
derivatives 9V/dy, 0V /0z are obtained in a similar way.

e U,p the potential difference between the scalp electrodes A and B gen-
erated by the dipole at position r and dipole moment d is obtained by
applying eqn. (A.8). When r does not coincide with a node, then VV (r)
is obtained with tri-linear interpolation [116].
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Figure A.3: The equipotential lines and the current density vectors caused by a
current source and current sink at two electrodes.

By solving only one forward calculation numerically, by introducing current
monopoles at electrodes A and B, and storing the obtained node potentials in
a data structure, U4 p is obtained for every dipole position and orientation.

If N scalp electrodes are used to measure the EEG, N —1 electrode pairs can be
found with linear independent potential differences. Therefore N — 1 numerical
forward calculations are performed and stored in data structures. In addition,
the IV — 1 potential differences at the NV — 1 electrode pairs are transformed in
N average referenced potentials at the N electrodes.

Reciprocity has been applied in the literature in conjunction with BEM [45],
FEM [149] and FDM [88, 89, 144, 145, 64].
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Volume Constraint

B.1 Introduction

Diffusion is the transporation of water molecules, while conductivity is the
transportation of charged particles. Although two different processes, they
can be written according to the same transport equation [139]. Using the two
approaches given in 4.5 and 4.6, a set of equation relates the eigenvalues of the
conductivity tensors and diffustion tensors. However, the system of equations is
underdetermined and the conductivity eigenvalues are unknown up to a scaling
factor. One way to determine the scaling factor is by relating the anisotropic
conductivity tensor with the isotropic values. These isotropic values have been
measured in Gongalves et al. [50], Ferree et al. [44] and Lai et al. [90].

In this section, we will discuss a model to relate the conductivity with the
isotropic conductivity. Therefore, we can derive the conductivity tensor us-
ing the diffusion tensor, calculated from the diffusion weighted images. First,
the representation of the diffusion of conductivity tensor in ellipsiods will be
discussed.

B.2 Representation of the diffusion tensor as
ellipsoids

The anisotropic conductivity can be represented as ellipsoids. The radii of the
ellipsoid denote the conductivity int each direction. For example, in the scalp
we model the conductivity as isotropic: The conductivity in each direction is
the same (e.g. at the scalp the conductivity is oscqa;p = 0.33 S/m) and this can
be represented by a perfect sphere (see figure B.1a). If there is one direction
in which the conductivity is higher than the other two, then a cigar-shaped
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Figure B.1: An illustration of the representation of a tensor as an ellipsoid. (a)
shows an sphere, the conductivity of diffusion is equal in all direction. (b) shows an
oblique ellipsoid, the conductivity of diffusion is large in two directions as opposed to
the third direction. (c) shows an cigar-shpaed ellipsoid, the conductivity or diffusion
is large in 1 direction as opposed to the other orthogonal directions.

ellipsoid occurs (see figure B.1c). With 2 principle directions the ellipsoid has
an oblique shape (see figure B.1b).

B.3 Deriving the conductivity tensor from the
diffusion tensor using the volume con-
straint

The volume constraint [150] states that the volume of the isotropic conducting
sphere must be equal to the anisotropic conducting ellipsoids:
4 4 4
gﬂaisotropic = §7T010203~ (B].)
The constraint can be used to model the anisotropic conductivity, if the isotro-
pic conductivity is known. These isotropic conductivities have been measured
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using Electric Impedance Tomography [44, 50]. Maxwell [97] showed that a cur-
rent at the center of the medium in a homogeneous anisotropic infinite medium,
has equipotential lines with an ellipsoidal shape. Each equipotential line is as-
sociated with a constant charge density p. In isotropic media, the equipotential
lines are spheres. Although a proof of the validity of this assumption does not
exist, we believe it is a sound model for anisotropy.

B.3.1 Skull

For the skull we model the conductivity as an oblique ellipsoid, which means
that 2 of the principal directions are the same. These directions correspond to
the tangential direction on the surface. Together with the fact that the tangen-
tial conductivity ot is modelled 10 times larger than the normal conductivity
on we obtain the following system of equations:

4 . 4
gﬂo—?sotropic = g’/TO'tQO'n (B2)
100144 = Otang (B.3)

where 0;sotropic is 0.020 S/m for the skull compartment. Using these equations,
we can solve o; and o, yielding the conductivity in the tangential and radial
direction respectively. Solving the equations yields a radial conductivity of
oskull = 0.004309 S/m and a tangential conductivity of ofFu!! = 100skull =
0.04309 S/m

B.3.2 White Matter: simplified approach

In the simplified approach the conductivity along the nerve fibre o; is 9 times
larger than the conductivity perpendicular to the nerve fibre o,. Note that the
conducitivity tensor can then be written as:

0’100
X=100,0|. (B.4)
0 0oy

For white matter anisotropy we modelled that they spread in the radial direc-
tion. We obtain the following equations:

4 4 4

gﬂ-o—isot’r‘opic = §7T0'p0'l (B5)

90, =0y (B.6)

where 0jsotropic is 0.33S/m for the brain compartment. Solving these equations
yield o; and o, or the conductivity in the transversal direction (tangential
direction) and in the longitudinal direction of the nerve fiber (radial direction),
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respectively. The results are a radial conductivity of g@hitematter — 1 4278 §/m

and a tangential conductivity of gwhitematter — (15864 S/m.

B.3.3 White Matter and gray matter: more realistic ap-
proach

In the realistic approach, the eigenvalues of the conductivity tensor are related
those of the diffusion tensor. The ratio between the diffusion eigenvalues and
the conductivity values associated with the same eigenvectors are constant
and dependent on the volume constraint. If we denote the eigenvalues of the
diffusion tensor as di,ds,ds and the conductivity values as o1, 02,03, we can
write:

4 4

gﬁo—?sotropic - g,/TO—l 0203 (B?)
d d
=== (B.8)
g1 g9
d d:
—~== (B.9)
g1 g3

where jsotropic is 0.33S/m for the brain compartment. Solving these equations
yield o1, 02 and o3 or the conductivity along the three principle directions of
the diffusion. As the diffusion tensor is variable throughout the white and gray
matter, so will the conductivity tensor. Therefore, the absolute values of the
conductivity along the principal directions is position dependent and has to be
calculated each time.
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Solving EEG inverse problem
using space mapping
techniques

C.1 Introduction

The EEG inverse problem can be solved in a non-parametric way and para-
metric way. The non-parametric way supposes a current distribution along the
human brain and is solved by minimizing a properly chosen regularized cost
function [112]. The parametric way of solving the EEG inverse problem is the
reconstruction of one or a limited number of multiple electrical dipoles [103].
This paper focusses on the parametric way of solving the EEG inverse problem
since epileptic foci may be represented by dipoles [40].

The inverse problem is solved by minimizing the least squares cost between the
electrode potentials of the patient V,, and the simulated electrode potentials
Vnoder due to a dipole source at location r with orientation d. For a given
dipole position r, the optimal components in the least-squares sense d,,: are
found from the best approximated solution of the overdetermined system of
linear equations (2.24):

dopt = L+ : Vzn (C].)

with LT = (LYL)~'L” being the Moore-Penrose pseudo-inverse of the leadfield
matrix L. The EEG cost function is defined as follows:

[Vin — L(r)L(r)+ Vi

RRE(r) = Vil

(C.2)
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and is also called the relative residual energy (RRE). ||-|| is the Lo-norm. The
result is a dipole estimate at location r:

i d) = i RRE C.3
(r,d) arg omin o (r) (C.3)

The RRE is minimized in the cerebral cortex, with the following location region
in the head Q.., of the patient’s head. This is a priori known information since
the information is coregistered with the MR images.

C.2 Traditional one-level inverse EEG proce-
dures

The EEG inverse problem is typically solved by traditional optimization meth-
ods, which use only one forward model in the inverse procedure. The widely-
used Nelder-Mead Simplex method [36], simulated annealing [86], genetic al-
gorithm [82], etc. are typical methods. These approaches are highly time-
consuming and unsuitable for the rapid evaluation of the location and orien-
tation of neural sources. Indeed, many evaluations are needed in the forward
model. Further, when assuming a well-defined search region, difficulties occur
concerning convergence. Much more start values are needed for solving the
inverse problem when using the NMS method for solving the inverse problem.

Another possibility for solving the EEG inverse problem is the use of artificial
neural networks (ANNs). Such methods are very fast but are not robust to
noise [141].

C.3 Space Mapping techniques

The space mapping (SM) technique, introduced by Bandler et al. [11], is used
for optimization of engineering models which involve complex and expensive
function evaluations. The technique has been succesfully applied in the field
of microwaves for component and system modelling, for a review see Bandler
et al. [12]. The SM technique assumes that two different models of the same
physical system are available. The technique aims at combining the compu-
tational efficiency of a coarse model with the accuracy of a fine model. We
want to optimize a costfunction (in our case the RRFE) in the accurate but
computationally-intensive fine model. Recently, SM techniques have be intro-
duced to the field of EEG source estimation. Due to their fast convergen and
their robustness to noise, they have proven to be very useful in the optimization
procedure when solving the inverse problem [33].

In space mapping techniques, we use two volume conductor models (a fine and
a coarse head model) for solving the forward problem. The coarse head model
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is a 3-shell concentric spherical head model, where the forward problem can be
solved usint an analytical formula. The fine head model is the realistic head
model, where the AFDRM is used to solve the forward problem. The leadfield
matrix in the coarse and the fine head model due to a dipole at position r; can
be indicated as L.(r;) and Ly (r;), respectively.A geometrical link between the
two head models has to be set. This is done by performing a least-squares fit
of the spherical head model on the realistic head model.

Let f(ry) : Qf — R™ and c(rc)Q2y — R™ be functions that model the EEG
signals in the fine and coarse model respectively, located at a location ry and
r.. Q5 and €. are the parameter spaces (in our case the space spanned by
the dipole location parameters) of the fine and coarse model. It is possible to
express:

f(rs) =Lg(rs)Ly(rs)" Vi
C(rc) = Lc(rc)Lc(rc)+Vin
when considering one dipole at location ry because the optimal dipole orienta-
tion can be found by the least-squares estimate dy = Ly (rs)* V. Ly(rs)* is
the Moore-penrose pseudo-inverse of the leadfield matrix of the fine head model
and V;, are the measured electrode potentials at the scalp of the patient.

Initially, the dipole location r is estimated in the fine model by minimizing the
relative residual energy as in equation C.3:

Vi, —f
RREp(E(ry)) = ¥ in Tl (C.6)
[Vin||
Hence, finding the optimal dipole location can be written as:
ty=arg min RREp(f(ry)) (C.7)

l‘fGQf

The non-convexity of the head model increases the chance of getting trapped
into local minima. Moreover, if one restricts the search space to only the cortical
gray matter, many start values are needed to obtain a global minimum.

Similar for the coarse head model, the cost function to be optimized to solve
the inverse problem can be written as:

[Vin — c(re)]l .

RREc(c(r.)) = [Vinl|

(C.8)

Due to simplicity of the coarse model (the 3 shell spherical head model) the
global minimum r. of RRE¢-

t.=arg min RREx(c(r.)) (C.9)

re€fle
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i center

Figure C.1: An illustration of the geometrical link between the coarse model and
the fine model

can be calculated in a computational efficient way. Moreover, the convex search
space reduces the possibility of getting trapped in local minima. Therfore, the
coarse model c(r.) will be used as the basis for generating successive surrgates
for the fine one. A suitable surrogate model is obtained by constructing a
mapping between the parameters spaces of the two models. Let a parameter
mapping p : 25 — €. be an approximation of the form:

f(ry) ~ c(p(ry)). (C.10)

Finding the parameter mapping r. = p(ry), the so called parameter extraction
(PE) is a very important subproblem of the SM technique. We extract the
parameters of the coarse model to match the fine model:

plry) = arg min [[£(ry) — c(x.)] (C.11)

If the approximation C.10 is valid, then the composite function c(p(ry)), is
applicable for a surrogate of f. Hence, the optimum of ¢(p(ry)) can be expected
close to the optimum of f(ry). For evaluating p(ry) in equation C.11, one
evaluation in the fine model has to be evaluated.

Fitting the inner shell of the spherical head model between the brain and skull
compartments in the realistic head model makes the geometric link between the
parameters of the two volume conductor models (see figure C.1). The center
and radius of the three layers of the coarse model are determined that way
using a least squares approximation. In order to apply SM, we assure that
Q. C Q. Indeed, the first iterate rgcl) = r. in the fine model for every r. has
to be possible. The PE (see equation C.11) can be written as

p(rs) = arg min [£(ry) ~ clr.)] (C12)
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= arg ngg | (L = Le(re)Le(re) ) (ry)|| (C.13)

where L, is the identity matrix. Here, c(r;) = L¢(rc)Le(r.) f(ry), which is
the coarse model with the fine model f(ry) as Vi,.

C.3.1 Agressive Space Mapping (ASM)

The Agressive Space Mapping (ASM) technique intends to solve the nonlinear
equations

e(ry) =0 (C.14)

with the error-function e : Qy — Q. : e(ry) = p(ry) — r. for ry by means of
quasi-Newton iterations using the classical Broyden formula [26]. This is an
iterative procedure that updates ry to obtain the solution. The first iteration
eV s equal to r.. Let rgpk) be the k-th iteration in the solution of equation
C.14. The next iteration can be written as:

k+1 k
Y = ¢l p® (C.15)
where the step h(®) is obtained from
BWh® = —e(x). (C.16)

B(¥) ¢ R™*™ is the approximation of the mapping Jacobian (see Bandler et al.
[12], for further details). An initial approximation to B can be taken as the
identity matrix. B*) can be updated using Broyden’s rank one formula:

(k)
*k+t1) _pk) . &7 L®T
B =B® 4 RCING) h (C.17)

where e(®) = e(xgck)). It becomes clear that the algorithm stops when ||e(k)||
becomes sufficiently small.

C.3.2 Trust Region Aggressive Space Mapping

In Bakr et al. [9] a Trust Region Aggressive Space Mapping (TRASM) was
used. The step h®) in equation C.15 is solved according to

(Bw)TB(k) 4 AI) h® = —e(r?) (C.18)

with A\ a parameter which is chosen so that the step satisfied ||h(k) || < 4, where
0 is the size of the trust region. Hence we can choose the step so that the
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k+1 o . . . .
gc ) remains in a specified region. In our case A is chosen in such a

way that r}kﬂ) remains in the gray matter region.

update r

C.3.3 Hybrid Aggressive Space Mapping (HASM)

The HASM enables switching between direct optimization in the traditional
way and TRASM. If TRASM is not converging to a minimum then the algo-
rithm switches to direct optimization in the fine model and vice versa. Fur
further details we refer to Bakr et al. [10].
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