47,708 research outputs found

    Proactive controller assignment schemes in SDN for fast recovery

    Get PDF
    ​© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.A sizeable software defined network with a single controller responsible for all forwarding elements is potentially failure-prone and inadequate for dynamic network loads. To this end, having multiple controllers improves resilience and distributes network control overhead. However, when there is a disruption in the control plane, a rapid and performant controller-switch assignment is critical, which is a challenging technical question. In this work, we propose a proactive switch assignment approach in case of controller failures using a genetic algorithm based heuristic that considers controller load distribution, reassignment cost and probability of failure. Moreover, we compare the performance of our scheme with random and greedy algorithms. Experiment results show that our proposed PREFCP framework has better performance in terms of probability of failure and controller load distributio

    Network service chaining with efficient network function mapping based on service decompositions

    Get PDF
    Network Service Chaining (NSC) is a service concept which promises increased flexibility and cost-efficiency for future carrier networks. The two recent developments, Network Function Virtualization (NFV) and Software-Defined Networking (SDN), are opportunities for service providers to simplify the service chaining and provisioning process and reduce the cost (in CAPEX and OPEX) while introducing new services as well. One of the challenging tasks regarding NFV-based services is to efficiently map them to the components of a physical network based on the services specifications/constraints. In this paper, we propose an efficient cost-effective algorithm to map NSCs composed of Network Functions (NF) to the network infrastructure while taking possible decompositions of NFs into account. NF decomposition refers to converting an abstract NF to more refined NFs interconnected in form of a graph with the same external interfaces as the higher-level NF. The proposed algorithm tries to minimize the cost of the mapping based on the NSCs requirements and infrastructure capabilities by making a reasonable selection of the NFs decompositions. Our experimental evaluations show that the proposed scheme increases the acceptance ratio significantly while decreasing the mapping cost in the long run, compared to schemes in which NF decompositions are selected randomly
    corecore