
A Model to Select the Right Infrastructure
Abstraction for Service Function Chaining

Thomas Soenen∗, Sahel Sahhaf∗, Wouter Tavernier∗, Pontus Sköldström†, Didier Colle∗ and Mario Pickavet∗
∗UGent - iMinds: {thomas.soenen, sahel.sahhaf, wouter.tavernier, didier.colle, mario.pickavet}@intec.ugent.be

†Acreo: {pontus.skoldstrom}@acreo.se

Abstract—Through network function virtualization (NFV),
telecom providers aim to flexibly re-use generic-purpose hard-
ware to provide services on-demand and in an agile way. Service
function chaining is becoming the preferred model to describe
the characteristics of the packet-processing network functions
which, together, form these services. NFV allows for network
function embedding freedom, creating new dynamics between
providers and the users requesting services. Users want this
freedom to optimise the performance of their requested services,
while providers aim to optimise their resource cost with it. This
trade-off is heavily influenced by how the available infrastructure
is exposed to the users. In this paper, we present an infrastructure
abstraction model for network, compute and storage resources
that exposes the infrastructure in an abstracted manner. We
use this abstraction to propose a solution for the placement
freedom trade-off problem by studying its relation with metrics
that capture both the user’s and the provider’s aspects. We
conclude with a heuristic that determines the right abstraction
for particular scenarios.

I. INTRODUCTION

Network function virtualization (NFV) allows telecom op-
erators to implement network services as software applications
and to deploy them on-demand on any generic-purpose device
in their network. Since the location where a service is running
is no longer predefined, it can be chosen so that it optimises
a certain metric. Service Function Chaining (SFC) [1] is a
network service concept that further increases this mapping
flexibility by splitting the network service up into different
modules, called Network Functions (NFs), where each NF can
run on a different device. A service graph describes how the
NFs are chained together to construct the network service.
Multiple research groups/projects are focusing on SFC to
address its limitations, like: i) the NFV group in ETSI [2], ii) a
dedicated working group (Service Function Chaining Working
Group) in IETF [1], [3] and iii) UNIFY [4] which is an EU-
funded FP7 project.

Using this mapping flexibility, users desire to optimise the
performance of their requested services by deciding them-
selves how the NFs are mapped to the infrastructure. On the
other hand, providers want to map the NFs to optimise the cost
of their resources. In this paper, we propose to combine both
perspectives by providing the users with an abstract view of the
infrastructure. The users map their NFs on the abstract view,
giving them some degree of freedom. After this embedding
is done, the provider maps the result of the user embedding
onto the exact infrastructure. This process, together with the
infrastructure abstraction, is shown in Fig. 1. The mapping

(a) A network consisting out of 6 devices (e.g. a server, a switch
and a router), partitioned into two abstract nodes A and B (left),
and a network service consisting out of two NFs x and y (right).

(b) The user places the network service by mapping NF x on
abstract node A (1) and NF y on B (2). The provider refines
this placement by mapping NF x on c (3) and NF y on f (4).

Fig. 1: Two phased mapping with infrastructure abstraction.

freedom that remains for both users and providers depends
heavily on the way that the infrastructure is abstracted. A high
abstraction leaves few options for the users and many for the
providers, and vice versa.

Next to managing mapping freedom, infrastructure abstrac-
tion has some other advantages for the providers. It prevents
exposing the exact structure of the topology, allowing business
secrets to be kept hidden. Secondly, not all changes in the
infrastructure cause an update of the abstracted view. There-
fore, the information share rates that provide users with the
latest state of the network are lower. Also, users do not want
to be tasked with the exact placement of the requested NFs.
Which device inside a datacenter runs the NF is of no value
to the user. Therefore, it makes sense to represent racks of
devices, server rooms or entire datacenters in an abstracted
manner. Lastly, computing the optimal mapping of NFs in the
infrastructure is NP-hard [5]. When the size of the network
and the amount of NFs increases, placement becomes a time
consuming task. Therefore, outsourcing parts of it to the user
reduces the duration of the placement phase.

Exposing an abstract view to the user holds some trade-
offs. Increasing the abstraction makes the infrastructure more
opaque, averaging out its best assets (fastest connections, most
powerful servers, ...). This can refrain users looking for these
high-end assets from making requests. Also, the abstraction
could reduce the mapping freedom of the users or the providers

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/74662412?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


too much. With these stumbling blocks in mind, solving the
placement freedom trade-off problem comes down to defining
the right infrastructure abstraction.

Our contribution. In this paper, we solve the placement
freedom trade-off problem by using the concept of infras-
tructure abstraction. We present an infrastructure abstraction
model for network, compute and storage resources to generate
a range of abstraction levels. We showcase this model by
using a partitioning algorithm to create different abstracted
views of the infrastructure and by analysing these views with
respect to the following metrics: bandwidth, delay, stability,
similarity and acceptance rate. Finally, we propose a heuristic
that enables network providers to select the right infrastructure
abstraction for particular scenarios.

The paper is organised as follows. Section II contains an
overview of the related work, followed by Section III which
explains the proposed model for infrastructure abstraction.
To demonstrate our model, we construct an abstracted view
in Section IV and Section V includes the analysis of these
views. Section VI describes the heuristic for selecting the right
infrastructure abstraction and Section VII lists the future work
for this domain. Finally, Section VIII concludes the paper.

II. RELATED WORK

To the best of our knowledge, the problem of finding
optimal infrastructure abstractions remains unexplored. Ex-
isting work mainly focused on finding an optimal mapping
when limited information on the infrastructure is available.
In [6], authors proposed a hierarchical embedding in which
an abstract view of the physical network is provided. They
evaluated the impact of exposing more information on the
performance of their proposed embedding algorithm. In [7]
a request is split among infrastructure providers with respect
to an abstract view of the underlying (AS-level) network.
However, no discussion on possible trade-offs is present. In
the scope of this paper, we will need graph partitioning
algorithms to construct the infrastructure abstraction. In [8],
the authors propose a heuristic for the community partitioning
algorithm that scales good for bigger networks. In [9], a
network is partitioned by using k-clustering. It demands that
within each group of nodes, all nodes are separated by k or
less hops. In [10] and [11], k-means clustering is described.
In k-means clustering, the nodes are partitioned in k groups,
by minimising the total distance between nodes and the center
of their groups.

III. UNIFIED INFRASTRUCTURE ABSTRACTION

We represent the exact infrastructure of a network as an
undirected graph. Each physical device (e.g. servers, routers,
switches and databases) in the network that provides com-
puting power, storage capabilities or network forwarding
functionality is represented as a node. These nodes have
attributes to describe their characteristics, which include CPU
power, number of ports, available memory, etc. The physical
connections between these devices are represented as links,
also with attributes describing bandwidth, delay, etc.

Fig. 2: Example of abstract node and link creation. The
number inside each node indicates its CPU power while
the numbers on the links show their bandwidth capacity.
The abstract view of the topology is shown at the bottom.
For this abstract view, the resources of the nodes were
aggregated and for the links we calculated the worst-case
bandwidth.

We abstract this infrastructure by combining multiple nodes
into an abstract node. An abstract link is used to connect
two abstract nodes if a physical link connects physical nodes
between them. This is shown in Fig. 2. A partition of a set
of nodes (or a graph) is a set of groups, where every node
from the original set is part of exactly one of these groups
and a group is again a set of nodes. Therefore, each possible
abstraction of the infrastructure represents a partition of the
nodes.

Determining the attributes for nodes and links in the exact
infrastructure is straightforward. Less straightforward are the
abstract nodes and links, since they need to describe the
resources inside them. For the abstract nodes, the best way
to describe the resources seems to be aggregating them.
This would expose the total CPU power, available memory,
available operation systems, etc., of the abstract node. This
abstraction of information might have negative effects on the
acceptance rate. A user might request to deploy a NF on this
abstract node that needs 60% of its available CPU power. If
the CPU power of the abstract node is the aggregation of the
CPU power of 5 nodes that each contribute 20%, this request
will be rejected. This could be avoided by adding an indication
of average CPU per node as attribute to the abstract node, but
this would imply exposing more information to the user.

A similar situation arises when describing the attributes of
the abstract links. Exposing the average bandwidth of all the
links within this abstract link hides the strongest ones. If one
of the links allows for 100 MB/s and the other 9 links for
10 MB/s, a user looking for a 50 MB/s connection will be
thrown off by the exposed average bandwidth of 19 MB/s.
Therefore, the way the attributes of the abstract nodes and
links get calculated should be considered when constructing
the abstraction.

Next to the partition of nodes that leads to the abstracted
view and the way the attributes get combined, a third part of



the infrastructure abstraction model is the embedding algo-
rithm that is used by the provider. This embedding algorithm
maps the NFs from the abstracted view to the exact infras-
tructure, after the user has mapped them on the abstracted
view. Since the embedding algorithm influences the acceptance
rate of the requests, it should be part of the infrastructure
abstraction model, since a higher acceptance rate might be the
deciding factor when selecting the right abstraction. In [12],
the authors give a thorough survey of the available embedding
algorithms.

Different partitions of the nodes and different ways of
calculating the attributes of the abstract nodes and links allow
for different infrastructure abstractions. Since nothing forces
us to have only one abstraction, it is possible to customise
abstractions per user. For example, over-the-top providers like
Netflix that use the NFV network of a provider are strongly
interested in which datacenters their functionality is mapped
to and how fast the connections between these datacenters are,
while other customers do not care for this information. These
user preferences should be used by the providers to customise
the infrastructure abstractions that are shared with the users.
This concept is shown in Fig. 3.

In the next section, we will demonstrate this model by
creating some abstracted views.

IV. ABSTRACTION CONSTRUCTION

A. Problem description
In this paper, we investigate the placement freedom trade-

off problem and propose a solution by using infrastructure
abstraction. Both users and providers desire optimal free-
dom in mapping NFs to the infrastructure. By abstracting
the infrastructure, the users get some freedom to place the
NFs on this abstraction, while the providers get freedom in
mapping that result on the exact infrastructure. The detail of
information (i.e. the level of abstraction) that is exposed to
the user relating the resources of the infrastructure, impacts
service request acceptance significantly. While the network
providers prefer to reveal as little information as possible (to
keep the network hidden and to claim most of the placement
freedom), higher levels of abstraction might lead to failing
request embeddings. This is a consequence of the discussion
regarding attributes of abstracted nodes and links in Section
III: when resources are aggregated in an abstract node, users
might expect the nodes behind this abstract node to have more
resources than they in fact have. On the other hand, low levels
of abstraction give away more details of the network than the
provider desires, and reduces the provider’s mapping freedom.
Therefore, solving the placement freedom trade-off problem
comes down to determining which is the right infrastructure
abstraction, by considering these aspects. We quantify the
aspects that influence the problem with the following metrics:
• Acceptance rate, the number of accepted requests divided

by the number of made requests.
• Similarity, an indication on how similar the abstracted

and exact view are. Section V contains a formula for
similarity.

Fig. 3: Example of different infrastructure abstractions. A
more detailed view can be given to an over-the-top provider
while an end user who does not care about the details of
the infrastructure is given a more abstract view. The nodes
with numbers 1, 2 and 3 on the top right side represent
the abstraction of the datacenters while for the end user on
the left side, an abstract view composed of a single node is
provided.

• Stability, an indication on how the abstracted view alters
by changes (failures, updates, etc.) made to the exact
topology. Section V contains a formula for stability.

• Bandwidth of the abstracted links.
• Delay of the abstracted links.

More specifically, the acceptance rate is an indication of
how much of the made requests get accepted and how much
of them get rejected. This is an important metric for both users
and providers, since both want to see as much requests embed
as possible. Similarity offers a measurement of how much the
abstraction and the exact infrastructure look alike. This is a
relevant metric, since the providers wish to hide the business
secrets and the weak spots that their networks contain. Stability
indicates how much changes must be made to an abstracted
view when the exact topology of the network changes. The
metric helps the providers in determining an abstraction which
requires low updates to the users. The bandwidth and the delay
of the abstracted links indicate how appealing the abstraction
looks to the users. The less appealing, the less requests will
be made. This forces the provider to look for an abstraction
with higher bandwidths and lower delays. These metrics are
studied in Section V. Eventually, their study and analysis helps
us in defining a heuristic that balances the placement freedom



trade-off problem by proposing the right abstraction out of a
set of abstractions.

Formally, given a physical infrastructure modelled as an
undirected graph Gp = (Np, Lp) composed of physical nodes
(Np) connected via physical links (Lp), assuming each node
has certain capacity in terms of computation (C), memory (R)
and storage (S) and links have delay (D) and capacity in terms
of bandwidth (BW ), we calculate the right abstraction.

B. Abstraction construction approach

To be able to select the right abstraction, we first need a
set of abstractions to select from. In this paper, we abstract an
infrastructure with the following steps:

1) We partition the infrastructure with a partitioning algo-
rithm.

2) Clusters of nodes from the partitioning become abstract
nodes in the new topology.

3) Two abstract nodes get an abstract link if any two nodes,
one from each cluster, are physically connected.

4) The resources of the infrastructure are combined into the
abstract nodes/links.

5) We select an embedding algorithm to map the NFs on
the exact infrastructure.

In Section III, we explained that an abstraction is linked
to a partition of the nodes. Therefore, by partitioning the
nodes by using some partitioning algorithm, we take the first
step towards an infrastructure abstraction. All the nodes in
the same group get combined in the same abstract node, and
every pair of abstract nodes in which two nodes, one node
of each abstracted node, are connected by a link in the exact
infrastructure is connected by an abstract link.

As explained in Section III, an infrastructure abstraction is
also characterised by how the attributes of the individual nodes
and links are combined into attributes for the abstract nodes
and links. For the abstract nodes, we decided to aggregate
the available C, R and S of all the nodes that are part of
the abstract node. We decided to add no extra information on
how many nodes are part of the abstract nodes and what the
average resources per node are to prevent sharing too much
detailed information of the infrastructure with the users.

For the resources of the links, we chose to assign to each
abstract link a BW that represents the worst-case bandwidth
between the two abstract nodes that the link connects. This
value is found by iterating over every pair of original nodes,
one from each abstract node that is connected to the abstract
link and determining what the bandwidth is along the shortest
path (in hopcount) between them. The lowest value of all these
pairs is the bandwidth of the abstract link. Fig. 2 shows an
example of worst-case bandwidth. The delay of the abstract
link is the worst-case delay between the two abstract nodes
that it connects and is calculated in a similar way. The idea
behind these worst-case values is that they provide the users
with the minimal performances they can expect from that link.
If we were to show average bandwidths and delays, or best-
case values, a user deciding to use this abstract link might get
assigned a physical link with a worse performance than the

values shown in the abstracted view. This could cause users to
terminate their services premature. On the other hand, showing
the worst-case values decreases the number of requests, since
it makes the network look less appealing.

As embedding algorithm, we opted to use the one proposed
in [13]. This algorithm embeds the NFs by minimising the
resource usage, while maintaining the QoS demands for the
links between the NFs. This implies that, to embed a NF, the
algorithm first looks to add this NF to a node that is already
running some NFs, before considering embedding it to a node
that is in the idle state. We chose this particular embedding
algorithm as [13] states that it maximises the number of
accepted requests and thus the acceptance rate.

In the following section we describe a partitioning algo-
rithm, so we can create some abstracted views.

C. Community partitioning

According to Section IV-B, we need a partitioning algorithm
to start constructing infrastructure abstractions. We expect
abstract nodes that contain well-connected infrastructure nodes
to lead to abstract links with decent (worst-case) bandwidth
and delay rates, since intra-cluster links will not significantly
decrease their values. We also expect it to improve the perfor-
mance of groups of NFs or entire services that get assigned
to the same abstracted node, since their NFs will be well-
connected. Based on this, we chose a community partitioning
algorithm to demonstrate our model, since it partitions a
network in well-connected groups. The Louvain method [8]
seems like a good implementation of a community algorithm
to start from, since it is a heuristic that scales well.

The Louvain method divides the nodes of a network into
communities (i.e. clusters), which are groups of nodes that
are well-connected. In [8], the authors define the metric mod-
ularity (M ), which is a scalar that compares the intra-cluster
connectivity to the inter-cluster connectivity of a partitioned
topology. A higher M indicates that the density of the links
between nodes inside a cluster compared to the density of the
links connecting nodes not in the same cluster is higher than
for a partition with a lower M . The Louvain method iterates
over possible partitions by moving nodes, one by one, from
their own cluster into the cluster of one of their neighbours, if
this increases M . The iteration is stopped when it is no longer
possible to make a gain in M by moving a node. At this point,
the Louvain method reaches a first community partitioning. In
a second phase, this process is repeated, but instead of moving
separate nodes to the community of neighbouring nodes, entire
communities are moved towards neighbouring communities.
Iterating this until no more gain in M (the original nodes are
still used to calculate M ) can be found results in a second,
higher level partitioning. This process is repeated until it is no
longer possible to start a new phase, as every migration of a
community leads to a decreasing M .

The Louvain method returns a set of partitions that resemble
local maxima in M . The number of communities for each
partition is not predictable. Since we desire to evaluate differ-
ent abstraction levels, we extend the Louvain method so we



get a more predictable set of abstraction levels. By starting
from the lowest-level partition (i.e. the one with the most
communities), we merge those two communities of which the
merger results in the highest gain in M , on the condition
that these communities are in the same cluster in the higher-
level partitions. After this step, we have a new partition with
one less community than the previous partition. Repeating
this step until only one community remains, results in a set
of abstraction levels, one for each number of communities
smaller than the amount of communities in the lowest level
partition returned by the Louvain method. This gives us a
bigger set of abstractions to choose the right abstraction from.

V. EXPERIMENTAL ANALYSIS

As stated in Section IV-A, quantifying the aspects that
influence finding the right infrastructure is done by using the
metrics : (i) acceptance rate, (ii) similarity, (iii) stability and
(iv) bandwidth and (v) delay of the abstract links. In this
section, we will demonstrate how to evaluate their dependence
on the abstraction level. The evaluations were done for differ-
ent infrastructure topologies, to investigate the influence of
topology characteristics on the metrics.

Our experimental environment, that we use for the accep-
tance rate evaluation, is based on Python code. The Networkx
library is used for graph-based implementations. For the
community partitioning algorithm we extended the library
associated with [8]. To evaluate the impact of a varying
network degree (3, 4 and 5) and size (100, 200 and 300 nodes),
we chose to use random regular graphs [14] as infrastructure
topology. The capacity of the nodes (C, R, S) and the BW
of the links are numbers uniformly distributed between 100
and 300. The D of the links is uniformly distributed between
10 and 50. As infrastructure abstraction, we consider the
partitions resulting from our extension of the Louvain method
(See Section IV-C), where C, R and S are aggregated over
all nodes in an abstract node. The abstract links get assigned
a worst-case BW and D, calculated like explained in Section
IV-B. The service requests are represented as directed graphs
(NFs as nodes and connections as links). The number of
NFs in a service request is generated randomly between 5
and 10, and each pair of nodes is connected with a 0.5
probability. The resource demands of the NFs and the links
are numbers uniformly distributed between 1-50. The delay on
the connections should be lower than 1000. The requests arrive
in a Poisson process with average rate of 4 requests per 100
time units and have exponentially distributed lifetimes with an
average of µ = 1000 time units. Each scenario runs for 10000
time units, is iterated 20 times and the results are averaged.

A. Bandwidth and delay

The first experiment evaluates the impact of different ab-
straction levels on the theoretical calculated bandwidth and
delay of the abstract links. Since these metrics are used by
users to determine their mapping, it can lead to rejected
requests if the network can’t give this performance. If too
low, they can also refrain users from making requests to the

provider in the first place. The bandwidth of an abstraction
link la is defined as

BW (la) = min(BW (lp),∀lp ∈ P,∀P ∈ Paths), (1)

where Paths is the set of shortest paths (see further) for
each pair of nodes, where we consider every pair of nodes that
contains one node from each abstract node connected by the
abstract link. P is the set of links that form such a shortest
path. The delay of a link is defined as

D(la) = max

 ∑
∀lp∈P

D(lp),∀P ∈ Paths

 . (2)

For calculating the elements in Paths, different algorithms
can be used. We considered: i) shortest path (in hopcount) and
ii) least-cost path algorithms. In the latter, we chose to use
the reverse of the link bandwidth as cost for each link. This
favors the least-cost paths to have high bandwidths. However,
the results indicate that the difference in the resulting band-
width and delay between these two algorithms is negligible.
Therefore, Fig. 4 illustrates the results of only the shortest
path algorithm. Fig. 4 shows the calculated bandwidth and
delay, averaged over all the abstract links in the abstract view,
averaged over 20 iterations for every infrastructure topology.
As we see, increasing the abstraction level leads to a lower
bandwidth (Fig. 4a, 4b) and a higher delay (Fig. 4c, 4d). When
keeping the number of clusters constant, we see that larger
networks have worse bandwidths and delays while a lower
delay in networks with higher degree is achieved. The impact
of degree on bandwidth is insignificant.

B. Similarity

Since providers prefer to reveal as little information on the
infrastructure as possible (to keep business secrets and weak
spots hidden), we would like an indication on how similar an
infrastructure abstraction is to the original topology. Therefore,
we introduce similarity as

E(A,G) =
1

2

(
‖Na‖
‖Np‖

+
‖La‖
‖Li‖

)
, (3)

where A is the abstraction, Na is the set of abstract nodes,
Np is the set of original nodes, La is the set of abstract links
and Li is the set of infrastructure links that are connecting
abstract nodes. In other words, Li contains all the links that
have been combined into abstract links. The equation contains
an indication on the change in nodes, the change in links and is
normalised, so that two identical topologies have E = 1. The
more nodes (links) that are combined in (between) clusters, the
more difficult it is to reconstruct the original topology and the
lower E will be. This is shown in Fig. 5a, where the similarity
decreases when the average cluster size increases (decreasing
number of clusters) and when the number of clusters is kept
constant, while the number of nodes increases. Fig. 5b shows
that the similarity decreases when the degree increases, as the
ratio connected clusters to inter-cluster links decreases.



(a) degree 3, n=number of nodes (b) 100 nodes, different degree (c) degree 3, n=number of nodes (d) 100 nodes, different degree

Fig. 4: Average bandwidth and delay evaluation

(a) degree 3, n=number of nodes (b) 100 nodes, different degree (c) degree 3, n=number of nodes (d) 100 nodes, different degree

Fig. 5: Similarity and acceptance rate evaluation
C. Acceptance rate

To evaluate the impact of different abstraction levels on
the acceptance rate we use the experimental environment
described earlier in this section. When the requests arrive,
they need to be mapped on the abstraction to simulate the
user’s behaviour. If this first phase gets accepted, NFs mapped
to an abstracted node must be mapped on the nodes inside
this abstracted node and the connections that are mapped on
the abstracted links must be mapped on the links. For both
mapping phases, we need to use an embedding algorithm.
We opted to use the embedding algorithm proposed in [13]
for both phases. As explained in Section IV-B, this algorithm
embeds the NFs by minimising the resource usage, while
maintaining the QoS demands for the links between the NFs.

If the first phase is able to place the request on the abstracted
view and the second phase can place this on the infrastructure,
the request is accepted. If there are not enough available
resources to place a request in any of the two phases, it
is rejected. Next to the average bandwidth and delay of the
abstracted links, the way the attributes of the abstract nodes
and links are calculated has in influence on the first phase
of the embedding. The lower these attributes are, the more
request will be rejected in this first phase.

Figs. 5c and 5d show the acceptance rate of this embedding
for different abstraction levels. Both a network with a higher
degree and one with more nodes perform better when it comes
to acceptance rate. We also see that a higher abstraction
level leads to a higher acceptance rate. The reason is that,
for a higher abstraction, the first phase can choose between
abstracted nodes with higher resources, and the second phase
of the embedding has more options, since the abstract nodes
contain more original nodes. We expect this trend to reverse
when the abstraction approaches the exact infrastructure, since
the acceptance rate of embedding directly on the infrastructure,
without an abstraction in between, should be higher than the
case with an abstraction in between.

The behaviour of the acceptance rate seems to conflict
with the trend that bandwidth and delay get worse when the
abstraction increases. However, more factors are playing here.
Although the bandwidth decreases with increasing abstraction
level, it stays above the range of bandwidth requirements of
the links in the requests. Therefore, the trend of the bandwidth
has no real influence on the acceptance rate in this experiment.

D. Stability

Since the abstraction hides some details, not every change
in the infrastructure leads to a change in the topology of
the abstracted view. If a link or a node fails, the attributes
of the abstracted link or node they belong to will change,
as its total or averaged resources change. This is a change
that has a low priority when it comes to urgency in sharing
it with the users, since the remaining resources can handle
the requests. However, if the failure causes a change in the
abstracted topology, this needs to be shared with the users.
Since the abstract topology changed, it is possible that the
failed node or link were directly exposed in the old abstract
topology (an abstract link/node representing one link/node).
To prevent the users from mapping on links or nodes that
are no longer available and thus, to prevent rejected requests,
the topology update must be shared with the users. In what
follows, we call this robustness against topology changes the
stability S. Increasing S means that the abstraction becomes
more robust against topology changes. To evaluate the impact
of different abstractions on the stability, we calculated the
number of changes made in the abstracted topology caused
by 10% of links failing in the infrastructure. These changes
can be the addition or the removal of abstracted links, since we
use the number of abstracted nodes as reference frame. Fig.
6 illustrates the number of changes for each abstraction. The
trend of increasing instability for increasing number of clusters
becomes steeper for larger networks or for a higher degree. We
define the numerical value of stability as the inverse of the



(a) degree 3, n=number of nodes (b) 100 nodes-different degree

Fig. 6: Stability evaluation

number of changes made in the abstracted topology caused
by 10% of links failing in the infrastructure.

VI. ABSTRACTION SELECTION ALGORITHM

The experiments in Section V show how the level of
abstraction impacts the different metrics. In this section, we
propose a simple heuristic to enable a provider to select a
suitable abstraction so that different aspects of the problem
are factored in.

We define a cost function which combines the factors
i) similarity, ii) average delay, iii) average bandwidth, iv)
acceptance rate and v) stability as

C(a) = αfE(a)+βfD(a)+
δ

fS(a)
+

γ

fBW (a)
+

κ

fA(a)
. (4)

In this cost function, α, β, δ, γ and κ are parameters that
allow the provider to tune the impact of each factor according
to his/her preference. fE(a) is the impact of the similarity on
the cost function for abstraction a. Assuming that there are
multiple ways of abstracting the physical topology (i.e. other
partitioning algorithms, other ways of combining attributes and
other embedding algorithms), the cost of each abstraction is
calculated and the one with the minimum cost is selected and
sent to the user. Profiling of the requests allows a provider to
select a better abstraction. If more delay-sensitive applications
are requested, the parameters in the cost function can be tuned
to favor abstractions with a lower average delay.

VII. FUTURE WORK

Section V shows that the abstraction has an influence on
a range of metrics. The impact of other abstractions on these
metrics can be the subject of further research. To obtain other
abstractions, other partitioning algorithms (e.g. k-clustering
and k-means clustering), different ways to combine resources
into abstracted nodes and links (e.g. best-case values and
average values) and different embedding algorithms ([12])
can be considered. The influence of other embeddings on the
acceptance rate can be studied, together with the cause of the
rejections (lack of link/node resources). These topics can add
knowledge to improve the abstraction selection process.

VIII. CONCLUSIONS

In this paper we provide a guideline for abstracting infras-
tructure in the context of service function chaining. When
abstracting infrastructure, a spectrum of options and a resulting
trade-off becomes apparent. One end of the spectrum gives
providers total freedom in mapping the services, enabling

them to optimize their resource cost. On the other end, users
are given full access to the infrastructure, enabling them to
make as many placement decisions as possible. We proposed
a mechanism to generate a range of infrastructure abstractions,
as well as a number of metrics to quantify the referred trade-
off. These include the acceptance rate of made requests, the
similarity of the abstraction with the actual infrastructure, the
stability and the bandwidth and delay of the abstract links. The
behavior of these metrics was analysed in a number of con-
trolled setups to validate trends and relationships. Increasing
the abstraction level induces a positive impact on the stability
as well as on the acceptance rate. At the same time, increasing
the abstraction level reduces the similarity. In general, the
acceptance rate increases when the network increases in size
or degree, while the stability increases more quickly when the
size or the degree is higher. To enable providers to generate
infrastructure abstractions according to desired properties, we
proposed a heuristic which minimises a weighted cost function
of the analysed metrics. This gives providers a concrete tool to
make well-informed trade-offs and decisions when exposing
their network to users for service function chaining.

ACKNOWLEDGEMENT

Conducted within the FP7 UNIFY project framework, the
Horizon 2020 and 5G-PPP SONATA project framework and
partially funded by the UGent BOF/GOA project ‘Autonomic
Networked Multimedia Systems’.

REFERENCES

[1] J. M. Halpern and C. Pignataro, “Service Function Chaining (SFC)
Architecture,” IETF RFC 7665, nov 2015. [Online]. Available:
https://rfc-editor.org/rfc/rfc7665.txt

[2] ETSI, “Service chaining for nw function selection in carrier networks,”
feb 2014. [Online]. Available: https://www.etsi.org

[3] T. Nadeau and P. Quinn, “Problem statement for service function
chaining,” IETF RFC 7498, nov 2015. [Online]. Available: https://rfc-
editor.org/rfc/rfc7498.txt

[4] A. Csaszar et. al., “Unifying cloud and carrier network: Eu fp7 project
unify,” in Utility and Cloud Computing (UCC), 2013 IEEE/ACM 6th
International Conference on, Dec 2013, pp. 452–457.

[5] S. Mehraghdam, M. Keller, and H. Karl, “Specifying and placing chains
of virtual network functions,” in Cloud Networking (CloudNet), 2014
IEEE 3rd International Conference on, Oct 2014, pp. 7–13.

[6] I. Vaishnavi et. al., “Recursive, hierarchical embedding of virtual
infrastructure in multi-domain substrates,” in Network Softwarization
(NetSoft), 2015 1st IEEE Conference on. IEEE, 2015, pp. 1–9.

[7] I. Houidi et. al., “Virtual network provisioning across multiple substrate
networks,” Computer Networks, vol. 55, no. 4, pp. 1011–1023, 2011.

[8] V. D. Blondel et. al., “Fast unfolding of communities in large networks,”
Journal of Statistical Mechanics: Theory and Experiment, vol. 2008,
no. 10, p. P10008, 2008.

[9] Y. Fernandess et. al., “K-clustering in wireless ad hoc networks,” in
Proceedings POMC, ser. POMC ’02. ACM, 2002, pp. 31–37.

[10] J. Hartigan and M. Wong, “Algorithm as 136: A k-means clustering
algorithm,” Journal of the Royal Statistical Society. Series C (Applied
Statistics), vol. 28, no. 1, pp. 100–108, 1979.

[11] T. Kanungo et. al., “An efficient k-means clustering algorithm: analy-
sis and implementation,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 24, no. 7, pp. 881–892, Jul 2002.

[12] A. Fisher et. al., “Virtual network embedding: A survey,” IEEE Com-
munications Surveys Tutorials, vol. 15, pp. 1888–1906, Fourth 2013.

[13] S. Sahhaf et. al., “Network service chaining with optimized network
function embedding supporting service decompositions,” Computer Net-
works, 2015.

[14] N. C. Wormald, “Models of random regular graphs,” London Mathemat-
ical Society Lecture Note Series, pp. 239–298, 1999.


