16,238 research outputs found

    The impact of developer team sizes on the structural attributes of software

    Get PDF
    It is established that the internal quality of software is a key determinant of the total cost of ownership of that software. The objective of this research is to determine the impact that the development team’s size has on the internal structural attributes of a codebase and, in doing so, we consider the impact that the team’s size may have on the internal quality of the software that they produce. In this paper we leverage the wealth of data available in the open-source domain by mining detailed data from 1000 projects in Google Code and, coupled with one of the most established of object-oriented metric suites, we isolate and identify the effect that the development team size has on internal structural attributes of the software produced. We will find that some measures of functional decomposition are enhanced when we compare projects authored by fewer developers against those authored by a larger number of developers while measures of cohesion and complexity are degraded

    Animating the evolution of software

    Get PDF
    The use and development of open source software has increased significantly in the last decade. The high frequency of changes and releases across a distributed environment requires good project management tools in order to control the process adequately. However, even with these tools in place, the nature of the development and the fact that developers will often work on many other projects simultaneously, means that the developers are unlikely to have a clear picture of the current state of the project at any time. Furthermore, the poor documentation associated with many projects has a detrimental effect when encouraging new developers to contribute to the software. A typical version control repository contains a mine of information that is not always obvious and not easy to comprehend in its raw form. However, presenting this historical data in a suitable format by using software visualisation techniques allows the evolution of the software over a number of releases to be shown. This allows the changes that have been made to the software to be identified clearly, thus ensuring that the effect of those changes will also be emphasised. This then enables both managers and developers to gain a more detailed view of the current state of the project. The visualisation of evolving software introduces a number of new issues. This thesis investigates some of these issues in detail, and recommends a number of solutions in order to alleviate the problems that may otherwise arise. The solutions are then demonstrated in the definition of two new visualisations. These use historical data contained within version control repositories to show the evolution of the software at a number of levels of granularity. Additionally, animation is used as an integral part of both visualisations - not only to show the evolution by representing the progression of time, but also to highlight the changes that have occurred. Previously, the use of animation within software visualisation has been primarily restricted to small-scale, hand generated visualisations. However, this thesis shows the viability of using animation within software visualisation with automated visualisations on a large scale. In addition, evaluation of the visualisations has shown that they are suitable for showing the changes that have occurred in the software over a period of time, and subsequently how the software has evolved. These visualisations are therefore suitable for use by developers and managers involved with open source software. In addition, they also provide a basis for future research in evolutionary visualisations, software evolution and open source development

    A Longitudinal Study of Identifying and Paying Down Architectural Debt

    Full text link
    Architectural debt is a form of technical debt that derives from the gap between the architectural design of the system as it "should be" compared to "as it is". We measured architecture debt in two ways: 1) in terms of system-wide coupling measures, and 2) in terms of the number and severity of architectural flaws. In recent work it was shown that the amount of architectural debt has a huge impact on software maintainability and evolution. Consequently, detecting and reducing the debt is expected to make software more amenable to change. This paper reports on a longitudinal study of a healthcare communications product created by Brightsquid Secure Communications Corp. This start-up company is facing the typical trade-off problem of desiring responsiveness to change requests, but wanting to avoid the ever-increasing effort that the accumulation of quick-and-dirty changes eventually incurs. In the first stage of the study, we analyzed the status of the "before" system, which indicated the impacts of change requests. This initial study motivated a more in-depth analysis of architectural debt. The results of this analysis were used to motivate a comprehensive refactoring of the software system. The third phase of the study was a follow-on architectural debt analysis which quantified the improvements made. Using this quantitative evidence, augmented by qualitative evidence gathered from in-depth interviews with Brightsquid's architects, we present lessons learned about the costs and benefits of paying down architecture debt in practice.Comment: Submitted to ICSE-SEIP 201

    Using a Dynamic Domain-Specific Modeling Language for the Model-Driven Development of Cross-Platform Mobile Applications

    Get PDF
    There has been a gradual but steady convergence of dynamic programming languages with modeling languages. One area that can benefit from this convergence is modeldriven development (MDD) especially in the domain of mobile application development. By using a dynamic language to construct a domain-specific modeling language (DSML), it is possible to create models that are executable, exhibit flexible type checking, and provide a smaller cognitive gap between business users, modelers and developers than more traditional model-driven approaches. Dynamic languages have found strong adoption by practitioners of Agile development processes. These processes often rely on developers to rapidly produce working code that meets business needs and to do so in an iterative and incremental way. Such methodologies tend to eschew “throwaway” artifacts and models as being wasteful except as a communication vehicle to produce executable code. These approaches are not readily supported with traditional heavyweight approaches to model-driven development such as the Object Management Group’s Model-Driven Architecture approach. This research asks whether it is possible for a domain-specific modeling language written in a dynamic programming language to define a cross-platform model that can produce native code and do so in a way that developer productivity and code quality are at least as effective as hand-written code produced using native tools. Using a prototype modeling tool, AXIOM (Agile eXecutable and Incremental Objectoriented Modeling), we examine this question through small- and mid-scale experiments and find that the AXIOM approach improved developer productivity by almost 400%, albeit only after some up-front investment. We also find that the generated code can be of equal if not better quality than the equivalent hand-written code. Finally, we find that there are significant challenges in the synthesis of a DSML that can be used to model applications across platforms as diverse as today’s mobile operating systems, which point to intriguing avenues of subsequent research
    • 

    corecore