
The Impact of Developer Team Sizes on the Structural
Attributes of Software

Ahmmad Youssef
Brunel University

London
Ahmmad.Youssef@brunel.ac.uk

Andrea Capiluppi
Brunel University

London
Andrea.Capiluppi@brunel.ac.uk

ABSTRACT
It is established that the internal quality of software is a key
determinant of the total cost of ownership of that software. The
objective of this research is to determine the impact that the
development team’s size has on the internal structural attributes
of a codebase and, in doing so, we consider the impact that the
team’s size may have on the internal quality of the software that
they produce.

In this paper we leverage the wealth of data available in the
open-source domain by mining detailed data from 1000 projects
in GoogleCode and, coupled with one of the most established of
object-oriented metric suites, we isolate and identify the effect
that the development team size has on internal structural
attributes of the software produced.

We will find that some measures of functional decomposition are
enhanced when we compare projects authored by fewer
developers against those authored by a larger number of
developers while measures of cohesion and complexity are
degraded.

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: Object-oriented Programming
General Terms
Measurement, Design, Economics, Human Factors.
Keywords
Open Source Software Development Process, Complexity
Metrics

1. INTRODUCTION
To varying extents, the real and perceived success of an
organisation depends on the quality - functional and non-
functional - of the software it produces, commissions or
purchases. There are many examples of organisations suffering
significant loss resulting from poor software processes negatively
affecting the quality of the software, eventually impacting an
organisation’s stakeholders through failed projects or serious
software defects. The impact may lead to significant financial or
reputational loss and can even be serious enough to cause an

organisation to fail. At the very minimum, poor quality can prove
a costly drain on resources. In his book ‘The Economics of
Software Quality’ Capers Jones found that one half of most
software development project budgets and two thirds of the
typical development team’s time are spent fixing poor quality [3].
Poor quality also leads to increased cost-to-change which can
handicap an organisation’s competitive position with a reduced
ability to react to an increasingly dynamic world.

Clearly there is a need for a continual drive to understand the
factors that can have a material effect on software quality.
Software metrics will continue to play an important role in this
process as they embody an empirical approach to software
engineering that, if used appropriately, can lead to a significant
reduction in the implementation and maintenance costs of the
final software product. There are three general classifications of
software metrics – product metrics, process metrics, and project
metrics [4]. Our interest lies in product metrics and, more
specifically, internal structural metrics.

One key factor that is clearly within the sphere of influence of
management is the size of the development teams. While there
has been significant work measuring the impact of team sizes on
software process metrics (namely productivity) and limited work
measuring impact of team sizes on external software metrics
(namely fault-proneness), there has been no research
investigating the impact of team sizes on the structural attributes
of a codebase. As we will discuss further, filling this gap in the
research would enable us to leverage the vast body of research
linking object-oriented structural metrics to some key
characteristics that matter greatly to practitioners such as
testability and maintainability. In doing so, we will pave the way
to gaining a significantly greater understanding of the true impact
of team sizes on internal software quality.

2. RELATED WORK
2.1 Team Sizes and External Software Metrics
There has been plenty of valuable in-depth research investigating
the relationship between development team productivity and its
size. In his popular book ‘The Mythical Man Month’, Brooks
argues that, since software development is a complex task, the
communication effort is great and adding more developers can
lengthen rather than shorten the time taken to complete a task as
it adds an exponentially greater number of necessary
communication paths between developers [5].
Roger et al., using data from 130 projects, empirically tested the
impact of a number of factors on software development
productivity concluding that only team size significantly impacts
software development time and productivity. This was since

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

IWPSE-EVOL’15 August 30-September 4, 2015 Bergamo, Italy
Copyright 2010 ACM 1-58113-000-0/00/0010 …$15.00.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Brunel University Research Archive

https://core.ac.uk/display/42131105?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

independently confirmed using other empirical methods (other
papers) [6].
Although the emphasis in the research community has largely
been on establishing the link between team sizes and
productivity, there has been some work linking team sizes to
measures used as a surrogate for software quality. Nagappan
leveraged data from Microsoft’s Windows Vista project to
establish that metrics based on organisational structures – of
which team sizes were one aspect - are a significant predictor of
software failure-proneness. [7]

2.2 Internal Software Metrics

The study and application of internal software metrics dates back
to the mid-1960’s when the primitive Lines of Code metric was
routinely used as the basis for measuring software development
productivity (LoC per month) and quality (defects per KLoC).
In 1971 Akiyama proposed the use of metrics for software quality
prediction proposing a regression-based model for module defect
density (number of defects per line of code) where line of code
was used as a crude indicator of complexity [19]. This was one of
the earliest attempts, albeit a simplistic one, to extract an
objective measure of software quality through the analysis of
observables of the system. With the increasing diversity of
programming languages, it became necessary to introduce a more
nuanced model of software complexity.
McCabe and Halstead made significant contributions but with
the increasing adoption of Object-Oriented (OO) programming
languages, Chidamber and Kemerer argued that this new
development necessitated measures that could guide
organizations to its successful adoption. This fact, coupled with
criticisms of existing metrics suites, saw the development of the
Chidamber and Kemerer (CK) metrics suite [19].
Academic efforts to extend, validate and refine complexity
metrics have been a dominant feature of metrics research ever
since. Basili et al., motivated by the desire to leverage software
metrics to provide guidance to the areas of a system where
testing efforts are best spent, built on Henry’s research [18] to
establish the utility of the Chidamber and Kemerer software
metrics suite as a predicator of fault prone software classes. This
was achieved through the diligent assembly of eight software
development teams and a thorough regression analysis to
establish relationships between OO metrics and observed defects
[9].
These are, by no means, the only studies of this nature.
Subramanyam et al. conducted similar work with access to a
large number of in-house developed codebases and were able to
control for programming language and software size, confirming
the results obtained by Basili et al. – results which were further
validated in a multitude of similar studies, each adding its own
unique dimension, whether on the analysis side or the case study
subject [10][11][12][13][14].
More recently Saberwal et al. employed similar regression
models to correlate CK metrics with bad code smells driven by
the desire to guide refactoring efforts to where they are most
needed [15]. Badri et al., using similar techniques, concluded
that a correlation exists between LCOM and unit test coverage,
validating the use of OO metrics as a predictor of the testability
of classes [16].

3. RESEARCH PROBLEM
The objective of this research is to establish the impact that a
development team’s size has on the structural attributes of a
codebase. The main caveat when embarking on such a study is
that we must remain conscious that codebases with a larger team
size are more likely to exhibit higher complexity than codebases
with fewer developers simply due to the fact that the larger team
is likely to have gone through more iterations of development as
more complex functionality is implemented. To elaborate, when
using version control systems, it is usual to build functionality
iteratively through repeated modification of source files. It has
been proven that, as software projects evolve, iterations of a
codebase tend to exhibit growing complexity [8]. A key part of
our approach to solving our research problem is to isolate and
remove any impact that this effect may have on the metrics of an
evolving codebase and to observe the impact of the development
team size alone. We detail our approach to this particular
challenge in section 4.4.

4. METHODOLOGY
4.1 Data Set
Given the wealth of project data accessible in the open source
space, this was decided to be the best source of raw data for
analysis. There are a number of popular open source project hosts
(or ‘forges’) – GITHub, SourceForge, and GoogleCode. In terms
of developer activity, GITHub is the most popular, followed by
SourceForge and then GoogleCode [1]. Each of these forges has a
unique and varied make-up of languages constituting its project
population. It was considered that Java projects would be the
most preferable to study given the myriad of available static code
analysis tools readily available as well as the large number of
projects available for study. Furthermore, Java consistently rates
as the Object Oriented language with the highest adoption rates
[2], an important consideration when bearing in the mind the
need to ensure the relevance of this research to practitioners.

Table 1 A summary of the CK metrics and guidelines
Metric Full Name Attributes Measured

CBO Coupling
Between
Objects

Count of other objects to which the object being
considered is coupled. A high number can indicate
poor encapsulation, a low level of reusability, and
create difficulties in modification or testing.

DIT Depth of
Inheritance
tree

A measure of complexity as measured by the
number of parent classes from which a class may
inherit behavior. A high number can point towards
excessive design complexity.

LCOM Lack of
Cohesion of
Methods

Measurement of the disparateness of functionality
within an object. A high number can point towards
poorly designed objects that do not adhere to the
“single responsibility principle”.

NOC Number Of
Children

A measure of reuse and abstraction. A high number
can point towards poor design and diluted
abstraction.

RFC Response
For a Class

Count of methods which may be executed in
response to a message. High numbers may highlight
objects with undue complexity complicating build,
maintenance, and testing.

WMC Weighted
Methods per
Class

An indicator of the complexity of a class through the
method count in that object. A high number can
indicate undue complexity and limited scope for re-
use.

GoogleCode was the forge selected for study both for its
popularity and high level of Java adoption rates. One final
benefit of specifically mining GoogleCode was that project
administrators can choose from among three available version
control systems – Subversion, GIT, and Mercurial. This ensured
that our toolchain needed to be compliant with each version
control system meaning that, as GoogleCode itself prepares for
eventual shutdown, the toolchain is equally suited to be re-used
to mine GitHub (which uses GIT) or SourceForge (which uses
Subversion and Mercurial).

4.2 Metrics Suite
The popular metrics suite proposed by Chidamber and Kemerer
[12] is both well understood and has a significant supporting
body of research. The details of this metric suite are outlined in
table 1.

4.3 Defining the Development Team
There are a number of possible definitions of a software
development team. Both Capra et al. and Smith et al. consider a
team to consist of all developers to have worked on a codebase
for any length of time [24][25] while Nagappan et al. (using data
from IBSG [26]) consider the development team to also include
management, administration and operations personnel.
Given the context of mining open source repositories, we favour
defining the team size as the cumulative total of all unique
committers present in the revision history in the version control
system of a given project. Our view is that this definition is
consistent with the prior art, simple to measure and reproduce,
and elegantly allows us to capture the number of unique
development design approaches that may have influenced the
evolution of a codebase.
There are some potential limitations to this approach, most
notably that we do not distinguish between frequent committers
and causal (infrequent) committers. Figure 1 shows the relative
activity levels of the committers in our data sample and, while it
is true that the majority of commit activity takes place by a
minority of committers, clearly the majority of committers do
make a significant contribution and cannot be discounted.

Figure 1 The number of committers exhibiting a activity in a
defined range against the number of commits in that range.

4.4 Data Analysis Techniques
In order to investigate the relationship between team sizes and
internal quality metrics through mining open source repositories,

there is a large amount of data that needs to be collated and
analysed. This data essentially takes the form of a large
population of file-level CK metrics along with meta-data
associated with each file revision. This meta-data allows us to
establish the number of unique committers to an individual
project which is, to all intents and purposes, the project
development team size.

Given the above data, we can group metrics together by project
team size - irrespective of the individual project from which they
came - and consider them distinct populations. For example, if
project X and project Y each had n unique committers, all
metrics belonging to each file within both projects would reside
in a single bucket. Using this bucketing approach, we would have
a limited number of distinct populations of metrics which could
then be compared using statistical techniques.

As mentioned earlier, we must remain conscious that codebases
written by larger teams are more likely to exhibit higher
complexity than codebases with less developers given that a
larger team will solve more complex problems and a codebase
will typically go through more iterations (or ‘revisions’) in the
process. This effect is illustrated in figure 2 where averaging
metric values across files modified by a given number of
committers yields a steady upward on measures of complexity.

Figure 2 Average metric value for files plotted against the
cumulative number of committers to have edited the files.

Figure 3 shows the increase in total project revision count against
project team size. We can see this impact of this in Figure 4
where we average the metrics values and plot their progression
by revision count.

Figure 3 Project revision count plotted against project team size

For this reason, our data analysis will take on an additional
dimension alongside team size – namely that of the file revision
count. From the meta-data associated with each revision, we can
determine how many revisions any one file has undergone. This
data will feed into our bucketing process where we can ensure
that the population of metrics within a particular bucket only
contains those metrics belonging to projects with a particular
team size and only from files that have been modified a
particular number of times. This approach, illustrated in figure 5,
will give us confidence that when comparing our bucketed metric
populations, any statistically significant differences are solely
down to team size rather than fact that larger teams typically
work on larger projects.
When comparing metrics populations bucketed by developer
count, the Mann-Whitney test is ideally suited as all metrics
populations are independent and consist of continuous data that
we found not to be normally distributed.

Figure 4 Average metric values against revision count

Figure 5 Bucketing approach illustrated

5. DATA COLLECTION
By leveraging the FLOSSmole project [20] we were able to
obtain raw data describing, at a project level, details about all
projects hosted in GoogleCode. This, along with the GoogleCode
project webpages and the associated repositories formed the
input into a bespoke toolchain illustrated in figure 6.

It is important to note that the majority of the complexity in this
toolchain resides in the Project Selection Algorithm (1), the CK
metrics Generation (3), and the Metrics Analysis Algorithms (4).
Although the scripts to extract revision history (2) and checkout
file revisions (3) may be considered a duplication of effort in
prior research (most this work has notably been implemented in
CVSAnalY [21]), it was felt that integration challenges in using
the such a software package would outweigh the effort we would
expend in developing our own bespoke scripts for the relatively
simpler parts of the toolchain. For the more complex
functionality of metrics generation, an off-the-shelf tool for
metrics generation was employed. Our toolchain is illustrated in
figure 6.

5.1 Project Selection Algorithm
This component (marked as component 1 in figure 6) is written
in Java and takes in flat files made available by FLOSSmole
detailing all the available projects hosted by GoogleCode and the
‘tags’ associated with each project. The project data is used to
extract all projects with the tag ‘Java’ as of May 2012 – yielding
us a list of 22594 GoogleCode hosted Java projects. That list was
then reduced from 22594 projects to a more manageable subset
by employing the pseudorandom ‘Math.random’ function in Java
to select a number between 0-1 to be multiplied by the total
number of projects until 1000 projects had been selected. In the
process we discard from consideration any projects with no
revision history as they represent projects which were not started
and have no significance in this study and should not constitute
part of our 1000 project sample.

Figure 6 Toolchain to extract and analyse revision based
metrics

Once the projects were selected, the algorithm then extracts (via
‘screen-scraping’) the repository URL from the relevant project’s

page on the GoogleCode website. The project list with the
associated URLs are consolidated in a single file which is used to
drive the next part of the toolchain.

5.2 Revision History Extraction Scripts
The revision history extraction scripts (marked as component 2 in
figure 6) are a relatively simple collection of shell scripts (that
are runnable on a unix platform) to query, for all the projects in
the input file, the relevant version control repositories to obtain
the full revision history, storing it in a simple format to allow it
to drive the code analysis stage.

5.3 Code Analysis Component
The code analysis component (marked at component 3 in figure
6) comprises, again, fairly simple shell scripts responsible for
checking out each version of the project, handing over the heavy
lifting of project metrics generation to run a metrics generation
tool called ‘Understand’ by Scientific Toolworks Inc. [28]. The
report created by Understand is of a particular format which is
then passed through a file parser (written in Java) which extracts
the information that is pertinent to our research and stores it in a
format appropriate to our metrics analysis component.
Understand version 2.6.610 was chosen as it is available on
academic license and offers a unix-based command line tool that
generates metric reports in an easily parsable format. The
calculations used by Understand to generate metric values are in
table 2.

Table 2 A description of how CK Metric values are calculated
for Java classes by Understand

Metric Full Name
Calculation for Java classes in
‘Understand’

CBO Coupling
Between
Objects

Number of other Classes invoked
from this class. Library classes not
included.

DIT Depth of
Inheritance
tree

Number of parent classes in total

LCOM Lack of
Cohesion of
Methods

For each member variable calculate
the percentage of methods which do
not access that variable. Average the
percentages to determine LCOM.

NOC Number Of
Children

Count of other classes that directly
extend it.

RFC Response
For a Class

Number of total methods including
all methods in parent classes
(regardless of invocation or
visibility).

WMC Weighted
Methods
per Class

Count of all methods in that class
only (regardless of invocation,
visibility, and instance or static).

5.4 Metrics Analysis Algorithms
The metrics analysis algorithms (marked as component 4 in
figure 6) are one of the more complex components in our
toolchain. It is a software package written in Java, and

responsible for retrieving the generated metrics data,
implementing the bucketing strategy, and running statistical tests
to produce our analysis.

6. RESULTS
6.1 Bucket Populations
When we conduct a simple Mann-Whitney test for each CK
metric type comparing two groups – the first being all metric
results belonging to single developer projects and the second
group being metrics results from all other projects - we find that
the two groups are independent with p-values < 0.05. However,
as discussed in detail in section 4.3, when analysing metrics
results we bucket our data by revision count and project team
size in order to isolate and observe the effect of team size alone.

It is logical that there would be a greater number of metric
results pertaining to the lower revision counts as, by necessity,
for a file to be revised, say, 5 times, it would have 4 prior
revisions. However, it is perfectly normal for a file to only have
fewer than 5 total revisions. This is an important consideration as
buckets belonging to higher revisions and team sizes will have
diminishing populations. Figure 7 and table 3 clearly show this
effect. For our analysis, we only consider buckets belonging to
team up to 5 developers strong with a maximum of 6 revisions as
we see marked drop-off in bucket population sizes as team size
and revision counts increase.

Table 3 Bucket population sizes

 PROJECT TEAM SIZE

Rev 1 Dev 2 Dev 3 Dev 4 Dev 5 Dev

1R 39460 12524 4372 2060 4962
2R 14236 5552 2630 2169 2316

3R 8291 3662 1758 981 1509
4R 5743 2395 1282 695 973
5R 4024 1705 995 515 687
6R 2985 1311 786 393 528

Figure 7 Average metric values against revision count

6.2 Comparing Lone Developer Projects
against Multi-developer Projects
Table 4 details the results from the statistical tests run across
each team-size comparison. The first part of the table
summarises the comparison results for metrics from single

developer projects against projects authored by two developers.
Taking the WMC column as an example, we can see that the 2R
bucket (this refers to the bucket of WMC metric values
belonging to the second revision of files only) has statistically
significantly lower values than in the single developer bucket. To
be clear, this means that a Mann-Whitney test yields a p-value of
<0.05 and we can observe higher median values in the single
developer bucket. This means that we can say with a confidence
level of 95% ±5% that files with two revisions and a single
developer have higher WMC values than files with two revisions
and two developers.
The next bucket down - 1D3R v 2D3R - exhibits no significant
difference between the metrics populations for WMC.

In table 4 we can clearly observe that a large number of buckets
that show statistical significance across CBO, DIT, LCOM and,
to a lesser extent RFC and WMC. In the case of DIT, we can see
a progression where more buckets show significance as the team
size grows. In the case of other metrics we can see an
inconsistent pattern with more buckets showing differences in
the 1D v 3D and 1D v 4D tests. Another key observation is that
CBO, DIT, RFC and WMC generally trend downwards as project
team sizes increase while LCOM increases.

Table 4 Results of Mann-Whitney tests comparing the lone
developer bucket of the various revision counts against the
corresponding buckets for 2, 3, 4 and 5 developer buckets. The
percentages relate to the proportion of the six buckets (1R-6R)
that show p-values<0.05 for a particular team size comparison.

1R - 1R - 1R - 1R - 1R - 1R -

2R - 2R - 2R - 2R - 2R - 2R ˃

3R ˃ 3R - 3R - 3R - 3R - 3R -

4R - 4R - 4R - 4R - 4R - 4R -

5R - 5R - 5R - 5R - 5R - 5R -

6R - 6R - 6R - 6R - 6R - 6R -

1R - 1R - 1R > 1R - 1R > 1R >

2R ˃ 2R ˂ 2R - 2R - 2R ˃ 2R ˃

3R ˃ 3R - 3R ˂ 3R - 3R - 3R -

4R ˃ 4R - 4R ˂ 4R - 4R - 4R -

5R ˃ 5R - 5R - 5R - 5R - 5R -

6R ˃ 6R - 6R ˂ 6R - 6R - 6R -

1R - 1R > 1R - 1R - 1R > 1R -

2R ˂ 2R ˂ 2R - 2R - 2R ˂ 2R ˃

3R ˃ 3R - 3R ˂ 3R - 3R - 3R -

4R ˃ 4R - 4R ˂ 4R - 4R - 4R -

5R ˃ 5R ˂ 5R ˂ 5R - 5R - 5R -

6R ˃ 6R ˂ 6R ˂ 6R - 6R - 6R -

1R < 1R - 1R - 1R - 1R - 1R -

2R - 2R ˂ 2R - 2R - 2R - 2R -

3R - 3R ˂ 3R - 3R - 3R - 3R -

4R - 4R ˂ 4R - 4R - 4R - 4R ˃

5R - 5R ˂ 5R - 5R - 5R ˃ 5R ˃

6R - 6R ˂ 6R - 6R - 6R ˃ 6R ˃

1D v 3D

1D v 2D

NOC RFC WMC

1D v 4D

1D v 5D

NOC RFC WMC

CBO DIT LCOM NOC RFC WMC

33%

WMC
17% 0% 0% 0% 0% 17%
CBO DIT LCOM NOC RFC

CBO DIT LCOM
83% 17% 67% 0% 33%

50%

83% 67% 67% 0% 33% 17%

CBO DIT LCOM
17% 83% 0% 0% 33%

6.3 Increasing the Developer Count
Table 5 displays the result of a series of comparisons between
projects with two developers against projects with 3, 4, and 5
developers respectively. We see very similar trends to the
previous set of results in section 6.2.

7. CONCLUSIONS AND FUTURE WORK
Table 6 presents a summary of the discernable trends across each
metric type as we add developers to a project team. We can see
very similar trends regardless of whether we compare projects
with a single developer against those with several developers, or
whether we compare projects with multiple developers with
those with still more developers.

Table 5 Results from the 5 developer against 2, 3, and 4
developer comparisons.

1R < 1R - 1R - 1R - 1R - 1R -

2R - 2R - 2R - 2R - 2R - 2R -

3R - 3R - 3R - 3R - 3R - 3R -

4R - 4R < 4R - 4R - 4R - 4R -

5R - 5R - 5R - 5R - 5R - 5R -
6R - 6R - 6R - 6R - 6R > 6R -

1R < 1R - 1R - 1R - 1R < 1R <

2R < 2R - 2R - 2R - 2R < 2R <

3R - 3R < 3R > 3R - 3R - 3R -

4R < 4R < 4R > 4R - 4R - 4R -

5R - 5R < 5R - 5R - 5R - 5R -
6R < 6R - 6R - 6R - 6R - 6R >

1R < 1R - 1R - 1R - 1R < 1R -

2R > 2R - 2R - 2R - 2R > 2R -

3R - 3R - 3R > 3R - 3R - 3R >

4R < 4R < 4R > 4R - 4R - 4R >
5R - 5R - 5R > 5R - 5R - 5R >

6R < 6R - 6R > 6R - 6R > 6R >

RFC WMC
67% 17% 67% 0% 50% 67%

4D v 5D CBO DIT LCOM NOC

RFC WMC
67% 50% 33% 0% 33% 50%

3D v 5D CBO DIT LCOM NOC

LCOM NOC RFC WMC
17% 17% 0% 0% 17% 0%

2D v 5D CBO DIT

Table 6. Summary of observed trends. Shaded boxes indicate a
negative impact. Clear boxes indicate a positive impact.

Metrics Objective

Lone developer
v. Multi-
developer teams

Smaller
teams v.
larger teams

CBO ↓ ↓ ↑
DIT ↓ ↑ ↑
LCOM ↓ ↑ ↑
NOC ↓ - -
RFC ↓ ↓ ↓
WMC ↓ ↓ ↓

The clear conclusion is that where projects are collaborated on by
a larger number of developers we are likely to see a decrease in
cohesion (reflected by larger LCOM values), an increase in

structural complexity (reflected by larger DIT values) and an
increase in coupling (reflected by larger CBO values). On a more
positive note, we are likely to see that classes have improved
functional decomposition (reflected by lower RFC and WMC
values).
Finally, we can see consistency between our results and the
research of both the work of Nagappan et al. [7] who linked
larger team sizes with increased fault-proneness and Basili et al.
confirmed that higher values of CBO and DIT, as observed in our
research, is highly correlated with increased defect counts [9].
The implications of these findings are of relevance to
practitioners. We believe that software development teams
should take note of the fact that the structural attributes of a
codebase can show degradation in some aspects as team sizes
grow and the diligent use of tools like SonarQube [27] can
provide visibility of this to developers and management in order
for them to work together to mitigate any negative trends. This
work is also relevant to the research community, to whom we
suggest a number of avenues that we encourage the research
community to pursue.
Firstly, we can hypothesize that the reasons driving the trends
observed in table 6 are that, while a competent developer with
relative unfamiliarity with the codebase will be capable of
implementing code with a high degree of functional
decomposition (for example, smaller single purpose methods),
achieving low coupling and complexity as a codebase evolves
typically requires a more in-depth understanding of the entirety
of the codebase – an understanding that we can reasonably
hypothesize is more likely to be lacking in a larger development
team. Through qualitative analysis and engaging development
team members, the research community could shed more light as
to the drivers behind the trends revealed in this study.
Secondly, we believe that there is value in looking at how this
work applies within the context of Agile development [22]. For
example the Agile methodology recommends that development
teams are co-located to facilitate communication between
members [23]. In contrast, open source project teams tend to
consist of people collaborating without necessarily sharing the
same physical space. There is value in understanding if the
negative effects of a larger development team manifest when a
team is co-located and experiences lower barriers to effective
communication.
Finally, we appreciate that a team with a total of 5 developers
cannot necessarily be classed a large team – indeed this is
considered the lower limit of the ideal Agile development team.
We would be interested to see how these trends continue when
taken up to and beyond the maximum ideal team size of 9 as
stipulated by the Agile approach [23].

8. REFERENCES
[1] S. O’Grady, What Black Duck Can Tell Us About GitHub,

Language Fragmentation and More, RedMonk, 2011,
www.redmonk.com/sogrady/2011/06/02/blackduck-webinar
(accessed 15/05/2015).

[2] Tiobe Software, TIOBE programming community index for
June 2013, 2013, www.tiobe.com (accessed 15/05/2015)

[3] C. Jones, O. Bonsignour, The economics of software quality.
Addison-Wesley Professional, 2011.

[4] S. Kan, Software Quality Metrics Overview. Metrics and
Models in Software Quality Engineering, 2002, pp. 85-120.

[5] F. Brooks, The Mythical Man-Month. Addison-Wesley,
1975.

[6] J. Rodger, P. Pankaj, A. Nahouraii, Knowledge
Management of Software Productivity and Development
Time. Journal of Software Engineering and Applications,
4(11), 2011, pp. 609.

[7] N. Nachiappan, B. Murphy, V. Basili, The Influence of
Organizational Structure on Software Quality: An Empirical
Case Study. Proceedings of the 30th international
conference on Software engineering, 2008.

[8] R. Prather, An Axiomatic Theory of Software Complexity
Measure. The Computer Journal, 27(4), 1984, pp. 340-347.

[9] V. Basili, R., & L. Briand, W. Melo, A Validation of
Object-Oriented Design Metrics as Quality Indicators. IEEE
Transactions on Software Engineering, 22(10), 1996, pp.
751-761.

[10] R. Subramanyam, M. Krishnan, Empirical Analysis of CK
Metrics For Object-Oriented Design Complexity:
Implications For Software Defects. IEEE Transactions on
Software Engineering, 29(4), 2003, pp 297-310.

[11] K. El Emam, W. Melo, J. Machado, The Prediction of
Faulty Classes Using Object-Oriented Design Metrics.
Journal of Systems and Software, 56(1), 2001, pp 63-75.

[12] M. Tang, M. Kao, M. Chen, An Empirical Study on Object-
Oriented Metrics. Proceedings of the Sixth International
Software Metrics Symposium, 1999, pp. 242-249.

[13] J. Xu, D. Ho, L. Capretz, An Empirical Validation of
Object-Oriented Design Metrics For Fault Prediction.
Journal of Computer Science, 4(7), 2008, pp 571.

[14] R. Malhotra, A. Jain. Fault Prediction Using Statistical and
Machine Learning Methods for Improving Software Quality.
Journal of Information Processing Systems, 8(2), 2012, pp
241-262.

[15] H. Saberwal, S. Singh, S. Kaur. Empirical Analysis Of
Open Source System For Predicting Smelly Classes.
International Journal of Engineering Research &
Technology, 2(3), 2013.

[16] L. Badri, M. Badri, F. Toure, An Empirical Analysis of
Lack of Cohesion Metrics for Predicting Testability of
Classes. International Journal of Software Engineering and
its Applications, 5(2), 2011, pp. 69-85.

[17] S. Chidamber, C. Kemerer, A Metrics Suite for Object
Oriented Design. IEEE Transactions on Software
Engineering, 20(6), 1994, pp. 476-493.

[18] W. Li, S. Henry, Object-Oriented Metrics That Predict
Maintainability. Journal of Systems and Software, 23(2),
1993, pp. 111-122.

[19] F. Akiyama, An Example of Software System
Debugging. IFIP Congress 71(1), 1971.

[20] J. Howison, M. Conklin, K. Crowston, FLOSSmole: A
Collaborative Repository for FLOSS Research Data and
Analyses. International Journal of Information Technology
and Web Engineering, 1(3), 2006, pp. 17–26.

[21] G. Robles, S. Koch, J, González-Barahona, J. Carlos,
Remote Analysis and Measurement of Libre Software
Systems by Means of the CVSAnalY tool. Proceedings of
the 2nd ICSE Workshop on Remote Analysis and
Measurement of Software System, 2004, pp. 51-55.

[22] L. Lindstrom, R. Jeffries, Extreme Programming and Agile
Software Development Methodologies. Information Systems
Management, 2005, 21(13).

[23] K. Schwaber, J. Sutherland, The Scrum Guide. Scrum.org,
2014, www.scrumguides.org/docs/scrumguide/v1/scrum-
guide-us.pdf (accessed 15/05/2015).

[24] R. Smith, J. Hale, A. Parrish, An Empirical Study Using
Task Assignment Patterns to Improve the Accuracy of
Software Effort Estimation. IEEE Transactions on Software
Engineering, 27(3), 2001, pp. 264-271.

[25] E. Capra, A. Wasserman, A Framework for Evaluating
Managerial Styles in Open Source Projects. Open Source
Development, Communities and Quality, 2008, pp. 1-14.

[26] The International Software Benchmarking Standards,
www.isbsg.org (accessed 15/05/2015).

[27] SonarQube, www.sonarqube.org (accessed 15/05/2015).
[28] SciTools, www.scitools.com (accessed 15/05/2015).

	1. INTRODUCTION
	2. RELATED WORK
	3. RESEARCH PROBLEM
	4. METHODOLOGY
	4.1 Data Set
	4.2 Metrics Suite
	4.3 Defining the Development Team
	4.4 Data Analysis Techniques

	5. DATA COLLECTION
	5.1 Project Selection Algorithm
	5.2 Revision History Extraction Scripts
	5.3 Code Analysis Component
	5.4 Metrics Analysis Algorithms

	6. RESULTS
	7. CONCLUSIONS AND FUTURE WORK
	8. REFERENCES

