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ABSTRACT 
It is established that the internal quality of software is a key 
determinant of the total cost of ownership of that software. The 
objective of this research is to determine the impact that the 
development team’s size has on the internal structural attributes 
of a codebase and, in doing so, we consider the impact that the 
team’s size may have on the internal quality of the software that 
they produce. 

In this paper we leverage the wealth of data available in the 
open-source domain by mining detailed data from 1000 projects 
in GoogleCode and, coupled with one of the most established of 
object-oriented metric suites, we isolate and identify the effect 
that the development team size has on internal structural 
attributes of the software produced.  

We will find that some measures of functional decomposition are 
enhanced when we compare projects authored by fewer 
developers against those authored by a larger number of 
developers while measures of cohesion and complexity are 
degraded.  

Categories and Subject Descriptors 
D.1.5 [Programming Techniques]: Object-oriented Programming 
General Terms 
Measurement, Design, Economics, Human Factors. 
Keywords 
Open Source Software Development Process, Complexity 
Metrics 
 

1.  INTRODUCTION 
To varying extents, the real and perceived success of an 
organisation depends on the quality - functional and non-
functional - of the software it produces, commissions or 
purchases. There are many examples of organisations suffering 
significant loss resulting from poor software processes negatively 
affecting the quality of the software, eventually impacting an 
organisation’s stakeholders through failed projects or serious 
software defects.  The impact may lead to significant financial or 
reputational loss and can even be serious enough to cause an 

organisation to fail. At the very minimum, poor quality can prove 
a costly drain on resources. In his book ‘The Economics of 
Software Quality’ Capers Jones found that one half of most 
software development project budgets and two thirds of the 
typical development team’s time are spent fixing poor quality [3]. 
Poor quality also leads to increased cost-to-change which can 
handicap an organisation’s competitive position with a reduced 
ability to react to an increasingly dynamic world.  
 
Clearly there is a need for a continual drive to understand the 
factors that can have a material effect on software quality. 
Software metrics will continue to play an important role in this 
process as they embody an empirical approach to software 
engineering that, if used appropriately, can lead to a significant 
reduction in the implementation and maintenance costs of the 
final software product. There are three general classifications of 
software metrics – product metrics, process metrics, and project 
metrics [4]. Our interest lies in product metrics and, more 
specifically, internal structural metrics. 
 
One key factor that is clearly within the sphere of influence of 
management is the size of the development teams. While there 
has been significant work measuring the impact of team sizes on 
software process metrics (namely productivity) and limited work 
measuring impact of team sizes on external software metrics 
(namely fault-proneness), there has been no research 
investigating the impact of team sizes on the structural attributes 
of a codebase. As we will discuss further, filling this gap in the 
research would enable us to leverage the vast body of research 
linking object-oriented structural metrics to some key 
characteristics that matter greatly to practitioners such as 
testability and maintainability. In doing so, we will pave the way 
to gaining a significantly greater understanding of the true impact 
of team sizes on internal software quality. 

2.  RELATED WORK 
2.1 Team Sizes and External Software Metrics 
There has been plenty of valuable in-depth research investigating 
the relationship between development team productivity and its 
size. In his popular book ‘The Mythical Man Month’, Brooks 
argues that, since software development is a complex task, the 
communication effort is great and adding more developers can 
lengthen rather than shorten the time taken to complete a task as 
it adds an exponentially greater number of necessary 
communication paths between developers [5]. 
Roger et al., using data from 130 projects, empirically tested the 
impact of a number of factors on software development 
productivity concluding that only team size significantly impacts 
software development time and productivity. This was since 
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independently confirmed using other empirical methods (other 
papers) [6]. 
Although the emphasis in the research community has largely 
been on establishing the link between team sizes and 
productivity, there has been some work linking team sizes to 
measures used as a surrogate for software quality.  Nagappan 
leveraged data from Microsoft’s Windows Vista project to 
establish that metrics based on organisational structures – of 
which team sizes were one aspect - are a significant predictor of 
software failure-proneness. [7] 

2.2 Internal Software Metrics 

The study and application of internal software metrics dates back 
to the mid-1960’s when the primitive Lines of Code metric was 
routinely used as the basis for measuring software development 
productivity (LoC per month) and quality (defects per KLoC). 
In 1971 Akiyama proposed the use of metrics for software quality 
prediction proposing a regression-based model for module defect 
density (number of defects per line of code) where line of code 
was used as a crude indicator of complexity [19]. This was one of 
the earliest attempts, albeit a simplistic one, to extract an 
objective measure of software quality through the analysis of 
observables of the system. With the increasing diversity of 
programming languages, it became necessary to introduce a more 
nuanced model of software complexity. 
McCabe and Halstead made significant contributions but with 
the increasing adoption of Object-Oriented (OO) programming 
languages, Chidamber and Kemerer argued that this new 
development necessitated measures that could guide 
organizations to its successful adoption. This fact, coupled with 
criticisms of existing metrics suites, saw the development of the 
Chidamber and Kemerer (CK) metrics suite [19].  
Academic efforts to extend, validate and refine complexity 
metrics have been a dominant feature of metrics research ever 
since. Basili et al., motivated by the desire to leverage software 
metrics to provide guidance to the areas of a system where 
testing efforts are best spent, built on Henry’s research [18] to 
establish the utility of the Chidamber and Kemerer software 
metrics suite as a predicator of fault prone software classes. This 
was achieved through the diligent assembly of eight software 
development teams and a thorough regression analysis to 
establish relationships between OO metrics and observed defects 
[9]. 
These are, by no means, the only studies of this nature. 
Subramanyam et al. conducted similar work with access to a 
large number of in-house developed codebases and were able to 
control for programming language and software size, confirming 
the results obtained by Basili et al. – results which were further 
validated in a multitude of similar studies, each adding its own 
unique dimension, whether on the analysis side or the case study 
subject [10][11][12][13][14]. 
More recently Saberwal et al. employed similar regression 
models to correlate CK metrics with bad code smells driven by 
the desire to guide refactoring efforts to where they are most 
needed [15]. Badri et al., using similar techniques, concluded 
that a correlation exists between LCOM and unit test coverage, 
validating the use of OO metrics as a predictor of the testability 
of classes [16]. 

3.  RESEARCH PROBLEM 
The objective of this research is to establish the impact that a 
development team’s size has on the structural attributes of a 
codebase. The main caveat when embarking on such a study is 
that we must remain conscious that codebases with a larger team 
size are more likely to exhibit higher complexity than codebases 
with fewer developers simply due to the fact that the larger team 
is likely to have gone through more iterations of development as 
more complex functionality is implemented. To elaborate, when 
using version control systems, it is usual to build functionality 
iteratively through repeated modification of source files. It has 
been proven that, as software projects evolve, iterations of a 
codebase tend to exhibit growing complexity [8]. A key part of 
our approach to solving our research problem is to isolate and 
remove any impact that this effect may have on the metrics of an 
evolving codebase and to observe the impact of the development 
team size alone. We detail our approach to this particular 
challenge in section 4.4. 
 

4.   METHODOLOGY 
4.1 Data Set 
Given the wealth of project data accessible in the open source 
space, this was decided to be the best source of raw data for 
analysis. There are a number of popular open source project hosts 
(or ‘forges’) – GITHub, SourceForge, and GoogleCode. In terms 
of developer activity, GITHub is the most popular, followed by 
SourceForge and then GoogleCode [1]. Each of these forges has a 
unique and varied make-up of languages constituting its project 
population. It was considered that Java projects would be the 
most preferable to study given the myriad of available static code 
analysis tools readily available as well as the large number of 
projects available for study. Furthermore, Java consistently rates 
as the Object Oriented language with the highest adoption rates 
[2], an important consideration when bearing in the mind the 
need to ensure the relevance of this research to practitioners. 
 
Table 1 A summary of the CK metrics and guidelines 
Metric Full Name Attributes Measured 

CBO Coupling 
Between 
Objects 

Count of other objects to which the object being 
considered is coupled. A high number can indicate 
poor encapsulation, a low level of reusability, and 
create difficulties in modification or testing. 

DIT Depth of 
Inheritance 
tree 

A measure of complexity as measured by the 
number of parent classes from which a class may 
inherit behavior. A high number can point towards 
excessive design complexity. 

LCOM Lack of 
Cohesion of 
Methods 

Measurement of the disparateness of functionality 
within an object. A high number can point towards 
poorly designed objects that do not adhere to the 
“single responsibility principle”. 

NOC Number Of 
Children 

A measure of reuse and abstraction. A high number 
can point towards poor design and diluted 
abstraction. 

RFC Response 
For a Class 

Count of methods which may be executed in 
response to a message. High numbers may highlight 
objects with undue complexity complicating build, 
maintenance, and testing. 

WMC Weighted 
Methods per 
Class 

An indicator of the complexity of a class through the 
method count in that object. A high number can 
indicate undue complexity and limited scope for re-
use. 

 



GoogleCode was the forge selected for study both for its 
popularity and high level of Java adoption rates. One final 
benefit of specifically mining GoogleCode was that project 
administrators can choose from among three available version 
control systems – Subversion, GIT, and Mercurial. This ensured 
that our toolchain needed to be compliant with each version 
control system meaning that, as GoogleCode itself prepares for 
eventual shutdown, the toolchain is equally suited to be re-used 
to mine GitHub (which uses GIT) or SourceForge (which uses 
Subversion and Mercurial). 
 

4.2 Metrics Suite 
The popular metrics suite proposed by Chidamber and Kemerer 
[12] is both well understood and has a significant supporting 
body of research. The details of this metric suite are outlined in 
table 1. 

4.3 Defining the Development Team 
There are a number of possible definitions of a software 
development team. Both Capra et al. and Smith et al. consider a 
team to consist of all developers to have worked on a codebase 
for any length of time [24][25] while Nagappan et al. (using data 
from IBSG [26]) consider the development team to also include 
management, administration and operations personnel.  
Given the context of mining open source repositories, we favour 
defining the team size as the cumulative total of all unique 
committers present in the revision history in the version control 
system of a given project. Our view is that this definition is 
consistent with the prior art, simple to measure and reproduce, 
and elegantly allows us to capture the number of unique 
development design approaches that may have influenced the 
evolution of a codebase. 
There are some potential limitations to this approach, most 
notably that we do not distinguish between frequent committers 
and causal (infrequent) committers. Figure 1 shows the relative 
activity levels of the committers in our data sample and, while it 
is true that the majority of commit activity takes place by a 
minority of committers, clearly the majority of committers do 
make a significant contribution and cannot be discounted. 

Figure 1 The number of committers exhibiting a activity in a 
defined range against the number of commits in that range. 

 
 

4.4 Data Analysis Techniques 
In order to investigate the relationship between team sizes and 
internal quality metrics through mining open source repositories, 

there is a large amount of data that needs to be collated and 
analysed. This data essentially takes the form of a large 
population of file-level CK metrics along with meta-data 
associated with each file revision. This meta-data allows us to 
establish the number of unique committers to an individual 
project which is, to all intents and purposes, the project 
development team size. 
 
Given the above data, we can group metrics together by project 
team size - irrespective of the individual project from which they 
came - and consider them distinct populations. For example, if 
project X and project Y each had n unique committers, all 
metrics belonging to each file within both projects would reside 
in a single bucket. Using this bucketing approach, we would have 
a limited number of distinct populations of metrics which could 
then be compared using statistical techniques. 
 
As mentioned earlier, we must remain conscious that codebases 
written by larger teams are more likely to exhibit higher 
complexity than codebases with less developers given that a 
larger team will solve more complex problems and a codebase 
will typically go through more iterations (or ‘revisions’) in the 
process. This effect is illustrated in figure 2 where averaging 
metric values across files modified by a given number of 
committers yields a steady upward on measures of complexity.  
 
Figure 2 Average metric value for files plotted against the 
cumulative number of committers to have edited the files.  

 
 
Figure 3 shows the increase in total project revision count against 
project team size. We can see this impact of this in Figure 4 
where we average the metrics values and plot their progression 
by revision count. 
 
Figure 3 Project revision count plotted against project team size  

 
 



For this reason, our data analysis will take on an additional 
dimension alongside team size – namely that of the file revision 
count. From the meta-data associated with each revision, we can 
determine how many revisions any one file has undergone. This 
data will feed into our bucketing process where we can ensure 
that the population of metrics within a particular bucket only 
contains those metrics belonging to projects with a particular 
team size and only from files that have been modified a 
particular number of times. This approach, illustrated in figure 5, 
will give us confidence that when comparing our bucketed metric 
populations, any statistically significant differences are solely 
down to team size rather than fact that larger teams typically 
work on larger projects. 
When comparing metrics populations bucketed by developer 
count, the Mann-Whitney test is ideally suited as all metrics 
populations are independent and consist of continuous data that 
we found not to be normally distributed. 
 
Figure 4 Average metric values against revision count  

 
 
Figure 5 Bucketing approach illustrated 

 
 

5. DATA COLLECTION 
By leveraging the FLOSSmole project [20] we were able to 
obtain raw data describing, at a project level, details about all 
projects hosted in GoogleCode. This, along with the GoogleCode 
project webpages and the associated repositories formed the 
input into a bespoke toolchain illustrated in figure 6.  

It is important to note that the majority of the complexity in this 
toolchain resides in the Project Selection Algorithm (1), the CK 
metrics Generation (3), and the Metrics Analysis Algorithms (4). 
Although the scripts to extract revision history (2) and checkout 
file revisions (3) may be considered a duplication of effort in 
prior research (most this work has notably been implemented in 
CVSAnalY [21]), it was felt that integration challenges in using 
the such a software package would outweigh the effort we would 
expend in developing our own bespoke scripts for the relatively 
simpler parts of the toolchain. For the more complex 
functionality of metrics generation, an off-the-shelf tool for 
metrics generation was employed. Our toolchain is illustrated in 
figure 6. 
 

5.1 Project Selection Algorithm 
This component (marked as component 1 in figure 6) is written 
in Java and takes in flat files made available by FLOSSmole 
detailing all the available projects hosted by GoogleCode and the 
‘tags’ associated with each project. The project data is used to 
extract all projects with the tag ‘Java’ as of May 2012 – yielding 
us a list of 22594 GoogleCode hosted Java projects. That list was 
then reduced from 22594 projects to a more manageable subset 
by employing the pseudorandom ‘Math.random’ function in Java 
to select a number between 0-1 to be multiplied by the total 
number of projects until 1000 projects had been selected. In the 
process we discard from consideration any projects with no 
revision history as they represent projects which were not started 
and have no significance in this study and should not constitute 
part of our 1000 project sample.  
 
Figure 6 Toolchain to extract and analyse revision based 
metrics

 
 
Once the projects were selected, the algorithm then extracts (via 
‘screen-scraping’) the repository URL from the relevant project’s 



page on the GoogleCode website. The project list with the 
associated URLs are consolidated in a single file which is used to 
drive the next part of the toolchain. 
 

5.2 Revision History Extraction Scripts 
The revision history extraction scripts (marked as component 2 in 
figure 6) are a relatively simple collection of shell scripts (that 
are runnable on a unix platform) to query, for all the projects in 
the input file, the relevant version control repositories to obtain 
the full revision history, storing it in a simple format to allow it 
to drive the code analysis stage. 

5.3 Code Analysis Component 
The code analysis component (marked at component 3 in figure 
6) comprises, again, fairly simple shell scripts responsible for 
checking out each version of the project, handing over the heavy 
lifting of project metrics generation to run a metrics generation 
tool called ‘Understand’ by Scientific Toolworks Inc. [28]. The 
report created by Understand is of a particular format which is 
then passed through a file parser (written in Java) which extracts 
the information that is pertinent to our research and stores it in a 
format appropriate to our metrics analysis component. 
Understand version 2.6.610 was chosen as it is available on 
academic license and offers a unix-based command line tool that 
generates metric reports in an easily parsable format. The 
calculations used by Understand to generate metric values are in 
table 2. 
 
Table 2 A description of how CK Metric values are calculated 
for Java classes by Understand 

Metric Full Name 
Calculation for Java classes in 
‘Understand’ 

CBO Coupling 
Between 
Objects 

Number of other Classes invoked 
from this class. Library classes not 
included. 

DIT Depth of 
Inheritance 
tree 

Number of parent classes in total 

LCOM Lack of 
Cohesion of 
Methods 

For each member variable calculate 
the percentage of methods which do 
not access that variable. Average the 
percentages to determine LCOM. 

NOC Number Of 
Children 

Count of other classes that directly 
extend it. 

RFC Response 
For a Class 

Number of total methods including 
all methods in parent classes 
(regardless of invocation or 
visibility). 

WMC Weighted 
Methods 
per Class 

Count of all methods in that class 
only (regardless of invocation, 
visibility, and instance or static). 

 

5.4 Metrics Analysis Algorithms 
The metrics analysis algorithms (marked as component 4 in 
figure 6) are one of the more complex components in our 
toolchain. It is a software package written in Java, and 

responsible for retrieving the generated metrics data, 
implementing the bucketing strategy, and running statistical tests 
to produce our analysis. 

6. RESULTS 
6.1  Bucket Populations 
When we conduct a simple Mann-Whitney test for each CK 
metric type comparing two groups – the first being all metric 
results belonging to single developer projects and the second 
group being metrics results from all other projects - we find that 
the two groups are independent with p-values < 0.05. However, 
as discussed in detail in section 4.3, when analysing metrics 
results we bucket our data by revision count and project team 
size in order to isolate and observe the effect of team size alone.  
 
It is logical that there would be a greater number of metric 
results pertaining to the lower revision counts as, by necessity, 
for a file to be revised, say, 5 times, it would have 4 prior 
revisions. However, it is perfectly normal for a file to only have 
fewer than 5 total revisions. This is an important consideration as 
buckets belonging to higher revisions and team sizes will have 
diminishing populations. Figure 7 and table 3 clearly show this 
effect. For our analysis, we only consider buckets belonging to 
team up to 5 developers strong with a maximum of 6 revisions as 
we see marked drop-off in bucket population sizes as team size 
and revision counts increase. 
 

Table 3 Bucket population sizes 

 PROJECT TEAM SIZE 

Rev 1 Dev 2 Dev 3 Dev 4 Dev 5 Dev 

1R 39460 12524 4372 2060 4962 
2R 14236 5552 2630 2169 2316 

3R 8291 3662 1758 981 1509 
4R 5743 2395 1282 695 973 
5R 4024 1705 995 515 687 
6R 2985 1311 786 393 528 

 
Figure 7 Average metric values against revision count  

 
 

6.2 Comparing Lone Developer Projects 
against Multi-developer Projects 
Table 4 details the results from the statistical tests run across 
each team-size comparison. The first part of the table 
summarises the comparison results for metrics from single 



developer projects against projects authored by two developers. 
Taking the WMC column as an example, we can see that the 2R 
bucket (this refers to the bucket of WMC metric values 
belonging to the second revision of files only) has statistically 
significantly lower values than in the single developer bucket. To 
be clear, this means that a Mann-Whitney test yields a p-value of 
<0.05 and we can observe higher median values in the single 
developer bucket. This means that we can say with a confidence 
level of 95% ±5% that files with two revisions and a single 
developer have higher WMC values than files with two revisions 
and two developers.  
The next bucket down - 1D3R v 2D3R - exhibits no significant 
difference between the metrics populations for WMC. 
 
In table 4 we can clearly observe that a large number of buckets 
that show statistical significance across CBO, DIT, LCOM and, 
to a lesser extent RFC and WMC. In the case of DIT, we can see 
a progression where more buckets show significance as the team 
size grows. In the case of other metrics we can see an 
inconsistent pattern with more buckets showing differences in 
the 1D v 3D and 1D v 4D tests. Another key observation is that 
CBO, DIT, RFC and WMC generally trend downwards as project 
team sizes increase while LCOM increases. 
 
Table 4 Results of Mann-Whitney tests comparing the lone 
developer bucket of the various revision counts against the 
corresponding buckets for 2, 3, 4 and 5 developer buckets. The 
percentages relate to the proportion of the six buckets (1R-6R) 
that show p-values<0.05 for a particular team size comparison. 
   

1R - 1R - 1R - 1R - 1R - 1R -

2R - 2R - 2R - 2R - 2R - 2R ˃

3R ˃ 3R - 3R - 3R - 3R - 3R -

4R - 4R - 4R - 4R - 4R - 4R -

5R - 5R - 5R - 5R - 5R - 5R -

6R - 6R - 6R - 6R - 6R - 6R -

1R - 1R - 1R > 1R - 1R > 1R >

2R ˃ 2R ˂ 2R - 2R - 2R ˃ 2R ˃

3R ˃ 3R - 3R ˂ 3R - 3R - 3R -

4R ˃ 4R - 4R ˂ 4R - 4R - 4R -

5R ˃ 5R - 5R - 5R - 5R - 5R -

6R ˃ 6R - 6R ˂ 6R - 6R - 6R -

1R - 1R > 1R - 1R - 1R > 1R -

2R ˂ 2R ˂ 2R - 2R - 2R ˂ 2R ˃

3R ˃ 3R - 3R ˂ 3R - 3R - 3R -

4R ˃ 4R - 4R ˂ 4R - 4R - 4R -

5R ˃ 5R ˂ 5R ˂ 5R - 5R - 5R -

6R ˃ 6R ˂ 6R ˂ 6R - 6R - 6R -

1R < 1R - 1R - 1R - 1R - 1R -

2R - 2R ˂ 2R - 2R - 2R - 2R -

3R - 3R ˂ 3R - 3R - 3R - 3R -

4R - 4R ˂ 4R - 4R - 4R - 4R ˃

5R - 5R ˂ 5R - 5R - 5R ˃ 5R ˃

6R - 6R ˂ 6R - 6R - 6R ˃ 6R ˃

1D v 3D

1D v 2D

NOC RFC WMC

1D v 4D

1D v 5D

NOC RFC WMC

CBO DIT LCOM NOC RFC WMC

33%

WMC
17% 0% 0% 0% 0% 17%
CBO DIT LCOM NOC RFC

CBO DIT LCOM
83% 17% 67% 0% 33%

50%

83% 67% 67% 0% 33% 17%

CBO DIT LCOM
17% 83% 0% 0% 33%

 

6.3 Increasing the Developer Count 
Table 5 displays the result of a series of comparisons between 
projects with two developers against projects with 3, 4, and 5 
developers respectively. We see very similar trends to the 
previous set of results in section 6.2. 

7. CONCLUSIONS AND FUTURE WORK 
Table 6 presents a summary of the discernable trends across each 
metric type as we add developers to a project team. We can see 
very similar trends regardless of whether we compare projects 
with a single developer against those with several developers, or 
whether we compare projects with multiple developers with 
those with still more developers.  

Table 5 Results from the 5 developer against 2, 3, and 4 
developer comparisons. 

1R < 1R - 1R - 1R - 1R - 1R -

2R - 2R - 2R - 2R - 2R - 2R -

3R - 3R - 3R - 3R - 3R - 3R -

4R - 4R < 4R - 4R - 4R - 4R -

5R - 5R - 5R - 5R - 5R - 5R -
6R - 6R - 6R - 6R - 6R > 6R -

1R < 1R - 1R - 1R - 1R < 1R <

2R < 2R - 2R - 2R - 2R < 2R <

3R - 3R < 3R > 3R - 3R - 3R -

4R < 4R < 4R > 4R - 4R - 4R -

5R - 5R < 5R - 5R - 5R - 5R -
6R < 6R - 6R - 6R - 6R - 6R >

1R < 1R - 1R - 1R - 1R < 1R -

2R > 2R - 2R - 2R - 2R > 2R -

3R - 3R - 3R > 3R - 3R - 3R >

4R < 4R < 4R > 4R - 4R - 4R >
5R - 5R - 5R > 5R - 5R - 5R >

6R < 6R - 6R > 6R - 6R > 6R >

RFC WMC
67% 17% 67% 0% 50% 67%

4D v 5D CBO DIT LCOM NOC

RFC WMC
67% 50% 33% 0% 33% 50%

3D v 5D CBO DIT LCOM NOC

LCOM NOC RFC WMC
17% 17% 0% 0% 17% 0%

2D v 5D CBO DIT

 
 
Table 6. Summary of observed trends. Shaded boxes indicate a 
negative impact. Clear boxes indicate a positive impact. 

Metrics Objective 

Lone developer 
v. Multi-
developer teams 

Smaller 
teams v. 
larger teams 

CBO ↓ ↓ ↑ 
DIT ↓ ↑ ↑ 
LCOM ↓ ↑ ↑ 
NOC ↓ - - 
RFC ↓ ↓ ↓ 
WMC ↓ ↓ ↓ 

 
The clear conclusion is that where projects are collaborated on by 
a larger number of developers we are likely to see a decrease in 
cohesion (reflected by larger LCOM values), an increase in 



structural complexity (reflected by larger DIT values) and an 
increase in coupling (reflected by larger CBO values). On a more 
positive note, we are likely to see that classes have improved 
functional decomposition (reflected by lower RFC and WMC 
values).  
Finally, we can see consistency between our results and the 
research of both the work of Nagappan et al. [7] who linked 
larger team sizes with increased fault-proneness and Basili et al. 
confirmed that higher values of CBO and DIT, as observed in our 
research, is highly correlated with increased defect counts [9]. 
The implications of these findings are of relevance to 
practitioners. We believe that software development teams 
should take note of the fact that the structural attributes of a 
codebase can show degradation in some aspects as team sizes 
grow and the diligent use of tools like SonarQube [27] can 
provide visibility of this to developers and management in order 
for them to work together to mitigate any negative trends. This 
work is also relevant to the research community, to whom we 
suggest a number of avenues that we encourage the research 
community to pursue. 
Firstly, we can hypothesize that the reasons driving the trends 
observed in table 6 are that, while a competent developer with 
relative unfamiliarity with the codebase will be capable of 
implementing code with a high degree of functional 
decomposition (for example, smaller single purpose methods), 
achieving low coupling and complexity as a codebase evolves 
typically requires a more in-depth understanding of the entirety 
of the codebase – an understanding that we can reasonably 
hypothesize is more likely to be lacking in a larger development 
team. Through qualitative analysis and engaging development 
team members, the research community could shed more light as 
to the drivers behind the trends revealed in this study. 
Secondly, we believe that there is value in looking at how this 
work applies within the context of Agile development [22]. For 
example the Agile methodology recommends that development 
teams are co-located to facilitate communication between 
members [23]. In contrast, open source project teams tend to 
consist of people collaborating without necessarily sharing the 
same physical space. There is value in understanding if the 
negative effects of a larger development team manifest when a 
team is co-located and experiences lower barriers to effective 
communication. 
Finally, we appreciate that a team with a total of 5 developers 
cannot necessarily be classed a large team – indeed this is 
considered the lower limit of the ideal Agile development team. 
We would be interested to see how these trends continue when 
taken up to and beyond the maximum ideal team size of 9 as 
stipulated by the Agile approach [23]. 
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