20 research outputs found

    The interpretability logic ILF

    Get PDF
    In this paper we determine a characteristic class of IL_{set} frames for the principle F. Then we prove that the principle P is not provable in the system ILF. We use a generalized Veltman model

    Implicit Commitment in a General Setting

    Full text link
    G\"odel's Incompleteness Theorems suggest that no single formal system can capture the entirety of one's mathematical beliefs, while pointing at a hierarchy of systems of increasing logical strength that make progressively more explicit those \emph{implicit} assumptions. This notion of \emph{implicit commitment} motivates directly or indirectly several research programmes in logic and the foundations of mathematics; yet there hasn't been a direct logical analysis of the notion of implicit commitment itself. In a recent paper, \L elyk and Nicolai carried out an initial assessment of this project by studying necessary conditions for implicit commitments; from seemingly weak assumptions on implicit commitments of an arithmetical system SS, it can be derived that a uniform reflection principle for SS -- stating that all numerical instances of theorems of SS are true -- must be contained in SS's implicit commitments. This study gave rise to unexplored research avenues and open questions. This paper addresses the main ones. We generalize this basic framework for implicit commitments along two dimensions: in terms of iterations of the basic implicit commitment operator, and via a study of implicit commitments of theories in arbitrary first-order languages, not only couched in an arithmetical language

    Two new series of principles in the interpretability logic of all reasonable arithmetical theories

    Get PDF
    The provability logic of a theory T captures the structural behavior of formalized provability in T as provable in T itself. Like provability, one can formalize the notion of relative interpretability giving rise to interpretability logics. Where provability logics are the same for all moderately sound theories of some minimal strength, interpretability logics do show variations. The logic IL(All) is defined as the collection of modal principles that are provable in any moderately sound theory of some minimal strength. In this paper we raise the previously known lower bound of IL(All) by exhibiting two series of principles which are shown to be provable in any such theory. Moreover, we compute the collection of frame conditions for both series

    Interpretability in Robinson's Q

    Get PDF
    Edward Nelson published in 1986 a book defending an extreme formalist view of mathematics according to which there is an impassable barrier in the totality of exponentiation. On the positive side, Nelson embarks on a program of investigating how much mathematics can be interpreted in Raphael Robinson’s theory of arithmetic Q. In the shadow of this program, some very nice logical investigations and results were produced by a number of people, not only regarding what can be interpreted in Q but also what cannot be so interpreted. We explain some of these results and rely on them to discuss Nelson’s position.info:eu-repo/semantics/publishedVersio

    The predicative Frege hierarchy

    Get PDF
    AbstractIn this paper, we characterize the strength of the predicative Frege hierarchy, Pn+1V, introduced by John Burgess in his book [J. Burgess, Fixing frege, in: Princeton Monographs in Philosophy, Princeton University Press, Princeton, 2005]. We show that Pn+1V and Q+conn(Q) are mutually interpretable. It follows that PV:=P1V is mutually interpretable with Q. This fact was proved earlier by Mihai Ganea in [M. Ganea, Burgess’ PV is Robinson’s Q, The Journal of Symbolic Logic 72 (2) (2007) 619–624] using a different proof. Another consequence of the our main result is that P2V is mutually interpretable with Kalmar Arithmetic (a.k.a. EA, EFA, IΔ0+EXP, Q3). The fact that P2V interprets EA was proved earlier by Burgess. We provide a different proof.Each of the theories Pn+1V is finitely axiomatizable. Our main result implies that the whole hierarchy taken together, PωV, is not finitely axiomatizable. What is more: no theory that is mutually locally interpretable with PωV is finitely axiomatizable
    corecore