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a b s t r a c t

In this paper, we characterize the strength of the predicative Frege hierarchy, Pn+1V,
introduced by John Burgess in his book [J. Burgess, Fixing frege, in: Princeton Monographs
in Philosophy, Princeton University Press, Princeton, 2005]. We show that Pn+1V and
Q+conn(Q) aremutually interpretable. It follows that PV := P1V is mutually interpretable
withQ. This fact was proved earlier byMihai Ganea in [M. Ganea, Burgess’ PV is Robinson’s
Q, The Journal of Symbolic Logic 72 (2) (2007) 619–624] using a different proof. Another
consequence of the our main result is that P2V is mutually interpretable with Kalmar
Arithmetic (a.k.a. EA, EFA, I∆0 + EXP, Q3). The fact that P2V interprets EA was proved
earlier by Burgess. We provide a different proof.
Each of the theories Pn+1V is finitely axiomatizable. Our main result implies that the

whole hierarchy taken together, PωV, is not finitely axiomatizable.What ismore: no theory
that is mutually locally interpretable with PωV is finitely axiomatizable.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

A predicative version of the logicist program is outlined in [2], chapter 2. The idea is to build a hierarchy of stronger
and stronger systems obtained by adding at each next stage (i) predicative second order comprehension over the previous
system and (ii) the full principle V for the newly added concepts.1 More precisely, the hierarchy is defined as follows.

• PV := P1V is the systemwe obtain by adding second order variables X0, Y 0, . . . and a function symbol Ě0 to the predicate
logic of pure identity, plus the following axioms.

P11) ` ∃X0 ∀x (X0x↔ A(x, Ey, EY 0)),
where A does not contain X and does not contain bound concept variables of degree 0.

P12) ` Ě0X0 = Ě0Y 0 ↔ ∀z (X0z ↔ Y 0z).
• Pn+2V is the theory obtained by adding to Pn+1V new second order variables Xn+1 and a new function symbol Ěn+1, plus
the following axioms.

Pn+21) ` ∃Xn+1 ∀x (Xn+1x↔ A(x, Ey, EY 0, . . . , EY n+1)),
where A does not contain X and does not contain bound concept variables of degree n+ 1.

Pn+22) ` Ěn+1Xn+1 = ĚnY n ↔ ∀z (Xn+1z ↔ Y nz).
Pn+23) ` Ěn+1Xn+1 = Ěn+1Y n+1 ↔ ∀z (Xn+1z ↔ Y n+1z).

We think this approach to predicativity is inmany respects attractive. There is the undeniable simplicity and naturality of the
chosen axioms and the charm of combining Fregean and Russellian ideas. More importantly, the hierarchy goes way beyond

E-mail address: Albert.Visser@phil.uu.nl.
1 In the Frege style, the denotations of the second order variables are called concepts.
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the predicative systems provided by Nelson’s approach. See [13]. Nelson developed predicative systems by considering
simply what is interpretable in Q. There are two significant objections to Nelson’s project. One is that it is unclear how he
justifies the use of unbounded quantification. This criticism was voiced in Pudlák’s review [15]. A second criticism is that
his approach lacks reflexive closure. Specifically, we cannot prove con(Q) in the Nelson systems. In fact, addition of con(Q)
would yield a system that violates Nelson’s philosophy, since Q + con(Q) is mutually interpretable with I∆0 + EXP, and
the totality of exponentiation is something Nelson denies. See for this criticism: [9]. The present Frege-style approach partly
evades this second criticism. As we will see the hierarchy (up to ω), provides consistency statements for each of its stages.
On the other hand, we will show that the hierarchy, in a sense, stops at ω. As a consequence, for no ordinal α, the theory
PαV will prove the consistency of PωV. Thus, the hierarchy only evades the criticism, if we are prepared to view it as ‘open
ended’ towards ω.
A further good point about the hierarchy is that it is reasonably stable w.r.t. design choices, like the choice whether or

not to begin with just the theory of identity or rather with, say, the theory of pairing.

Our aim in the present paper is technical rather than philosophical. We provide an answer to the question: how strong are
the PnV? We show that, verifiably in I∆0 +Ω1, the theory Pn+1V is mutually interpretable with the theory Q + conn(Q).
This result generalizes a result of Mihai Ganea, who shows that PV := P1V is mutually interpretable withQ. See [6]. Ganea’s
interpretation ofPV inQ is simpler than the oneweprovide. On the other hand, to verify the correctness of the interpretation,
he employs a corollary of the Löwenheim–Behmann Theorem, due to Burgess. It is not known whether this corollary can be
verified in I∆0 +Ω1.
One consequence of the available consistency statements is that we have exponentiation available in our hierarchy —in

fact already in P2V.
We will show that the PnV are all finitely axiomatizable. In contrast their limit, PωV is not finitely axiomatizable. What is

more: no theory that is locally mutually interpretable with PωV is finitely interpretable.
The proof of the finite axiomatizability result uses Burgess’ result that PV is finitely axiomatizable, which in turn uses

the Löwenheim–Behmann Theorem. Thus, it is unknown whether it can be verified in I∆0 +Ω1.

The methodology of the paper is what one could call miniature model theory. This endeavor falls between proof theory and
model theory. As in proof theory, we study syntactical matters, but unlike in proof theory we seldom look at the details of
proofs. As in model theory, we employ the intuition of constructing structures. We lack, however, the possibility to quantify
over structures. Our ‘structures’ will in fact be interpretations given by concrete formulas. In model theory we work in a
strongmetatheory like ZFC. Here, wework in aweak theory like I∆0 +Ω1. Thus, we lack even the full strength of induction.
We compensate for the lack of induction by employing Solovay’s methodology of shortening cuts. In effect, we follow the
idea if you can’t do what you want to do with the number system you are working with, switch to another one.

To prove our main result we should realize two directions. We should move from a consistency statement to predicative
comprehension and axiom V. To do this we miniaturize the following model theoretic argument. Given that we know that
U is consistent, we can use the Henkin construction to build a countable model of U . We can extend this model to amodel of
predicative comprehension by adding the parametrically first order definable sets over the model. The class of these sets is
countable, so there is amapping of these sets into the object domain of ourmodel.We choose such amapping to serve as our
Frege function. Tominiaturize the argument, we build an interpretation rather than amodel. This is done using the Henkin–
Feferman construction. It turns out that adding the definable sets is as easy as it is in ordinary model theory. This part of the
proof is in Section 5. To find the Frege function, we have to do some work. We need to specify the function concretely. To
make this possible, U should satisfy some constraints. The one we use is the demand that U interprets a certain theory of
two successors. Also we have to switch number systems to obtain some desired effects of induction. All this is realized in
Section 6.
In the other direction, we derive consistency from predicative comprehension. Here, we employ a well-known strategy.

We are given a predicative extension of U . We use our classes to build a truth predicate for the U-language. Then, we use the
truth predicate to prove consistency ofU , compensating for the lack of induction by going to a definable cut. This is executed
in Section 7.
A remarkable fact, emerging from the argument, is that the presence of the Frege functions only adds metamathematical

strength, when we move from the theory of pure identity to P1V. In all subsequent steps, the gain in power is achieved by
predicative comprehension all by itself!

Finally, in Section 8, we put everything together.

Prerequisites

A good introduction to many of the methods and ideas of the paper is [7].

2. Theories and interpretations

In this section, we introduce basic notions and tools.
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2.1. Theories

We consider theories in many-sorted first order predicate logic. The axiomatization of the theories should be sufficiently
simple, e.g.∆b

1. The default is that our theories have finitely many sorts and are of finite signature.
2 It is optional whether a

sort has identity or not.
Wewill sometimes consider pointed theories, i.e. theories with a designated sort. Wewill always assume that the pointed

sort has identity.Wewill write ‘Udae’ for: theoryU with designated sort a. Wewill confuse one-sorted theorieswith pointed
one-sorted theories. Moreover, specific named theories will often have a fixed implicit point, E.g., the PnV will have, as
designated sort, the sort of basic objects.
Our notion of theory is intensional. We assume some proof system is fixed, so a theory will be given by its signature

(including the sorts) plus an arithmetical formula defining the set of (Gödel numbers of) axioms. We will use⊆ and=ext for
the subset relation and the identity relation between the theories considered as sets of theorems. A finitely axiomatized theory
is always specified with an explicit numerical bound on the size of the Gödel numbers of the axioms. Note that this notion
is stronger than a specification of the set of axioms just by a formula that gives us de facto a finite set. On the other hand it
is weaker – in the context of I∆0 +Ω1 as metatheory – than having a numerical code for the finite set of axioms.
We define two important operations on theories that will play an important role in this paper.

• ΘU := Q+ con(U),
• ΩU := I∆0 +Ω1 + con(U).

By a result of Wilkie, the theoriesΘU andΩU are mutually interpretable. Note that the operationsΘ andΩ are essentially
intensional. For every consistent U , we can find a V , such that U =ext V andΩU 6=ext ΩV .

2.2. Interpretations

Interpretations play amain role in the present paper. They are both part of ourmethods of proof – as the tools ofminiature
model theory – and of the statement of our results. Our main result is stated in terms of mutual interpretability which is a
very goodway of measuringmetamathematical strength of theories. In contrast, in proof theory, theories are often compared
using conservativity w.r.t. some class of sentences likeΠ02 .
Interpretability in this paper will be one-dimensional, many-sorted, relative interpretability without parameters where

identity is not necessarily translated as identity. We provide a rather extensive treatment, since we are not aware of a good
treatment of interpretability between many-sorted theories in the literature. Especially, there is a tendency towards fuzzy
thinking about the relationship between many-sorted theories and their one-sorted flattening. Since, there is an important
relationship between flattening and Frege functions, it seems good to provide an introduction.
The choice for one-dimensional interpretations without parameters is mainly one of convenience. Developing the full

machinery with the parameters and more dimensionality would be more laborious. Moreover, our main result, which
states that certain theories are mutually interpretable becomes stronger, when stated for a more restrictive notion of
interpretability. Of course, non-interpretability results become weaker for the more restrictive notion. We will briefly meet
this phenomenon in Remark 2.1.
We will define interpretations for relational languages. To obtain interpretations for languages with functions, we

consider them as consisting of two steps. First one translates the given language to a relational one using a standard
algorithm. It is well known this can be done in polynomial time. Then, we apply an interpretation as defined below.3
To define an interpretation, we first need the notion of translation. Let Σ and Ξ be finite signatures for many-sorted

predicate logic with finitely many sorts. We assume that the sorts are specified with the signature. A relative translation
τ : Σ → Ξ is given by a triple 〈σ , δ, F〉. Here σ is a mapping of the Σ-sorts to the Ξ-sorts. The mapping δ assigns to
every Σ-sort a a Ξ-formula δa representing the domain for sort a of the translation. We demand that δa contains at most
a designated variable vσa

0 free. The mapping F associates to each relation symbol R ofΣ a Ξ-formula F(R). The relation
symbol R comes equipped with a sequence Ea of sorts. We demand that F(R) has at most the variables vσai

i free. We translate
Σ-formulas toΞ-formulas as follows:

• (R(ya00 , . . . , y
an−1
n−1 ))

τ
:= F(R)(yσa0

0 , . . . , yσan−1
n−1 );

(We assume that somemechanism for α-conversion is built into our definition of substitution to avoid variable-clashes.)
• (·)τ commutes with the propositional connectives;
• (∀ya A)τ := ∀yσa (δa(y)→ Aτ );
• (∃ya A)τ := ∃yσa (δa(y) ∧ Aτ ).

Suppose τ is 〈σ , δ, F〉. Here are some convenient conventions and notation.

2 There will be just one exception considered in the paper: the theory PωV.
3 Note that if we have U and the corresponding U rel , we have U ` A⇔ U rel

` Arel . Moreover, there is an inverse (·)fun of (·)rel , to wit: substitute f Ex = y
for, say, Ff (Ex, y). We have: U ` AEz ↔ ((AEz)rel)fun and U rel

` BEz ↔ ((BEz)fun)rel . So, in a reasonably strong sense, U and U rel are ‘the same’.
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• We write στ for σ , δτ for δ and Fτ for F .
• We write Rτ for Fτ (R).
• We will always use ‘=a’ for the (optional) identity of a theory for sort a. In the context of translating, we will however
switch to ‘Ea’.
• We write Ex : δEa for: δa0(xσa0

0 ) ∧ · · · ∧ δan−1(xσan−1).
• We write ∀Ex : δEa A for: ∀xσa0

0 . . . ∀xσan−1
n−1 (Ex:δEa → A).

Similarly for the existential case.

A special translation on a signatureΣ is the identity translation idΣ . The first component σ of this translation sends all sorts
ofΣ to themselves. The second component δ sends each sort a to>. The third component F sends each predicate symbol P
to PEvEa. We can compose relative translations as follows:

• δa
τν(v

σνστ a) := (δστ a
ν (vσνστ a) ∧ (δa

τ (v
στ a))ν),

• RτνEv σνστ Ea = (Rτ Ev στ Ea)ν .

We write ν ◦ τ := τν.

A translation τ supports a relative interpretation of a theory U in a theory V , if, for all U-sentences A, we have U ` A⇒ V `
Aτ .4 Thus, an interpretation has the form: K = 〈U, τ , V 〉.

Note that the definition automatically takes care of the theory of identity. Moreover, it follows that V ` ∃v0 δa
τ .

We write K : U → V , K : U C V or K : V B U , for: K is an interpretation of the form 〈U, τ , V 〉. The notation K : U → V is
used when we are thinking of theories and interpretations as objects and morphisms in a category. The notation K : U C V
is used when we are thinking of C as a preorder. Moreover, the notation B is intended to suggest that interpretability is a
generalization of provability.

Par abus de langage, we write ‘δK ’ for: δτK ; ‘PK ’ for: PτK ; ‘A
K ’ for: AτK , etc.

Suppose T has signatureΣ and K : U → V ,M : V → W . We define:

• idT : T → T is 〈T , idΣ , T 〉,
• M ◦ K : U → W is 〈U, τM ◦ τK ,W 〉.

We identify two interpretations K , K ′ : U → V if, σK = σK ′ and:

• for all U-sorts a, V ` ∀vσK a (δa
Kv ↔ δa

K ′v),
• V ` ∀Ev : δEa (RK Ev ↔ RK

′

Ev), where Ea is the sequence associated with R.

One can show that modulo this identification, the above operations give rise to a category of interpretations that we call
INTms. If we just consider one-sorted theories, we call the resulting category INT. Isomorphism in INTms is called synonymy
or definitional equivalence.

2.3. Isomorphisms between interpretations

Consider K ,M : U → V . An isomorphism G : K ⇒ M is a V -definable, V -provable isomorphism from K toM considered
as ‘parametrized internal models’. Specifically, this means that an isomorphism from K to M is given as a triple 〈K ,G,M〉,
where G assigns to each U-sort a a formula Ga with the following properties.

• The free variables of Ga are among vσK a

0 , v
σMa

1 .
We write Ga(x, y) or xGay, for: Ga

[v0 := x, v1 := y].
• V ` xGay→ (x : δa

K ∧ y : δ
a
M).

• V ` ∀x : δa
K ∃y : δ

a
M xG

ay.
• V ` ∀y : δa

M ∃x : δ
a
K xG

ay.
• V ` ExGEaEy→ (RKEx↔ RMEy).

Here ‘ExGEaEy ’ abbreviates x0Ga0y0 ∧ · · · ∧ xn−1Gan−1yn−1, for Ea corresponding to R.5

4 If we have Σ-collection available in our metatheory, this definition coincides with the one where we just demand that for all U-axioms A, V ` Aτ .
Since, we will be interested in verifiability in I∆0 +Ω1 , which lacksΣ01 -collection, we need the notion involving theorems. Otherwise, e.g. the transitivity
of interpretability cannot be verified. Note that, if I∆0 +Ω1 proves that, for all axioms A of U , V ` Aτ , then I∆0 +Ω1 proves also that, for all U-sentences
B, if U ` B, then V ` Bτ . This is because I∆0 +Ω1 will supply p-time bounds on the V -proofs of the Aτ , by a theorem of Wilkie and Paris in their [22]. See
further [18].
5 Note that this covers the case of the functionality and the injectivity of Ga in case the sort a has identity. In case the sort does not have identity, we
consider the question of functionality and injectivity to be vacuous.
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By induction on A, we can show that, for the appropriate Ea:

V ` ExGEaEy→ (AKEx↔ AMEy). (1)

We may divide out isomorphisms of interpretations in the category INTms. One can show that in this way we obtain a new
category hINTms. (See [20] for a treatment of the one-sorted case.) Isomorphism of theories in this category is called: bi-
interpretability.

2.4. Flattening

Consider anymany-sorted theoryU of signatureΣ . Let sort be the set of sorts ofΣ . We associate toU a one-sorted theory
U[ as follows. We take as language of U[ a one-sorted language with the predicate symbols of U plus, for each a in sort, a
new unary predicate symbol ∆a. If Ea is the sequence associated to R in Σ , we associate to R a sequence of the same length
consisting of the single sort in the new signature. Viewed differently, we give as arity to R in the flat environment the length
of Ea. We define a translation η := 〈σ , δ, F〉 from the language of U to the language of U[.

• σ sends all sorts of U to the single sort of U[.
• δa(v) :↔ ∆a(v).
• F(R)(Ev) :↔ R(Ev).

Here are the axioms of U[.

[1) ` ∀v
∨

a∈sort∆
a(v).

[2) ` R(Ev,w, Ez)→ ∆a(w), where a is the sort corresponding to the location ofw in R(Ev,w, Ez) according toΣ .
[3) ` Aη , where A is an axiom of U .

Clearly, there is an interpretation based on η of U in U[. Par abus de langage, we call this interpretation also η. The mapping
(·)[ has all kinds of good properties, as is pointed out in the remark below, but these will pay no further role in this paper.

Remark 2.1. Suppose K : U → V and V is one-sorted. Then we can easily show that there is a unique K ? : U[ → V , such
that K = K ? ◦ ηU . Thus, (by [10], p81, Theorem 2(ii)) it follows that (·)[ is a functor from INTms

→ INT, that is left adjoint to
the embedding functor of INT into INTms.
We do not have, generally, that U[ is definitionally equivalent or even bi-interpretable with U . In fact, U[ need not be

mutually interpretable with U . E.g., consider a two-sorted theory W with identity for both sorts and no further predicate
symbols. The theory’s axioms say that the first sort contains precisely two elements and the second sort precisely three. It
is easily seen thatW does not interpretW [. Note that definitional equivalence implies the existence of a bijection between
the sets of sorts. So, a more-than-one-sorted theory can never be definitionally equivalent to a one-sorted one.
Our discussion depends on the precise choice of our notion of interpretation. If we allow multi-dimensional

interpretations, we can make an interpretation of U[ in U , assuming that U has identity and proves the existence of at
least two objects in one of its sorts.
Along another line, we can also establish a close connection between U and U[. By a model theoretic argument, we can

easily show that: U ` A⇔ U[ ` Aη .

2.5. Interpretability

We define partial preorders on many-sorted theories.

• K : U B V :⇔ K : V C U .
• U B V :⇔ V C U :⇔ ∃K K : V C U .

We read V C U as: V is interpretable in U . We read U B V as: U interprets V .
• We also want interpretability between pointed theories.

Udae B Vdbe :⇔ Vdbe C Udae :⇔ ∃K (K : V C U ∧ σK (b) = a).
• A finite subtheory V � n of V is a theory with axioms defined by αV (x) ∧ x < n. We define:

U Bloc V :⇔ V Cloc U :⇔ ∀n (V � n) C U .
We read V Cloc U as: V is locally interpretable in U .

• We define U ≡ V :⇔ (U C V ∧ V C U).
We say: U and V are mutually interpretable. Similarly for U ≡loc V .

3. Addition of principles as a functor

In this section, we study basic constructions used to build predicative systems.
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3.1. The functor PC

We study the operation of adding predicative comprehension to a theory. We show that this operation gives us a functor
PC. The functor PC works on pointed theories. Let a pointed theory Udae be given. We extend the language of U with an
extra sort c for concepts. We write the variables of the new sort as capitals. We add a new predicate app with associated
sequence ca. We write ‘Xx’ for app(X, x). We add the axiom scheme of predicative comprehension:

` ∃X ∀xa (Xx↔ A(x, Ey, EY )).

Here A does not contain any concept quantifiers. Moreover, A does not contain X . The sequence Eymay contain variables of
any sort of U .

Remark 3.1. Note that in the official language this could have been written as:

` ∃xc ∀ya (app(x, y)↔ A(y, Ez)).

Here A does not contain quantifiers of sort c. Moreover, x does not occur in A. The sequence Ez consists of variables of all sorts.

The resulting pointed theory is PC(Udae), alsowritten as (Udae)pc.We take as newpoint simply the old point a.Wewillwrite
Hx | A(x, Ey, EY )I for a concept provided by comprehension. Note that we should be careful in using comprehension terms,
since the theory does not guarantee uniqueness. The comprehension terms are only unique modulo definable extensional
equality.
The following theorem tells us that the mapping PC is a functor w.r.t. the interpretability preorder.

Theorem 3.2. We have: Udae B Vdbe ⇒ (Udae)pc B (Vdbe)pc. This fact is verifiable in I∆0 +Ω1.

Proof. Suppose K : Udae B Vdbe. We define K pc as follows.

• σKpc restricted to the sorts of V is σK ; σKpc(c) = c;
• δKpc restricted to the sorts of V is δK ;

δc
Kpc(X) :↔ ∀x

a (Xx→ δb
K (x)) ∧ ∀x

a, ya ((Xx ∧ xEb
Ky)→ Xy);

(Remember our assumption that designated sorts have identity.)
• FKpc restricted to the predicates of U is FK ; (Xx)Kpc :↔ Xx.

To verify that we do interpret comprehension, we have to show:

U ` (Ey : δEsKpc ∧ EY : δ
c
Kpc)→ (∃X ∀xb (Xx↔ A(x, Ey, EY )))K

pc
.

Here A does not contain bound concept variables, A does not contain X , and Es is a sequence of sorts of U .
So, in U , under the presupposition of the antecedent, we have to provide an X in δc

Kpc such that, for all x in δ
a
Kpc , Xx

iff AK
pc
(x, Ey, EY ). Noting that our translation does not introduce new bound concept variables, we see that X := Hx |

δa
Kpc(x) ∧ A

Kpc(x, Ey, EY )I, provides a desired solution.

We easily see that the U-proofs that verify comprehension inside K pc are p-time in the code of A. The main thing to verify is
the closure of X as defined under Eb

K . This is an induction on A, where one provides a p-time estimate in A of the U-proof. �

3.2. Finite axiomatizability I

For one-sorted theories with pairing, predicative comprehension can given by finitely many axioms. Here is a statement
of the theorem.

Theorem 3.3. Suppose U is a one-sorted theory with identity and pairing. Then, Upc can be finitely axiomatized over U.

We give a proof of Theorem 3.3 in Appendix A. If we consider one-sorted sequential theories everything gets much simpler.
Moreover, the question where the theorem can be verified is more perspicuous. Since, we only need the theorem for the
sequential case, we will treat the sequential case here.
A one-sorted theory is sequential if it has a good notion of sequence of objects that works for all objects of the domain.

This means that the theory interprets a weak arithmetic, say Q, via an interpretation, say N .6
Further the theory defines a domain of sequences with projection functions w.r.t. the N-numbers. It verifies principles

stating that we have an empty sequence and that can always move from σ to σ ∗ 〈x〉. For details, see [7]. We can always
improve our theory of sequences, by shorteningN . First, we can strengthen the theory of numbers that is interpreted to, say,
I∆0 +Ω1. Secondly we can add all kinds of desirable operations on sequences like concatenation.

Theorem 3.4. Suppose U is a one-sorted, sequential theory. Then, Upc can be finitely axiomatized over U.

6 Pudlák asks that the interpretation N preserves identity. I prefer to define sequentiality without this demand. In the present context the distinction is
irrelevant, since we can work with an identity preserving N . See also Remark 4.6.
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Proof. We may assume that the numbers of U satisfy I∆0 +Ω1. Say N : U B I∆0 +Ω1 is the relevant interpretation. As is
well known, we can choose N is such a way that we have attractive extra properties for our sequences like closure under
concatenation and the presence of projection functions.We code our syntax inN .We code assignments as finite sequences of
pairs of variables and objects, satisfying the uniqueness condition. If a variable does not occur in the sequence, it is assigned
a default value, say 0. We use:

• v : var, for: v is (a code of) a variable.
• ν : varseqn, for: ν is a sequence of (codes of) variables of length n.
• σ : ass, for: σ is (a code of) an assignment.
• X : val, for: X is a concept consisting of assignments.
• σ [v := x], for: the result of resetting v in σ to x. In other words,

τ = σ [v := x] :↔ ∃y, ρ, ρ ′ (σ = ρ ∗ 〈〈v, y〉〉 ∗ ρ ′ ∧ τ = ρ ∗ 〈〈v, x〉〉 ∗ ρ ′)
∨ (∀y, ρ, ρ ′ σ 6= ρ ∗ 〈〈v, y〉〉 ∗ ρ ′ ∧ τ = σ ∗ 〈〈v, x〉〉).

Here are the axioms.

F1. ∀ν : varseqn ∃X ∀σ (Xσ ↔ (σ : ass ∧ P(σν0, . . . , σνn−1))),
for any P and n, where arU(P) = n.

F2. ∀X ∀ν : varseq1 ∃Y ∀σ (Yσ ↔ (σ : ass ∧ X(σν0))),
F3. ∀X : val∀σ : ass∀v : var ∃Y ∀x (Yx↔ X(σ [v := x])).
F4. ∀X ∃Y ∀x (Yx↔ ¬ Xx).
F5. ∀X, Y ∃Z ∀x (Zx↔ (Xx ∧ Yx)).
F6. ∀X : val∀v : var ∃Y ∀σ (Yσ ↔ (σ : ass ∧ ∃x X(σ [v := x]))).

It is easy to see that these axioms follow fromPredicative Comprehension. Conversely, we can obtain instances of Predicative
Comprehension in the obvious way. Instead of specifying the procedure, let’s just consider an example.Wewant of produce,
for any z, an X such that,

∀x (Xx↔ ∃y ((Yy ∧ Pxy) ∧ Pyz)).

We pick variables v0, v1, v2. We apply Axiom F2 to Y and 〈v1〉 to obtain X0. We apply Axiom F1 to P and 〈v0, v1〉 to
obtain X1. We apply Axiom F1 to P and 〈v1, v2〉 to obtain X2. Next we apply Axiom F5 to X0 and X1 to obtain X3. We apply
Axiom F5 to X3 and X2 to obtain X4. By applying Axiom F6 to X4 and v1, we obtain X5. Finally, we apply Axiom F3 to X5 and
〈〈v2, z〉〉 and v0 to obtain X . We now unpack the definition of X to obtain the desired instance of Comprehension. We put
σ0 := 〈〈v2, z〉, 〈v0, x〉, 〈v1, y〉〉. We have:

Xx ↔ X5(〈〈v2, z〉〉[v0 := x])
↔ X5〈〈v2, z〉, 〈v0, x〉〉
↔ 〈〈v2, z〉, 〈v0, x〉〉 : ass ∧ ∃y X4(〈〈v2, z〉, 〈v0, x〉〉[v1 := y])
↔ ∃y X4〈〈v2, z〉, 〈v0, x〉, 〈v1, y〉〉
↔ ∃y (X3σ0 ∧ X2σ0)
↔ ∃y (X0σ0 ∧ X1σ0 ∧ X2σ0)
↔ ∃y (Y (σ0v1) ∧ P(σ0v0, σ0v1) ∧ P(σ0v1, σ0v2))
↔ ∃y (Yy ∧ P(x, y) ∧ P(y, z)).

We turn to the issue of verifiability in I∆0 +Ω1. Suppose we want to verify Predicative Comprehension for A. Note that, for
any A, the number of natural big ‘steps’ in the proof will be of order c|A|, for standard c. Here |A| := entier(2log(A + 1)).
The indices of the variables and the coded variables involved can be bounded by ||A||. Each big step has a fixed form, where
the specific parameters and parts of A or variables representing parts of A are plugged in. Moreover the number of small
substeps, like computations of σv, will be of order d|A|, for standard d. So the size of the big step will be of order e|A|3, for
standard e. So the total size of the proof will be of order f |A|4, for standard f . Thus, we can bound the verification πA of
comprehension for A by a p-time function. �

3.3. The Frege function and direct interpretations

The functor PCF acts on pointed theories. Wewrite (Udae)pcf for PCF(Udae). We define PCF(Udae) as the result of adding
the symbol for the Frege function Ě and the axiom V to PC(Udae). Here axiom V is:

` ĚX =a ĚY ↔ ∀za(Xz ↔ Yz).

We define, for Udae and Vdbe:
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• Udae Bdir Vdbe iff K : Udae Bdir Vdbe, for some K that is direct, i.e. K sends identity for sort b to identity for sort a and
δb
K (v) :↔ v =a v.

Lemma 3.1. Consider pointed theories Udae and Vdbe. Suppose Udae Bdir Vdbe. Then, (Udae)pcf Bdir (Vdae)pcf. This fact is
verifiable in I∆0 +Ω1.

The proof of the lemma is easy.

4. The hierarchy PnV, a first round

In this section, we provide some basic insights concerning the hierarchy PnV. We call the sort of objects 0 and we call the
sorts of concepts 1, 2, . . .. We make 0 the designated sort. We write x for x0 and Xn for xn+1. Here are some definitions.

• x ∈j+1 y :↔ ∃Y j (Y jx ∧ y = ĚjY ),
• {x | Ax}j+1 := ĚjHx | AxIj+1.7

We remind the reader that Pn+2V is (Pn+1V)pcf plus the following variant of V:

` Ěn+1Xn+1 = ĚnY n ↔ ∀z (Xz ↔ Yz).

4.1. Dropping a variant of V

In this subsection, we show that the variant of V can be omitted.

Theorem 4.1. We have: Pn+2V ≡dir (Pn+1V)pcf. This fact is verifiable in I∆0 +Ω1.

Proof. In one direction this is trivial. In the other direction, we have two problems to solve. The first is that the formulas for
which PCF provides predicative comprehension do not contain the new Frege function. The second is the extra variant of V
we have in Pn+2V.
The first problem is solved by an observation of Allen Hazen. Consider an instance of predicative comprehension for

degree n+1 involving the formula A(x, Ey, EY ), which does contain Frege terms of the form Ěn+1Z . Since the concept variables
occurring in these Frege terms are free in A, for some B, we have A = B(x, Ey, Ez, EY0)[Ez := Ěn+1EY1]. Here B does not contain
Frege terms of the from Ěn+1Z . The intersection of Y0 and Y1 is allowed to be non-empty. It is immediate that comprehension
for A follows from comprehension for B by universal instantiation.
We turn to the second problem. We let the ‘Julius Caesar indeterminacy’ of Frege’s system work in our favor. We define

M : (Pn+1V)pcf B Pn+2V as follows. The interpretation M is the identity interpretation except for the interpretation of the
Frege functions. Note that in P1Vwe have pairing and two distinct objects 0 := ∅1 and 1 := {∅}1. We set:

• for j ≤ n, fregjM(X
j, u) :↔ u = 〈0, ĚjX j〉;

• fregn+1M (Xn+1, u) :↔ ∃Y n (∀z (Xn+1z ↔ Y nz) ∧ u = 〈0, ĚnY n〉)
∨ (¬∃Y n ∀z (Xn+1z ↔ Y nz) ∧ u = 〈1, Ěn+1Xn+1〉).

We easily see that this works. Verifiability in I∆0 +Ω1 is clear. �

By Theorem 4.1 and Lemma 3.1, we may conclude:

Corollary 4.2. Pn+1V ≡dir PCFn+1(ID), where ID is one-sorted predicate logic with only the identity predicate and with single
designated sort 0.

Prima facie, we need exponentiation to verify Corollary 4.2, since for each increase from n + 1 to n + 2, we have a binary
splitting. We think that by being slightly more careful the corollary should be verifiable in I∆0 +Ω1, but we did not work
out the proof.

7 Par abus de langage, we also use accolades for virtual classes.
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4.2. Nothing new beyond ω

A trivial, but still surprising insight is that hierarchies like the PV-hierarchy stop at ω modulo local interpretability. We
formulate this insight in a somewhat frivolous form. Let’s momentarily drop our restriction to finite signatures and simple
axiom sets. Let P be any partial ordering (of whatever cardinality). We define PPV as follows. It is a many-sorted theory
with sorts o (of objects) and p of concepts, for any p in P . We have identity for sort o, application predicates appp with
characteristic sequence po, and Frege functions Ěp with characteristic sequence po. Wewrite Y px for appp(yp, xo). Our theory
is axiomatized as follows.

P1) ` ∃Xp ∀x (Xpx↔ A(x, Ey, EY )),
where A does not contain free occurrences of X , where A does only contain concept variables Y q, for q ≤ p, where

A does only contain bound concept variables Zq, for q < p.
P2) ` ĚpXp = ĚqY q ↔ ∀z (Xpz ↔ Y qz).

Note that, modulo some notational divergence, PnV under the old and under the new definition are the same (if we view n
as a finite ordinal, modeled as the standard ordering on its predecessors). We write [[P ]] for the supremum of the lengths
of all finite ascending sequences in P . Note that [[P ]] ∈ ω + 1. We have:

Theorem 4.3. We have: PPV ≡loc P [[P ]] V.

Proof. We use, locally, the notational conventions of PPV for PnV and PωV.

Consider any finitely axiomatized subtheory U of PPV. Let P0 be the subordering of P generated by the p occurring in the
axioms of U . We define ν from P0 to ω by: ν(p) := sup{ν(q) + 1 | q < p}. For p in P0, we send sort p to sort ν(p),
appp to appν(p), etc. For all other sorts, the translation is don’t care. It is easily seen that this translation yields the desired
interpretation of U in P [[P ]] V. The other direction is similar. �

Specifically, we get for all infinite ordinals α: PαV ≡loc PωV.

4.3. Predicative Frege set theory

This subsection is devoted to explicating something that is in a sense known to everybody who studied these matters:
there is a natural one-sorted version of the predicative Frege hierarchy that is in some sense ‘the same’. However, what
is sameness here? This subsection is devoted to (i) a precise description of the flat hierarchy and (ii) establishing that
the relevant notion of sameness is bi-interpretability. The Frege functions will play the role of isomorphism between
interpretations. It is certainly remarkable to see how ‘thin’ Frege’s strict distinction between concept and object is from
the technical point of view.
Because of their elementary character, all considerations of this subsection are verifiable in I∆0 +Ω1.
We define the flat Frege hierarchy FSTn as follows.8 The theory FST0 is simply ID, the one-sorted predicate logic of pure

identity. The language of FSTn+1 adds to the language of FSTn a unary predicate symbol setn+1 and binary predicate symbol
∈
n+1. A formula A is in Axn+1, iff, whenever a variable y occurs in a context set

n+1(y) or z ∈n+1 y or y ∈n+1 y, then y is not
syntactically equal to x and the occurrence under consideration is free in A. The theory FSTn+1 is FSTn plus the following
axioms.

• ` x ∈n+1 y→ setn+1(y).
• For any A inAxn+1, such that y is not free in A, we have:
` ∃y : setn+1 ∀x (x ∈n+1 y↔ AxEz).

• ` (x : setn+1 ∧ y : setn)→ (x = y↔ ∀z (z ∈n+1 x↔ z ∈n y)).
(We only have this axiom if n > 0.)

• ` x, y : setn+1 → (x = y↔ ∀z (z ∈n+1 x↔ z ∈n+1 y)).

One can show that FSTn is,modulo definitional equivalence, the extension of (PnV)[ with an axiom stating that everything is
an object: ` ∀x ∆0(x), plus axioms saying that the Frege functions are identity functions:

` ∀x : setj+1 ∀y (fregj(x, y)↔ x = y).

The interpretations of sets in classes is SC : Pn+1V B FSTn+1. The interpretation of classes in sets is CS : FSTn+1 B Pn+1V.
Here is the specification of SC.

• δSC(v) :↔ v = v,
• vESCw :↔ v = w,

8 FST for: Frege Set Theory.
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• setj+1SC (v) :↔ ∃X
j v = ĚjX j (j = 0, . . . , n),

• v ∈
j+1
SC w :↔ ∃Y j (w = ĚjY j ∧ Y jv) (j = 0, . . . , n).

We can show that SC is indeed an interpretation of the flat theory in its sorted counterpart. We treat the comprehension
axiom. Suppose AxEz is in Axn+1. Consider BxEz := (AxEz)SC. It is clearly sufficient to produce, in Pn+1V, for all Ez, an Y such
that ∀x (Yx↔ BxEz). Let’s say that CEz is a context for BxEz, if C is a conjunction of formulas Ci, where Ci is of one of the forms
(setn+1(zi))SC or¬ (setn+1(zi))SC, for each zi in Ez. Since, the disjunction of all contexts is a tautology, it is sufficient to produce
Y under the assumption of some context, say C . We work in Pn+1V+ C .
Any subformula of the form (u ∈j+1 v)SC or (setj+1(v))SC, for j < n, only contains bound concept variables V j.
Consider any subformula occurrence (u ∈n+1 v)SC or (setn+1(v))SC. Here, vwill be free in B and unequal to x. Thus, either

(setn+1(v))SC or¬ (setn+1(v))SC. will be in the context. In the first case, we have a variable V n such that ĚnV = v. It follows
that (setn+1(v))SC may be replaced, modulo provable equivalence, by>, and that (u ∈n+1 v)SC may be replaced by Vu. Both
replacements do not contain quantifiers over variables of degree n. In the second case we may replace both (u ∈n+1 v)SC
and (setn+1(v))SC by ⊥. So in all cases B reduces to a formula without quantifiers over variables of the form V n. We may
now apply predicative comprehension in Pn+1V, to obtain Y . (Note that we implicitly use ∃-elimination.)

Next we specify CS.

• δ0CS(v) :↔ v = v, δj+1CS (v) :↔ setj+1(v) (j = 0, . . . , n),
• vE0CSw :↔ v = w,
• appj+1CS (w, v) :↔ v ∈j+1 w,
• fregjCS(v,w) :↔ v = w.

We easily check that CS is indeed an interpretation of the sorted theory in its flat companion. We show that CS ◦ SC is the
identity interpretationmodulo FSTn+1-provable equivalence. Thus, CS◦SC is equal to the identity interpretation for FSTn+1
in INTms. This tells us that FSTn+1 is a retract of Pn+1V in INTms. We treat the cases of δ and ∈. We have in FSTn+1:

δCS◦SC(x) ↔ δ0CS(x) ∧ (δSC(x))
CS

↔ x = x.
x ∈j+1CS◦SC y ↔ (x ∈j+1SC y)

CS

↔ (∃Y j (y = ĚjY j ∧ Y jx))CS

↔ ∃z : setj+1 (y = z ∧ x ∈j+1 z)
↔ x ∈j+1 y.

Let ∇ := SC ◦ CS. We show that ∇ is isomorphic to the identity interpretation id on Pn+1V. The isomorphism from id to ∇
is specified as follows:

• xG0y :↔ x = y,
• X jGj+1y :↔ Ěn(X j) = y.

We have e.g. in Pn+1V:

δ
j+1
∇
(ĚjX j) ↔ ∃Y j (ĚjX j = ĚY j)

↔ >.

appj+1
∇
(ĚjX j, y) ↔ ∃Z j (ĚjX j = ĚjZ j ∧ Z jy)

↔ X jy.

fregj
∇
(ĚX j, y) ↔ ĚX j = y.

Wemay conclude that Pn+1V and FSTn+1 are isomorphic in hINTms. In other words, these theories are bi-interpretable.

Open Question 4.4. Is PωV bi-interpretable with a theory of finite signature?
We end this subsection, with a useful insight concerning the FSTn+1.

Theorem 4.5. Each theory FSTn+1 is sequential. This fact is verifiable in I∆0 +Ω1.
Proof. It is sufficient to show that FST1 is sequential. Burgess shows how to interpretQ in P1V. This interpretation preserves
identity. We transfer this interpretation to FST1 via CS. We can improve the resulting interpretation by shortening it in
order to have the principles stating that < is a linear ordering. We define sequences in the way that is usual in set theory:
as functions from the numbers below a number n to arbitrary objects. Here functions are modeled as sets of ordered pairs.
It is easy to verify that we have the desired properties.

Verifiability in I∆0 +Ω1 is evident, since we only have to show direct interpretability of a standardly finite number of
principles. �
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Remark 4.6. In stead of using Burgess result in the proof of Theorem 4.5, we could also have used the result from [3] or
from [11].

We note that the interpretation of Q can be given in the system adjunctive class theory with Frege relation, acf, which is
modulo a direct interpretation a subsystem of P1V. The language of acf has two sorts: one for objects and one for concepts.
We have identity for objects and two further binary relations η from objects to concepts andz from concepts to objects. We
have the following axioms.

acf1. ` ∃X ∀x ¬ xηX .
acf2. ` ∀X, x ∃Y ∀y (yηY ↔ (yηX ∨ y = x)).
acf3. ` ∀X ∃x Xzx.
acf4. ` ∀X, Y , z ((Xzz ∧ Yzz)→ ∀u (uηX ↔ uηY )).

So, roughly, acf is P1V, with a weaker comprehension principle and with axiom V minus the uniqueness condition of the
Frege function and without extensionality. We can now use the ideas sketched in Appendix III of [12] to prove that (the
flattening of) this theory is sequential. Since we lack extensionality, the interpretation N of Qwill not preserve identity.

As is easily seen, if we combine axiomsW3 andW4 with full comprehension, we still get the Russell paradox.

4.4. Finite axiomatizability II

Burgess shows that the theory P1V is finitely axiomatizable: the concepts definable are generated from empty concept,
singleton concept using complement and intersection. See [2], pp. 89, 90. Since P1V has a pairing operation, we would like
to apply Theorem 3.3 to conclude that all the Pn+1V are finitely axiomatizable. However, Theorem 3.3 is only formulated for
one-sorted theories. We show how to work around this problem. First we need two lemmas.

Lemma 4.1. Finite axiomatizability is preserved over retractions in hINTms. It follows that bi-interpretability preserves finite
axiomatizability. This fact is verifiable in I∆0 +Ω1.

Proof. Suppose U is a retract of V in hINTms and that V is finitely axiomatized.We can now axiomatize U by the translations
of the axioms of V , plus axioms stating that the Ga form an isomorphism between the identity interpretation and the
composition of co-retraction and retraction. �

Lemma 4.2. Suppose Udae and Vdbe are bi-interpretable via direct interpretations. Then (Udae)pc and (Vdbe)pc are bi-
interpretable via direct interpretations, i.e. interpretations preserving the domain and the identity of the designated sorts. This
theorem can be verified in I∆0 +Ω1.

Proof. Suppose the witnessing interpretations are M : Udae → Vdbe and N : Vdbe → Udae. We lift M and N to Mpc

and Npc as in Theorem 3.2. Note that the directness causes the lifted interpretations to act identically on the second order
vocabulary.We can now lift the isomorphisms betweenM◦N and idV and betweenN◦M and idU . E.g. ifG is the isomorphism
from idU to N ◦M , then we set: XGcY :↔ ∀x, y (xGay→ (Xx↔ Yy)). �

We are now ready to prove finite axiomatizability of the Pn+1V.

Theorem 4.7. Each theory Pn+1V is finitely axiomatizable.

Proof. We have already seen that P1V is finitely axiomatizable. For the induction step, suppose Pn+1V is finitely
axiomatizable. Since, Pn+1V is bi-interpretablewith FSTn+1, we find that FSTn+1 is finitely axiomatizable. This is a one-sorted
sequential theory. By Theorem 3.4, (FSTn+1)pc is finitely axiomatizable. By Lemma 4.2, (FSTn+1)pc is bi-interpretable with
(Pn+1V)pc. It follows that (Pn+1V)pc is finitely axiomatizable. Since Pn+2V is a finite extension of (Pn+1V)pc, we are done. �

Open Question 4.8. We do not know whether the argument for the finite axiomatizability of P1V can be formalized in
I∆0 +Ω1.

1. Can I∆0 +Ω1 verify the finite axiomatizability of P1V?
2. If not, is the finite axiomatizability of Pn+1V, for n ≥ 1, verifiable in I∆0 +Ω1?

The finite axiomatizations of the stages provided by the proof of Theorem 4.7 are not optimal since we are going back and
forth using the interpretations SC and CS. Here is the finite axiomatization of Pn+1V after some simplifications. The axioms
Fi are taken from the proof of Theorem 3.4.

• The axioms of identity for the object sort.
• The variants of axiom V for all concept sorts occurring in Pn+1V.
• The finite axiomatization of comprehension of P1V.
• The axioms F1 for ∈j and setj, for 0 < j ≤ n, and the concept variables Xk, for j ≤ k ≤ n. Here ∈j and setj are treated as
abbreviations.
• The axioms F2 to F6 for concept variables X j, for 0 < j ≤ n.
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We call the theories with the above axiomatization Pn+1Vfa. So Theorem 4.7 tells us that Pn+1Vfa =ext Pn+1V. We also have:

Theorem 4.9. The theory I∆0 +Ω1 verifies, that, for all n:

• Pn+2Vfa =ext (Pn+1Vfa)
pcf,

• Pn+1Vfa ⊆ Pn+1V.

5. From consistency to comprehension

In this section, we treat the Henkin–Feferman construction and show how it can be extended to an interpretation of
predicative comprehension.

5.1. The Henkin–Feferman construction

We briefly and informally discuss the Henkin–Feferman construction. Since, we will use some details of the construction
in some of our proofs, it is good to have, at least in outline, a sketch in mind of how the proof works. The Henkin–Feferman
construction is a ‘syntactification’ of the Henkin construction of a model from a consistent theory. Here, we do not construct
a model but an interpretation. To complicate things we execute the construction in the context of a weak theory, so that
apparently there is not enough induction around. The lack of induction is compensated using Solovay’s methodology of
shortening cuts. Details can be found in [18].9

Remark 5.1. The early history of the Henkin–Feferman construction is discussed in [5].
In their book [8], in 1939, Hilbert and Bernays gave a formalization of Gödel’s Completeness Theorem, formalizing Gödel’s

own construction. The result was extended, in 1951, by Hao Wang in his paper [21]. One could say this gave us the Gödel-
(Hilbert+Bernays)-Wang construction.
Then, in 1960, in his classical paper [4], Solomon Feferman further improved the result, using an arithmetical construction

based on the Henkin construction. This gave us the Henkin–Feferman construction.
Feferman’s result employed ∆02-induction. This can be improved using Solovay’s method of shortening definable cuts.

Solovay found his method in 1976. It is reported in the unpublished note [16]. For an exposition, see e.g. [7], V.5. This
improvement leads to the insight that the construction can be done when we have Robinson’s Q available. I guess, this
is optimal: whenever the result can be meaningfully formulated, we have it. The construction in weak theories was known
as folklore to the specialists. The first detailed exposition of the construction in the context of weak theories is [17]. This
exposition was improved in [18].
There are further variants of the construction involving cut free consistency, restricted consistency, non-standard proof

predicates and the like, that are outside the scope of this paper.

The development of the constructions in this subsection can be executed in I∆0 +Ω1 as metatheory. Remember that
ΩU := I∆0 +Ω1 + con(U).

Consider any theory U . We want to construct an interpretation H : ΩU B U .
We extend the language of U with Henkin constants in an inductive way: whenever we have a sentence ∃xa Ax in the

language, we add a constant c[∃xa Ax] of sort a. The formula B is a direct subformula in the extended sense of A, if B is a direct
subformula of A in the usual sense or if B = ∃xa B0x and c[B] occurs in A. We stipulate: subformula in the extended sense is
the reflexive transitive closure of subformula in the extended sense.
We arrange that the language is coded in such away that all syntactic operations are p-time and that I∆0 +Ω1 can verify

all elementary facts. The coding will also satisfy monotonicity in the sense that, if B is a proper subformula in the extended
sense of A, then the code of B is smaller than the code of A. To simplify inessentially we will assume that our only official
quantifier is ∃.

Reason inΩU . A definable cut will be a class of numbers given by a formula, such that, verifiably, this class is closed under 0,
S,+,× and ω1, and is downwards closed w.r.t.<. We construct a complete Henkin theory in steps.

step 0 The theoryH0 is U .
step n+ 1 In case n is not the Gödelnumber of a sentence of the extended language, we takeHn+1 := Hn. Suppose n is the

Gödelnumber of A. SupposeHn + A is consistent. If A is not of the form ∃xa Bx, we takeHn+1 := Hn + A. If A is of
the form ∃xa Bx, we takeHn+1 := Hn + A+ B(c[A]). IfHn + A is not consistent, we takeHn+1 := Hn.

We can easily show that the set X of n, such that Hn is defined and consistent, is closed under 0 and successor. Let =, or,
more explicitly, =U , be a definable cut that is a shortening of X . We have thatH := H= :=

⋃
i∈=Hi is a complete Henkin

theory in the language S, of all sentences of the extended language of U restricted to =. We define an interpretation H , or
more explicitly HU , as follows.

9 In fact, only the one-sorted case is treated there. However, the many-sorted case only asks for very minor adaptations.
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• δa
H is the set of all Henkin constants of sort a in =. We will distinguish x

a qua domain object from cxa , which is xa in its
role of Henkin constant, even if strictly speaking xa = cxa .
• RH(Ex) :↔ H(R Ecx); xEa

Hy :↔ H(cx =a cy), if we have identity for sort a.

We have the following theorem.

Theorem 5.2. 1. The theory ΩU proves the Tarski clauses, w.r.t. S, for HU as a truth predicate of the interpretation HU . For
example, inΩU , we have:
• for a predicate R with associated sequence Ea and for Ex : δEaH , we have: RH(Ex) :↔ H(R(Ecx)),
• for all B, C in S, we have:H(B ∧ C)↔ (H(B) ∧H(C)),
• for all B in S and all variables va of the appropriate sort (coded) in =, we have:H(∀va Bv)↔ ∀x : δa

H H(Bcx).
Note that it follows, that, for any A in the language of U,
ΩU ` ∀Ex : δEaH (H(AEcx)↔ A

HEx).
2. Let S0 be the set of U-sentences in =. We have:
ΩU ` ∀A∈S0 (�UA→ H(A)).

The Henkin interpretation as defined here has a remarkable property, that becomes immediately evident, when we reflect
on the fact that any cut shortening the set of acceptable stages X would have done the trick. This property is stated in the
theorem below.
Consider any interpretation K : T B Z . We assume that σK maps all Z-sorts to a single T -sort, say b. Consider any T -

formula Avb, having only v free, Suppose T ` δa
K ∩ A 6= ∅, for all Z-sorts a. We define K � A as the interpretation we obtain

by restricting the domains δa
K of K to δ

a
K ∩ A.

Lemma 5.1. Consider any theory U. Let J be anyΩU -cut. We have:

ΩU ` ∀Ex : δEaH ∩ J (A
H�J
Ex↔ AHEx).

(The notation ‘δEaH ∩ J ’ is intended to convey that each δ
a
K is intersected with J.) In other words H � J is elementarily equivalent in

ΩU to H.

Proof. Clearly, the elements of the δa
H ∩ J are precisely the Henkin constants of sort a for the complete Henkin theoryH ∩ J .

We have, inΩU , for Ex : δEaH ∩ J:

AH�JEx ↔ (H ∩ J)(AEcx)
↔ H(AEcx)
↔ AHEx.

Note that, since A is standard, AEcx will be automatically in J , whenever Ex in J . �

Note that we can easily prove a stronger fact.

Fact 5.3. Suppose M : Z B ΩU . Let J be a Z-definable cut in the M-numbers. Then, (M ◦ HU) � J is elementarily equivalent in Z
to M ◦ HU .

5.2. Henkin–Feferman meets comprehension

To give an optimal formulation of a number of our results, it is better to widen the framework a little bit. Consider a
many-sorted predicate logical language and a designated sort b. We extend the language by adding new unary second order
variables for concepts of objects of the sort b. Officially: we add a new sort c, plus a predicate appwith associated sequence
cb. An s-theory is a theory in this extended languagewithout quantifiers over the new sort c. Wemap an s-theory U to a theory
Usch in the original language, by replacing all axioms AEX by A[EB], for all EB, where the EB are formulas of the original language,
and where A[EB] is the result of replacing the Xix in AEX , by Bi[v := x], where v is a fixed designated free variable of sort b,
while no occurrences, from the free variable occurrences in Bi[v := x], distinct from the occurrences of x are bound in A[EB].
The second order theory Upc is obtained from U by reading U second order and by adding the predicative comprehension

scheme:

` ∃X ∀xb (Xx↔ A(x, Ey, EY )),

where A does not contain bound second order variables and X does not occur in A.

Theorem 5.4. Suppose U is an s-theorywith designated sort b. Then, we have, verifiably in I∆0 +Ω1, that (Q+con(Usch))BUpc.
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Proof. We first move to a more convenient environment to work in. Remember that (Q+ con(Usch)) = ΘUsch BΩUsch . So,
it is sufficient to show:ΩUsch B Upc. We specify our interpretation H? := H?U : ΩUsch B Upc as follows. For all vocabulary of
the language without c, H? coincides with H . The domain of concepts, δc

H? , is the class of formulas, in =Usch , of the language
of Usch extended with Henkin constants, that have just one designated variable v of sort b free. We interpret, for X in δc

H? ,
say X is Bv, Xx, byH(Bcx).
When we consider a sequence EX of elements of δc

H? , we will call these objects in their role of formulas: EBX . Consider any
U-formula C(EZ). We can show by external induction over C , that:

ΩUsch ` ∀Ex : δEaH? ∀EX : δ
c
H? ((C(EX, Ex))

H?
↔ H(C[EBX ](Ecx))). (2)

Consider any s-axiom AEX of U . Reason inΩUsch . It is clear that, for all EX in δc
H? , we have�UschA[EBX ]. Hence, by Theorem 5.2(2),

we haveH(A[EBX ]). (Note that A[EBX ], will be in S0.) It follows by Eq. (2), that (AEX)H
?
. Thus, outsideΩUsch , we may conclude

thatΩUsch ` (∀EX AEX)H
?
.

Consider any formula A(v, Ez, EZ), where v is of the designated sort b, without bound c-variables.We reason inΩUsch . Consider
Ey in δEaH? and EY in δ

c
H? . Clearly, X := A(v, Ecy)[EBY ] is in δ

c
H? . We have, for x in δ

b
H? :

(Xx)H
?
↔ H(A(cx, Ecy)[EBY ])

↔ (A(x, Ey, EY ))H
?
.

Wemay conclude that H? : ΩUsch B Upc.

To verify the proof in I∆0 +Ω1, you have to provide p-time bounds for theΩUsch-proofs produced in the induction leading
to Eq. (2). �

It is easy to see that we may extend Lemma 5.1 to H?, where we now restrict also the new domain δc
H? to J . Thus, we have:

Lemma 5.2. Let J be a ΩUsch-cut. We have that H?Usch � J is elementarily equivalent to H?Usch in ΩUsch . This result is verifiable in
I∆0 +Ω1.

6. From consistency to principle V

In this section, we study how to extract Frege mappings from the Henkin–Feferman construction.

6.1. The collapse

The development in this subsection can be executed in I∆0 +Ω1. We give a collapsing lemma.

Lemma 6.1. Let U be an arithmetical theory. Let Av and Evw be arithmetical formulas such that, U-provably, E defines an
equivalence relation on the virtual class {v | Av}. Then, there is a U-cut J , a set of U-numbers I0 ⊆ J , and a formula F such
that I0 is provably downward closed and such that F , U-provably, defines an injective function from (A ∩ J)/E to I0. Moreover,
any shortening of J has the same property.

Proof. Reason in U . We assume that we have, apart from the natural numbers, one extra element ∗ that stands for
‘undefined’. (We can implement this by letting x + 1 represent x and letting 0 represent ∗.) We say that a sequence σ
of length ` is acceptable iff it satisfies the following condition. For all i < `, (i 6∈ A and σi = ∗) or (i ∈ A and ∀j<i ¬ jEi and σi
is the smallest number not in the range of σ � i) or (i ∈ A and ∃j<i (jEi∧ σi = σj)). We define J0 as the set of all ` such that:

1. there exists an acceptable sequence of length `;
2. there exists at most one acceptable sequence of length `;
3. for any acceptable sequence of length ` all initial subsequences are also acceptable;
4. any acceptable sequence of length ` codes a bijection between the classes (A � `)/E andm, wherem is the supremum of

{x+ 1 | x 6= ∗ ∧ ∃j<` σj = x};

(So, if the numerical range of σ is non-empty,mwill be the maximum of that range plus one, otherwisem = 0.)
5. if σ is acceptable of length `, then, for any i, σi = ∗ or σi ≤ i.

We can easily check that J0 is closed under successor. Let J be a shortening of J0 to a cut. We set Fi = x for: i ∈ (A ∩ J) and
there is an acceptable σ of length i + 1 with σi = x. It is easily seen that F is an injection from A ∩ J to J with downwards
closed range.

Clearly, the proof also works for any shortening of J . �
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Corollary 6.1. Consider any theory V . There is a K : ΩV BV , such that each of the domains δa
K of K is aΩV -provably downwards

closed class Ia0 and such that if there is an identity relation for sort a, then E
a
K is the identity relation= ofΩV restricted to I

a
0 .

Proof. To simplify the formulation, we will take, for any interpretation M in V , Ea
M to be =, if a does not have an identity

relation.

Consider the Henkin interpretation H : ΩV B V . We apply Lemma 6.1 to each of the δa
H and E

a
H . Thus we obtain, for each

a, Ja and F a with the promised properties. We take J the intersection of the Ja. Consider K0 := H � J . Then, by Lemma 5.1,
K0 : ΩV B V . Note that, by the same lemma, Ea

K0
will be Ea

H restricted to J . It follows that each F
a collapses δa

K0
/Ea
K0
to a

downwards closed Ia0 ⊆ J . Using the F
a, we find the desired K in the obvious way. �

6.2. Implementing V

We consider the following theory 2-SUCCp, the theory of two partial successors. The language of 2-SUCCp consists of
one unary predicate symbol Z and three binary predicate symbols=, Sa and Sb. The theory is axiomatized as follows.

• The axioms of identity.
• ` ∃!x Zx.
• ` (Saxz ∧ Sayz)→ x = y.
• ` (Saxy ∧ Saxz)→ y = z.
• ` Saxy→ ¬ Zy.
• ` (Sbxz ∧ Sbyz)→ x = y.
• ` (Sbxy ∧ Sbxz)→ y = z.
• ` Sbxy→ ¬ Zy.
• ` ¬ (Saxz ∧ Sbyz).

It is more pleasant to formulate 2-SUCCp in an unofficial language of partial functions using the constant 0 for Z and treating
Sa and Sb as partial functions using = for: both sides are defined and equal, 6= for: both sides are defined and unequal, and ↓
for is defined. In this language our axioms become:

• ` 0 ↓.
• ` Sax = Say→ x = y.
• ` ¬Sax = 0.
• ` Sbx = Sby→ x = y.
• ` ¬Sbx = 0.
• ` ¬Sax = Sby.

We define the following mapping from numbers to formulas.

• str0(u) := Zu,
• str2n+1(u) := ∃v (strn(v) ∧ Savu),
• str2n+2(u) := ∃v (strn(v) ∧ Sbvu).

When we take some care to recycle our variables in the recursion in an efficient way, the mapping n 7→ strn(u) will be
p-time. Let 2-SUCC∞p be 2-SUCCp plus all axioms` ∃u strn(u). In our unofficial language of partial terms we could view the
strn(u) as defining dyadic numerals, say ñ. In this notation, 2-SUCC∞p is 2-SUCCp plus the axioms ` ñ ↓.

Now consider any theory U . Suppose I∆0 +Ω1 ` M : U B 2-SUCC∞p . Note that, by a result due to Wilkie & Paris (see [22])
we have, in I∆0 +Ω1, a p-time bound on the U-proofs of theM-translations of the axioms of 2-SUCC∞p . (As is well known,
the mapping A 7→ AM is p-time.) We have:

I∆0 +Ω1 ` ∀x �U(∃u strx(u))M . (3)

We claim:

I∆0 +Ω1 ` ∀x �U(∀u, v ((strx(u) ∧ strx(v))→ u = v))M . (4)

The verification is by Σb1 -PIND-Induction on x, which we have available in I∆0 +Ω1.10 In the verification, we have to take
some care to estimate the U-proofs by a p-time bound in x. Using Eq. (4), we easily show:

I∆0 +Ω1 ` ∀x �U(∀u, v ((strx(u) ∧ str2x+1(v))→ Sa(u, v)))M (5)

and, similarly:

I∆0 +Ω1 ` ∀x �U(∀u, v ((strx(u) ∧ str2x+2(v))→ Sb(u, v)))M . (6)

The U-proofs provided in Eqs. (5) and (6) can be given explicit p-time bounds.

10 In fact, we could have used S12 as our base theory in stead of I∆0 +Ω1 .
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In I∆0 +Ω1 (in fact already in S12), we can develop the theory of binary strings or dyadic numerals, defining e.g.
concatenation by x ∗ y := x · `(y) + y, where `(y) is the largest power of 2, which is ≤ y + 1. We use this to prove
the following equation.

I∆0 +Ω1 ` ∀x, y (x 6= y→ �U(∀u ¬ (strx(u) ∧ stry(u)))M). (7)

The proof runs as follows. Reason in I∆0 +Ω1. Consider x and y with x 6= y. We view x and y as binary strings. Either x
and y are comparable in the final substring ordering or they are not. Suppose first that they are comparable, say y = x′ ∗ x,
where x′ 6= 0. As is easily seen: �U(∀u ¬ (strx′(u) ∧ str0(u)))M . We can bound the U-proof by a p-time function in x′.
We write [x]i for the initial string of x of length i. We now prove by Σb1 -LIND-Induction on i, that, for all i < length(x),
�U(∀u ¬ (strx′∗[x]i(u)∧ str[x]i(u)))

M . We have to keep track of a polynomial bound for the U-proofs. Clearly, the consequent
of the implication of Eq. (7) is a direct consequence.
Now suppose that x and y are not comparable in the final substring ordering. Let x′ be the largest final string they have

in common. We have x = x′′ ∗ x′ and y = y′′ ∗ x′, where either x′′ = 2x′′′ + 1 and y′′ = 2x′′′ + 2, or x′′ = 2x′′′ + 2 and
y′′ = 2y′′′ + 1. It is easily seen that:

�U(∀u ¬ (strx′′(u) ∧ stry′′(u)))M .

We now prove byΣb1 -LIND-Induction on i, that:

∀i<length(x′) �U(∀u ¬ (strx′′∗[x′]i(u) ∧ stry′′∗[x′]i(u)))
M .

As usual we have to keep track of a polynomial bound for the U-proofs. Clearly, the consequent of the implication in Eq. (7)
is a direct consequence.

In ΩU , we have a Henkin interpretation H of U with truth predicate H and characteristic cut =. We map = into δH via
x 7→ νx := c[(∃u strx(u))M ]. By Theorem 5.2(2) in combination with Eq. (3), we have:

ΩU ` ∀x∈= H((strx(νx))
M). (8)

Similarly, by Eq. (7), we have:

ΩU ` ∀x, y : = (x 6= y→ H((νx 6= νy)
M)). (9)

So it follows that, in ΩU , we have an injective mapping ν from = into δH◦M . A fortiori, ν is injective when considered as a
mapping from = to δa

H , where a is σM(o) for the single sort o of 2-SUCC∞p . Finally note that our argument also goes through
for H � J and = ∩ J , for anyΩU -cut J . We have proved:

Theorem 6.2. Suppose, for some M, I∆0 +Ω1 ` M : U B 2-SUCC∞p . Then,ΩU provides an injection from =U into δ
σM (o)
HU

. This
fact also holds if, for anyΩU -cut J , we consider =U ∩ J and HU � J .

Let U be an s-theory with designated sort b with identity. We set Upcf for the theory we obtain by extending the language
of Upc with a new function symbol Ě from c to b and adding the axiom V:

` ĚX = ĚY ↔ ∀zb (Xz ↔ Yz).

Theorem 6.3. Let U be an s-theory with designated sort b. Suppose, for some M, I∆0 +Ω1 ` M : Usch B 2-SUCC∞p . Then, we
have: Q+ con(Usch) B Upcf. This result is verifiable in I∆0 +Ω1.

Proof. It is sufficient to show thatΩUsch B Upcf. We work inΩUsch . Consider H? and =. Let Ec be the equivalence relation on
δc
H? given by:

XEcY :↔ (∀xb(Xx↔ Yx))H
?
.

By Lemma 6.1, we can find a cut J ⊆ = such that we have an F , that defines an injective function from δc
H? ∩ J modulo E

c into
a downwards closed segment of J . We consider H? � J . Note that all domains of this interpretation will be coded in J .
By Theorem 6.2, we can find an injection ν from J into δb

H�J modulo E
b
H . So, G := ν ◦ F is a map from (δ

c
H?�J modulo E

c) to
(δb
H?�J modulo E

b
H ). We use G to interpret the function Ě.

Verifiability in I∆0 +Ω1 is obvious. �
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6.3. Proving the consistency of 2-SUCC∞p

In this subsection, we verify that Robinson’s Arithmetic proves the consistency of 2-SUCC∞p on a definable cut.

Theorem 6.4. We have: Q B (Q+ con(2-SUCC∞p )).

Proof. Since Q B I∆0 +Ω2, it is sufficient to prove the desired consistency statement on a cut in I∆0 +Ω2. Thus, we work
in I∆0 +Ω2.
An a-assignment σ for a formula A codes a function from the free variables of A to the number a.11 An evaluation treeΘ for

a, p, σ and A, where σ is an a-assignment for A, andwhere p is a polarity+ or−, is given as follows. Its nodes are sequences of
numbers below a. The nodes are labeled by triples of assignments, polarities and formulas. The root is the empty sequence,
labeled with 〈σ , p, A〉. We give the sample clauses for conjunction, universal quantification and negation.

• Suppose we have a node τ labeled with 〈ν,+, (B ∧ C)〉. Then its successor nodes are τ0 and τ1, where τ0 is labeled with
〈ν � FV(B),+, B〉 and τ1 is labeled with 〈ν � FV(C),+, C〉.
• Suppose we have a node τ labeled with 〈ν,−, (B ∧ C)〉. Then its successor node is τ0, where τ0 is labeled with either
〈ν � FV(B),+, B〉 or 〈ν � FV(C),+, C〉.
• Suppose we have a node τ labeled with 〈ν,+,∀v B〉. In case v is free in B, its successor nodes are τx for all x < a. where
τx is labeled with 〈ν[v := x],+, B〉. In case v is not free in B, its successor node is τ0 labeled with 〈ν,+, B〉.
• Suppose we have a node τ labeled with 〈ν,−,∀v B〉. In case v is free in B, its unique successor node is τx for some x < a.
where τx is labeled with 〈ν[v := x],−, B〉. If v is not free in B, its successor node is τ0 with label 〈ν,−, B〉.
• Suppose we have a node τ labeled with 〈ν,+,¬ B〉. Then its successor node are τ0, labeled with 〈ν,−, B〉.
• Suppose we have a node τ labeled with 〈ν,−,¬ B〉. Then its successor node are τ0, labeled with 〈ν,+, B〉.

A tree is successful iff, for all leaves τ , we have:

• if the label of τ is 〈ν,+, v = w〉, then ν(v) = ν(w);
• if the label of τ is 〈ν,−, v = w〉, then ν(v) 6= ν(w);
• if the label of τ is 〈ν,+,Savw〉, then 2 · ν(v)+ 1 = ν(w);
• If the label of τ is 〈ν,−,Savw〉, then 2 · ν(v)+ 1 6= ν(w);
• if the label of τ is 〈ν,+,Sbvw〉, then 2 · ν(v)+ 2 = ν(w);
• If the label of τ is 〈ν,−,Sbvw〉, then 2 · ν(v)+ 2 6= ν(w).

We can make an estimate of the size of any evaluation tree for a and A. We will write |b| for the entier of the 2-logarithm of
b+ 1. We write x#y := 2|x|·|y|, x#2y := 22

||x||·||y||
.

First, consider a nodeα. Clearly, |α| is bounded by a termof order c0 ·(|a|+c1)·|A|, for standard c0 and c1. So,α is estimated
by k0#a#A, for sufficiently large a. Here k0 is fixed and standard. Secondly, the number of nodes is estimated by k1#a#A.
Finally, the size of a label is estimated by k2#a#A. Thus, for a whole treeΘ , we will have: |Θ| ≤ (k1#a#A) · (c2 · |a| · |A|) ≤
k3#a#A, for standard k3 and sufficiently large a. Thus, Θ is estimated by F(a, A) := 2k3#a#A = k4#22a#22A. We will only
consider a and A in the logarithmic cut log := {x | 2x ↓}, so that F will always be defined. Note that, since we are working
in I∆0 +Ω2, the cut logwill interpret I∆0 +Ω1.
There will be some p-time function G transforming bounds for trees of B to bounds for trees of e.g. ∀v B. We will assume

that we arranged it so that provably G(a, F(a, B)) ≤ F(a,∀v B) (and similarly for the other connectives).
We define a, σ |Hp A iff there is a successful tree Θ below F(a, A) for a, σ , p, A. We claim that |H satisfies the obvious

commutation clauses for a, A in log. Suppose e.g. that v is free in B and, for all x < a, we have a, σ [v := x] |H+ B. So for all
x < a, we have a successful treeΘx for a, σ [v := x],+, B. TheΘx are bounded by F(a, B). By∆0-induction we can find, for
each such x, a smallest such Θx, so we can treat the Θx as functionally dependent on x. We now take as the set of nodes of
the new tree all nodes of the form xτ , where x < a and τ is a node of Θx. The label of xτ will be the label of τ in Θx. We
easily verify that the new tree is successful. We may conclude that a, σ |H+ ∀v B.

We may verify the validity of predicate logic, on a in log, for the language of 2-SUCCp, where the language is restricted to
log. E.g., we may prove, by induction on B in log, that, for all σ : FV(B)→ a, we have a, σ |H+ B or a, σ |H− B. Similarly we
may verify the validity of 2-SUCCp on a.

We claim that I∆0 +Ω2 ` conlog(2-SUCC∞p ). Reason in I∆0 +Ω2. Consider a SUCC∞p -proof π in log. Consider the largest
axiom of the form ∃v strb(v) occurring in π . Clearly, b will be in log. Take a := b + 1. We now show that all axioms of
2-SUCCp are true in a. Moreover, we show that for each c < a, ∃v strc(v) is true in a. Noting that all formulas occurring in
π are in log, we may now show by induction on subproofs that all subconclusions of π are true. (Details will depend on the
proof system.) Hence, π cannot be a proof of falsity. �

11 We follow the usual practice to let a stand for {x | x < a}.
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7. From comprehension to consistency

The proof in this section is a variant of the proofs of the consistency on a definable cut of ZF in GB and of the consistency
on a definable cut of PA in ACA0. The original idea for the proof goes back to Mostowski. We show:

Theorem 7.1. Suppose U is a finitely axiomatized s-theory. Suppose further that Usch is sequential. Then, Upc B (Q+ con(Usch)).

Proof. Let ν be ameasure of complexity that counts depth of logical constants. LetL1(x) be the set of U-formulas that do not
contain concept variables and that are of ν-complexity≤ x.

We work in Upc. We let σ range over assignments coded as finite sequences of pairs of variables and objects, satisfying the
functionality condition. If a variable does not occur as a first component in the sequencewe take its value to be the default 0.
We assume syntax to be coded in the natural numbers provided by the fact thatUsch is sequential. SupposeU has k predicate
symbols. We define (permitting ourselves some abuses of language):

Tx(X) :↔ X ⊆ (ass×L1(x)) ∧ ∀σ ∀A∈L1(x) [
((A = P0Ev)→ (X〈σ , A〉 ↔ P0(σ Ev))) ∧
. . .

((A = Pk−1Ev)→ (X〈σ , A〉 ↔ Pk−1(σ Ev))) ∧
((A = ¬ B)→ (X〈σ , A〉 ↔ ¬(X〈σ , B〉))) ∧
((A = (B ∧ C))→ (X〈σ , A〉 ↔ (X〈σ , B〉 ∧ X〈σ , C〉))) ∧
((A = ∃vi B)→ (X〈σ , A〉 ↔ ∃y X〈σ [vi := y], B〉)) ].

Let J0 be the class of all x such that ∃!X T (X, x). We show that J0 contains 0 and is closed under successor.
For x = 0, we take X the concept of all 〈σ , A〉 such that, for some Ev, ((A = P0Ev) and P0(σ Ev)) or . . . ((A = Pk−1Ev)

and Pk−1(σ Ev)). This exists by predicative comprehension. Uniqueness is immediate. Let Xx be the unique concept such that
T (Xx, x). We define Xx+1 to be the union of Xx with the 〈σ , A〉 such that ν(A) = x + 1 and ((A = ¬ B) and ¬ Xx〈σ , B〉) or
((A = (B ∧ C)) and Xx〈σ , B〉 and Xx〈σ , C〉) or ((A = ∃vi B) and ∃y Xx〈σ [vi := y], B〉). It is easily seen that T (Xx+1, x + 1).
Moreover, if we had T (Y , x + 1), then we would have T (Y ∩ L1(x), x). So, Y ∩ L1(x) = Xx. It now easily follows that
Y = Xx+1.
Let J be a definable cut of J0. We will employ the functional notation Xx for x in J. We write L1(J) for the class of all

formulas in one of theL1(x) for x ∈ J.

Define Sat(σ , A) :↔ ∃x∈J Xx〈σ , A〉. It is easily seen that Sat is a satisfaction predicate for L1(J) in the strong sense that
we can verify the commutation conditions forL1(J).

Consider any A inL1(J), any finite assignment σ and any variable vi. We claim that:

∃Z ∀z (Zz ↔ Sat(σ [vi := z], A). (10)

Let ν(A) =: a. We can take Z := Hz | Xa〈σ [vi := z], A〉I. We easily verify that Z fulfills the desiderata.

Let P be the set of all Usch-proofs p, such that all formulas occurring in p are in L1(J). Let I be the set of numbers x such
that all p ∈ P of length≤ x (length in the sense of number of steps) have a conclusion Ap such that, for all σ , Sat(σ , Ap). We
show that 0 ∈ I and that I is closed under successor.
We first treat the case of 0. Consider any axiom C EY of U . Since we are working in Upc, we have ∀EY C(EY ). Consider EA in

L1(J). By Eq. (10), we can find Zi := Hz | Sat(σ [v0 := z], Ai)I. We may conclude C EZ . By external induction on standard
formulas D, we find: DEZ ↔ Sat(σ ,D[EA]). Thus we may conclude:

∀EA∈L1(J)∀σ Sat(σ , C[EA]).

The case of the induction step is dependent on the proof system. The reader is invited to check that thisworks for her favorite
proof system.
Thus, there can be no p inP with length in Iwith conclusion⊥. By Solovay’s method of shortening initial segments, we

can find a cut K that is verifiably part of I and J. Since we use a standard coding, any Usch-proof in K will only contain
formulas Dwith ν(D) in J and will have length in I. Thus, we certainly have conK(Usch).12 �

In the paper, we will only apply this result to ordinary theories, not s-theories. Theorem 9.5 illustrates that the result does
not work for theories axiomatized by arbitrary RE axiom sets.
Since Q + con(Usch) is finitely axiomatized, the previous theorem is trivially verifiable in I∆0 +Ω1. However, there is

a catch. What is verifiable is of the form ‘‘given a finitely axiomatized s-theory U, we can verify in I∆0 +Ω1 that . . . ’’. So the

12 Note that the result involving I and J is stronger than the present one. I know of no application of the extra information.
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bound on the axioms of U is external/standard. If, however we want to have the bound internally, we see that the size of
the code of our satisfaction predicate is exponential in the number of predicates of the signature of the theory. Thus, to
make the proof work in I∆0 +Ω1, we have to assume that the number of predicates is a logarithmic number n, i.e. 2n exists.
Inspection shows that the size of the satisfaction predicate is the only obstacle. We have:

Theorem 7.2. The theory I∆0 +Ω1 proves the following. Suppose that U is a finitely axiomatized s-theory with logarithmic
bound. Suppose further that Usch is sequential. Then, we have: Upc B (Q+ con(Usch)).

We end with two corollaries.

Corollary 7.3. Consider any finitely axiomatized theory U. Suppose U is mutually interpretable with a finitely axiomatized
sequential theory V . Then, we have Upc B (Q+ con(U)).

Proof. By Theorem3.2, we have (i)UpcBV pc. By Theorem7.1, we find that (ii) V pcB(Q+con(V )).We have, by applying ∃Σb
1 -

completeness to V B U , that (†) I∆0 +Ω1 ` con(V )→ con(U). Moreover, I∆0 +Ω1 is interpretable in Q on a cut. Hence
I∆0 +Ω1 + con(V ) is interpretable in Q+ con(V ). By (†), we find that I∆0 +Ω1 + con(U) is interpretable in Q+ con(V ).
So, a fortiori, (iii) (Q+ con(V )) B (Q+ con(U)). Combining (i), (ii) and (iii), we find Upc B (Q+ con(U)). �

By the reasoning leading to Theorem 7.2, we obtain:

Corollary 7.4. The theory I∆0 +Ω1 proves the following. Suppose U and V are finitely axiomatized theories with logarithmic
bound. Suppose further that U ≡ V and V is sequential. Then, U B (Q+ con(U)).

8. Putting it all together

In this section, we assemble the building blocks to prove our main result. We define (U)ω := U + {conn(U) | n ∈ ω}.

Theorem 8.1. For all n, we have, that it is both true and verifiable in I∆0 +Ω1, that Pn+1V ≡ Q + conn(Q). It follows that
PωV ≡loc (Q)ω .13

Proof. The proof is by (external) induction on n. Here is the outline of the base case.

P1V B Q (11)
B Q+ con(2-SUCC∞p ) (12)

B (2-SUCC∞p )
pcf (13)

⊇ P1V. (14)

The various steps are justified as follows.

step (11) This result is proved in [2], Section 2.2.
step (12) This step is our Theorem 6.4.
step (13) This step is provided by our Theorem 6.3.

Since each of the steps is verifiable in I∆0 +Ω1, so is their composition. Next we prove the induction step. We suppose that
it is both true and verifiable in I∆0 +Ω1 that Pn+1V ≡ (Q + conn(Q)). LetW be finitely axiomatized a sequential theory
extending Q, like S12, that is interpretable in Q on a cut. We have:

Pn+2V ⊇ (Pn+1V)pc (15)
B (Q+ conn(Q))pc (16)
B Q+ conn+1(Q) (17)
B Q+ con(Pn+1V) (18)
B (Pn+1V)pcf (19)
B Pn+2V. (20)

Here is the justification of the steps.

step (16) This step is justified by applying Theorem 3.2 to the left–right direction of the induction hypothesis.
step (17) This step is an application of Corollary 7.3, using the fact that the theory Q + conn(Q) is mutually interpretable

with a sequential theory.

13 Since Qω is reflexive, it follows that Qω B PωV.
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step (18) We reason as follows. By the second conjunct of the induction hypothesis in the right-to-left direction, we have:

I∆0 +Ω1 ` (Q+ conn(Q)) B Pn+1V.

It follows that:

I∆0 +Ω1 ` conn+1(Q)→ con(Pn+1V).

Since Q interprets I∆0 +Ω1 on a definable cut, we may conclude that:

(Q+ conn+1(Q)) B (Q+ con(Pn+1V)).

step (19) This is by Theorem 6.3.
step (20) This is by Theorem 4.1.
Since each of the steps is verifiable in I∆0 +Ω1, the end result is. �
Remark 8.2. A curious observation about our proof is that the presence of the principles V only contributes to consistency
strength in the case of P1V. For all others, predicative comprehension already does all the work. Of course, consistency
strength is but one aspect of a theory, so it could very well be that Pn+2V has advantages of another kind over PCn+1(P1V).
It would be interesting to have a closer look at this matter.
Where is the induction of the proof of Theorem 8.1, verifiable? There is one obstacle. In the induction we iterate the p-time
functions used in the steps. So it would seem that our theorem is verifiable in EA. However, we have not verified this in
detail. In stead, we give an alternative proof in that uses Löb’s Rule.
Theorem 8.3. The theory I∆0 +Ω1 proves that, for all logarithmic n: Pn+1V ≡ Q+ conn(Q).
Proof. We write x : log for ∃y 2x = y. Let:

A?x := ((Px+1V ≡ (Q+ conx(Q))) ∧ (Px+1V ≡ Px+1Vfa)).

We show that I∆0 +Ω1 ` ∀x : log A?x. We will prove this using Löb’s Rule. Thus, it is sufficient to show that:
I∆0 +Ω1 ` �I∆0+Ω1∀x : log A?x→ ∀x : log A?x.

We reason in I∆0 +Ω1. Suppose
�I∆0+Ω1∀x : log A?(x). (21)

Note that it follows that:
�I∆0+Ω1∀x : log (con(P

x+1V)↔ conx(Q)) (22)
and:

�I∆0+Ω1∀x : log (con(P
x+1V)↔ con(Px+1Vfa)). (23)

We proceed to prove A?1.

P1V ⊇ P1Vfa (24)
B Q (25)
B Q+ con(2-SUCC∞p ) (26)

B (2-SUCC∞p )
pcf (27)

⊇ P1V. (28)

The only new step here is Step (24). It is justified since the interpretability of Q in P1V only asks for a standard proof. Hence,
Q is also interpretable in P1Vfa by a standard proof. This standard proof is of course available inside I∆0 +Ω1, where we are
at present working. Next we prove the case A?(x+ 2), for x : log. We set FSTx+1fa , for the obvious flat counterpart of P

x+1Vfa.
We have:

Px+2V ⊇ (Px+1V)pc (29)
⊇ (Px+1Vfa)

pc (30)
B (FSTx+1fa )pc (31)

B Q+ con(FSTx+1fa ) (32)

B Q+ con(Px+1Vfa) (33)
B Q+ conx+1(Q) (34)
B Q+ con(Px+1V) (35)
B Px+1Vpcf (36)
B Px+2V. (37)

Here are the justifications of the steps.
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step (30) This is immediate by Theorem 4.9.
step (31) This combines Theorem 3.2 with the definition of FSTx+1fa .
step (32) This is by Corollary 7.4, using the fact that x is logarithmic.
step (33) Since �I∆0+Ω1(FST

x+1
fa B Px+1Vfa), it follows that:

�I∆0+Ω1(con(FST
x+1
fa )→ con(Px+1Vfa)).

Hence,

Q+ con(FSTx+1fa ) B I∆0 +Ω1 + con(FSTx+1fa )

⊇ Q+ con(Px+1Vfa).

steps (34) and (35) These steps follow by combining Eqs. (22) and (23) with reasoning as in step (33).
step (36) This is by Theorem 6.3.
step (37) This step uses Theorem 4.1. �

Corollary 8.4. The theory EA verifies that, for all n, Pn+1V ≡loc (Q+ conn(Q)). Hence, EA also verifies: PωV ≡ Qω .

9. Consequences

A first consequence is an alternative characterization of PωV in terms of EA.

Lemma 9.1. Verifiably in I∆0 +Ω1, for anyΠ01 -sentence P, we have: (Q+ con(Q+ P)) ≡ (EA+ P).

Proof. This is an immediate consequence of Lemma 4.1 of [19]. Here is a quick sketch of the proof.

From right to left, we may prove, in EA+ P , the cut free consistency of Q+ P . See [22], for how this may be done. There is
a definable EA-cut J , such that, in EA, for all x in J , supexp(x) is defined. On J , we will have, by cut-elimination, the ordinary
consistency of Q+ P . Thus, J gives us the desired interpretation.

From left to right, we use that:

Q+ con(Q+ P) ≡ I∆0 +Ω1 + con(I∆0 +Ω1 + P).

So it is sufficient to prove our result with I∆0 +Ω1 substituted for Q. We construct an interpretation for EA + P in
I∆0 +Ω1 + con(I∆0 +Ω1 + P). We first construct the Henkin–Feferman interpretation:

H : (I∆0 +Ω1 + con(I∆0 +Ω1 + P)) B (I∆0 +Ω1 + P).

By a result of Pudlák, there is a cut I such that ∀x : I �I∆0+Ω1+Psupexp(ẋ) ↓. See [14]. We may take I shorter than the cut
=H on which H is coded. Hence, by Theorem 5.2(2), ∀x : I H(supexp(ẋ) ↓). Now we restrict the domain of H to those y
that such that, for some x ∈ I ,H(cy < supexp(ẋ)). It is easily seen that H restricted to this domain is in an interpretation of
EA+ P . �

Lemma 9.2. We have, verifiably in I∆0 +Ω1, that, for all n: (Q+ con2n+1(Q)) ≡ (EA+ conn(EA)).

Proof. Let A?x := ((Q + con2x+1(Q)) ≡ (EA + conx(EA))). By Löb’s Rule, it is sufficient to prove: I∆0 +Ω1 `
�I∆0+Ω1∀x A

?x→ ∀x A?x.

Reason in I∆0 +Ω1. Suppose �I∆0+Ω1∀x A
?x. Note that our assumption implies that:

�I∆0+Ω1∀x (con
2x+2(Q)↔ conx+1(EA)). (38)

We want to show ∀x A?x. The case x = 0 is immediate using Eq. (38). Suppose x = y + 1. By Lemma 9.1 and Eq. (38), we
obtain:

Q+ con2x+1(Q) ≡ Q+ con2y+3(Q) (39)
≡ EA+ con2y+2(Q) (40)
≡ EA+ cony+1(EA) (41)
≡ EA+ conx(EA). (42)

So, for all x, we have A?x. �

Corollary 9.1. We have, verifiably in EA, that, for all n, P2n+1V ≡ (EA+ conn(EA)) and , thus, PωV ≡loc (EA)ω .

Proof. We combine Lemma 9.2 with Corollary 8.4. �

The fact that (Q+ con(Q)) ≡ EA, suggests the following question.
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Open Question 9.2. Is there a (natural) hierarchy of recursive functions Fn below superexponentiation, such that I∆0 +
‘‘Fn is total’’ is mutually interpretable with Q+ conn(Q)?

In his paper [1], Lev Beklemishev has shown that, verifiably in EA+ := I∆0 + SUPEXP, the following three theories have
the sameΠ01 -consequences: EAω , I∆0 + SUPEXP and I∆0 + IΠ−1 (see Propositions 4.5 and 11.5 of [1]).

14 Combining these
results with Corollary 9.1, we obtain:
Corollary 9.3. The theories PωV, EA+ and I∆0 + IΠ−1 are equiconsistent over EA

+.
We close this paper with a treatment of strong reflexivity. It will follow that PωV is not finitely axiomatizable in a strong
sense. From this we get that PωV does not interpret EA+.

A theory T is strongly reflexive if it interprets:
f+T := S12 + {con(T � n) | n ∈ ω}.

15,16,17

Here T � n is the result of restricting T to its axiomswithGödel numbers below n.18 As is easily seen (Q)ω is strongly reflexive.
Other examples of strongly reflexive theories are PA and ZFC. A theory T is strongly `-reflexive if it locally interprets f+T .

19

We have:
Theorem 9.4. The following are equivalent:

i. T is strongly `-reflexive,
ii. T ≡loc U, for some strongly reflexive U,
iii. T ≡loc U, for some strongly `-reflexive U.

Proof. (i)⇒ (ii) Suppose T is strongly `-reflexive, i.e. T Bloc f+T . We have f+T B T , by an argument due to Feferman. See [4].
So, T ≡loc f+T . We show that f

+

T is strongly reflexive. Consider any n. We have, for somem, that:

(T � m) B (S12 + con(T � n)).

It follows that S12 ` con(T � m)→ con(S12+con(T � n)). Hencef+T proves the consistency of each of its finitely axiomatized
subtheories.

(ii)⇒ (i) Suppose T ≡loc U , where U is strongly reflexive. Consider any n. For somem, we have (U � m) B (T � n). So,
S12 ` con(U � m)→ con(T � n).

It follows that: T B U B (S12 + con(U � m)) ⊇ (S12 + con(T � n)).

The step (ii)⇒ (iii) is trivial. We treat (iii)⇒ (ii). Suppose T ≡loc U , for some strongly `-reflexive U . By the equivalence of
(i) and (ii), U ≡loc V , for some strongly reflexive V . It follows that T ≡loc V , for some strongly reflexive V . �

Wemay conclude that PωV is strongly `-reflexive. Since, as is easy to verify, every strongly reflexive theory locally interprets
(Q)ω , we find that PωV is minimal among strongly `-reflexive theories in the local interpretability preorder.
The following theorem shows that the functors PC and PCF yield coding free definitions of strong `-reflexivity.

Theorem 9.5. Let U be a sequential theory. Then, the following are equivalent: (i) U is strongly `-reflexive; (ii) U ≡loc Upc;
(iii) U ≡loc Upcf.
Proof. (i)⇒ (iii) SupposeU is strongly `-reflexive. Then,UB(Q+con(U � n)).We assume that n is so large that sequentiality
can be verified in U � n. By Theorem 6.3, (Q + con(U � n)) B (U � n)pcf. Clearly, (U � n)pcf ⊇ (Upcf � n). We may conclude:
U B (Upcf � n). Thus, U Bloc Upcf. Trivially, we have Upcf B U .

(iii)⇒ (ii) This is immediate.

(ii)⇒ (i) Let n be so large that U � n is sequential. We have, by Theorem 7.1:

Upc
⊇ (U � n)pc

B Q+ con(U � n)
B S12 + con(U � n).

Wemay conclude that Upc Bloc f+U . �

14 One uses that EA+ is EA plus uniformΣ01 -reflection for EA.
15 We use S12 here in stead of I∆0 +Ω1 , because it is finitely axiomatized. Any sufficiently strong finitely axiomatized subtheory of I∆0 +Ω1 would
suffice for present purposes.
16 We pronounce f to rhyme with ‘Joe’.
17 An important difference between the functor f+ and the mappingsΘ andΩ is that f+ is extensional.
18 We use ‘strongly’ here to distinguish this notion from a notion of reflexiveness involving not just restriction of axioms but also restricted provability.
We call this notion: (weak) reflexiveness.
19 Sequential theories are (weakly) `-reflexive. Thus, there is an analogy between sequential theories and sequential strongly `-reflexive theories.
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We show that strong `-reflexivity is a sufficient condition for non-finite axiomatizability.

Theorem 9.6. No strongly `-reflexive theory is finitely axiomatizable.

Proof. Suppose T is strongly `-reflexive and finitely axiomatized. We have, for some n, that T = (T � n). Hence,
T B (S12 + con(T )), contradicting the Second Incompleteness Theorem.20 �

Note that it follows that theories like PA and ZF are not finitely axiomatizable. The most relevant corollary in the context of
this paper is, of course:

Corollary 9.7. The theory PωV is not finitely axiomatizable, nor is any theory that is mutually locally interpretable with PωV.

Corollary 9.8. The theory PωV does not interpret EA+.

Proof. Since EA+ ⊇ (Q)ω , we have EA+ Bloc PωV. Hence, it is impossible that we have PωV B EA+, since EA+ is finitely
axiomatizable. �

Open Question 9.9. It seems to me that every extension of EA studied in the literature is either finitely axiomatizable or
(strongly) reflexive. On the other hand, it seems very probable to me that the theory PωV is not strongly reflexive, but just
strongly locally reflexive. This makes the following question interesting. Is PωV strongly reflexive?
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Appendix A. Finite axiomatizability III

In this appendix we prove Theorem 3.3. We show the following. Suppose U is a one-sorted theory with identity and
pairing. Then, Upc can be finitely axiomatized over U .

Proof. We code sequences in U by:

• 〈x〉 := x, σ ~ y := 〈σ , y〉.

Here 〈x0, . . . , xn−1〉~y = 〈x0, . . . , xn−1, y〉. Our definition by recursion is external. Internally,we only define, for any external
n, sequences of length n. Note that a sequence of length nmay coincide with a sequence of length k, for n < k. Clearly, we
can define the notion n-seq of sequence of length n in U . It is convenient to also have the right associating notion of sequence
[x0, . . . , xn−1].

• [x] := x, y � σ := 〈y, σ 〉.

We now define a number of operations on concepts.

• Suppose P is a k-ary predicate symbol, then
F0,P := H〈x0, . . . , xk−1〉 | P(x0, . . . , xk−1)I.
• F1(X) := H〈x, y〉 | X〈x, y, y〉I, F−1 (X) := Hy | X〈y, y〉I.
Note that by our conventions this also identifies the last two elements of longer sequences.
• F2(x) := HxI.
• F3(X) := H〈x, z, y〉 | X〈x, y, z〉I, F−3 (X) := H〈z, y〉 | X〈y, z〉I.
• F4(X) := H〈y, z, w〉 | X[y, z, w]I.
• F5(X) := H[x, y, z, w] | X[x, 〈y, z, w〉]I.
• F6(X) := H〈x, y〉 | XxI.
• F7(X, Y ) := X \ Y .
• F8(X) := Hy | ∃x X〈y, x〉I.

Let F be the class of functions generated by the functions of our list.

20 For the proof of the Second Incompleteness Theorem it is irrelevant on which interpretation of S12 in T we have con(T ). The Theorem is, in this sense,
coordinate free.
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Let renormn([x0, . . . xn−1]) := 〈x0, . . . , xn−1〉. Suppose X is a set of sequences [x0, . . . , xn−1]. We claim that G0,n, with

G0,n(X) := renormn[X] := Hrenormn(ξ) | ξ ∈ XI,

is in F . For n = 1 this is trivial. For n > 1, note that:

〈〈x0, . . . , xk〉, [xk+1, . . . , xn−1]〉 ∈ F4(X)⇔ 〈〈x0, . . . , xk−1〉, [xk, . . . , xn−1]〉 ∈ X .

Hence, we can take G0,n := F n−24 .

Let renorm?
n(〈x0, 〈x1, . . . , xn−1〉〉) := [x0, . . . , xn−1]. Suppose X is a set of pairs 〈x0, 〈x1, . . . , xn−1〉〉. We claim that G1,n, with

G0,n(X) := renorm?
n[X], is in F . For n = 1, 2 this is trivial. For n > 2, we take G1,n := F n−35 .

Suppose n > 1. Let shiftn(〈x0, . . . , xn−1〉) := 〈xn−1, x0, . . . , xn−2〉. We claim that there is a G2,n in F , such that if X is a
concept of sequences of length n, then G2,n(X) := shiftn[X]. In case n = 2, we take G2,2 := F−3 . Suppose n > 2. We take
G2,n := G0,n ◦ G1,n ◦ F−3 .

Suppose n > 2 and k < n− 2. Define:

placen,k(〈x0, . . . , xn−1〉) := 〈x0, . . . , xk, xn−1, xk+1, . . . xn−2〉.

Let G4,n,k(X) := placen,k[X]. Then G4,n,k(X) is in F . We can take G4,n,k := Gk+22,n ◦ (G2,n ◦ F3,n)
n−k−2.

Let π be any permutation of n. Let π ?(〈x0, . . . , xn−1〉) := 〈xπ0, . . . , xπ(n−1)〉. We define: G5,n,π (X) := π ?[X]. Then G5,n,π is
in F . Using the previously defined operations, we can easily define G5,n,π for the case that π is a transposition. Then we use
the fact that any permutation is a product of transpositions.

To any formula of predicate logic A (possibly with free concept variables), we assign the set of sequences ξ of length `, were
` is the supremum-plus-one of the indices of the variables occurring in A, such that ξ , considered as an assignment satisfies
A. We now prove by induction on A that this set of sequences is definable using the Fi. We treat the example of the atomic
formula P(v2, v0). The rest is more or less obvious. We have:

a. X0 := F0,P = H〈x0, x1〉 | P(x0, x1)I.
b. X1 := F6(X0) = H〈x0, x1, x2〉 | P(x0, x1)I.
c. X2 := G5,3,(02)(12) = H〈x1, x2, x0〉 | P(x0, x1)I = H〈x0, x1, x2〉 | P(x2, x0)I.

It follows that every definable set is generated by the Fi. Clearly, the Fi are definable using predicative comprehension. �

Is the proof of Theorem 3.3 verifiable in I∆0 +Ω1?We did not verify this in detail, but it seems that if we proceed carefully
and choose the variables in the syntactic representation of the formulas involved in comprehension wisely, then is should
be feasible.

Appendix B. Questions

Q1. Is PωV bi-interpretable with a theory of finite signature? This is Question 4.4.
Q2. We do not know whether the argument for the finite axiomatizability of P1V can be formalized in I∆0 +Ω1.
(a) Can I∆0 +Ω1 verify the finite axiomatizability of P1V?
(b) If not, is the finite axiomatizability of Pn+1V, for n ≥ 1, verifiable in I∆0 +Ω1?
This is Question 4.8.

Q3. Is there a (natural) hierarchy of recursive functions Fn below superexponentiation, such that I∆0 + ‘‘Fn is total’’ is
mutually interpretable with Q+ conn(Q)? This is Question 9.2.

Q4. Is PωV strongly reflexive? This is Question 9.9.
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