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Abstract. Edward Nelson published in 1986 a book defending an extreme formalist view of
mathematics according to which there is an impassable barrier in the totality of exponentiation.
On the positive side, Nelson embarks on a program of investigating how much mathematics can
be interpreted in Raphael Robinson’s theory of arithmetic Q. In the shadow of this program,
some very nice logical investigations and results were produced by a number of people, not only
regarding what can be interpreted in Q but also what cannot be so interpreted. We explain some
of these results and rely on them to discuss Nelson’s position.

§1. Introduction. LetL be the first-order language with equality whose non-
logical symbols are the constant 0, the unary function symbol S (for successor)
and two binary function symbols + (for addition) and · (for multiplication). The
following theory was introduced in [35] (see also the systematic [42]):

Definition 1. Raphael Robinson’s theory Q is the theory in the language L
given by the following axioms:

1. Sx , 0
2. Sx = Sy→ x = y
3. x + 0 = x
4. x + Sy = S(x + y)
5. x · 0 = 0
6. x · Sy = x · y + x
7. x , 0→ ∃y (Sy = x).

This theory is totally inadequate for the formalization of arithmetic. The rea-
son for this lies in the fact that induction is conspicuous by its absence. The
theory Q can be considered a most extreme case of a theory of weak arithmetic,
one in which there is no induction.1 Of course, Robinson’s purpose in defining
Q was not to formalize arithmetic in it. It was rather to present a finitely ax-
iomatizable theory which is essentially undecidable. In 1986, Edward Nelson
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1A weak theory of arithmetic is a subtheory of Peano Arithmetic in which the induction scheme
is restricted. When the restriction is to bounded formulas (see Section 4), one usually speaks of
bounded theories of arithmetic.
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wrote a very interesting book, entitled “Predicative Arithmetic” [28], in which
he advances an extreme formalist position which casts doubt about the ordinary
mathematician’s belief in the set of natural numbers.2 Nelson’s position detects
an impassable barrier in the totality of exponentiation (the basic informal argu-
ment says, roughly, that the number of steps needed to terminate a recursion
defining exponentiation is of the order of magnitude of exponentiation itself – a
perceived circularity) and recoils into the “safe theory” Q. Indeed, Nelson does
not believe in the totality of exponentiation and even suggests, in chapter 31 of
his book, that one should try to develop mathematics under the assumption of
the denial of the totality of exponentiation.

In the first part of his book, Nelson embarks on the project of seing how
much arithmetic can be interpreted in Q. Some very nice and unexpected math-
ematics ensued in the shadow of Nelson’s interpretability program (and related
studies), not only by Nelson himself but also by Robert Solovay, Petr Hájek,
Samuel Buss, Alex Wilkie, Jeff Paris, Pavel Pudlák, Albert Visser and others.
In a sense, Nelson’s position concerning the impassable barrier is vindicated by
the twin results of Wilkie (according to which the totality of exponentiation is
not interpretable in Q) and Solovay (the negation of the totality of exponentia-
tion is interpretable in Q). Both these results are proved in Section 8 below. A
blunt rejection of Nelson’s ideas is an option – albeit not the most interesting
one. It is more interesting to discuss some tensions in Nelson’s position, as well
as the claim that it is a predicative position in the foundations of mathematics.
The next section includes some discussions of these issues. They are informed
by technical results, and these form the main body of this article (sections 3
to 8). In the remainder of this introduction, we briefly discuss the notion of
interpretability, with a special emphasis towards results of interpretability in Q.

The notion of interpretability of a theory into another was introduced by Al-
fred Tarski, Andrzej Mostowski and Raphael Robinson in the above cited mono-
graph [42]. Since then, the notion has been much extended. In this introduction
we adopt a non-formal key. In its most basic form, an interpretation of a theory
S into a theory T consists of the following data:

(a) a one-place formula in the language of T, the domain formula, which is
meant to be the (non-empty) domain of objects of S from the point of view
of T;

(b) appropriate definitions of constants, function symbols and relation symbols
of the language of S in the language of T;

together with the requirement that
(c) every axiom of S, when translated into the language of T (based on the

previous clauses), is a theorem of T.

2The book has some tantalizing thoughts. E.g.: “The mathematician’s attitude towards ω has
in practice been one of faith, and faith in a hypothetical entity of our own devising, to which are
ascribed attributes of necessary existence and infinite magnitude, is idolatry” (in chapter 18).
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The translation referred to above is the well-known translation that commutes
with the propositional connectives. Also, as it is usual, if J(x) is the domain
formula, then the translation of ∀xφ is ∀x (J(x) → φT ) and the translation of
∃xφ is ∃x (J(x) ∧ φT ), where φT is the translation of the formula φ. It is handy
to use the notations ∀xJ φT and ∃xJ φT for the second and fourth formulas of
the previous sentence, as well as for similar situations. Note that the notion of
interpretability is transitive. This fact will be used throughout without ado.

In theories of arithmetic which are strong enough to have the “less than or
equal” relation ≤ with its main properties (e.g., the theory Q+ in Section 3),
a very important form of interpretability is cut-interpretability. In this case,
the domain formula is provably downwards closed with respect to ≤ and the
constant and function symbols are interpreted by themselves (see Section 3 for
details). Notice that if T and S are theories in the language of arithmetic, and
the former is true, and S is cut-interpretable in T, then S must also be a true
theory. To see this, just observe that since the standard structure N is a model of
T and the domain formula is closed under successor (and has 0), then N is also
a model of S. Many interpretations of this paper are cut-interpretations (e.g., all
the interpretations into Q+ in sections 3 to 6). However, Solovay’s interpretation
mentioned earlier cannot be a cut-interpretation, since it interprets a falsity (the
denial of the totality of exponentiation).

The above notion of interpretability can be relaxed. For instance, parameters
may be allowed in the definitions. The interpretation may also be piecewise.
This feature shows up in the interpretations of theories of analysis discussed in
Section 7. These theories are two-sorted, with a sort for numbers and another
sort for sets of numbers. Each sort is interpreted by a formula, defining a piece,
and the pieces may be overlapping (an element of the interpreting theory may
play a double role, one of standing for an element of the number sort, the other
in the role of standing for an element of the set sort). It is not necessary to give
– if it is at all possible to give – the most general definition of interpretability.
We only require (in order to prove non-interpretability results) that our notion
of interpretation satisfies a very basic property. In a nutshell, we assume that
if a theory S is interpretable in a theory T then the consistency of the former
follows finitistically from the consistency of the latter. This is certainly true of
all forms of interpretation in this article. Furthermore, we require that this rela-
tive consistency property is provable in a certain weak theory of arithmetic. Let
us be more precise. We work with a theory of arithmetic in which the arith-
metization of syntax poses no problems. This is the case with the theory of
bounded arithmetic S1

2, introduced by Samuel Buss in [5]. In this theory, the ba-
sic syntactic notions and operations can be defined and their basic properties can
be proved. It is possible to define standard Hilbert-style consistency predicates
‘Con(T)’ for finitely axiomatizable theories T, and Gödel’s incompleteness the-
orems can be proved (we discuss the theory S1

2 in sections 4 and 5). We assume
that our notion of interpretability enjoys the following property: If S and T are
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finitely axiomatizable theories and the former is interpretable in the latter, then
S1

2 ⊢ Con(T)→ Con(S).
The four sections 3 - 6 are concerned with interpretability of theories of arith-

metic into Q. Some classical and beautiful results are presented. Section 7
concerns the interpretability of theories of analysis (second-order theories) into
Q. It was shown in [15] that a theory of “feasible analysis” BTFA (an acronym
for Base Theory for Feasible Analysis) is interpretable in Q. In this paper, we
extend this result to a theory of analysis BTPSA related to the polyspace com-
putable functions. The theory BTFA already formalizes and proves the very
basic properties of real numbers and continuous functions, being able to deduce
the intermediate value theorem. As a consequence, Tarski’s well-known theory
of real closed ordered fields RCOF ([41]; see [27] for a modern reference) is
interpretable in BTFA. We get a very satisfying picture: the theory RCOF (the
archetypal “tame” theory) is interpretable into Q (the archetypal “untame” the-
ory), but not the other way around (because Q is essentially undecidable and
RCOF is decidable).3,4 It is also worth pointing out that (first-order) Euclidean
geometry can be formalized in RCOF and that, therefore, Euclidean geome-
try is interpretable in Q (see section 3 of [23] for more information on related
metamathematical results concerning Euclidean geometry).

The interpretability of BTPSA into Q is not surprising (it relies on an adapta-
tion of the argument for BTFA). However, it should be mentioned that BTPSA is
strong enough to develop Riemann integration up to the fundamental theorem of
calculus. It is really a bit surprising how much mathematics can be interpreted
in Q.

We are grateful to Robert Solovay for the kind permission to report on his old
unpublished results obtained in the mid ninety eighties (see Section 8). We also
want to thank the anonymous referee for many suggestions of improvement.

§2. A form of predicativity? In its most basic form, predicativism is a posi-
tion concerning the definitions of sets. A specification of a set is impredicative if
it generalizes over a totality of sets over which the specified set belongs. Predica-
tivism only accepts sets insofar as they are given by definitions and, therefore,
detects a vicious circle in impredicative specifications. Sets, according to the
predicativist, do not have an independent existence: they are created by man
(via definitions). Traditional predicativism in the foundations of mathematics
accepts the natural numbers as given and adopts a predicative position regarding
sets of natural numbers. This classical view has its roots in [47] and was the
object of much attention by proof-theorists in the sixties (the locus classicus of
this discussion is [11]).

3Harvey Friedman has also announced in [22] the interpretability of RCOF in Q.
4The distinction between tame and untame theories is intuitive. Roughly, an untame theory is

one subjected to Gödel’s incompleteness phenomenon, while tame theories are, as a rule, decid-
able and of a more algebraic or geometric nature.
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The appearance of the notion of impredicativity in the debate on foundations
of mathematics is due to Henri Poincaré in [33] (after a seminal observation of
Jules Richard). This notion surfaced because of discussions around the Frege-
Dedekind definition of the set of natural numbers. In these debates, the set of
natural numbers is not given, it is rather defined within an infinite Dedekind do-
main (a domain that satisfies axioms 1 and 2 of Q): the set of natural numbers
is defined as the least inductive set (i.e., the least set with 0 and closed under
successor). The principle of induction is supposed to follow from the definition.
This definition is impredicative as noticed by Poincaré. Observe that we are no
longer discussing predicativity given the natural numbers but are questioning
the predicativity of the natural number notion itself. This kind of predicativity,
which is conceptually different from the more traditional predicativism that ac-
cepts the natural numbers as given, was coined strict predicativity by Charles
Parsons in [32].

In a strict predicative treatment of arithmetic, one must always be on guard
against unpermissible forms of proof by induction. Since the natural numbers
are defined by the formula

N(x) :≡ ∀X (0 ∈ X ∧ ∀x (x ∈ X → Sx ∈ X)→ x ∈ X),

and because we are adopting a predicative position regarding sets, this means
that we only have induction for predicatively defined sets X. The problem lies
in the fact that the natural numbers do not form a set (they are defined impred-
icatively) and, therefore, it is not permitted to argue by induction with respect
to formulas in which the notion of natural number occurs. This restriction on
induction seems to seriously paralyze the development of arithmetic. Indeed,
how much arithmetic can be developed in a strict predicative manner?

The central technical paper concerning strict predicativity is due to John Bur-
gess and Allen Hazen [4]. They worked with a so-called ramified predicative
system. Second-order quantifications are assigned a specific level (0, 1, 2, etc).
A set of level k can be formed as long as it is the extension of a formula in
which the occurrences of second-order quantifications are of level strictly less
than k (first-order parameters and set parameters up to, and including, level k are
allowed). The ramification of second-order quantification into levels is predica-
tively acceptable. Within this ramified setting, there is a natural number notion
corresponding to each non-zero level. Burgess and Hazen showed that level
2 numbers form a model of bounded arithmetic with exponentiation. On the
strict predicative basis that we are discussing, the impassable barrier of Nelson
is overcome.

Nelson’s position is prima facie predicative since it starts with Q, where no in-
duction is present, and seems to proceed predicatively thereafter. However, this
first evaluation is careless. There are serious problems with merely accepting
those sentences which are interpretable in Q. One of these problems is already
mentioned by Nelson himself in chapter 15 of his book [28]. It is the so-called
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compatibility problem. Is it the case that if ϕ0 and ϕ1 are interpretable in Q then
their conjunction ϕ0 ∧ ϕ1 is also interpretable in Q? The answer is negative, and
in the proof of Proposition 8 we present an argument of Solovay to that effect.
Given this fact, the sensible position seems to be to accept not only the sentences
which are interpretable in Q but (of course) also their logical consequences. This
natural extension does not work, though. Solovay also showed that there is a
sentence ϕ which is interpretable in Q, as well as its negation (see Proposition
9). A possible way out of this conundrum is to accept the sentences which are
cut-interpretable in Q+ (and their logical consequences). Since sentences cut-
interpretable in Q+ are true, we know – at least from an impredicative viewpoint
– that these sentences do cohere. However, the very same sentences ϕ0 and ϕ1
mentioned above (see the proof of Proposition 8) are cut-interpretable in Q+ but
their conjunction entails the totality of exponentiation. This position goes over
the impassable barrier. It is perhaps interesting to investigate how much does it
go over and what is its relation with strict predicativity, but we would certainly
be departing from Nelson’s position – one which takes the impassability of the
barrier of exponentiation as its central tenet.

Nelson’s predicativism suffers from a certain instability. At the end of chapter
15 of his book, Nelson says that “it is necessary to take care (...) that our methods
for adding a formula to the growing list of predicatively established formulas do
not interfere with any previously established formula.” What directs this care?
Given incompatible interpretations, how does one choose between them? How
are we sure that, even preserving consistency, we will not pass the impassable?
What is the principled reason that directs the choice of interpretable sentences?

There is another angle from which Nelson’s position can be commented upon.
It concerns the reasons why it does not accept second-order predicative reason-
ing. It seems to us that there is at play in Nelson’s position some ingredients that
go beyond mere predicativism (at least as ordinarily conceived). Nelson himself
(e.g., [30]) has suggested that there are connections between his brand of pred-
icative arithmetic and the work of Bellantoni and Cook [2] on tiered recursion.
Perhaps this work can explain why exponentiation is impredicative in a way that
weaker recursions are not. However, the results of Bellantoni and Cook concern
definitions of functions by recursion whereas Nelson’s predicativism concerns
theories of arithmetic. For all the suggestions of a cogent relationship between
the two approaches there is not, as far as we are aware, a detailed and sustained
study connecting the two positions which, for instance, tries to respond – in a
principled way – to the questions of the previous paragraph.

We do not want to leave this section without referring to an important fac-
tor that is also at play in Nelson’s position, one that is not directly connected
with predicativity. This factor is Nelson’s extreme formalism (see [29] for a
particularly clear apology of this position). We classify Nelson’s formalism as
extreme because it does not rest on finitism, as does the formalism of Hilbert.
It rests on a much more strict base, one connected with his predicativism and,
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in particular, one which does not accept the totality of exponentiation. The ex-
treme formalism of Nelson also shows up in his manifested doubts about the
consistency of Peano Arithmetic. In his most recent paper [31], Nelson writes
that “perhaps [Peano Arithmetic] is inconsistent.”5 One may add that Nelson is
not alone among first-rate mathematicians who have expressed doubts about the
consistency of Peano Arithmetic: Jacob T. Schwartz in [37] and Vladimir Vo-
evodsky in [46] have expressed similar doubts. We will not pursue this matter
further.

§3. The local interpretability of I∆0 in Q. In the introduction, we said that
the theory Q is inadequate to formalize arithmetic. For instance, Q does not
even prove that addition is associative. To show this, let us briefly describe an
example of [42]. Construct an interpretation of Q in the following way. Its
domain is U :≡ N ∪ {∞0,∞1}, where ∞0 and ∞1 are distinct elements different
from the natural numbers. 0 has its usual meaning, as well as the arithmetical
operations when applied to the natural numbers. For i = 0, 1, we let S(∞i) = ∞i;
∞i + n = ∞i, for n ∈ N; u + ∞i = ∞1−i, for u ∈ U; n · ∞i = ∞i, for n ∈ N;
∞i · 0 = 0; and∞i · u = ∞1−i, for u ∈ U \ {0}. It is easily checked that this forms
a model of Q. However, (0+∞0)+∞0 = ∞1 and 0+ (∞0+∞0) = ∞0. Note that
∀x (Sx , x), ∀x (0+ x = x) and ∀x (0 · x = 0) also fail in this model. It is perhaps
worth remarking that this model (and similar ones) can be easily converted into
an interpretation of Q together with the failure of (say) associativity of addition
into Q.6

It was also mentioned in the introduction that it is nevertheless a bit surprising
how much can be interpreted in Q. The purpose of this section is to present
some basic techniques of interpretability in Q. To get “off the ground” in doing
this, the following theory and the next theorem are important. Let Q+ be the
extension of Q with the following extra axioms:

8. (x + y) + z = x + (y + z)
9. x · (y + z) = x · y + x · z

10. (x · y) · z = x · (y · z)
11. x + y = y + x
12. x · y = y · x
13. x ≤ y↔ ∃z (x + z = y).
In the above, the languageLwas also extended, say to the languageL+ which

includes the binary relation symbol ≤.

5He wrote in his book (end of chapter 31 of [28]) that he has “put a lot of effort into this [in
proving in Peano Arithmetic the negation of the totality of exponentiation, a result which would,
of course, entail the inconsistency of Peano Arithmetic], but so far without success” (our italics).

6Just shift the numerical domain with +2 making ∞0 := 0 and ∞1 := 1, induce the new
arithmetical operations on the new numbers using the old ones shifting back and forth, and define
the operations involving the∞’s “by hand.” We thank the anonymous referee for pointing us this
kind of conversion.
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Theorem 1. Q+ is interpretable in Q.7

The proof of this result is ad hoc and takes a bit over six pages in chapter 6
of Nelson’s monograph [28]. Actually, Nelson works with a reformulation QP

of Q. This new theory adds to the language L a unary function symbol P (for
predecessor) and replaces axiom 7 by
7P. Px = y↔ Sy = x ∨ (x = 0 ∧ y = 0).

It is clear that the theory QP is interpretable in Q (the former is an extension
by definitions of the latter) and vice versa. The theory QP is occasionally useful
on account of being an open theory. The option of starting with Q instead of the
more suave theory Q+ can be explained by historical reasons (Q is the traditional
finitely axiomatizable, essentially undecidable, theory) and “for the pleasure of
working from minimal assumptions” (quoted from chapter 6 of [28]). Nothing
important is lost if one starts with Q+ instead. With theories that include Q+, we
can be more systematic.

Definition 2. Let T be a theory that contains Q+. A formula φ(x) is inductive
in T if

T ⊢ φ(0) ∧ ∀x (φ(x)→ φ(Sx)).

Definition 3. Let T be a theory that contains Q+. A formula J is a cut in T if
it is inductive and satisfies

T ⊢ J(x) ∧ y ≤ x→ J(y).

A formula J(x) is a subcut of the formula I(x) in T if, moreover,

T ⊢ J(x)→ I(x).

Lemma 1. Let T be a theory that contains Q+ and consider I(x) an inductive
formula in T. Then there exists a subcut J(x) of I(x) in T.

Proof. Fix I(x) an inductive formula in Q+. Define

J(x) :≡ ∀y (y ≤ x→ I(y)).

Let us prove that J is inductive. In Q+ it can be proved that y ≤ 0→ y = 0, so
J(0) is equivalent to I(0). Therefore, we get J(0). Assume J(x) and let y ≤ Sx.
We need to prove that we have I(y). If y = 0, this is immediate. If y , 0,
axiom 7 ensures that y = Sy′ for some y′. Since Q+ proves the equivalence
x ≤ y ↔ Sx ≤ Sy, we get y′ ≤ x. By J(x), we have I(y′). By the inductiveness
of I, we conclude that I(Sy′), i.e. I(y). Therefore, J is inductive.

Let us finally check that J(x)∧y ≤ x→ J(y). Suppose J(x)∧y ≤ x. Let z ≤ y.
We need to show that I(z). Using the transitive property of ≤ (easily proved in
Q+), we have y ≤ x ∧ z ≤ y→ z ≤ x. Using J(x), we obtain I(z). ⊣

7As a consequence of this theorem and the discussion in the first paragraph of this section, we
obtain examples of Orey sentences ϕ for Q, i.e., of sentences ϕ such that both Q + ϕ and Q + ¬ϕ
are interpretable in Q. In Proposition 9, we provide a more interesting Orey sentence.
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The following result (due independently to Solovay [40] and Nelson [28]) is
fundamental:

Proposition 1. Let T be a theory that contains Q+ and consider I(x) an in-
ductive formula in T. Then there exists a cut J(x) such that J is a subcut of I
closed under addition and multiplication.

Proof. By Lemma 1, we may assume that I is a cut. In order to find a subcut
of I closed under the desired operations, we are going to use the technique of
shortening the cut (due to unpublished work of Solovay). This strategy allow us
to replace any cut by a cut contained in it and with some additional properties:
in our case closed under addition and multiplication.

Take J0(x) :≡ ∀y (I(y) → I(y + x)) and J(x) :≡ ∀y (J0(y) → J0(y · x)). The
fact that J is contained in J0 results from J0(S0). Since it is immediate that J0 is
contained in I, we conclude that J is contained in I. It is easy to show that J is
closed under addition once we prove that J0 is closed under addition (just use the
distributive law). The mentioned closedness property of J0 follows easily from
the associativity of +. Now, by axiom 6 and J(S0), we get that J is inductive.
Using the associativity for multiplication, we can similarly prove that J is closed
under multiplication.

In order to see that J is a cut, it remains to show that J(x) ∧ y ≤ x entails
J(y). Fix z such that J0(z). We want to show that J0(zy), where (as usual) zy
abbreviates z · y. So, fix r such that I(r) and let us prove that we have I(r + zy).
By hypothesis and J0(z) we have J0(zx). Since y ≤ x, there exists w such that
y+w = x. So, we have J0(z(y+w)), i.e. J0(zy+zw). From the latter, knowing that
we have I(r), we get I(r+ (zy+ zw)). Since I is a cut and r+ zy ≤ (r+ zy)+ zw =
r + (zy + zw) we conclude the proof. ⊣

Let us introduce as abbreviations bounded quantifiers, writing

∀x ≤ t (. . . ) for ∀x (x ≤ t → . . . )
∃x ≤ t (. . . ) for ∃x (x ≤ t ∧ . . . )

where t is a term in which the variable x does not occur.

Definition 4. A bounded formula is a formula which is built from atomic for-
mulas using only propositional connectives and bounded quantifiers.

Bounded formulas are absolute with respect to cuts which are closed under
addition and multiplication. That is, if J(x) is a cut (closed under addition and
multiplication) in a theory T which extends Q+ and φ(x⃗) is a bounded formula
(with its free variables as shown), then T ⊢ ∀x⃗J (φJ(x⃗) ↔ φ(x⃗)). This is easily
checked by induction of the complexity of the (bounded) formula φ. Note that,
as a consequence, if T ⊢ ∀x⃗φ(x⃗) then T ⊢ ∀x⃗J φJ(x⃗). Since axioms 7 and 13
are equivalent in Q+ to universal closures of bounded formulas, the cut J in
Proposition 1 is a model of Q+.



10 FERNANDO FERREIRA AND GILDA FERREIRA

Definition 5. The theory I∆0 is the extension of Q+ with the induction scheme
for the bounded formulas, i.e. φ(0) ∧ ∀x (φ(x) → φ(Sx)) → ∀xφ(x), where φ is
a bounded formula (possibly with parameters).

It is worth remarking that the instances of bounded induction can be written
as follows:

∀x [φ(0) ∧ ∀y ≤ x (φ(y)→ φ(Sy))→ φ(x)],
with φ a bounded formula. As a consequence, if a theory is a model of I∆0 then
so is any of its cuts (closed under addition and multiplication). With the goal of
proving the interpretability of I∆0 in Q, we first prove a weaker result.

Definition 6. A theory T is locally interpretable in a theory S if each finite
part of T is interpretable in S.

Note that the previous notion of interpretability is potentially weaker than
(global) interpretability since, by definition, different portions of T may have
different interpretations in S.8

The proof of the following result is easily available in the literature (see chap-
ter 7 of [28] or [25], page 369). We include it here for the sake of completeness.

Theorem 2. I∆0 is locally interpretable in Q.

Proof. By Theorem 1 it is enough to show that I∆0 is locally interpretable in
Q+. By the definition of local interpretability, we just need to fix an arbitrary
finite set φ1(x, p⃗), . . . , φn(x, p⃗) of bounded formulas (with a vector of parameters
p⃗) and prove that Q+ plus induction for each of the φ1, . . . φn is interpretable in
Q+.

Let
I(x) :≡ ∀ p⃗ (I1(x, p⃗) ∧ . . . ∧ In(x, p⃗)),

where each Ii (i = 1, . . . , n) is defined by:

Ii(x, p⃗) :≡ φi(0, p⃗) ∧ ∀y ≤ x (φi(y, p⃗)→ φi(Sy, p⃗))→ φi(x, p⃗).

Note that each formula Ii(x, p⃗) is bounded. It is also clear that, for each i, the
formula ∀p⃗ Ii(x, p⃗) is inductive in Q+. It readily follows that the formula I(x) is
also inductive in Q+. By Proposition 1, we know that there is a cut J contained
in I that is closed under addition and multiplication (hence, J is a model of Q+).
Since J(x) → I(x) and I(x) → Ii(x, p⃗), for every i, induction for every φi holds
in J. ⊣

§4. Bounded theories. In his great incompleteness paper, Gödel showed
how to formalize syntax in a formal theory. In modern treatments of incomplete-
ness, syntax is formalized in the theory IΣ1, the restriction of Peano Arithmetic
to induction for Σ1-formulas. Following Gödel, primitive recursive functions
can be introduced (in an appropriate manner) in IΣ1. It is also possible to for-
malize syntax in much weaker theories. A particularly good theory for this is

8In [45] the reader can find separating examples.
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Buss’s theory S1
2 (briefly discussed below): in this theory, some amount of re-

cursion is formalizable (polynomial bounded recursion on notation) and, in fact,
it is possible to introduce (in an appropriate manner) the polytime computable
functions in S1

2. The usual syntactical notions are of polytime character and,
therefore, S1

2 is a weak theory enjoying a good formalization of the syntax. On
the other hand, the theory I∆0 is not very convenient for the formalization of
syntax because polytime functions cannot be introduced in it. The reason lies
in the fact that, given two numbers x and y, one cannot find in I∆0 a number
z whose binary length is the product of the binary lengths of x and y (this is
easily fixed with the introduction of the axiom Ω1: see below and, for extensive
discussions, consult [5] and [49]). However, even though I∆0 does not have the
resources to formalize simple forms of recursion, the following is true:

Proposition 2. There is a bounded formula Exp(x, y, z), with the free vari-
ables as shown, such that I∆0 proves:

(i) Exp(x, 0, z)↔ z = 1
(ii) Exp(x, Sy, z)↔ ∃w (Exp(x, y,w) ∧ z = wx)

The above result says that the exponentiation function x, y { xy has a graph
defined by a bounded formula (a result essentially due to James Bennett [3]),
and that its recursive equations are provable in I∆0 (a result of Costas Dimi-
tracopoulos [8], after a suggestion of Jeff Paris).9 For the reader interested in
the details of constructing one such formula, we recommend [25]. Together
with bounded induction, (i) and (ii) are sufficient to show the basic properties
of the graph of exponentiation. Of course, what I∆0 cannot prove is its totality:
∀x, y∃z Exp(x, y, z). It is easy, but instructive (the construction will be used in
Theorem 7), to see why this is so. Take a non-standard model M of I∆0 + exp
(here exp is the above statement postulating the totality of the exponential func-
tion), fix a non-standard element c of the model, and consider the structure given
by the cut {x ∈ |M| : ∃n ∈ N (x ≤ cn)} (this is a semantic cut, as opposed to the
syntactic cuts that we have been using). It is clear that this cut is a model of I∆0
and that exp fails there because cc does not exist in the cut.

The existence of the Bennett/Dimitracopoulos/Paris formula permits the def-
inition in I∆0 of the function x { |x| = ⌈log(x + 1)⌉ (this function, the binary
length function, is easily seen to be provably total in I∆0). Observe that 2|x|

provably exists in I∆0 and that I∆0 ⊢ x > 0 → 2|x|−1 < x + 1 ≤ 2|x| (we are
taking, as will be usual, some liberties of expression). The axiom Ω1 can now
be introduced:

Ω1 : ∀x∃w (x|x| = w).

The formula L(x) := ∃y (|y| = x) is called the logarithmic cut. It is indeed a
cut and it is closed under addition in I∆0. However, we needΩ1 to guarantee that
the logarithmic cut is closed under multiplication (note that |x| · |y| = |2|x|·|y|| and

9We thank Costas Dimitracopoulos for the attribution of this result.
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that 2|x|·|y| exists in I∆0 +Ω1). In general, let ω1(x) := x|x| and ωn+1(x) := 2ωn(|x|),
and consider the axioms Ωn : ∀x∃w (ωn(x) = w). It is clear that the logarithmic
cut of a model of I∆0 + Ωn+1 is a model of I∆0 + Ωn.

Proposition 3. I∆0 + Ωn is interpretable in I∆0.

Proof. Consider the formula C1(x) :≡ ∀y∃w (2|y||x| = w). It is easy to show
that C1 is a cut. In order to show that C1 is a model of I∆0 + Ω1 it is sufficient
to argue that C1 is closed under the function ω1. Fix x in C1, in order to prove
that ∃zC1 (x|x| = z). By hypothesis, ∀y∃w (2|y||x| = w). Given an arbitrary y,
y|x| < 2|y|·|x| and, therefore, y|x| exists. In particular, x|x| exists. It just remains to
prove that x|x| lies in C1. Fix y and let us argue that 2|y|·|x

|x| | exists. Since

|y| · |x|x|| < |y| · |2|x|·|x|| = |y| · |x|2 = (|y| · |x|)|x| ≤ |(2|y| + 1)|x|| · |x|

and given that 2|(2|y|+1)|x| |·|x| exists (because x is in C1), we get what we want.
We have shown that I∆0 + Ω1 is interpretable in I∆0. To generalize to Ωn, we

define the cuts by recursion. If Cn(x) is a formula which defines a cut closed
under ωn, let us define the formula

Cn+1(x) :≡ ∀y
(
Cn(y)→ ∃w

(
2|y|

(n) |x|(n)

n = w ∧Cn(w)
))
,

where 2x
n is the n-times iterated (base 2) exponential, i.e. 2x

0 = x, 2x
n+1 = 22x

n , and
|y|(n) is the n-times iteration of the length function. It can be shown that Cn+1 is
a cut in I∆0 closed under ωn+1. ⊣

To ease syntax, Buss added new function symbols to the language of Q+,
namely |x| := ⌈log(x + 1)⌉, x♯y := 2|x||y| and ⌊ x

2⌋. We call this extended language
Buss’s language.

Definition 7. A sharply bounded formula is a formula with no quantifications
or just quantifications of the form ∃x ≤ |t| and ∀x ≤ |t|, where t is a term in
Buss’s language where x does not occur.

Observe that in the standard model of the natural numbers, an existential
sharply bounded quantification can be decided by a polytime search (since the
number of elements less than the length of t(x), for t a term of the language of
S1

2, is polynomial in the length of x).

Definition 8. The class of Σb
1-formulas is the smallest class of formulas con-

taining the atomic formulas and its negations, and closed under Boolean con-
nectives, sharply bounded quantifications and bounded existential quantifica-
tions. The Πb

1-formulas are defined dually, with the closure under existential
bounded quantifications replaced by the closure under universal bounded quan-
tifications.

An existential bounded quantification corresponds to a search in exponential
time because the number of elements less than x is exponential in the length
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of |x|. This is the basic observation that explains the well-known fact that the
Σb

1-formulas define exactly the NP-sets in the standard model of arithmetic.10

Buss’s theory S1
2 (which is an extension of Q+) has the so-called BASIC ax-

ioms (consisting of 32 universal axioms, see [5] for the list) and the following
form of induction: the Σb

1-PIND scheme φ(0) ∧ ∀x (φ(⌊ x
2⌋) → φ(x)) → ∀xφ(x),

where φ is a Σb
1-formula. The choice of the above formulation of induction, in-

stead of the more usual one (with the ‘+1’ transition) is explained by the aim
of defining a theory whose provably total functions are (in an appropriate sense)
exactly the polytime computable functions. More precisely, Buss proved that (i)
it is possible to extend by definitions the theory S1

2 in order to have a function
symbol for each (appropriate) description of a polytime computable function
(a process that mimics the introduction of primitive recursive functions in the
theory IΣ1); and (ii) if S1

2 ⊢ ∀x∃yφ(x, y), with φ a Σb
1-formula, then there is a

function symbol (for a polytime computable function) such that ∀xφ(x, f (x)) is
provable in the above referred (conservative) extension of S1

2. Part (i) relies on
some bootstrapping (with nitty-gritty details as mentioned in footnote 10), and
part (ii) on an easy application of partial cut-elimination.

The interested reader can find details concerning the development of the the-
ory S1

2 and its main properties in the original [5] or in the textbooks [25] or
[26].

Proposition 4. S1
2 is locally interpretable in Q.

Proof. This follows from the fact that the theory S1
2 is interpretable in an

extension by definitions of the theory I∆0 + Ω1. Note that the PIND-scheme
of induction follows immediately from the scheme of complete induction for
bounded formulas, and this latter scheme is provable in I∆0 + Ω1. ⊣

The following scheme of induction is provable in S1
2:

φ(0) ∧ ∀x (φ(|x|)→ φ(|x| + 1))→ ∀xφ(|x|),(∗)
for Σb

1-formulas φ. In fact, this form of induction reduces to the PIND-scheme
by considering the formula ϕ(x) :≡ φ(|x|) and using the equality

∣∣∣⌊ x
2⌋
∣∣∣ + 1 = |x|

(x , 0).

Proposition 5. The theory I∆0 is interpretable in S1
2.

Proof. It can be shown that the logarithmic part L is also a cut in S1
2, closed

under addition and multiplication. Moreover, a bounded quantifier, with bound
in L, is a sharply bounded quantifier in the following sense: given a bounded
formula φ(x⃗) in the language of I∆0 (free variables x⃗ as shown), the formula

10There are some nitty-gritty details in proving this because the class of sets defined by the
sharply bounded formulas is not natural from a computational complexity point of view. This is
due to the specific design of the language. A language (and a theory) directly speaking of binary
words (instead of natural numbers) is more natural on this regard. This was proposed in [17]
(after [16]), but not generally adopted. Zambella in [50] proposes a related framework.
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φ(|x⃗|) is equivalent (in S1
2) to a sharply bounded formula (the notation is self-

explanatory). This result can be easily proved by induction on the complexity
of the built up of the formula φ. It follows from (∗) that L is a model of bounded
induction and, therefore, a model of I∆0. ⊣

§5. A universal predicate. It is well-known that there is a universal recur-
sively enumerable predicate and that, furthermore, this property is provable in
a suitable subtheory of Peano Arithmetic. A similar result holds for NP-sets
provided that we take into account the degrees of the polynomials of the poly-
time computations. In this section, we briefly review this universality result (for
details, we refer the reader to pages 330-336 and 350-352 of [25]). The univer-
sality result will be used thrice in the paper. It will be used in this section to
prove that the theory S1

2 is finitely axiomatizable. It will also be used in Sec-
tion 6 to show that the so-called scheme of bounded collection is interpretable
in I∆0 + Ω1, and in Section 7 in order to code sets. The latter two applications
only require that the universal predicate works within the theory S1

2, but it is cru-
cial for the first application that the universality is provable using only a finite
fragment of S1

2.
As mentioned in the previous section, polytime computable functions (and,

hence, polytime decidable predicates) can be introduced smoothly in the theory
S1

2. There is a natural way to define a polynomial time decidable quaternary
predicate C(u, x, y, z) in the language of S1

2 saying that z is the code of a termi-
nating computation of the (deterministic) Turing machine with code u which,
on input x, outputs y. This predicate is simultaneously given by a Σb

1 and a Πb
1

formula, with their equivalence provable in S1
2 (a predicate like this is called a

∆b
1-predicate in S1

2). Let D(u, x, z) be C(u, x, 0, z). It can be shown that, for any
Σb

1-formula φ(x), there are standard numbers e and n such that

S1
2 ⊢ ∀x

(
φ(x)↔ ∃w, z ≤ 2(|x|+2)n

D(e, ⟨x,w⟩, z)
)
.

In the above, w corresponds to a non-deterministic “bounded guess.” It is simple
to arrange things so that e and n are the same number. With U(u, x, l) defined as
the formula ∃w, z ≤ l D(u, ⟨x,w⟩, z), the following can be proved:

Proposition 6. There exists a Σb
1-formula U which is universal in the follow-

ing sense: For every Σb
1-formula ϕ(x) there exists a (standard) number e such

that
S1

2 ⊢ ϕ(x)↔ U(e, x, 2(|x|+2)e
),

and
S1

2 ⊢ ∀z (U(e, x, z)→ ϕ(x)).

Furthermore, the above sentences are provable in a fixed finite fragment of S1
2.

Some comments are in order regarding the claim that only a finite fragment of
S1

2 is needed. This is the case because Σb
1-formulas are obtained using only
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finitely many constructs (the constants and the function symbols of the lan-
guage of S1

2, equality, inequality, ≤, �, conjunction, disjunction, the two sharply
bounded quantifiers and the existential bounded quantifier), and the fact that
each of the corresponding constructions can be dealt appropriately within a fi-
nite fragment of S1

2 (as we will see, this appropriateness includes the possibility
of making sense of polynomials of non-standard degree). We illustrate this with
the universal sharply bounded quantifier.

We have been using the expression ‘2|x|
n
’, for numerals n. Of course, this

makes sense because the said expression abbreviates a term of the language
of S1

2. If, instead of a numeral n, we have a variable u (in model-theoretic
terms, a non-standard number), then the expression does not make sense in
S1

2 any longer. Let C̃(u, x, y, 2(|x|+2)u
) abbreviate the formula ∃z (z ≤ 2(|x|+2)u ∧

C(u, x, y, z)), and Ũ(u, x, 2(|x|+2)u
) abbreviate ∃v (v = 2(|x|+2)u ∧ U(u, x, v)). Note

that both expressions ‘z ≤ 2(|x|+2)u
’ and ‘v = 2(|x|+2)u

’ are meaningful in S1
2 be-

cause the graph of the exponentiation is polytime decidable and, in fact, given
by a ∆b

1-predicate in S1
2. We claim that it is possible to introduce in S1

2 a binary
polytime computable function s such that the universal closure of the (single)
formula

Ũ
(
s(u, v), x, 2(|x|+2)s(u,v))↔

∀w, y
(
C̃(u, x, y, 2(|x|+2)u

) ∧ w ≤ |y| → Ũ
(
v, ⟨x,w⟩, 2(|⟨x,w⟩|+2)v))

is provable in S1
2. A complete proof of this claim would take a great deal of work

but the idea is clear. It hinges on the fact that from (codes of) Turing machines
u and v one can produce a Turing machine (code) s(u, v) that runs as follows:
on input x, it first computes (within appropriate time) y according to the Turing
machine (code) u and then, for each w ≤ |y|, it verifies that the Turing machine
(code) v accepts (after a suitable bounded guess and in appropriate time) the pair
⟨x,w⟩. The production of the code s(u, v) and the verification that it does what
was just described can be formalized in S1

2.
For each of the finitely many constructs needed to obtain Σb

1-formulas, a cor-
respondingly single property is provable in S1

2. Only a finite fragment of S1
2 is

needed to obtain these properties. They are then used to obtain the formal proofs
claimed to exist in Proposition 6.

Corollary 1. Buss’s theory S1
2 is finitely axiomatizable.

Proof. Let F consist of all the 32 BASIC axioms of S1
2, finitely many PIND-

induction axioms needed to prove the universality conditions of the previous
proposition (we also assume that F is strong enough to have a pairing operation
and prove some simple inequalities), together with the universal closure of the
following (single) formula:

U(u, ⟨0, y⟩, l) ∧ ¬U(u, ⟨x, y⟩, l)→ ∃w < x
(
U(u, ⟨⌊w

2
⌋, y⟩, l) ∧ ¬U(u, ⟨w, y⟩, l)

)
.
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Note that the above sentence is provable in S1
2 (by a suitable PIND-induction

on x with parameters u, y and l). It is not difficult to see, using both conditions
of Proposition 6, that every form of Σb

1-induction can be deduced in F. ⊣
By Proposition 4, we know that S1

2 is locally interpretable in Q. Since we have
just proved that S1

2 is finitely axiomatizable, we conclude that S1
2 is (globally)

interpretable in Q. The next result follows easily:

Theorem 3. I∆0 + Ωn is interpretable in Q.

Proof. By Proposition 3, it is enough to show that I∆0 is interpretable in Q.
This follows from the above discussion and the fact that I∆0 is interpretable in
S1

2 (see Proposition 5). ⊣

§6. The interpretability of bounded collection in Q. We denote by BΣ1 the
scheme of bounded collection: ∀x ≤ z∃yφ(x, y) → ∃w∀x ≤ z∃y ≤ wφ(x, y),
where φ is a bounded formula, possibly with parameters. The following result,
in the local interpretability version, can be traced to chapter 22 of [28] (see [43]
and [24] for alternative proofs of the global version):

Proposition 7. I∆0 + BΣ1 is cut-interpretable in I∆0 + Ω1.

Proof. By Proposition 6, we know that if ψ is a sharply bounded formula,
then

I∆0 + Ω1 ⊢ ∀x, y (ψ(x, y, p)↔ ∃z U(e, ⟨x, y, p⟩, z))
where we are using a standard coding of triples w = ⟨w0,w1,w2⟩. Let J(u) be
the formula defined as the conjunction of L(u) (i.e., u is in the logarithmic cut)
together with:

∀e, p [∀x ≤ u∃y U(e, ⟨x, y0, p⟩, y1)→ ∃w∀x ≤ u∃y ≤ w U(e, ⟨x, y0, p⟩, y1)].

It is clear that, given any sharply bounded formula ψ(x, y, p) and u in the cut
J, we have:

∀x ≤ u∃yψ(x, y, p)→ ∃w∀x ≤ u∃y ≤ wψ(x, y, p).(∗∗)

The above also holds for Σb
1-formulas ψ (just use pairing). We claim the fol-

lowing:
1. J(u) ∧ u′ ≤ u→ J(u′);
2. J(u)→ J(Su).
For the first property, apply (∗∗) to the formula x ≤ u′ → U(e, ⟨x, y0, p⟩, y1).

The fact that J is inductive is obvious. Now, by shortening, take I a subcut
of J closed under addition and multiplication. As we know, I is a model of
I∆0. It remains to see that BΣ1 also holds in I. Consider φ(x, y) a bounded
formula in the language of I∆0 (possibly with parameters in I), take u in I, and
assume that ∀x ≤ u∃yI φ(x, y). The goal is to prove that there is w in I such that
∀x ≤ u∃y ≤ wφ(x, y). We use the fact that a bounded formula of the language of
I∆0, with parameters in the logarithmic part of a model of I∆0+Ω1, is equivalent
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to a sharply bounded formula (see the proof of Proposition 5). It is now clear,
by property (∗∗), that there is w such that ∀x ≤ u∃y ≤ wφ(x, y). Let w0 be the
least such w. We prove that w0 is in I. Obviously, by minimality, there is x0 ≤ u
such that ∀y < w0¬φ(x0, y). By hypothesis, take y0 in I such that φ(x0, y0). Thus
w0 ≤ y0. Since y0 is in I and I is a cut, we conclude that w0 lies in I. ⊣

Theorem 4. I∆0 + Ωn + BΣ1 is interpretable in Q.

Proof. By the above proposition, I∆0 + BΣ1 is interpretable in I∆0 + Ω1 on
a cut. Just shorten this cut to a cut closed under ωn. Note that I∆0 + Ω1 is
interpretable in Q. ⊣

§7. The interpretability of a portion of analysis in Q. The theory BTPSA
(an acronym for “Base Theory for Polynomial Space Analysis”) was introduced
in [20], where it was proved that its provably total functions (with appropriate
graphs) are exactly the functions computable in polynomial space. As men-
tioned in the introduction, in BTPSA it is possible to develop a modicum of
analysis (e.g., it is shown in [21, 19] that Riemann integration for functions with
a modulus of uniform continuity can be developed in BTPSA up to the funda-
mental theorem of calculus). In this section, we describe the system BTPSA in
unary notation (instead of the original binary notation adopted in [20]) and show
how it can be interpreted in Q.

LetL2 be the second-order language whose first-order part is Buss’s language
(i.e., the language of the theory S1

2). The second-order part consists of set vari-
ables X, Y , Z, . . . and attending quantifiers. There is also a binary relation sym-
bol ‘∈’ that infixes between first-order terms and set variables. We may think of
L2 as a two-sorted first-order language: one sort for numbers, the other for sets
of numbers.

Definition 9. A Σ1,b
0 -formula is a formula of L2 without second-order quan-

tifications and where all the first-order quantifications are bounded. It may have
second-order parameters.

In the sequel, we need to speak of second-order bounded quantifiers. These
are written like ∀X ≤ t (. . . ) or ∃X ≤ t (. . . ), where X is a second-order vari-
able and t is a (first-order) term. The idea is that we are restricting second-order
quantifications to subsets of the initial segment determined by the term t. This
restriction can be written down explicitly but, for reasons of complexity, it is
better to formulate it in an alternative way. We consider the bounded quantifica-
tion ∀X ≤ t φ(X) as an abbreviation of the formula ∀X φ(Xt), where Xt is a way
of indicating that, whenever a complex of the form ‘q ∈ X’ occurs in φ(X), then
it should be replaced by ‘q ∈ X ∧ q ≤ t’. Mutatis mutandis for second-order
bounded existential quantifications.

Definition 10. A Σ1,b
∞ -formula is a formula ofL2 where all the first and second-

order quantifications are bounded. It may have second-order parameters.
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The following two sub-classes of Σ1,b
∞ -formulas are important:

Definition 11. A Σ1,b
1 -formula is a formula of L2 of the form ∃X ≤ t φ, where

φ is a Σ1,b
0 -formula. The Π1,b

1 -formulas are defined dually.

It is easy to argue that we have contraction for blocks of quantifiers of the
form ∃X ≤ t (and, dually, for blocks of quantifiers ∀X ≤ t). We can now define
the theory BTPSA. The first three classes of axioms are clear enough. The last
two classes are forms of bounded collection.

Definition 12. BTPSA is the theory in L2 with the following axioms:
• the BASIC axioms;
• the PIND (induction) axioms for Σ1,b

1 -formulas;
• the following form of comprehension:

∀x (∃yφ(x, y)↔ ∀yψ(x, y))→ ∃X∀x (x ∈ X ↔ ∃yφ(x, y)),

where φ is a Σ1,b
1 -formula and ψ is a Π1,b

1 -formula;
• BΣ1,b

∞ -collection:

∀x ≤ t∃yφ(x, y)→ ∃z∀x ≤ t∃y ≤ zφ(x, y),

where φ is a Σ1,b
∞ -formula;

• B1Σ
1,b
∞ -collection:

∀X ≤ t∃yφ(y, X)→ ∃z∀X ≤ t∃y ≤ zφ(y, X),

where φ is a Σ1,b
∞ -formula.

The reader familiar with bounded second-order systems should notice that
the above PIND-axioms correspond exactly to the induction present in Buss’s
system U1

2 (a system related to polynomial space computability). The compre-
hension scheme may be a bit surprising on a first reading since the antecedent
is strong enough to obtain all the recursive sets in the standard model (way be-
yond the polynomial space decidable sets). The system BTPSA is, nevertheless,
Π0

2-conservative over Buss’s U1
2 (see [20]).11

Theorem 5. BTPSA is interpretable in Q.

Proof. We show that BTPSA is interpretable in I∆0 + Ω2 + BΣ1. We assume
that the language of the latter theory is Buss’s language. Note that

I∆0 + Ω2 + BΣ1 ⊢ ∀w1, . . . ,wn∃u (|u| = t(|w1|, . . . , |wn|))
holds for every term t of the language. This is because our theory has the axiom
Ω2. In the sequel, this fact will be used many times without explicit mentioning.

11A similar phenomenon occurs with the well-known system RCA0 of reverse mathematics.
This system has recursive comprehension but it is Π0

2-conservative over primitive recursive arith-
metic (see [38]). Intuitively, in order to form a set using a comprehension scheme of the above
form, one has to have the antecedent available. The weaker the theory, the lesser the availability.
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Let us now describe the interpretation. The number sort of BTPSA is inter-
preted by the logarithmic cut L (which is a model of I∆0 + Ω1). The set sort is
interpreted by elements α that satisfy the condition Set(α) given by:

∀u, x (|u| = x→ [∃w U(α0, ⟨u,w0, α1⟩,w1)↔ ∀w¬U(α2, ⟨u,w0, α3⟩,w1)]) ,

where α codes the quadruple ⟨α0, α1, α2, α3⟩ (w is seen as the pair ⟨w0,w1⟩).
Here, U is the universal Σb

1-predicate of Section 5. Note that a single element
may play a double role: one as a number, the other as a set (overlapping pieces,
as mentioned in the introduction). The first-order vocabulary is, by definition,
unaltered by the interpretation (on the first-order part, we are describing a cut-
interpretation). The membership operation is defined thus:

x ∈ α :≡ ∃u, v, z (|u| = x ∧ U(α0, ⟨u, v, α1⟩, z)).

It is given by an existential claim applied to a Σb
1-formula: a so-called ∃Σb

1-
formula. If Set(α) then, for x in the logarithmic part, the above condition is
equivalent to ∀u, v, z (|u| = x → ¬U(α2, ⟨u, v, α3⟩, z)). Therefore, in this case,
‘x ∈ α’ is also given by a (so-called) ∀Πb

1-formula.
The above specifications define a translation φ { φ∗ from formulas of the

second-order language of BTPSA to formulas of Buss’s first-order language.
For instance, (∀xφ(x))∗ is ∀xL φ∗(x). The translation of a set-quantification
needs no comments except that we write (∀X φ(X))∗ as ∀α (Set(α) → φ∗(α)):
capital Latin letters are changed to Greek lower case letters. For ease of read-
ing, we even write ∀αφ∗(α), but the antecedent Set(α) is supposed to be always
implicit. Finally, the translation of ∀X ≤ t φ(X) is written as the translation of
∀X φ(Xt). We use corresponding notations for existential quantifications.

In order to show that the translations of the axioms of BTPSA are provable in
I∆0 + Ω2 + BΣ1, we rely on a few facts.

Fact 1. If φ and ψ are bounded formulas, then the theory I∆0 + Ω2 + BΣ1
proves

∀x ≤ z (∃yφ(x, y)↔ ∀yψ(x, y))→ ∃w∀x ≤ z (∃yφ(x, y)↔ ∃y ≤ wφ(x, y)).

Proof of Fact 1. The antecedent of the above formula implies

∀x ≤ z∃u, y (ψ(x, u)→ φ(x, y)).

By BΣ1, there is w such that ∀x ≤ z∃u, y ≤ w (ψ(x, u) → φ(x, y)). It is easy to
see that this w does the job. ⊣

Fact 2. The theory I∆0 + Ω2 + BΣ1 proves

∀α∀z∃y < 2|z|+1∀x ≤ |z| (yx = 1↔ x ∈ α),

where yx denotes the xth-bit of the binary expansion of y.

Proof of Fact 2. Let α be such that Set(α) and fix z. As we know, x ∈ α
is, simultaneously, of the form ∃Σb

1 and ∀Πb
1. Therefore, so is the equivalence

yx = 1 ↔ x ∈ α. By the previous fact, this equivalence (for x ≤ |z|) can be
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considered a bounded formula. It is now clear that we can argue by induction to
obtain the above fact. ⊣

Fact 3. Given φ(x1, . . . , xn) a Σ1,b
0 -formula (with the first-order free variables

as shown), there is a ∃Σb
1-formula ϕ(w1, . . . ,wn) such that

I∆0 + Ω2 + BΣ1 ⊢ ∀w1 . . .∀wn (φ∗(|w1|, . . . , |wn|)↔ ϕ(w1, . . . ,wn)).

There is also a ∀Πb
1-formula with the same property.

Proof of Fact 3. Intuitively, if we consider x1, . . . , xn as first-order parameters
then, when the interpretation acts, they become logarithmic elements, i.e., ele-
ments of the form |w1|, . . . , |wn| and, consequently, a first-order bounded quan-
tification becomes a sharply bounded quantification. Let us turn to a precise ar-
gument. Up to logical equivalence, Σ1,b

0 -formulas can be obtained from atomic
formulas and their negations (‘t ∈ X’ and ‘t < X’ are included), using conjunc-
tion, disjunction and first-order bounded quantifications. Let us consider the
case when φ(x1, . . . , xn) is t(x1, . . . , xn) ∈ X. Then, φ∗(|w1|, . . . , |wn|) is

∃u, v, z (|u| = t(|w1|, . . . , |wn|) ∧ U(α0, ⟨u, v, α1⟩, z)).

The above formula is ∃Σb
1. The other atomic cases are also easy and it is clear

that the above fact is preserved by conjunctions and disjunctions. Let us now
consider a universal (first-order) bounded quantification

∀x ≤ t(x1, . . . , xn)φ(x, x1, . . . , xn).

By induction hypothesis, there is a Σb
1-formula ϕ′(z,w,w1, . . . ,wn) such that the

following equivalence holds in I∆0 + Ω2 + BΣ1:

φ∗(|w|, |w1|, . . . , |wn|)↔ ∃z ϕ′(z,w,w1, . . . ,wn).

Now, the formula ∀x ≤ t(|w1|, . . . , |wn|)φ∗(x, |w1|, . . . , |wn|) is equivalent to

∃u (|u| = t(|w1|, . . . , |wn|) ∧ ∀x ≤ |u| ∃z,w (|w| = x ∧ ϕ′(z,w,w1, . . . ,wn))).

By bounded collection BΣ1, we get

∃y, u (|u| = t(|w1|, . . . , |wn|)∧∀x ≤ |u| ∃z,w ≤ y (|w| = x∧ ϕ′(z,w,w1, . . . ,wn))).

This is a ∃Σb
1-formula. The case of existential (first-order) bounded quantifica-

tion is even simpler. A dual argument establishes the remaining cases. ⊣

Fact 4. Given φ(x1, . . . , xn) a Σ1,b
1 -formula (with the first-order free variables

as shown), there is a ∃Σb
1-formula ψ(w1, . . . ,wn) such that

I∆0 + Ω2 + BΣ1 ⊢ ∀w1 . . .∀wn (φ∗(|w1|, . . . , |wn|)↔ ψ(w1, . . . ,wn)).

The dual property (i.e., the existence of an appropriate ∀Πb
1-formula) holds for

Π
1,b
1 -formulas.
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Proof of Fact 4. A Σ1,b
1 -formula is of the form ∃X ≤ t(x)φ with φ a Σ1,b

0 -
formula. For readability, we took the bounding term with only a single variable
x and we omitted the parameters of φ. By Fact 2, ∃αφ∗(αt(|w|)) is equivalent to

∃u
(
|u| = t(|w|) ∧ ∃y < 2|u|+1 φ∗(y|u|)

)
,

where φ∗(y|u|) is obtained from φ∗(α|u|) by substituting complexes of the form
‘r ∈ α ∧ r ≤ |u|’ by the complexes ‘yr = 1 ∧ r ≤ |u|’. By Fact 3, the formula
φ∗(α|u|) is equivalent to a ∃Σb

1-formula. It is not difficult to see that the same
holds for the formula φ∗(y|u|). The result follows. The dual property is similar. ⊣

Fact 5. Given φ(x1, . . . , xn) a Σ1,b
∞ -formula (with the first-order free variables

as shown), there is a bounded formula ϕ(y,w1, . . . ,wn) such that

I∆0 + Ω2 + BΣ1 ⊢ ∀w1 . . .∀wn (φ∗(|w1|, . . . , |wn|)↔ ∃y ϕ(y,w1, . . . ,wn)).

A similar property holds with a universal quantifier ‘∀y’ instead of ‘∃y’.

Proof of Fact 5. The proof is done by induction on the complexity of the for-
mula, following the blueprint of the above proof (second-order bounded quan-
tifications are translated by first-order bounded quantifications). Fact 2 and BΣ1
are used systematically. ⊣

We are ready to see that the translations of the axioms of BTPSA are provable
in the theory I∆0 + Ω2 + BΣ1. This is immediate for the BASIC axioms. Now,
consider a Σ1,b

1 -formula φ and an element z0 in L such that φ(0) ∧ ¬φ(z0). By
Fact 5, the formula φ∗(|w|) is equivalent to both a formula of the form ∃y ϕ1(y,w)
and a formula of the form ∀y ϕ2(y,w), with ϕ1 and ϕ2 bounded formulas. Hence,
by Fact 1, φ∗(|w|) is equivalent to a bounded formula as long as w ≤ w0, for w0
such that |w0| = z0. Since I∆0 +Ω2 +BΣ1 includes bounded induction, it follows
that the translations of the Σ1,b

1 -PIND axioms hold in I∆0 + Ω2 + BΣ1.
Let us study the translations of the comprehension axioms of BTPSA. As-

sume ∀xL (∃yL φ∗(x, y, p0) ↔ ∀yL ψ∗(x, y, p1)), where φ is a Σ1,b
1 -formula, ψ is

a Π1,b
1 -formula and where we show explicitly the parameters p0 and p1 (with-

out loss of generality, they are single parameters). Note that p0 and p1 lie in
the logarithmic part (say, with |q0| = p0 and |q1| = p1). By Fact 4, it follows
that ∃yL φ∗(x, y, p0) is equivalent to ∃vφ′(u, v, q0), where |u| = x and φ′ is a Σb

1-
formula. Similarly, ∀yL ψ∗(x, y, p1) is equivalent to ∀vψ′(u, v, q1), this time with
ψ′ a Πb

1-formula. By Proposition 6, there are (standard) numbers d and e such
that S1

2 (and, hence, I∆0 + Ω2 + BΣ1) proves the equivalences

φ′(u, v, q0)↔ U
(
d, ⟨u, v, q0⟩, 2|⟨u,v,q0⟩+2|d

)
and

ψ′(u, v, q1)↔ ¬U
(
e, ⟨u, v, q1⟩, 2|⟨u,v,q1⟩+2|e

)
.

It is now clear that we can take the quadruple α := ⟨d, q0, e, q1⟩ to code the set
required by the comprehension axiom.
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Finally, using the Facts, it is easy to see that both bounded collection schemes
translate into forms of bounded collection that are available in I∆0+Ω2+BΣ1. ⊣

The interpretation above does more than one was aiming. For instance, it in-
terprets the usual “plus one” kind of Σ1,b

1 -induction (for the expert, we obtain a
theory which isΠ0

2-conservative over Buss’s theory V1
2). With this kind of induc-

tion, it is possible to introduce every exponential time function (with polynomial
growth rate). Actually, it interprets Σ1,b

∞ -induction and, with a small adaptation,
it interprets also comprehension for every fixed level of (dual) formulas φ and
ψ (see the statement of comprehension in Definition 12) of the Σ1,b

∞ -hierarchy
(the hierarchy which counts the number of alternations of second-order bounded
quantifications). For the reader of like mind, one can even envisage interpreting
comprehension for all the second-order bounded hierarchy at once by consider-
ing an interpreted theory with the axiom Ω3. Of course, more can be obtained
by going up in the hierarchy of the Ωn’s.

It has been known since the nineties that forms of weak König’s lemma (see
[38] for a classical discussion of this principle) areΠ0

2-conservative over theories
of bounded arithmetic (they are even first-order conservative if the theories of
bounded arithmetic include corresponding forms of bounded collection). The
first paper on this subject was [18], but there has been others like [7] or [13].
Along the years there has been investigations of weak analysis with forms of
weak König’s lemma, as witnessed by the Ph.D. thesis of António Fernandes and
the second author (see [12] and [21]). Recently, António Fernandes published in
[14] a study concerning a strong form of weak König’s lemma, namely a version
of the so-called strict Π1

1-reflection principle12:

∀X∃xφ(X, x)→ ∃z∀X∃x ≤ zφ(X, x),

where φ is a Σ1,b
∞ -formula. It is known that this principle is first-order conserva-

tive over BTPSA. We conjecture that this principle is interpretable in Q.

§8. Negative results. We saw that various, successively stronger, theories
are interpretable in Q. In this section, we show that there are limits for this
exercise.

Lemma 2. The theory S1
2 + Con(Q) is not interpretable in Q.

Proof. Suppose, in order to reach a contradiction, that S1
2 + Con(Q) is inter-

pretable in Q. Given that S1
2 + Con(Q) is finitely axiomatizable (Corollary 1),

S1
2 ⊢ Con(Q)→ Con(S1

2 + Con(Q)). Hence, S1
2 + Con(Q) ⊢ Con(S1

2 + Con(Q)).
This contradicts Gödel’s second incompleteness theorem. ⊣

Consider the formula SL(x) :≡ ∃y (22
x = y). In I∆0 + exp, the formula SL

is inductive and, hence, defines a cut: the so-called super-logarithmic cut. By

12This principle originally appeared in the context of admissible set theory (see [1]). It has
been observed by several people (notoriously by Gerald Sacks in the preface of his [36]) that
fragments of arithmetic have similarities with admissibility.
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Proposition 1, there is a subcut J(x) of the super-logarithmic cut closed under
addition and multiplication. Without loss of generality (by further shortening),
we may suppose that J is a model of I∆0 + Ω1. The following is easy: if x is in
J then 2x

x exists. The proof of this fact lies in the observation that if 2w
z+1 exists

then 2w+1
z also exists and 2w+1

z ≤ 2w
z+1. Given that 2x − 2 lies in J, 22

2x−2 exists
(x , 0). Then, by (bounded) induction, it is clear that 2x

x exists and 2x
x ≤ 22

2x−2.
The following result first appeared in [48]:

Lemma 3 (Wilkie). I∆0 + Ω1 + Con(Q) is interpretable in I∆0 + exp.

Proof. (Sketch) For technical reasons, we prove the equivalent claim that
I∆0 + Ω1 + Con(QP) is interpretable in I∆0 + exp (QP is the open theory de-
fined in Section 3). Let J be a subcut of the super-logarithmic cut which is a
model of I∆0 + Ω1. We claim that there is no Hilbert-style proof of 0 = 1 from
the axioms of QP in the cut J. Let us see why. Suppose that there is such a
proof in J. Then, in this very cut, there is a pure logic Hilbert-style proof of
the conditional ‘∀x⃗ A(x⃗) → 0 = 1’ where ∀x⃗ A(x⃗), with A(x⃗) quantifier-free,
is (equivalent to) the conjunction of the axioms of QP (including the finitely
many identity axioms). Note that this pure logic proof lies in J (the theorem
of deduction is formalizable in I∆0 + Ω1). By known analyses of the proof
of Gentzen’s cut-elimination theorem, there is enough room to produce a cut-
free proof of ∃x⃗ (A(x⃗) → 0 = 1) (the cut-free proof has a super-exponential
bound with respect to the length of the original proof). It is well-known that,
from a cut-free proof of the existential sentence ∃x⃗ (A(x⃗) → 0 = 1), we can
extract closed terms t⃗1, . . . , t⃗n of the language of QP such that the conditional
A(⃗t1) ∧ . . . ∧ A(⃗tn) → 0 = 1 is a tautology. (Note that the argument from the
cut-free proof to the above tautology is formalizable in I∆0 + exp.) This is im-
possible because the theory I∆0+exp is able to define a truth predicate for closed
atomic formulas of the language of QP.

We have argued that J is a model of I∆0+Ω1+Con(QP). Therefore, the theory
I∆0 + Ω1 + Con(QP) is interpretable in I∆0 + exp. ⊣

Theorem 6. I∆0 + exp is not interpretable in Q.

Proof. This is an immediate consequence of the above two lemmas and the
fact that S1

2 is interpretable in I∆0 + Ω1. ⊣
In I∆0 + Ω1, the super-logarithmic part is no longer inductive. To see this,

consider a model of I∆0 + Ω1 in which exp fails. Let w be such that 2w does not
exist. Take the maximum x such that 22

x ≤ w (I∆0 + Ω1 can prove the existence
of this maximum). Therefore, there is a unique x (it is the previous x or its
successor) such that

∃y (y = 22
x ∧ ∀z,w (w = 22

z → z ≤ x)).

Note that this (unique) x is in the super-logarithmic part, but its successor is
not. In short, in a model in which exp fails, its super-logarithmic part has a
maximum.
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The following result and elegant argument are due to Solovay (see [6]):

Proposition 8 (Solovay). There are sentences ϕ0 and ϕ1 such that both theo-
ries I∆0 + Ω1 + ϕ0 and I∆0 + Ω1 + ϕ1 are cut-interpretable in I∆0 + Ω2 but the
theory I∆0 + Ω1 + (ϕ0 ∧ ϕ1) is not interpretable in there.

Proof. Let ϕeven be the sentence

∃y, x (y = 22
x ∧ ∀z,w (w = 22

z → z ≤ x) ∧ “x is even”),

(the super-logarithmic part has a maximum and it is even) and ϕodd be the sen-
tence

∃y, x (y = 22
x ∧ ∀z,w (w = 22

z → z ≤ x) ∧ “x is odd”),
(the super-logarithmic part has a maximum and it is odd). Now, let us define
ϕ0 :≡ ¬ exp → ϕeven and ϕ1 :≡ ¬ exp → ϕodd. It should be clear that the
cuts I0(x) :≡ (¬ exp∧¬ϕeven) → L(x) and I1(x) :≡ (¬ exp∧¬ϕodd) → L(x) are,
respectively, models of ϕ0 and ϕ1 (L is the logarithmic cut). Let us check the
case I0. If exp holds then the cut I0 is all the model and obviously ϕ0 holds in
there. If exp fails we have two cases. If ϕeven, then the cut I0 is again all the
model and, by hypothesis, ϕ0 holds in there. If ¬ϕeven, then we must have ϕodd
(because exp fails) and the cut is the logarithmic part L of the model. But, of
course, ϕeven holds in L (and exp continues to fail in L). We conclude that ϕ0
holds in L, as wanted.

Observe that (ϕ0 ∧ ϕ1)→ exp. By the previous theorem, I∆0 +Ω1 + (ϕ0 ∧ ϕ1)
is not interpretable in Q. ⊣

Theorem 7 (Solovay). I∆0 + ¬ exp is interpretable in Q.

Proof. (Sketch) We show that I∆0 + ¬ exp is interpretable in I∆0 + Ω1 (and,
hence, in Q) by internalizing the argument after Proposition 2. The particular
internalization depends on whether the scheme of Σ2-induction holds, or not, in
the ambient model.

It easily follows from the work in Section 5 that there is a universal Σ2-
predicate V(e, x, p) in the following precise sense: for every formula φ(x) of
the form ∃y∀z ρ(x, y, z), with ρ a Σb

1-formula (possibly with parameters), there is
a standard number e such that I∆0 +Ω1 ⊢ ∃p∀x (φ(x)↔ V(e, x, p)). Let θ be the
formula:

∀p, e∀x (V(e, 0, p) ∧ ∀x (V(e, x, p)→ V(e,Sx, p))→ ∀x V(e, x, p)).

Note that θ holds if, and only if, the scheme of Σ2-induction holds. We show how
to interpret I∆0+¬ exp (into I∆0+Ω1) depending on whether one θ holds or not.
This case distinction does not pose a problem for obtaining the interpretation:
the interpretation effectively takes the form “if θ, proceed according to A, if not
proceed according to B.”

Suppose that θ holds. Of course, I∆0 + Ω1 + θ is just first-order Peano Arith-
metic with induction restricted to Σ2-formulas, the so-called theory IΣ2. We
show that I∆0 +¬ exp is interpretable in IΣ2. Firstly, observe that IΣ2 proves that
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the theory I∆0+exp+ {n < c : n ∈ N} (framed in the language of arithmetic with
an extra constant c) is consistent.13 This is because every finite part (in the sense
of the ambient theory IΣ2) of I∆0+exp+ {n < c : n ∈ N} has an appropriate weak
model (see section II.8 of [38], adapted to a setting using explicit definitions in-
stead of second-order variables). The weak model can be taken as a model in the
sense that (the universal closures of) bounded formulas (with a primitive symbol
for the exponentiation function) are true with respect to a suitable (partial) truth
predicate. Then, by a cut-elimination argument (see, again, [38]), we conclude
that this finite part is consistent. Therefore, I∆0 + exp+ {n < c : n ∈ N} is
consistent. By the formalized Gödel’s completeness theorem (a.k.a. the Hilbert-
Bernays completeness theorem), there is a ∆2-definable model of the theory
I∆0 + exp+ {n < c : n ∈ N} in IΣ2 (see [39] and, also, [10] or section IV.3 of
[38]). Note that the Hilbert-Bernays completeness theorem is formalizable in
IΣ2. Therefore, we get an interpretation of I∆0 + exp+ {n < c : n ∈ N}. By the
opening paragraph of this proof, it is clear now how to get an interpretation in
which exp fails.

Suppose that θ fails. Then there is e0 and p0 such that the following is a proper
cut:

C(x) :≡ V(e0, 0, p0) ∧ ∀z (V(e0, z, p0)→ V(e0, Sz, p0))→ ∀y ≤ x V(e0, y, p0).

Take b outside of C and, by shortening, take J a subcut of C which is a model of
I∆0. If exp fails in J, we have produced the required interpretation. Otherwise,
let a be the length of b (i.e., a = |b|). Consider the cut K(x) :≡ ∃uJ (x ≤ au).
Note that for u in J, au is defined. This is because |a| does not lie in J (this
stems from the fact that exp holds in J and that b does not lie in J). In effect:
au < 2|a|u < 2|a|

2
< 2a ≤ 2b + 1. Since a is in K, this calculation also shows that

exp fails in K. ⊣14

The previous argument can be adapted to show that, for each n, the theory
I∆0 +Ωn + ¬ exp is interpretable in Q. For Ω1 one takes K(x) :≡ ∃uJ (x ≤ a|a|

u
),

for Ω2 one takes K(x) :≡ ∃uJ (x ≤ a|a|
||a||u

), etc.

Proposition 9 (Solovay). There is a sentence ϕ such that both I∆0 + Ω1 + ϕ
and I∆0 + Ω1 + ¬ϕ are theories interpretable in Q.

13It is known that the theory I∆0 + exp is finitely axiomatizable (if we disregard the language,
note that it is the same theory as the finitely axiomatizable S1

2 + exp) and, therefore, its formaliza-
tion in IΣ2 poses no problems (in any case, the usual infinite axiomatization does not pose special
problems either). The part {n < c : n ∈ N} is formalized as consisting of the numbers of the form
pẋ ≤ cq (see [39] for the dot notation and the square corners).

14The anonymous referee pointed to us that the detour throught IΣ2 can be avoided (see section
6.2.1 of [43]). The gist of the alternative proof is different from the one in the text. It also
uses, nevertheless, a version of the Hilbert-Bernays completeness theorem (suitable for bounded
theories of arithmetic) that goes by the name of interpretation existence lemma (versions of which
are theorem 3.1 of [34] or corollary 6.1 of [44]).
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Proof. It is sufficient to find a sentence ϕ such that both I∆0 + Ω1 + ϕ and
I∆0 + Ω1 + ¬ϕ are interpretable in I∆0 + Ω2 + ¬ exp. Clearly, the sentence ϕeven
of the proof of Proposition 8 does the job. ⊣
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