14 research outputs found

    The First-Order Theory of Ordering Constraints over Feature Trees

    Get PDF
    The system FT< of ordering constraints over feature trees has been introduced as an extension of the system FT of equality constraints over feature trees. We investigate the first-order theory of FT< and its fragments in detail, both over finite trees and over possibly infinite trees. We prove that the first-order theory of FT< is undecidable, in contrast to the first-order theory of FT which is well-known to be decidable. We show that the entailment problem of FT< with existential quantification is PSPACE-complete. So far, this problem has been shown decidable, coNP-hard in case of finite trees, PSPACE-hard in case of arbitrary trees, and cubic time when restricted to quantifier-free entailment judgments. To show PSPACE-completeness, we show that the entailment problem of FT< with existential quantification is equivalent to the inclusion problem of non-deterministic finite automata. Available at http://www.ps.uni-saarland.de/Publications/documents/FTSubTheory_98.pd

    Deterministic Automata for Unordered Trees

    Get PDF
    Automata for unordered unranked trees are relevant for defining schemas and queries for data trees in Json or Xml format. While the existing notions are well-investigated concerning expressiveness, they all lack a proper notion of determinism, which makes it difficult to distinguish subclasses of automata for which problems such as inclusion, equivalence, and minimization can be solved efficiently. In this paper, we propose and investigate different notions of "horizontal determinism", starting from automata for unranked trees in which the horizontal evaluation is performed by finite state automata. We show that a restriction to confluent horizontal evaluation leads to polynomial-time emptiness and universality, but still suffers from coNP-completeness of the emptiness of binary intersections. Finally, efficient algorithms can be obtained by imposing an order of horizontal evaluation globally for all automata in the class. Depending on the choice of the order, we obtain different classes of automata, each of which has the same expressiveness as CMso.Comment: In Proceedings GandALF 2014, arXiv:1408.556

    First-order theory of subtyping constraints

    Get PDF
    We investigate the first-order theory of subtyping constraints. We show that the first-order theory of non-structural subtyping is undecidable, and we show that in the case where all constructors are either unary or nullary, the first-order theory is decidable for both structural and non-structural subtyping. The decidability results are shown by reduction to a decision problem on tree automata. This work is a step towards resolving long-standing open problems of the decidability of entailment for non-structural subtyping

    Logics for Unranked Trees: An Overview

    Get PDF
    Labeled unranked trees are used as a model of XML documents, and logical languages for them have been studied actively over the past several years. Such logics have different purposes: some are better suited for extracting data, some for expressing navigational properties, and some make it easy to relate complex properties of trees to the existence of tree automata for those properties. Furthermore, logics differ significantly in their model-checking properties, their automata models, and their behavior on ordered and unordered trees. In this paper we present a survey of logics for unranked trees

    Non-structural subtype entailment in automata theory

    Get PDF
    Decidability of non-structural subtype entailment is a long standing open problem in programming language theory. In this paper, we apply automata theoretic methods to characterize the problem equivalently by using regular expressions and word equations. This characterization induces new results on non-structural subtype entailment, constitutes a promising starting point for further investigations on decidability, and explains for the first time why the problem is so difficult. The difficulty is caused by implicit word equations that we make explicit

    Logics for Unordered Trees with Data Constraints on Siblings

    Get PDF
    International audienceWe study counting monadic second-order logics (CMso) for unordered data trees. Our objective is to enhance this logic with data constraints for comparing string data values attached to sibling edges of a data tree. We show that CMso satisfiability becomes undecidable when adding data constraints between siblings that can check the equality of factors of data values. For more restricted data constraints that can only check the equality of prefixes, we show that it becomes decidable, and propose a related automaton model with good complexities. This restricted logic is relevant to applications such as checking well-formedness properties of semi-structured databases and file trees. Our decidability results are obtained by compilation of CMso to automata for unordered trees, where both are enhanced with data constraints in a novel manner

    Automata for Unordered Trees

    Get PDF
    International audienceWe present a framework for defining automata for unordereddata trees that is parametrized by the way in which multisets of children nodes are described. Presburger tree automata and alternatingPresburger tree automata are particular instances. We establish the usual equivalence in expressiveness of tree automata and MSO for the automata defined inour framework.We then investigate subclasses of automata for unordered treesfor which testing language equivalence is in P-time. For this we start from automata in our framework that describe multisets of childrenby finite automata, and propose two approaches of how todo this deterministically. We show that a restriction to confluent horizontal evaluation leads to polynomial-time emptiness and universality, but still suffers fromcoNP-completeness of the emptiness of binary intersections. Finally, efficient algorithms can be obtained by imposing an order of horizontal evaluation globally for all automata in the class. Depending onthe choice of the order, we obtain different classes of automata, eachof which has the same expressiveness as Counting MSO

    The First-Order Theory of Ordering Constraints over Feature Trees

    Get PDF
    The system FT of ordering constraints over feature trees has been introduced as an extension of the system FT of equality constraints over feature trees. We investigate the first-order theory of FT and its fragments, both over finite trees and over possibly infinite trees. We prove that the first-order theory of FT is undecidable, in contrast to the first-order theory of FT which is well-known to be decidable. We determine the complexity of the entailment problem of FT with existential quantification to be PSPACE-complete, by proving its equivalence to the inclusion problem of non-deterministic finite automata. Our reduction from the entailment problem to the inclusion problem is based on a new alogrithm that, given an existential formula of FT , computes a finite automaton which accepts all its logic consequences

    The First-Order Theory of Ordering Constraints over Feature Trees

    No full text
    The system FT of ordering constraints over feature trees has been introduced as an extension of the system FT of equality constraints over feature trees. We investigate the first-order theory of FT and its fragments, both over finite trees and over possibly infinite trees. We prove that the first-order theory of FT is undecidable, in contrast to the first-order theory of FT which is well-known to be decidable. We determine the complexity of the entailment problem of FT with existential quantification to be PSPACE-complete, by proving its equivalence to the inclusion problem of non-deterministic finite automata. Our reduction from the entailment problem to the inclusion problem is based on a new alogrithm that, given an existential formula of FT , computes a finite automaton which accepts all its logic consequences
    corecore