227 research outputs found

    From cell to robot : A bio-inspired locomotion device

    Get PDF
    Bionics or biomimetics is an interdisciplinary research field, a scientific approach to applicate naturally developed biological systems, methods and solutions to the study and design of technology and engineering systems. Therefore bionics is based on an exclusive mutuality between life sciences and technology and its associated sciences, such as robotics. Robots are special artificial agents, and they have much in common with biological agents in case of the need to adapt to their environment. A popular trend in robotics is the development of soft robots – artificial agents with a rather flexible skin or shape, propulsing itself with some type of crawling movement. These robots are able to deform and adapt to obstacles during locomotion, which is an advantage over classical wheeled or legged propulsion. Bionics is helpful in developing locomotion devices for robots, e. g. bio-inspired climbing robots, such as geckobots, utilise the biological gecko adhesion model for climbing. Most of these bio-inspired climbing robots have the disadvantage of using legs for locomotion. The idea is to find a new biological model for a bionic robotic locomotion device that is using an adhesion-dependent crawling locomotion, which allows the robot to climb (or at least be able to master inclinations) and still has a rather soft and deformable shape providing the flexibility of adaptation to obstacles or a changing environment. Surprisingly, single cells, such as amoebae or animal tissue cells, provide these required properties: the ability to crawl on surfaces by formation of adhesion bonds and a very deformable shape – a perfect model for such robots. These cells are reorganising their cytoskeletal cortex and create a visco-elastic gradient which is polarising the cell with a sol-like "sloppy" leading edge at the front and a gel-like "stiff" rear end. This work demonstrates that it is possible to transfer the biophysical locomotion mechanism of cell migration to a simulation model of soft robots, which use an adhesion-dependent mechanism to autonomously create a polarising elasticity gradient during motion. It introduces and analyses three robot models, which are able to move on surfaces with different built-in integrations of this polarisation mechanism. Simulations show that the robots are flexible enough to adapt to changing environments, such as rough surfaces. One model is even able to crawl on walls and ceilings against the direction of gravity. Finally, this work offers some ideas for possible constructions and usability of these robots, and what insights their analysis might give into principles of biological cell migration

    Beyond jamming grippers: granular material in robotics

    Get PDF
    Robot grippers based on the jamming of granular material have been studied widely in previous years. Recently, also other benefits and challenges of granular material have emerged for robotics. We discuss various functions of granular matter in robotic actuation, sensory processing, locomotion, and manipulation. We also provide a review of the design and methods of robots for moving in or on challenging granular environments. Drawing on the properties of granular material and their potential applications, we propose our unique perspectives and innovative ideas for future research and development in this field

    Toward a Variable Stiffness Surgical Manipulator Based on Fiber Jamming Transition

    Get PDF
    Soft robots have proved to represent a new frontier for the development of intelligent machines able to show new capabilities that can complement those currently performed by robots based on rigid materials. One of the main application areas where this shift is promising an impact is minimally invasive surgery. In previous works, the STFF-FLOP soft manipulator has been introduced as a new concept of using soft materials to develop endoscopic tools. In this paper, we present a novel kind of stiffening system based on fiber jamming transition that can be embedded in the manipulator to widen its applicability by increasing its stability and with the possibility to produce and transmit higher forces. The STIFF-FLOP original module has been re-designed in two new versions to incorporate the variable stiffness mechanism. The two designs have been evaluated in terms of dexterity and variable stiffness capability and, despite a general optimization rule did not clearly emerge, the study confirmed that fiber jamming transition can be considered an effective technological approach for obtaining variable stiffness in slender soft structures

    Modular soft pneumatic actuator system design for compliance matching

    Get PDF
    The future of robotics is personal. Never before has technology been as pervasive as it is today, with advanced mobile electronics hardware and multi-level network connectivity pushing âsmartâ devices deeper into our daily lives through home automation systems, virtual assistants, and wearable activity monitoring. As the suite of personal technology around us continues to grow in this way, augmenting and offloading the burden of routine activities of daily living, the notion that this trend will extend to robotics seems inevitable. Transitioning robots from their current principal domain of industrial factory settings to domestic, workplace, or public environments is not simply a matter of relocation or reprogramming, however. The key differences between âtraditionalâ types of robots and those which would best serve personal, proximal, human interactive applications demand a new approach to their design. Chief among these are requirements for safety, adaptability, reliability, reconfigurability, and to a more practical extent, usability. These properties frame the context and objectives of my thesis work, which seeks to provide solutions and answers to not only how these features might be achieved in personal robotic systems, but as well what benefits they can afford. I approach the investigation of these questions from a perspective of compliance matching of hardware systems to their applications, by providing methods to achieve mechanical attributes complimentary to their environment and end-use. These features are fundamental to the burgeoning field of Soft Robotics, wherein flexible, compliant materials are used as the basis for the structure, actuation, sensing, and control of complete robotic systems. Combined with pressurized air as a power source, soft pneumatic actuator (SPA) based systems offers new and novel methods of exploiting the intrinsic compliance of soft material components in robotic systems. While this strategy seems to answer many of the needs for human-safe robotic applications, it also brings new questions and challenges: What are the needs and applications personal robots may best serve? Are soft pneumatic actuators capable of these tasks, or âusefulâ work output and performance? How can SPA based systems be applied to provide complex functionality needed for operation in diverse, real-world environments? What are the theoretical and practical challenges in implementing scalable, multiple degrees of freedom systems, and how can they be overcome? I present solutions to these problems in my thesis work, elucidated through scientific design, testing and evaluation of robotic prototypes which leverage and demonstrate three key features: 1) Intrinsic compliance: provided by passive elastic and flexible component material properties, 2) Extrinsic compliance: rendered through high number of independent, controllable degrees of freedom, and 3) Complementary design: exhibited by modular, plug and play architectures which combine both attributes to achieve compliant systems. Through these core projects and others listed below I have been engaged in soft robotic technology, its application, and solutions to the challenges which are critical to providing a path forward within the soft robotics field, as well as for the future of personal robotics as a whole toward creating a better society

    EuMoBot: Replicating Euglenoid Movement in a Soft Robot

    Get PDF
    Contains PCA for the larger robot and analysis of design parameters
    corecore