13,795 research outputs found

    On the theory of vortex quantum tunnelling in the dense Bose superfluid helium II

    Full text link
    The quantum tunnelling and nucleation theory of vortices in helium II is reviewed. Arguments are given that the only reliable method to calculate tunnelling probabilities in this highly correlated, strongly interacting many-body system is the semiclassical, large scale approach for evaluation of the tunnelling exponent, which does not make any assumptions about the unknown dynamical behaviour of the fluid on microscopic scales. The geometric implications of this semiclassical theory are represented in some detail and its relevance for the interpretation of experimental data is discussed.Comment: 25 pages, 6 figures, revised version, to appear in Physica

    Thin-disk models in an Integrable Weyl-Dirac theory

    Full text link
    We construct a class of static, axially symmetric solutions representing razor-thin disks of matter in an Integrable Weyl-Dirac theory proposed in Found. Phys. 29, 1303 (1999). The main differences between these solutions and the corresponding general relativistic one are analyzed, focusing on the behavior of physical observables (rotation curves of test particles, density and pressure profiles). We consider the case in which test particles move on Weyl geodesics. The same rotation curve can be obtained from many different solutions of the Weyl-Dirac theory, although some of these solutions present strong qualitative differences with respect to the usual general relativistic model (such as the appearance a ring-like density profile). In particular, for typical galactic parameters all rotation curves of the Weyl-Dirac model present Keplerian fall-off. As a consequence, we conclude that a more thorough analysis of the problem requires the determination of the gauge function β\beta on galactic scales, as well as restrictions on the test-particle behavior under the action of the additional fields introduced by this theory.Comment: 18 pages, 3 figures; accepted in General Relativity and Gravitatio

    Introduction to Quantum Mechanics and the Quantum-Classical transition

    Full text link
    In this paper we present a survey of the use of differential geometric formalisms to describe Quantum Mechanics. We analyze Schroedinger and Heisenberg frameworks from this perspective and discuss how the momentum map associated to the action of the unitary group on the Hilbert space allows to relate both approaches. We also study Weyl-Wigner approach to Quantum Mechanics and discuss the implications of bi-Hamiltonian structures at the quantum level.Comment: Survey paper based on the lectures delivered at the XV International Workshop on Geometry and Physics Puerto de la Cruz, Tenerife, Canary Islands, Spain September 11-16, 2006. To appear in Publ. de la RSM

    Basics of Quantum Mechanics, Geometrization and some Applications to Quantum Information

    Full text link
    In this paper we present a survey of the use of differential geometric formalisms to describe Quantum Mechanics. We analyze Schr\"odinger framework from this perspective and provide a description of the Weyl-Wigner construction. Finally, after reviewing the basics of the geometric formulation of quantum mechanics, we apply the methods presented to the most interesting cases of finite dimensional Hilbert spaces: those of two, three and four level systems (one qubit, one qutrit and two qubit systems). As a more practical application, we discuss the advantages that the geometric formulation of quantum mechanics can provide us with in the study of situations as the functional independence of entanglement witnesses.Comment: AmsLaTeX, 37 pages, 8 figures. This paper is an expanded version of some lectures delivered by one of us (G. M.) at the ``Advanced Winter School on the Mathematical Foundation of Quantum Control and Quantum Information'' which took place at Castro Urdiales (Spain), February 11-15, 200

    Photometry of supernovae in an image series : methods and application to the Supernova Legacy Survey (SNLS)

    Full text link
    We present a technique to measure lightcurves of time-variable point sources on a spatially structured background from imaging data. The technique was developed to measure light curves of SNLS supernovae in order to infer their distances. This photometry technique performs simultaneous PSF photometry at the same sky position on an image series. We describe two implementations of the method: one that resamples images before measuring fluxes, and one which does not. In both instances, we sketch the key algorithms involved and present the validation using semi-artificial sources introduced in real images in order to assess the accuracy of the supernova flux measurements relative to that of surrounding stars. We describe the methods required to anchor these PSF fluxes to calibrated aperture catalogs, in order to derive SN magnitudes. We find a marginally significant bias of 2 mmag of the after-resampling method, and no bias at the mmag accuracy for the non-resampling method. Given surrounding star magnitudes, we determine the systematic uncertainty of SN magnitudes to be less than 1.5 mmag, which represents about one third of the current photometric calibration uncertainty affecting SN measurements. The SN photometry delivers several by-products: bright star PSF flux mea- surements which have a repeatability of about 0.6%, as for aperture measurements; we measure relative astrometric positions with a noise floor of 2.4 mas for a single-image bright star measurement; we show that in all bands of the MegaCam instrument, stars exhibit a profile linearly broadening with flux by about 0.5% over the whole brightness range.Comment: Accepted for publication in A&A. 20 page
    • …
    corecore