In this paper we present a survey of the use of differential geometric
formalisms to describe Quantum Mechanics. We analyze Schroedinger and
Heisenberg frameworks from this perspective and discuss how the momentum map
associated to the action of the unitary group on the Hilbert space allows to
relate both approaches. We also study Weyl-Wigner approach to Quantum Mechanics
and discuss the implications of bi-Hamiltonian structures at the quantum level.Comment: Survey paper based on the lectures delivered at the XV International
Workshop on Geometry and Physics Puerto de la Cruz, Tenerife, Canary Islands,
Spain September 11-16, 2006. To appear in Publ. de la RSM