35,669 research outputs found

    The evolution of metabolic networks of E. coli

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite the availability of numerous complete genome sequences from <it>E. coli </it>strains, published genome-scale metabolic models exist only for two commensal <it>E. coli </it>strains. These models have proven useful for many applications, such as engineering strains for desired product formation, and we sought to explore how constructing and evaluating additional metabolic models for <it>E. coli </it>strains could enhance these efforts.</p> <p>Results</p> <p>We used the genomic information from 16 <it>E. coli </it>strains to generate an <it>E. coli </it>pangenome metabolic network by evaluating their collective 76,990 ORFs. Each of these ORFs was assigned to one of 17,647 ortholog groups including ORFs associated with reactions in the most recent metabolic model for <it>E. coli </it>K-12. For orthologous groups that contain an ORF already represented in the MG1655 model, the gene to protein to reaction associations represented in this model could then be easily propagated to other <it>E. coli </it>strain models. All remaining orthologous groups were evaluated to see if new metabolic reactions could be added to generate a pangenome-scale metabolic model (iEco1712_pan). The pangenome model included reactions from a metabolic model update for <it>E. coli </it>K-12 MG1655 (iEco1339_MG1655) and enabled development of five additional strain-specific genome-scale metabolic models. These additional models include a second K-12 strain (iEco1335_W3110) and four pathogenic strains (two enterohemorrhagic <it>E. coli </it>O157:H7 and two uropathogens). When compared to the <it>E. coli </it>K-12 models, the metabolic models for the enterohemorrhagic (iEco1344_EDL933 and iEco1345_Sakai) and uropathogenic strains (iEco1288_CFT073 and iEco1301_UTI89) contained numerous lineage-specific gene and reaction differences. All six <it>E. coli </it>models were evaluated by comparing model predictions to carbon source utilization measurements under aerobic and anaerobic conditions, and to batch growth profiles in minimal media with 0.2% (w/v) glucose. An ancestral genome-scale metabolic model based on conserved ortholog groups in all 16 <it>E. coli </it>genomes was also constructed, reflecting the conserved ancestral core of <it>E. coli </it>metabolism (iEco1053_core). Comparative analysis of all six strain-specific <it>E. coli </it>models revealed that some of the pathogenic <it>E. coli </it>strains possess reactions in their metabolic networks enabling higher biomass yields on glucose. Finally the lineage-specific metabolic traits were compared to the ancestral core model predictions to derive new insight into the evolution of metabolism within this species.</p> <p>Conclusion</p> <p>Our findings demonstrate that a pangenome-scale metabolic model can be used to rapidly construct additional <it>E. coli </it>strain-specific models, and that quantitative models of different strains of <it>E. coli </it>can accurately predict strain-specific phenotypes. Such pangenome and strain-specific models can be further used to engineer metabolic phenotypes of interest, such as designing new industrial <it>E. coli </it>strains.</p

    Asymmetric relationships between proteins shape genome evolution

    Get PDF
    An investigation of metabolic networks in E. coli and S. cerevisiae reveals that asymmetric protein interactions affect gene expression, the relative effect of gene-knockouts and genome evolution

    Preferential attachment in the evolution of metabolic networks

    Get PDF
    BACKGROUND: Many biological networks show some characteristics of scale-free networks. Scale-free networks can evolve through preferential attachment where new nodes are preferentially attached to well connected nodes. In networks which have evolved through preferential attachment older nodes should have a higher average connectivity than younger nodes. Here we have investigated preferential attachment in the context of metabolic networks. RESULTS: The connectivities of the enzymes in the metabolic network of Escherichia coli were determined and representatives for these enzymes were located in 11 eukaryotes, 17 archaea and 46 bacteria. E. coli enzymes which have representatives in eukaryotes have a higher average connectivity while enzymes which are represented only in the prokaryotes, and especially the enzymes only present in βγ-proteobacteria, have lower connectivities than expected by chance. Interestingly, the enzymes which have been proposed as candidates for horizontal gene transfer have a higher average connectivity than the other enzymes. Furthermore, It was found that new edges are added to the highly connected enzymes at a faster rate than to enzymes with low connectivities which is consistent with preferential attachment. CONCLUSION: Here, we have found indications of preferential attachment in the metabolic network of E. coli. A possible biological explanation for preferential attachment growth of metabolic networks is that novel enzymes created through gene duplication maintain some of the compounds involved in the original reaction, throughout its future evolution. In addition, we found that enzymes which are candidates for horizontal gene transfer have a higher average connectivity than other enzymes. This indicates that while new enzymes are attached preferentially to highly connected enzymes, these highly connected enzymes have sometimes been introduced into the E. coli genome by horizontal gene transfer. We speculate that E. coli has adjusted its metabolic network to a changing environment by replacing the relatively central enzymes for better adapted orthologs from other prokaryotic species

    Detecting the significant flux backbone of Escherichia coli metabolism

    Get PDF
    The heterogeneity of computationally predicted reaction fluxes in metabolic networks within a single flux state can be exploited to detect their significant flux backbone. Here, we disclose the backbone of Escherichia coli, and compare it with the backbones of other bacteria. We find that, in general, the core of the backbones is mainly composed of reactions in energy metabolism corresponding to ancient pathways. In E. coli, the synthesis of nucleotides and the metabolism of lipids form smaller cores which rely critically on energy metabolism. Moreover, the consideration of different media leads to the identification of pathways sensitive to environmental changes. The metabolic backbone of an organism is thus useful to trace simultaneously both its evolution and adaptation fingerprints

    Evolution of gene knockout strains of <i>E-coli</i> reveal regulatory architectures governed by metabolism

    Get PDF
    The function of metabolic genes in the context of regulatory networks is not well understood. Here, the authors investigate the adaptive responses of E. coli after knockout of metabolic genes and highlight the influence of metabolite levels in the evolution of regulatory function

    Low Degree Metabolites Explain Essential Reactions and Enhance Modularity in Biological Networks

    Get PDF
    Recently there has been a lot of interest in identifying modules at the level of genetic and metabolic networks of organisms, as well as in identifying single genes and reactions that are essential for the organism. A goal of computational and systems biology is to go beyond identification towards an explanation of specific modules and essential genes and reactions in terms of specific structural or evolutionary constraints. In the metabolic networks of E. coli, S. cerevisiae and S. aureus, we identified metabolites with a low degree of connectivity, particularly those that are produced and/or consumed in just a single reaction. Using FBA we also determined reactions essential for growth in these metabolic networks. We find that most reactions identified as essential in these networks turn out to be those involving the production or consumption of low degree metabolites. Applying graph theoretic methods to these metabolic networks, we identified connected clusters of these low degree metabolites. The genes involved in several operons in E. coli are correctly predicted as those of enzymes catalyzing the reactions of these clusters. We independently identified clusters of reactions whose fluxes are perfectly correlated. We find that the composition of the latter `functional clusters' is also largely explained in terms of clusters of low degree metabolites in each of these organisms. Our findings mean that most metabolic reactions that are essential can be tagged by one or more low degree metabolites. Those reactions are essential because they are the only ways of producing or consuming their respective tagged metabolites. Furthermore, reactions whose fluxes are strongly correlated can be thought of as `glued together' by these low degree metabolites.Comment: 12 pages main text with 2 figures and 2 tables. 16 pages of Supplementary material. Revised version has title changed and contains study of 3 organisms instead of 1 earlie

    Signatures of arithmetic simplicity in metabolic network architecture

    Get PDF
    Metabolic networks perform some of the most fundamental functions in living cells, including energy transduction and building block biosynthesis. While these are the best characterized networks in living systems, understanding their evolutionary history and complex wiring constitutes one of the most fascinating open questions in biology, intimately related to the enigma of life's origin itself. Is the evolution of metabolism subject to general principles, beyond the unpredictable accumulation of multiple historical accidents? Here we search for such principles by applying to an artificial chemical universe some of the methodologies developed for the study of genome scale models of cellular metabolism. In particular, we use metabolic flux constraint-based models to exhaustively search for artificial chemistry pathways that can optimally perform an array of elementary metabolic functions. Despite the simplicity of the model employed, we find that the ensuing pathways display a surprisingly rich set of properties, including the existence of autocatalytic cycles and hierarchical modules, the appearance of universally preferable metabolites and reactions, and a logarithmic trend of pathway length as a function of input/output molecule size. Some of these properties can be derived analytically, borrowing methods previously used in cryptography. In addition, by mapping biochemical networks onto a simplified carbon atom reaction backbone, we find that several of the properties predicted by the artificial chemistry model hold for real metabolic networks. These findings suggest that optimality principles and arithmetic simplicity might lie beneath some aspects of biochemical complexity

    Improved Network Performance via Antagonism: From Synthetic Rescues to Multi-drug Combinations

    Get PDF
    Recent research shows that a faulty or sub-optimally operating metabolic network can often be rescued by the targeted removal of enzyme-coding genes--the exact opposite of what traditional gene therapy would suggest. Predictions go as far as to assert that certain gene knockouts can restore the growth of otherwise nonviable gene-deficient cells. Many questions follow from this discovery: What are the underlying mechanisms? How generalizable is this effect? What are the potential applications? Here, I will approach these questions from the perspective of compensatory perturbations on networks. Relations will be drawn between such synthetic rescues and naturally occurring cascades of reaction inactivation, as well as their analogues in physical and other biological networks. I will specially discuss how rescue interactions can lead to the rational design of antagonistic drug combinations that select against resistance and how they can illuminate medical research on cancer, antibiotics, and metabolic diseases.Comment: Online Open "Problems and Paradigms" articl
    corecore