14,195 research outputs found

    User-centered design of a dynamic-autonomy remote interaction concept for manipulation-capable robots to assist elderly people in the home

    Get PDF
    In this article, we describe the development of a human-robot interaction concept for service robots to assist elderly people in the home with physical tasks. Our approach is based on the insight that robots are not yet able to handle all tasks autonomously with sufficient reliability in the complex and heterogeneous environments of private homes. We therefore employ remote human operators to assist on tasks a robot cannot handle completely autonomously. Our development methodology was user-centric and iterative, with six user studies carried out at various stages involving a total of 241 participants. The concept is under implementation on the Care-O-bot 3 robotic platform. The main contributions of this article are (1) the results of a survey in form of a ranking of the demands of elderly people and informal caregivers for a range of 25 robot services, (2) the results of an ethnography investigating the suitability of emergency teleassistance and telemedical centers for incorporating robotic teleassistance, and (3) a user-validated human-robot interaction concept with three user roles and corresponding three user interfaces designed as a solution to the problem of engineering reliable service robots for home environments

    Social Roles and Baseline Proxemic Preferences for a Domestic Service Robot

    Get PDF
    © The Author(s) 2014. This article is published with open access at Springerlink.com. This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. The work described in this paper was conducted within the EU Integrated Projects LIREC (LIving with Robots and intEractive Companions, funded by the European Commission under contract numbers FP7 215554, and partly funded by the ACCOMPANY project, a part of the European Union’s Seventh Framework Programme (FP7/2007–2013) under grant agreement n287624The goal of our research is to develop socially acceptable behavior for domestic robots in a setting where a user and the robot are sharing the same physical space and interact with each other in close proximity. Specifically, our research focuses on approach distances and directions in the context of a robot handing over an object to a userPeer reviewe

    In good company? : Perception of movement synchrony of a non-anthropomorphic robot

    Get PDF
    Copyright: © 2015 Lehmann et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Recent technological developments like cheap sensors and the decreasing costs of computational power have brought the possibility of robotic home companions within reach. In order to be accepted it is vital for these robots to be able to participate meaningfully in social interactions with their users and to make them feel comfortable during these interactions. In this study we investigated how people respond to a situation where a companion robot is watching its user. Specifically, we tested the effect of robotic behaviours that are synchronised with the actions of a human. We evaluated the effects of these behaviours on the robot’s likeability and perceived intelligence using an online video survey. The robot used was Care-O-bot®3, a non-anthropomorphic robot with a limited range of expressive motions. We found that even minimal, positively synchronised movements during an object-oriented task were interpreted by participants as engagement and created a positive disposition towards the robot. However, even negatively synchronised movements of the robot led to more positive perceptions of the robot, as compared to a robot that does not move at all. The results emphasise a) the powerful role that robot movements in general can have on participants’ perception of the robot, and b) that synchronisation of body movements can be a powerful means to enhance the positive attitude towards a non-anthropomorphic robot.Peer reviewe

    Integrating Constrained Experiments in Long-term Human-Robot Interaction using Task– and Scenario–based Prototyping

    Get PDF
    © 2015 The Author(s). Published with license by Taylor & Francis© Dag Sverre Syrdal, Kerstin Dautenhahn, Kheng Lee Koay, and Wan Ching Ho. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The moral rights of the named author(s) have been asserted. Permission is granted subject to the terms of the License under which the work was published. Please check the License conditions for the work which you wish to reuse. Full and appropriate attribution must be given. This permission does not cover any third party copyrighted material which may appear in the work requested.In order to investigate how the use of robots may impact everyday tasks, 12 participants interacted with a University of Hertfordshire Sunflower robot over a period of 8 weeks in the university’s Robot House.. Participants performed two constrained tasks, one physical and one cognitive , 4 times over this period. Participant responses were recorded using a variety of measures including the System Usability Scale and the NASA Task Load Index . The use of the robot had an impact on the experienced workload of the participants differently for the two tasks, and this effect changed over time. In the physical task, there was evidence of adaptation to the robot’s behaviour. For the cognitive task, the use of the robot was experienced as more frustrating in the later weeks.Peer reviewedFinal Published versio

    Views from within a narrative : Evaluating long-term human-robot interaction in a naturalistic environment using open-ended scenarios

    Get PDF
    Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. Date of acceptance: 16/06/2014This article describes the prototyping of human–robot interactions in the University of Hertfordshire (UH) Robot House. Twelve participants took part in a long-term study in which they interacted with robots in the UH Robot House once a week for a period of 10 weeks. A prototyping method using the narrative framing technique allowed participants to engage with the robots in episodic interactions that were framed using narrative to convey the impression of a continuous long-term interaction. The goal was to examine how participants responded to the scenarios and the robots as well as specific robot behaviours, such as agent migration and expressive behaviours. Evaluation of the robots and the scenarios were elicited using several measures, including the standardised System Usability Scale, an ad hoc Scenario Acceptance Scale, as well as single-item Likert scales, open-ended questionnaire items and a debriefing interview. Results suggest that participants felt that the use of this prototyping technique allowed them insight into the use of the robot, and that they accepted the use of the robot within the scenarioPeer reviewe

    Does A Loss of Social Credibility Impact Robot Safety?

    Get PDF
    This position paper discusses the safety-related functions performed by assistive robots and explores the relationship between trust and effective safety risk mitigation. We identify a measure of the robot’s social effectiveness, termed social credibility, and present a discussion of how social credibility may be gained and lost. This paper’s contribution is the identification of a link between social credibility and safety-related performance. Accordingly, we draw on analyses of existing systems to demonstrate how an assistive robot’s safety-critical functionality can be impaired by a loss of social credibility. In addition, we present a discussion of some of the consequences of prioritising either safety-related functionality or social engagement. We propose the identification of a mixed-criticality scheduling algorithm in order to maximise both safety-related performance and social engagement

    Country life: agricultural technologies and the emergence of new rural subjectivities

    Get PDF
    Rural areas have long been spaces of technological experimentation, development and resistance. In the UK, this is especially true in the post-second world war era of productivist food regimes, characterised by moves to intensification. The technologies that have developed have variously aimed to increase yields, automate previously manual tasks, and create new forms of life. This review focuses on the relationships between agricultural technologies and rural lives. While there has been considerable media emphasis on the material modification, and creation, of new rural lives through emerging genetic technologies, the review highlights the role of technologies in co-producing new rural subjectivities. It does this through exploring relationships between agricultural technologies and gender, changing approaches to understanding and intervening in animal lives, and how automation shifts responsibility for productive work on farms. In each of these instances, even ostensibly mundane technologies can significantly affect what it is to be a farmer, a farm advisor or a farm animal. However, the review cautions against technological determinism, drawing on recent work from Science and Technology Studies to show that technologies do not simply reconfigure lives but are themselves transformed by the actors and activities with which they are connected. The review ends by suggesting avenues for future research

    The Usage and Evaluation of Anthropomorphic Form in Robot Design

    Get PDF
    There are numerous examples illustrating the application of human shape in everyday products. Usage of anthropomorphic form has long been a basic design strategy, particularly in the design of intelligent service robots. As such, it is desirable to use anthropomorphic form not only in aesthetic design but also in interaction design. Proceeding from how anthropomorphism in various domains has taken effect on human perception, we assumed that anthropomorphic form used in appearance and interaction design of robots enriches the explanation of its function and creates familiarity with robots. From many cases we have found, misused anthropomorphic form lead to user disappointment or negative impressions on the robot. In order to effectively use anthropomorphic form, it is necessary to measure the similarity of an artifact to the human form (humanness), and then evaluate whether the usage of anthropomorphic form fits the artifact. The goal of this study is to propose a general evaluation framework of anthropomorphic form for robot design. We suggest three major steps for framing the evaluation: 'measuring anthropomorphic form in appearance', 'measuring anthropomorphic form in Human-Robot Interaction', and 'evaluation of accordance of two former measurements'. This evaluation process will endow a robot an amount of humanness in their appearance equivalent to an amount of humanness in interaction ability, and then ultimately facilitate user satisfaction. Keywords: Anthropomorphic Form; Anthropomorphism; Human-Robot Interaction; Humanness; Robot Design</p
    corecore