452 research outputs found

    Approximate Gaussian conjugacy: parametric recursive filtering under nonlinearity, multimodality, uncertainty, and constraint, and beyond

    Get PDF
    Since the landmark work of R. E. Kalman in the 1960s, considerable efforts have been devoted to time series state space models for a large variety of dynamic estimation problems. In particular, parametric filters that seek analytical estimates based on a closed-form Markov–Bayes recursion, e.g., recursion from a Gaussian or Gaussian mixture (GM) prior to a Gaussian/GM posterior (termed ‘Gaussian conjugacy’ in this paper), form the backbone for a general time series filter design. Due to challenges arising from nonlinearity, multimodality (including target maneuver), intractable uncertainties (such as unknown inputs and/or non-Gaussian noises) and constraints (including circular quantities), etc., new theories, algorithms, and technologies have been developed continuously to maintain such a conjugacy, or to approximate it as close as possible. They had contributed in large part to the prospective developments of time series parametric filters in the last six decades. In this paper, we review the state of the art in distinctive categories and highlight some insights that may otherwise be easily overlooked. In particular, specific attention is paid to nonlinear systems with an informative observation, multimodal systems including Gaussian mixture posterior and maneuvers, and intractable unknown inputs and constraints, to fill some gaps in existing reviews and surveys. In addition, we provide some new thoughts on alternatives to the first-order Markov transition model and on filter evaluation with regard to computing complexity

    Distributed implementations of the particle filter with performance bounds

    Get PDF
    The focus of the thesis is on developing distributed estimation algorithms for systems with nonlinear dynamics. Of particular interest are the agent or sensor networks (AN/SN) consisting of a large number of local processing and observation agents/nodes, which can communicate and cooperate with each other to perform a predefined task. Examples of such AN/SNs are distributed camera networks, acoustic sensor networks, networks of unmanned aerial vehicles, social networks, and robotic networks. Signal processing in the AN/SNs is traditionally centralized and developed for systems with linear dynamics. In the centralized architecture, the participating nodes communicate their observations (either directly or indirectly via a multi-hop relay) to a central processing unit, referred to as the fusion centre, which is responsible for performing the predefined task. For centralized systems with linear dynamics, the Kalman filter provides the optimal approach but suffers from several drawbacks, e.g., it is generally unscalable and also susceptible to failure in case the fusion centre breaks down. In general, no analytic solution can be determined for systems with nonlinear dynamics. Consequently, the conventional Kalman filter cannot be used and one has to rely on numerical approaches. In such cases, the sequential Monte Carlo approaches, also known as the particle filters, are widely used as approximates to the Bayesian estimators but mostly in the centralized configuration. Recently there has been a growing interest in distributed signal processing algorithms where: (i) There is no fusion centre; (ii) The local nodes do not have (require) global knowledge of the network topology, and; (iii) Each node exchanges data only within its local neighborhood. Distributed estimation have been widely explored for estimation/tracking problems in linear systems. Distributed particle filter implementations for nonlinear systems are still in their infancy and are the focus of this thesis. In the first part of this thesis, four different consensus-based distributed particle filter implementations are proposed. First, a constrained sufficient statistic based distributed implementation of the particle filter (CSS/DPF) is proposed for bearing-only tracking (BOT) and joint bearing/range tracking problems encountered in a number of applications including radar target tracking and robot localization. Although the number of parallel consensus runs in the CSS/DPF is lower compared to the existing distributed implementations of the particle filter, the CSS/DPF still requires a large number of iterations for the consensus runs to converge. To further reduce the consensus overhead, the CSS/DPF is extended to distributed implementation of the unscented particle filter, referred to as the CSS/DUPF, which require a limited number of consensus iterations. Both CSS/DPF and CSS/DUPF are specific to BOT and joint bearing/range tracking problems. Next, the unscented, consensus-based, distributed implementation of the particle filter (UCD /DPF) is proposed which is generalizable to systems with any dynamics. In terms of contributions, the UCD /DPF makes two important improvements to the existing distributed particle filter framework: (i) Unlike existing distributed implementations of the particle filter, the UCD /DPF uses all available global observations including the most recent ones in deriving the proposal distribution based on the distributed UKF, and; (ii) Computation of the global estimates from local estimates during the consensus step is based on an optimal fusion rule. Finally, a multi-rate consensus/fusion based framework for distributed implementation of the particle filter, referred to as the CF /DPF, is proposed. Separate fusion filters are designed to consistently assimilate the local filtering distributions into the global posterior by compensating for the common past information between neighbouring nodes. The CF /DPF offers two distinct advantages over its counterparts. First, the CF /DPF framework is suitable for scenarios where network connectivity is intermittent and consensus can not be reached between two consecutive observations. Second, the CF /DPF is not limited to the Gaussian approximation for the global posterior density. Numerical simulations verify the near-optimal performance of the proposed distributed particle filter implementations. The second half of the thesis focuses on the distributed computation of the posterior Cramer-Rao lower bounds (PCRLB). The current PCRLB approaches assume a centralized or hierarchical architecture. The exact expression for distributed computation of the PCRLB is not yet available and only an approximate expression has recently been derived. Motivated by the distributed adaptive resource management problems with the objective of dynamically activating a time-variant subset of observation nodes to optimize the network's performance, the thesis derives the exact expression, referred to as the dPCRLB, for computing the PCRLB for any AN/SN configured in a distributed fashion. The dPCRLB computational algorithms are derived for both the off-line conventional (non-conditional) PCRLB determined primarily from the state model, observation model, and prior knowledge of the initial state of the system, and the online conditional PCRLB expressed as a function of past history of the observations. Compared to the non-conditional dPCRLB, its conditional counterpart provides a more accurate representation of the estimator's performance and, consequently, a better criteria for sensor selection. The thesis then extends the dPCRLB algorithms to quantized observations. Particle filter realizations are used to compute these bounds numerically and quantify their performance for data fusion problems through Monte-Carlo simulations

    Simultaneous Target and Multipath Positioning

    Get PDF
    <p>In this work, we present the Simultaneous Target and Multipath Positioning (STAMP) technique to jointly estimate the unknown target position and uncertain multipath channel parameters. We illustrate the applications of STAMP for target tracking/geolocation problems using single-station hybrid TOA/AOA system, monostatic MIMO radar and multistatic range-based/AOA based localization systems. The STAMP algorithm is derived using a recursive Bayesian framework by including the target state and multipath channel parameters as a single random vector, and the unknown correspondence between observations and signal propagation channels is solved using the multi-scan multi-hypothesis data association. In the presence of the unknown time-varying number of multipath propagation modes, the STAMP algorithm is modified based on the single-cluster PHD filtering by modeling the multipath parameter state as a random finite set. In this case, the target state is defined as the parent process, which is updated by using a particle filter or multi-hypothesis Kalman filter. The multipath channel parameter is defined as the daughter process and updated based on an explicit Gaussian mixture PHD filter. Moreover, the idenfiability analysis of the joint estimation problem is provided in terms of Cramér-Rao lower bound (CRLB). The Fisher information contributed by each propagation mode is investigated, and the effect of Fisher information loss caused by the measurement origin uncertainty is also studied. The proposed STAMP algorithms are evaluated based on a set of illustrative numeric simulations and real data experiments with an indoor multi-channel radar testbed. Substantial improvement in target localization accuracy is observed.</p>Dissertatio

    Dynamics of Social Networks: Multi-agent Information Fusion, Anticipatory Decision Making and Polling

    Full text link
    This paper surveys mathematical models, structural results and algorithms in controlled sensing with social learning in social networks. Part 1, namely Bayesian Social Learning with Controlled Sensing addresses the following questions: How does risk averse behavior in social learning affect quickest change detection? How can information fusion be priced? How is the convergence rate of state estimation affected by social learning? The aim is to develop and extend structural results in stochastic control and Bayesian estimation to answer these questions. Such structural results yield fundamental bounds on the optimal performance, give insight into what parameters affect the optimal policies, and yield computationally efficient algorithms. Part 2, namely, Multi-agent Information Fusion with Behavioral Economics Constraints generalizes Part 1. The agents exhibit sophisticated decision making in a behavioral economics sense; namely the agents make anticipatory decisions (thus the decision strategies are time inconsistent and interpreted as subgame Bayesian Nash equilibria). Part 3, namely {\em Interactive Sensing in Large Networks}, addresses the following questions: How to track the degree distribution of an infinite random graph with dynamics (via a stochastic approximation on a Hilbert space)? How can the infected degree distribution of a Markov modulated power law network and its mean field dynamics be tracked via Bayesian filtering given incomplete information obtained by sampling the network? We also briefly discuss how the glass ceiling effect emerges in social networks. Part 4, namely \emph{Efficient Network Polling} deals with polling in large scale social networks. In such networks, only a fraction of nodes can be polled to determine their decisions. Which nodes should be polled to achieve a statistically accurate estimates

    Statistical modelling of algorithms for signal processing in systems based on environment perception

    Get PDF
    One cornerstone for realising automated driving systems is an appropriate handling of uncertainties in the environment perception and situation interpretation. Uncertainties arise due to noisy sensor measurements or the unknown future evolution of a traffic situation. This work contributes to the understanding of these uncertainties by modelling and propagating them with parametric probability distributions

    Extended Object Tracking: Introduction, Overview and Applications

    Full text link
    This article provides an elaborate overview of current research in extended object tracking. We provide a clear definition of the extended object tracking problem and discuss its delimitation to other types of object tracking. Next, different aspects of extended object modelling are extensively discussed. Subsequently, we give a tutorial introduction to two basic and well used extended object tracking approaches - the random matrix approach and the Kalman filter-based approach for star-convex shapes. The next part treats the tracking of multiple extended objects and elaborates how the large number of feasible association hypotheses can be tackled using both Random Finite Set (RFS) and Non-RFS multi-object trackers. The article concludes with a summary of current applications, where four example applications involving camera, X-band radar, light detection and ranging (lidar), red-green-blue-depth (RGB-D) sensors are highlighted.Comment: 30 pages, 19 figure

    Approximate Gaussian Conjugacy: Parametric Recursive Filtering Under Nonlinearity, Multimodal, Uncertainty, and Constraint, and Beyond

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in Frontiers of Information Technology & Electronic Engineering. The final authenticated version is available online at: https://doi.org/10.1631/FITEE.1700379Since the landmark work of R. E. Kalman in the 1960s, considerable efforts have been devoted to time series state space models for a large variety of dynamic estimation problems. In particular, parametric filters that seek analytical estimates based on a closed-form Markov–Bayes recursion, e.g., recursion from a Gaussian or Gaussian mixture (GM) prior to a Gaussian/GM posterior (termed ‘Gaussian conjugacy’ in this paper), form the backbone for a general time series filter design. Due to challenges arising from nonlinearity, multimodality (including target maneuver), intractable uncertainties (such as unknown inputs and/or non-Gaussian noises) and constraints (including circular quantities), etc., new theories, algorithms, and technologies have been developed continuously to maintain such a conjugacy, or to approximate it as close as possible. They had contributed in large part to the prospective developments of time series parametric filters in the last six decades. In this paper, we review the state of the art in distinctive categories and highlight some insights that may otherwise be easily overlooked. In particular, specific attention is paid to nonlinear systems with an informative observation, multimodal systems including Gaussian mixture posterior and maneuvers, and intractable unknown inputs and constraints, to fill some gaps in existing reviews and surveys. In addition, we provide some new thoughts on alternatives to the first-order Markov transition model and on filter evaluation with regard to computing complexity
    • …
    corecore