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Abstract 

The focus of the thesis is on developing distributed estimation algorithms for systems with 

nonlinear dynamics. Of particular interest are the agent or sensor networks (AN/SN) consisting 

of a large number of local processing and observation agents/nodes, which can communicate and 

cooperate with each other to perform a predefined task. Examples of such AN/SNs are distributed 

camera networks, acoustic sensor networks, networks of unmanned aerial vehicles, social networks, 

and robotic networks. 

Signal processing in the AN /SNs is traditionally centralized and developed for systems with 

linear dynamics. In the centralized architecture, the participating nodes communicate their ob­

servations (either directly or indirectly via a multi-hop relay) to a central processing unit, referred 

to as the fusion centre, which is responsible for performing the predefined task. For centralized 

systems with liuear dynamics, the Kalman filter provides the optimal approach but suffers from 

several drawbacks, e.g., it is generally unsealable and also susceptible to failure in case the fusion 

centre breaks down. In general, no analytic solution can be determined for systems with non­

linear dynamics. Consequently, the conventional Kalman filter cannot be used and one has to 

rely on numerical approaches. In such cases, the sequential Monte Carlo approaches, also known 

as the particle filters, are widely used as approximates to the Bayesian estimators but mostly in 

the centralized configuration. 

Recently there has been a growing interest in distributed signal processing algorithms where: 
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(i) There is no fusion centre; (ii) The local nodes do not have (require) global knowledge of the 

network topology, and;· (iii) Each node exchanges data only within its local neighborhood. Dis­

tributed estimation have been widely explored for estimation/tracking problems in linear systems. 

Distributed particle filter implementations for nonlinear systems are still in their infancy and are 

the focus of this thesis. 

In the first part of this thesis, four different consensus-based distributed particle filter im­

plementations are proposed. First, a constrained sufficient statistic based distributed implemen­

tation of the particle filter (CSS/DPF) is proposed for bearing-only tracking (BOT) and joint 

bearing/range tracking problems encountered in a number of applications including radar target 

tracking and robot localization. Although the number of parallel consensus runs in the CSS/DPF 

is lower compared to the existing distributed implementations of the particle filter, the CSS/DPF 

still requires a large number of iterations for the consensus runs to converge. To further reduce the 

consensus overhead, the CSS/DPF is extended to distributed implementation of the unscented 

particle filter, referred to as the CSS/DUPF, which require a limited number of consensus iter­

ations. Both CSS/DPF and CSS/DUPF are specific to BOT and joint bearing/range tracking 

problems. Next, the unscented, consensus-based, distributed implementation of the particle fil­

ter (UCD /DPF) is proposed which is generalizable to systems with any dynamics. In terms of 

contributions, the UCD /DPF makes two important improvements to the existing distributed par­

ticle filter framework: (i) Unlike existing distributed implementations of the particle filter, the 

UCD /DPF uses all available global observations including the most recent ones in deriving the 

proposal distribution based on the distributed UKF, and; (ii) Computation of the global esti­

mates from local estimates during the consensus step is based on an optimal fusion rule. Finally, 

a multi-rate consensus/fusion based framework for distributed implementation of the particle fil­

ter, referred to as the CF /DPF, is proposed. Separate fusion filters are designed to consistently 
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assimilate the local filtering distributions into the global posterior by compensating for the com­

mon past information between neighbouring nodes.' The CF /DPF offers two distinct advantages 

over its counterparts. First, the CF /DPF framework is suitable for scenarios where network con­

nectivity is intermittent and consensus can not be reached between two consecutive observations. 

Second, the CF /DPF is not limited to the Gaussian approximation for the global posterior density. 

Numerical simulations verify the near-optimal performance of the proposed distributed particle 

filter implementations. 

The second half of the thesis focuses on the distributed computation of the posterior Cramer­

Rao lower bounds (PCRLB). The current PCRLB approaches assume a centralized or hierarchical 

architecture. The exact expression for distributed computation of the PCRLB is not yet available 

and only an approximate expression has recently been derived. Motivated by the distributed 

adaptive resource management problems with the objective of dynamically activating a time­

variant subset of observation nodes to optimize the network's performance, the thesis derives 

the exact expression, referred to as the dPCRLB, for computing the PCRLB for any AN/SN 

configured in a distributed fashion. The dPCRLB computational algorithms are derived for 

both the off-line conventional (non-conditional) PCRLB determined primarily from the state 

model, observation model, and prior knowledge of the initial state of the system, and the online 

conditional PCRLB expressed as a function of past history of the observations. Compared to the 

non-conditional dPCRLB, its conditional counterpart provides a more accurate representation of 

the estimator's performance and, consequently, a better criteria for sensor selection. The thesis 

then extends the dPCRLB algorithms to quantized observations. Particle filter realizations are 

used to compute these bounds numerically and quantify their performance for data fusion problems 

through Monte-Carlo simulations. 
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1 Thesis Overview 

1.1 Introduction 

Agent networks (AN) (1], commonly referred to as sensor networks (SN), are collections of indi­

vidual processing nodes that observe a common phenomenon locally and combine the sensor data 

to derive some globally meaningful information. A possible configuration for AN /SNs is shown in 

Fig. 1.1, which uses the centralized topology. The blocks labeled 1 to Nin Fig. 1.1 represent the 

sensing devices, referred in the following discussion as local nodes or simply nodes, and z(l), for 

(1 ~ l ~ N), denote the sensor observations transmitted to the fusion centre. Depending on the 

functionality of the AN /SN, the problem of combining information at the fusion center can be 

posed either as a detection problem (2], i.e., determining the current state from a finite number 

of known states, or an estimation problem (3], i.e., estimating the value of some quantity related 

to the observations. Because of the low cost of sensors and the robustness against network fail­

ure due to inherent redundancy in such systems, AN /SNs have attracted considerable attention 

in recent years. Although originally proposed mainly for military tracking and control devices, 

agent networks now span a wide array of applications in the scientific, industrial, health-care, 

agriculture and domestic domains. Owing to the commercial availability of low cost sensors with 

broadcasting capabilities, AN /SNs have moved over from the research arena into real world. Ex­

amples of the AN /SN systems are underwater sensor networks (4], networks of unmanned aerial 
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Figure 1.1: Centralized architecture. 

vehicles (UAV) [5], robotic networks [6, 7], and camera networks [8]. Some common applications 

of the AN/SNs are listed below. 

• Target tracking [9]: A standard application of the AN/SNs is in surveillance applications 

where a noncooperative target, such as a vehicle, aircraft, person, or animal, is tracked 

within the range of the AN /SN system. In the case of passive tracking, the target itself 

emits a signal that is sensed by the local observation nodes (sensors), and the AN/SN 

estimates (tracks) time-varying properties of the target such as its position and velocity. 

The converse case is active tracking, where the probing signal is emitted by the sensor array 

and its reflection (backscatter) is used for estimating the target properties. 
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• Industrial control and monitoring [2]: AN /SNs are used to monitor physical and environ­

mental conditions like temperature, pressure, sound, humidity, motion, or pollution. In 

control applications, the system being monitored shuts off as soon as one of the environ­

mental controls exceeds a pre-determined threshold. 

• Home surveillance and consumer electronics [8]: AN/SNs are also used in home surveillance 

to form a virtual perimeter around a property in order to monitor the progression of intruders 

by passing information from one node to another. 

• Assess tracking and supply chain management [10]: AN/SNs are utilized by warehouses to 

track the distribution of provisions to different retailers. 

• Intelligent agriculture and environmental sensing [11]: AN/SNs are deployed in agricultural 

farms to control, for example, the supply of water, pesticides, and fertilizers by monitoring 

the status of the crops. 

• Health-care monitoring [12]: AN/SNs are used in health monitoring applications like track­

ing the posture or movements of a patient. By attaching sensors to the bodies of the patient, 

their movements can be observed. 

Other possible applications of the AN /SN systems are pollution source localization [13] and chem­

ical plume tracking (14]. 

Traditional multisensor systems, where local sensors do not perform any preliminary processing 

of data and a central processor performs the specified operation completely on its own, are referred 

to as centralized AN/SNs. In Figure 1.1, each local node in the centralized multi-sensor network 

transfers its raw observation to the fusion node without any processing. A major hurdle faced while 

designing such centralized AN /SNs is the constraint in the communication bandwidth needed 

to transmit the observation from a local sensor to the fusion centre. One way of overcoming 

3 



this hurdle is to perform some preliminary processing [2] of the data at each sensor and then 

transmit the compressed information to the fusion centre. Alternatively, the fusion centre can be 

completely eliminated provided that the local nodes cooperate with each other to reach a global 

solution. Referred to as the distributed or decentralized AN /SNs [1], such networks are said to 

have intelligence at each node and are the focus of our discussion in this thesis. In the application 

context considered in the thesis, the local nodes cooperatively estimate certain parameters (or 

states) of the surrounding environment based on local observations (measurements). They need 

to cooperate because their local observations are individually insufficient for obtaining reliable 

estimates. This is where distributed estimation algorithms proposed in the thesis come into play. 

1.1.1 AN/SN Estimation Architectures 

As shown in Fig. 1.2 and Fig. 1.3, an AN/SN system can be configured into three main architec­

tures. 

i.· Centralized Estimation Architecture: Traditional state estimation approaches in AN/SNs 

are centralized (Fig l.2(a)) where the participating nodes/agents communicate their raw observa­

tions (either directly or indirectly via a multi-hop relay) to a central processing unit, referred to 

as the fusion centre (FC), which is responsible for performing a predefined task. The centralized 

architecture is simple to implement but is generally unsealable to adding more sensor nodes to the 

system. It is also susceptible to failure in case the FC breaks down. Another issue is the short life 

expectation of the sensor nodes. In multi-hop relay communication networks, for example, nodes 

far away from the FC typically communicate their data to nodes closer to the FC till the FC re­

ceives their data. Nodes in the immediate neighbourhood of the FC relay more data which means 

more massage transfers compared to the nodes far from the FC. Energy consumption ( energ:y re­

quired for transferring a massage times the number of massages) is unbalanced in the centralized 
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Figure 1.2: Estimation architectures. (a) Centralized; (b) Hierarchical. In a centralized architecture, all 

nodes forward their observations to the fusion centre, which estimates the overall state of the system. In a 

hierarchical architecture, observations are first forwarded to the local processing nodes. Local processing 

nodes then, transfer partial or fully processed data either to the fusion centre or to another local processing 

node in a lower level. 

5 



Node(N-2) Node(N-1) 

Figure 1.3: Distributed estimation architecture. 

network, and mostly concentrated near the FC. Over time, such a mechanism depletes the nodes 

closer to the FC leading to a system failure. An additional complexity in centralized estimation 

arises with a change in the network topology requiring the routing tables to be redesigned adding 

to the complexity of the centralized architecture. 

2. Hierarchica~ Estimation Architecture : In the hierarchical architecture (Fig l.2(b)), a 

subset of sensor nodes is associated with a local processing node (local fusion centre) to which 

local observations from the associated sensor nodes are transferred. Instead of sending raw obser-

vations, local processing nodes first process the local observations and then communicate partial 

or fully processed local data to the FC. In other words, communication from the observation 

nodes to the FC takes place via the processing nodes. The overall performance of the system 

still depends on the FC to combine the local processed data into a global state estimate. Though 
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the computation burden in the hierarchical estimation is shared by the FC and local processing 

nodes, the hierarchical architecture still faces several of the issues discussed for the centralized 

estimation including a single point of failure and scalability problems. 

3. Distributed Estimation Architecture: Recently, there has been a growing interest in 

distributed estimation algorithms. Fig 1.3 shows an example of a distributed estimation archi­

tecture [15] which entail a scenario with two different type of local nodes: (i) Observation nodes 

(sensors) with limited power which only record data, and; (ii) Local processing nodes with higher 

power resources. Each local processing node computes its local track based only on the observa­

tions limited to the active sensors connected to it and then cooperates distributively with other 

local processing nodes in its neighbourhood to compute the global state estimate. Note that in 

such a distributed architecture there is no global FC, therefore, the sensors and the local process­

ing nodes do not require global knowledge of the network topology. Further, each local processing 

node collects data from the sensors within its communication range and exchanges data only with 

other local processing nodes in its local neighbourhood. Such a distributed architecture offers 

three advantages over the centralized topology. 

1. Fusion occurs locally and the successful operation of the network is not dependent on the 

global FC. 

2. Global knowledge of the network topology is not needed locally. Instead, each node only 

establishes connections with its neighboring nodes. 

3. Communication occurs on a node-to-node basis within local neighbourhoods. 

The thesis focuses on developing distributed estimation/tracking algorithms for AN /SN based 

on the architecture presented in Fig. 1.3. Initially, I consider the limiting case where all nodes 

within a neighbourhood serve the dual task of sensing locally and processing the local collection 
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Figure 1.4: Taxonomy of estimation algorithms in networked systems. 

of observations. Such a setup is used to develop the distributed estimation approaches and 

establishing the performance bounds. Subsequently, I extend these results to the more specialized 

setup proposed in Fig. 1.3. 

1.1.2 Classification of Distributed Estimation Algorithms in AN/SN 

Fig. 1.4 presents a taxonomy of estimation algorithms in AN /SN s, namely centralized, hierarchical, 

and distributed, based on the network architecture. Distributed estimation approaches can be 

further classified into the following two categories based on the type of communication used in 

the underlying AN /SN. 

1. Message Passing Schemes [16, 17): where the information flows in a sequential, pre-

defined manner from a node to one of its neighboring nodes via a cyclic path till the entire 

network is traversed. 

8 



2. Diffusive Schemes [18-30]: where each node communicates its local information by in­

teracting only with its immediate neighbours. In dynamical environments where frequent 

changes in the underlying network are a common practice, diffusive approaches significantly 

improve the robustness of the system. 

A promising member of the diffusive algorithms are the consensus approaches [31-35], which 

are simple distributed methods with minimal computation, communication and synchronization 

requirement used to fuse local quantities that are scattered across the network. Type of infor­

mation (local quantities) communicated across the network varies from raw data such as local 

observations or some elementary function of the local observations [18-22] to processed data such 

as local likelihoods and state posterior/filtering estimates evaluated at individual nodes [23-27]. 

As described below, a further classification of the distributed estimation algorithms is based on 

the portion of the overall state vector estimated at each local node. 

1. Full-order algorithms: where the entire state variables are estimated at each node. A 

drawback of such algorithms is that each node needs to maintain an estimate for all of the 

state variables. 

2. Reduced-order Algorithms: where a subset of state variables in the global state-vector 

is estimated at each node based on the local measurements and the information transmitted 

from the neighboring nodes. Reduced-order algorithms are suitable for large-scale dynamical 

systems [37-40], where the dimension of the state vector is large and the observations are 

sparse with only a few state variables being measured at the local nodes. A drawback of 

such algorithms is that the estimate of the entire state vector is not available locally. 
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1.1.3 Distributed Particle Filters 

Estimation and tracking techniques are usually based on probabilistic methods (Bayesian frame­

work), a standard approach for distributed estimation and data fusion problems. For linear 

systems with Gaussian excitation and observation noise, the Kalman filter [41, 42] provides the 

optimal approach. In general no analytic solution can be determined for systems with non-linear 

dynamics and non-Gaussian forcing terms. Consequently, the direct Kalman filter cannot be used 

and one has to rely on numerical approaches. In such cases, the sequential Monte Carlo (SMC) 

approaches (43], also known as the bootstrap filtering, condensation algorithm, and particle filters, 

are used as approximates to the Bayesian estimators. The particle filters are the SMC (on-line) 

analogue of the extended/unscented Kalman filters [44] with the added advantage that they ap­

proach the optimal Bayesian estimators if sufficient samples of the posterior distribution are 

available. Since the seminal work by Gordon et al. (45], the particle filters have been widely used 

in the centralized configuration. Developing hierarchical [46-48] and distributed implementation 

of the particle filter is computationally demanding and requires large bandwidth for information 

transfers between the local nodes. Although distributed estimation have been widely explored for 

estimation/tracking problems in linear systems, distributing particle filters implementations for 

non-linear systems are still in their infancy. Recent developments in the hardware and advances in 

communication, however, have paved the way for the development of distributed implementations 

of the particle filter. 

My thesis focus on consensus-based distributed implementations of the particle filters for 

AN /SN systems with non-linear dynamics and non-Gaussian forcing terms. Next, I briefly review 

the major contributions [49-69] of the thesis. 
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1.2 Thesis Contributions 

I focus on the following research problems in the thesis. 

1. Consensus-Based Distributed Implementation of the Particle Filter [49,50,57-61]: 

I propose three consensus-based, distributed implementations of the particle filter. 

• The CSS/DPF and the CSS/DUPF [49, 57]: I propose a constrained sufficient 

statistic based distributed implementation of the particle filter ( CSS /D PF) for bearing­

only tracking (BOT) and joint bearing/range tracking problems encountered in a 

number of applications including radar target tracking and robot localization. The 

CSS/DPF runs localized particle filters at each node to compute the global sufficient 

statistics of the overall likelihood as a function (summation) of the local sufficient 

statistics. 

Pros and cons: Existing distributed consensus-based particle filter implementations 

proposed in the literature [20, 22] require a large number of parallel consensus runs at 

each iteration of the particle filter which adds considerable consensus overhead to the 

distributed estimator. The CSS /DPF is proposed with the goal of developing a dis­

tributed particle filter that has reduced consensus overhead and affordable complexity. 

In the CSS/DPF, the number of parallel consensus runs is reduced to 6 for 2-D BOT, 

16 for 3-D BOT, and 12 for joint bearing/range tracking. The proposed CSS/DPF 

still depends on the convergence of each of the consensus runs which itself requires a 

large number of consensus iterations. To further reduce the consensus overhead, the 

CSS/DPF is extended to a distributed implementation of the unscented particle filter, 

referred to as the CSS /DUPF, which require limited number of consensus iterations. 

Although computationally efficient, the CSS/DPF and CSS/DUPF are highly special-
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ized and restricted to applications where the global sufficient statistics (GSS) can be 

expressed as a linear combination (summation) of the local sufficient statistics (LSS). 

The CSS/DPF and CSS/DUPF can not be generalized to any system. 

•The UCD/DPF [50,59]: The unscented, consensus-based, distributed implementa­

tion of the particle filter (UCD /DPF) [59] couples the unscented Kalman filter (UKF) 

with the particle filter such that the UKF estimates the Gaussian approximation of the 

proposal distribution which is used to generate new particles for the next iteration of 

the particle filter. 

Pros and cons: In terms of contributions, the UCD/DPF makes two important im­

provements to the existing distributed particle filter framework: (i) Unlike existing dis­

tributed implementations [24, 27] of the particle filter, the UCD /DPF uses all available 

global observations including the most recent ones in deriving the proposal distribu­

tion based on the distributed UKF, and; (ii) Computation of the global estimates from 

local estimates during the consensus step is based on an optimal fusion rule. Improve­

ment (ii) replaces the commonly used local averaging approach and, along with (i), 

enhances the performance of the UCD/DPF. Further, the UCD/DPF paves the way 

for incorporating future developments in consensus-based distributed Kalman filters to 

the distributed particle filtering framework. However, the UCD /DPF approximates the 

global posterior with a Gaussian distribution. A second limitation of the UCD /DPF 

is the requirement on each node to wait until consensus is reached before running the 

next iteration of the particle filter. This is possible only in networks where communi­

cation is relatively inexpensive as compared to sensing, i.e., in rendezvous control or 

coordination of mobile sensors. I propose the CF /DPF framework, presented next, to 

address these issues. 
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2. The CF /DPF Framework [51, 52, 62, 63]: A major problem in distributed estimation 

networks is unreliable communication (especially in large and multi-hop networks), which 

results in communication delays and information loss. Referred to as intermittent network 

connectivity, this issue has been investigated broadly in the context of the Kalman filter. 

Such methods are, however, limited to linear systems and have not yet been extended to non­

linear systems. The thesis addresses this gap. I propose a multi-rate consensus/fusion based 

framework for distributed implementation of the particle filter referred to as the CF /DPF. 

The CF /DPF framework is based on running localized particle filters to estimate the overall 

state vector at each observation node. Separate fusion filters are designed to consistently 

assimilate the local filtering distributions into the global posterior by compensating for the 

common past information between neighbouring nodes. The CF /DPF offers two distinct 

advantages over its counterparts. First, the CF /DPF framework is suitable for scenarios 

where network connectivity is intermittent and consensus can not be reached between two 

consecutive observations. Second, the CF /DPF is not limited to the Gaussian approximation 

for the global posterior density. 

3. Distributed Computation of the PCRLB [53-55, 64]: In order to evaluate the perfor­

mance of the proposed distributed, non-linear framework, I derive the posterior Cramer-Rao 

lower bounds (PCRLB), (also referred in literature as the Bayesian CRLB). The current 

PCRLB approaches assume a centralized or hierarchical architecture. The exact expression 

for distributed computation of the PCRLB is not yet available and only an approximate 

expression [15] has recently been derived. The thesis derives the exact expression, referred 

to as the dPCRLB, for computing the PCRLB for a AN /SN configured in a distributed 

fashion. 

• Conditional dPCRLB: Motivated by the distributed adaptive resource management 
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problems, the thesis derives recursive expressions for online computation of the con­

ditional dPCRLB [55]. Compared to the non-conditional PCRLB, the conditional 

PCRLB is a function of the past history of observations made and, therefore, a more 

accurate representation of the estimator's performance and, consequently, a better cri­

teria for sensor selection. Previous algorithms to compute the conditional PCRLB are 

limited to centralized architectures, which involve a FC, thus making them unsuitable 

for distributed topologies. The thesis also addresses this gap. 

4. Distributed Sensor Selection [56, 65-67]: I consider the problem of sensor resource 

management for distributed, nonlinear estimation applications with the objective of dy­

namically activating a time-variant subset of observation nodes to optimize the network's 

performance [67]. The PCRLB is a predictive benchmark of the tracker's achievable perfor­

mance and has recently been proposed as a criteria for sensor selection. Existing PCRLB­

based selection techniques are, however, primarily limited to centralized and hierarchical 

architectures, and when extended to distributed topologies use approximate expressions for 

computing the PCRLB. I propose a dPCRLB-based observation node selection procedure for 

distributed sensor networks. A combination of minimum and average consensus algorithms 

are used to select a subset of observation nodes. 

1.3 Organization of the Thesis 

Chapter 1 provided an overview and a summary of important contributions made in the thesis. 

The rest of the thesis is organized as follows. 

• Chapter 2 presents an introduction to the problem of distributed state estimation. A clas­

sification of the existing distributed estimation algorithms is provided including their appli-
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cations to some practical estimation problems. 

• Chapter 3 considers the problem of consensus-based distributed implementation of the par­

ticle filter. Different consensus-based distributed implementations of the particle filter are 

proposed. 

• Chapter 4 introduces the proposed CF /DPF framework. In the CF /DPF, the fusion filters 

can run at a rate different from that of the local filters. I further investigate this multi-rate 

nature of the proposed framework, recognize three different scenarios, and describe how the 

CF /DPF handles each of them. For the worse-case scenario with the fusion filters lagging 

the local filters exponentially, I derive a modified-fusion filter algorithm that limits the lag 

to an affordable delay. 

• In Chapter 5, I derive distributed expressions for computing the PCRLB for an AN /SN 

configured in a distributed topology referred to as the dPCRLB. I consider both full-order 

and reduced-order distributed estimation problems and derive algorithms for computing the 

dPCRLB for each case. 

• In Chapter 6, I consider distributed sensor selection problem where I propose dPCRLB­

based algorithms for dynamically selecting a subset of sensors. 

• Chapter 7 concludes the thesis and provides some directions for future work. 

To maintain consistency in the thesis, each chapter includes numerical simulations related to the 

results presented in that chapter. 

1.4 Publications 

The following are the publications published or under revision from this dissertation research. 
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2 Literature Review of Distributed Estimation 

Statistical estimation theory deals with situations where the values of unknown parameters need 

to be evaluated from observations made under a state of uncertainty. The goal is to provide a 

rational framework for dealing with such situations. The Bayesian approach, the main theme of 

this chapter, is a well known framework of formulating and dealing with such statistical estimation 

problems. The literature on Bayesian estimation is vast, therefore, in this chapter, I restrict myself 

to common approaches such as the Kalman filter [41], extended/unscented Kalman filter [44], or 

sequential Monte Carlo methods (the particle filter) [43). Thaditionally, these Bayesian approaches 

were developed for a centralized architecture with a fusion centre responsible for collecting obser­

vations from across the agent/sensor network (AN/SN) to compute the overall state estimates. In 

the mid 90's, research on distributed estimation [3, 70-74] was initiated for systems with linear dy­

namics for which the Kalman filter is the optimal estimator. References [75-81] proposed several 

distributed implementations of the Kalman filter without requiring a fusion centre. Although dis­

tributed estimation has been widely explored for estimation/tracking problems in linear systems, 

distributed particle filter implementations for non-linear systems are somewhat limited because of 

their high computational complexity and considerable bandwidth overhead due to a large number 

of information transfers between neighbouring nodes. In the early 2000, one such attempt for 

hierarchical architectures [46, 47) was considered for systems with non-linear dynamics using the 

particle filters. For distributed architectures, work on the implementations of the particle filter is 
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still in its infancy. Recent developments in hardware and advances in communication have paved 

the way for practical distributed implementations of the particle filter for an arbitrary deployed 

nonlinear AN /SN. 

In this chapter, I review the fundamentals of the centralized and distributed Bayesian filtering 

in Section 2.1. The Kalman filter and particle filter are introduced in Section 2.2. The state 

of the art distributed implementations of the Kalman filter and particle filter are presented in 

Sections 2.3 and 2.5, respectively, with Section 2.4 reviewing the consensus approaches used for 

fusing localized state estimates into the global estimate. Section 2.6 introduces several potential 

applications for the distributed particle filters proposed in the thesis. 

2.1 Background 

Consider an AN /SN comprising of N nodes1 observing a set of nx state variables 

(2.1) 

where k ~ 0 is the time/iteration index, nx is the number of state variables, and T denotes matrix 

transposition. The set of neighboring nodes for node l for, (1 ~ l ~ N), is denoted by 'N}~se(k). In 

the case that node l, for example, is connected to all other nodes, 'N}~se(k) = N-1. Node l makes 

measurements at discrete time instants k, ( 1 ~ k) as follows 

(2.2) 

1 The term node here refers to a processing node or an agent with processing and observation functionalities. 
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where N~l~s ( k) is the set of sensors connected to node l and I · I is the cardinality operator. The 

overall state-space representation of the system is given by 

State Model: 

Observation Model: 

x(k) 

z< 1>(k) 

z(N)(k) 

~ 
z(k) 

f(x(k -1),e(k)) (2.3) 

g(l>(x(k)) (<1>(k) 

+ (2.4) 

g(N)(x(k)) ((N)(k) 

~ 
g(x(k)) C(k) 

where eo and ((-) are, respectively, the global uncertainties in the process and observation 

models. In the Bayesian estimation framework, the objective is to determine the optimal value 

of the state vector x(k) given observations z(k), state dynamics /(·), and statistics for the state 

and 0 bservation uncertainties { e ( k)' ( ( k)}. 

In this theses, the state and observation functions f (·) and g(·) can possibly be non-linear, 

and vectors e(-) and (( ·) are not necessarily restricted to white Gaussian noise. Examples of the 

state and observation models for several practical applications are provided later in Section 2.6. 

The agents/nodes of the network are modeled as vertices of the communication graph g = (v, £), 

namely as elements of the node set v = {1, ... , N}. The edge set e ~ v x v represents the 

network's communication constraints, i.e., if node l can send information to node m then (l, m) E 

e. For graph 9, the maximum degree l:l.g = maxl I Ni~se ( k) I, where I Ni~se ( k) I is the number of 

neighboring nodes for node l, and I · I denotes the cardinality operator. Also relevant is the 

Laplacian matrix L for graph 9, defined in terms of its elements {Lij} with Lu = INi~se(k)I, 

Ltm = -1 if (l, m) E £,and Ltm = 0 otherwise. 

Unless otherwise stated, the measurement noise at two different nodes is assumed to be un-

correlated, i.e., 

(2.5) 
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where lE{-} is the expectation operator and R( ij) ( k) is the covariance matrix between the obser-

vation noise of node i and j. Eq. (2.5) results in a block diagonal noise covariance matrix R(k) 

for the overall system as 

(2.6) 

where diag[·] represents a block diagonal matrix with the specified elements arranged along the 

diagonal, and R(l) ( k) is the error covariance matrix for observations made at node l. When sensors 

are deployed densely and close to each other, such an assumption may not hold anymore. In such 

scenarios, one can group the nearby sensors on the basis of a specified characteristic function 

to form sub-systems or cliques with the cliques assumed uncorrelated [17]. Sensors within each 

subsystem communicate their observations to the processing node associated with that clique. In 

such a case, R(k) will be block diagonal with each constituent block R(l)(k), for (1 ::; l::; N), a 

full matrix. 

2.1.1 Centralized Bayesian Estimation 

In the following explanation for sequential Bayesian estimation, the evolution of the state variables 

is modeled as a first-order Markov process2 . Because of the Markovian property, the value of the 

state x(k) in a first order Markov process depends only on the value of the immediately proceeding 

state x( k - 1) and is independent of both the observations and states proceeding ( k - 1), i.e., 

P(x(k)lx(O:k -1), z(l: k -1)) = P(x(k)lx(k -1)). (2.7) 

2 Although the discussion in this section considers a first-order Markov process for the state dynamics (a standard 
approach in the target tracking problems), the results presented here are generalizable to higher-order Markov 
processes. 
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Assuming conditional independence such that given the current state values x(k), the observation 

vector z(k) is conditionally independent of the prior states variables, i.e., 

P(z(k)lx(O:k)) = P(z(k)lx(k)), (2.8) 

the joint probability distribution of the state variables and the observations up to iteration k is 

given by 

k 

P(x(O:k),z(l:k)) = P(x(O)) IT P(z(j)lx(j))P(x(j)lx(j-1)). (2.9) 
j=l 

In the probabilistic form, the estimation problem in the Bayesian framework is equivalent to 

determining the conditional filtering density P(x(k)Jz(l : k), x(O)), i.e., the probability of the 

state variables for all time instances k > 0 given the recorded observations and the knowledge of 

the initial state x(O). For simplicity, the initial condition is being omitted from the representation 

of the filtering density which results in the notation P(x(k)lz(l : k)). Using the Bayes' rule the 

filtering density can be expressed in terms of the sensor model and the predicted probability 

density function as follows 

Likelihood Predicted Density 
~--~~---~~--

P( (k)I ( . k)) = P(z(k)Jx(k)) P(x(k)Jz(l: k - 1)) 
x z 1. P(z(k)lz(l : k - 1)) · 

(2.10) 

Normalization 

The denominator P(z(k)Jz(l : k - 1)) in Eq. (2.10) is independent of the state variables and can 

be set as the normalizing constant, i.e., P(z(k)Jz(l : k - 1)) =a. The second term P(x(k)lz(l : 

k - 1)) in the numerator of Eq. ( 2 .10) can be expanded in terms of the state transition model 

P(x(k)Jx(k - 1)) and the filtering density P(x(k - l)Jz(k - 1)) as follows 

P(x(k)Jz(l: k - 1)) = J P(x(k), x(k - l)Jz(l: k - l))dx(k - 1) 

= J P(x(k)Jx(k - 1), z(l: k - l))P(x(k - l)lz(l :k - l))dx(k - 1). (2.11) 
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Using the Markovian property (Eq. (2. 7)), the above equation reduces to 

P(x(k)lz(l: k - 1)) = f P(x(k)lx(k - 1)) x P(x(k - l)lz(l: k - l))dx(k - 1). (2.12) 

Finally, the normalization term P(z(k)lz(l : k - 1)) in Eq. (2.10) can be expanded using the 

Chapman-Kolomogrov formula [41) as follows 

P(z(k)lz(l: k - 1)) = f P(z(k)lx(k))P(x(k)lz(l: k - l))dx(k). (2.13) 

Eq. (2.10) is referred to as the observation update step, and Eq. (2.11) is referred to as the 

prediction update step. In the Bayesian framework, Eqs. (2.10)-(2.13) define a recursive solution 

to compute the filtering density based on the following steps: 

Step 1. Prediction Update: Given P(x(k-l)lz(l:k-1)) compute P(x(k)lz(l:k-1)). 

Step 2. Normalization Update Compute the normalization factor P(z(k)lz(l : k - 1)). 

Step 3. Observation Update: Using the sensor model P(z(k)lx(k)) compute P(x(k)lz(l: k)). 

One method, referred to as the maximum a posteriori (MAP) estimation, obtains the state es-

timate x(k) by determining the value of x(k) that maximizes P(x(k)lz(l: k)). In multisensor 

Bayesian estimation, several nodes make their own observations z(l)(k) based on model (2.4). 

The conditional probability P(z(l)(k)lx(k)) then serves the role of a sensor model and can be uti-

lized in the distributed implementation of the Bayesian estimation algorithms. The multisensor 

form of Bayes' rule requires conditional independence (Eq. (2.5)), which results in the following 

global likelihood function 

N 

P(z(k)lx(k)) = P(z(1)(k), ... ,z(N)(k)lx(k)) = IJ P(z(l)(k)lx(k)). (2.14) 
l=l 

From Eq. (2.10), we have 

N 

P(x(k)lz(l)(k), ... , z(N)(k)) = aP(x(k)lz(l: k-1)) IJ P(z(l)(k)lx(k)), (2.15) 
l=l 
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where a~ P(z(k)Jz(l:k-1)) is the normalizing constant. Eq. (2.15) is known as the independent 

likelihood pool [ 41]. This indicates that the filtering density of state variables x( k) based on 

the observation of individual nodes is proportional to the multiplication of the prior density 

P(x(k)Jz(l:k-1)) with product of the individual likelihood functions P(z(l)(k)Jx(k)) for each 

sensor node. 

2.1.2 Distributed Bayesian Estimation 

In centralized estimation, the local observations are directly forwarded to the fusion centre for 

updating the state estimates. An alternative to the centralized approach is hierarchical estima­

tion where instead of forwarding raw observations to the fusion centre, partially processed data 

are communicated by the local nodes to the fusion centre. In the hierarchical estimation, the 

computation burden at the fusion centre is, therefore, reduced. In the literature, the hierarchical 

estimation is sometimes referred to as decentralized estimation. Finally, distributed estimation is 

defined as the setup where all nodes perform local computations to derive local estimates. There 

is no central processing unit available and a fusion step is instead utilized to derive the global 

estimate from the local estimates. The distributed estimation approaches do not require prior 

global knowledge of the network topology. Instead, each local node has local network knowledge 

confined to its immediate neighborhood within which it establishes a direct communication link. 

The main challenge here is to guarantee that all nodes reach a common reliable estimate of the 

state variables. In the distributed estimation framework, the global estimate could potentially be 

sub-optimal due to the localized nature of fusion process. In addition, communication overhead 

is increased due to the introduction of the fusion step. 

The distributed implementations can themselves be classified into two main categories: (i) Full­

order estimation, which replicate an nx-order filter at each node estimating all nx states of the 

26 



system, and; (ii) Reduced-order estimation [84-87], which decomposes the large-scale system into 

smaller subsystems with only a subset of nx state variables estimated within each subsystem. For a 

large-scale dynamical system [37-40], the reduced-order methods are generally more efficient than 

the full-order implementations both in terms of the computational complexity and the number of 

transmissions (information transfers) between neighbouring nodes. Next, I review the full-order 

and reduced-order configurations in the context of the sequential Bayesian estimation. 

2.1.2.1 Distributed Full-Order Configuration 

In full-order distributed estimation, the distributed full-order estimation model at node l, (1 ::; 

l ::; N), is given by 

x(k) 

and z(l)(k) 

f(x(k -1),e(k)) 

g(l) (x(k ), ((l) (k)), 

(2.16) 

(2.17) 

where the entire state vector x(k) is estimated at node l based only on its local observations. After 

computing the state estimates locally, the local state estimates are fused through interactions 

between local neighbourhoods in a distributed fashion to form the global estimate. In this thesis, 

I assume that the global observation model is observable though the local observation model at 

each node may become unobservable for certain iterations. 

An example of a full-order distributed estimator is the estimation of the 2-D or 3-D spatial 

location of a moving object over time, e.g., to track an animal in wildlife monitoring, to track an 

aeroplane or missile in defence applications or to track an object in video surveillance sequences. 

Figs. 2.1 and 2.2 provide two illustrative examples. Fig 2.1 shows a distributed full-order target 

tracking application of an aeroplane with eight processing nodes. The state vector x( k) comprises 

of the 3D coordinates { X ( k), Y ( k), Z ( k)} of the plane and its speed { X ( k), Y ( k), Z ( k)} along the 
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three coordinates, i.e., x(k) = [X(k), Y(k), Z(k), X(k), Y(k), Z(k)]T. Node l, for (1 ::; l ::; 8), 

makes two measurements [zil) (k), z~l) (k)] at time k: (i) The bearing/angle zil) (k) between the 

node's platform and plane, and; (ii) The range z~l)(k) between the node and plane. Fig. 2.1 

depicts the neighbourhood of each node on the sub-graph included on the bottom left of the 

figure which shows a direct communication link between each pair of neighbouring nodes. 

A second illustrative example considered in Fig. 2.2 is the video tracking application, where 

a distributed camera network with five local nodes (cameras) estimates the 2-D coordinates 

{xi ( k)' Yi ( k)} and speed {xi ( k)' Yi ( k)} of all five persons over time with the overall state vector 

xi(k) = [Xi(k), Yi(k), Xi(k), }i(k)]T, for 1 ::; i ::; 5. As is shown, each camera has a limited field 

of view and at each time instant k may not be able to observe all five persons. By cooperating 

with its neighbouring nodes, however, each camera can obtain a reliable estimate of all targets 

over time assuming that the overall system is observable, i.e., each person is observed by at least 

one camera at all times. 

Generally, two different scenarios are considered for the distributed full-order estimation: 

1. Scenario 1. (Estimation based only on local measurements): Node l, 1 ::; l ::; N, updates its 

local estimates based on its individual measurement zCl) (1: k). Local filtering distributions 

P(x(k) lz(l) (1: k)) are then fused into the global posterior P(x(O: k)lz(l: k)) in a distributed 

fashion using, for example, a gossip type algorithm. 

2. Scenario 2. (Estimation based on local measurements and previous global estimate): Same 

as Scenario 1 except local estimates are based on both the local measurements as well as the 

previous global state estimates (which themselves are based on the collective observations 

made previously across the network). This leads to local P(x(k)lz(l:k-1),z<O(k)) being 

computed at node l. As in Scenario 1, the local filtering estimates P(x(k)lz(l: k-1), z(l)(k)) 

are then fused into the global posterior P(x(O: k)lz(l: k)) distributively. 
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Figure 2.1: Illustrative Example 1: A distributed target tracking application with 8 nodes. The target is 

an aeroplane with state vector x(k) = [X(k), Y(k), Z(k), X(k), Y(k), Z(k)]T, i.e., the plane's 3D location 

{X(k), Y(k), Z(k)} and its speed {X(k), Y(k), Z(k)}. The local observation z<t>(k) = [zil)(k), z~l)(k)]T 

at node l, for (1 ~ l ~ 8), consists of the bearing measurement zil)(k) and the range measurement z~l)(k). 

The communication graph corresponding to the processing nodes is included on the bottom left of the 

figure which shows the communication links between neighbouring nodes. 

Scenario 1 is useful for networks with intermittent connectivity where consensus3 on the local state 

estimates may not be reached between two consecutive observations. In such cases, two filters 

are implemented for state estimation. The local filter updates the local states while the global 

filter derives the overall state estimate from its local counterparts. The local filters continue to 

assimilate local observations independent of the global filter. Once the global filter has converged, 

3 Consensus in distributed estimation is the process of establishing a consistent value for some statistics of the 
state vector across the network by interchanging relevant information between the connected neighboring nodes. 
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Figure 2.2: Illustrative Example 2: A distributed camera network with five local nodes (cameras) with 

partially overlapped field of view where each node estimates the 2-D locations of all five persons over 

time. Each person's track over time is depicted with a different color. The field of view of each camera 

is also shown with triangles. A communication link (communication link is symmetric) between two 

neighbouring cameras is shown with the dotted blue line. 

it incorporates the recent local states estimates to form the global state estimate. Scenario 2 

is useful in applications where communication is relatively inexpensive as compared to sensing, 

e.g., in rendezvous control or coordination of mobile sensors. Consensus on the state estimates is 

reached between two consecutive observations. With the availability of the global state estimate, 

local state estimates are discarded and the next iteration is continued based on the global esti-

mates. Unlike Scenario 1, where the local state estimates at iteration k is computed using the 

local estimates at iteration k-1, Scenario 2 updates the local state estimates at iteration k from 

the global state estimate at iteration k-1. 
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2.1.2.2 Distributed Reduced-Order Configuration 

In large-scale physical systems arising, for example, in meteorology, physical oceanography, or 

resulting from discretization of partial differential equations, the discretized dynamical models 

are sparse and localized. The observation z ( l) ( k) made at node l, for 1 ::; l ::; N, is also localized 

such that a subset of state variables x<O ( k) c x( k) (referred to as the local state vector) is observed 

at each node [84]. For such reduced-order systems S(l), the observation model (Eq. (2.4)) for node 

l reduces to 

3(l) : (2.18) 

The local state vectors in the above equation may have shared states, i.e., Jx<l)(k) n x(j)(k)I ~ 0, 

for 1::; l,j::; N, where I· I is cardinality of a set. The reduced-order state-space model is obtained 

by spatially decomposing the overall system based on the observable states at each node. Other 

states, if present, are treated as forcing terms. The reduced-order state model at node l (derived 

from Eq. (2.3) by partitioning) is then given by 

(2.19) 

where d(l)(k) is the coupling state vector. When the overall system is partitioned into subsys­

tems, the dynamical model for a subsystem may contain states that are directly observed by the 

subsystem and additional states that are not observed but are part of the global state model. The 

coupling state vector d(l)(k) includes such states which are not directly observed but are part of 

the subsystem's model. Let nx<t) denote the number of states in the local state vector x(l)(k). 

The relationship between the local state vector x(l)(k) and global vector x(k) can be expressed as 

(2.20) 
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with T(l)(k) denoting the (nx<l) xnx) nodal transformation matrix [87]. The local process functions 

are constructed using a similar nodal transformation, i.e., f<O(x<O(k),d(l)(k)) = T(l)(k)f(x(k)). 

The local state estimate at node l has the same relation to the global state estimate, i.e., x.<O(k) = 

T(l)(k)x(k). Further, the relationship between the global covariance P(k) and local covariance 

matrix p(l)(k) is 

(2.21) 

To arrange node l's information p<O(k) in the global state-space, we use the covariance transfor-

ma ti on 

(2.22) 

where [T< l) ( k)] + refers to the Moore-Penrose generalized inverse (or the right pseudo inverse) of 

T T -1 · T(l)(k), i.e., [TCO(k)]+ = T(l) (k)[T<O(k)T(l) (k)] . Subsystems s<O and S(J) may have shared 

states. The shared state transformation matrix T(l,j)(k) is a (nix<t)ux(j)lxnJ matrix where lx(l) U 

x(j) I is the number of shared states between subsystems s<l) and s(j). Each row of T(l,j) (k) has 

only one non-zero entry at the location of the shared states. The shared state transformation 

matrix T(l,j)(k) is used to extract the covariance block 

p(l,j) (k)= [ T(l,j) (k)T(l) (k) T]p(l) (k)[ T(l,j) (k )T(l) (k) T] T (2.23) 

corresponding to the shared states. To arrange the covariance block p(l,j) (k) corresponding for the 

shared states in the global state space P2'j)(k), the following covariance transformation (similar 

to (2.22)) is used 

(2.24) 

To recap, the process model (2.19) and observation model (2.18) collectively provide the nonlinear, 

localized reduced-order representation for the dynamical system. 
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Figure 2.3: Illustrative Example: Spatial decomposition of a nonlinear system with five states 

into three subsystems Si, S2 and S3. 

Illustrative Example: 

I illustrate the spatial partitioning procedure with an illustrative example based on a system 

shown in Fig. 2.3 with five state variables Xi, X2, X3, X4, and X5 which are partially observed 

by three distributed nodes N = 3. The ranges of the three observation nodes are shown using 

dotted circles. The overall state model is given by 

X1(k) fi(X1 (k-1), X2(k-l)) 6(k) 

X2(k) f2(X1(k-l), X2(k-l), X4(k-l)) 6(k) 

X3(k) f3(X1(k - l),X3(k - 1)) + 6(k) (2.25) 

X4(k) f4(X3(k - 1),Xs(k - 1)) e4(k) 

X5(k) f5(X4(k - 1),Xs(k - 1)) e5(k) 

where Ji(·), for (1 ::; i ::; 5), are nonlinear functions. The observation z(l)(k) at node l, for 

(1::; l::; 3), is sparse such that only a subset of state variables x(l)(k) c x(k) (referred to as local 

state vector) is observed at each sensor node. The local state vectors x<l)(k) may have shared 

states i.e., jx<i)(k) n x<j)(k)I 2:: 0, for (1 ::; i,j ::; N), where I· I denotes the cardinality of a set. 
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Neighbourhood Neighbourhood 
Subs)'.:stems States for States for Subs)'.:stems 

x, 91 = {S1} 

s, Xi 92 = {Si,S2} 
g(l) = {S2} 

S2 X3 Q3 ={Si, S2} g<2) = {Si, S3} 

S3 
X4 Q4 = {S2, S3} g<3) = {S2} 

Xs 9s = {S3} 

Figure 2.4: The bipartite graph representing the illustrative system. Notation g(l) corresponds to the 

neighbourhood of Subsystem St while gn corresponds to a set of subsystems which include state Xn ( ·) in 

their local state vector. 

An example of the localized observation model illustrated in Fig. 2.3 is given by 

81: z(l)(k) g<1)( X1(k),X2(k),X3(k)) + (<1)(k) (2.26) 

x< 1> (k)=[X1 (k)X2(k)X3(k)JT 

82: z<2) (k) g<2)( X2(k),X3(k),X4(k)) + (<2)(k) (2.27) 

x(2) (k)=[X2 (k)X3 (k)X4(k)]T 

83: z<3)(k) g(3) ( X4(k), Xs(k) ) + ((3) (k). (2.28) 
~ 

x< 3 > (k)=[X4(k)Xs (k)]T 

The localized states {x<1)(k),x<2)(k),x<3)(k)} defined as subscripts in Eqs. (2.26)-(2.28) extracted 

from the overall state vector x(k) overlap. In our example, (x<l) n x<2)) = {X2(k), X3 (k)}. It is 

also possible that no shared state exists between distant subsystems, for example, { x< 1) n x<3)} = 

{}. The aforementioned decomposition is achieved by implementing a subsystem around each 

observation node. Thus, the total number of subsystems in our example is equal to the number 

of observation nodes. Alternatively, a combination of observation nodes may be coupled to limit 

the total number of subsystems, if desired. 

In the reduced-order configuration, the state model is also partitioned. The reduced order 
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state model for each subsystem is obtained by decomposing the overall dynamics (Eq. 2.25) based 

on the observable states within each subsystem. Other states, if present, in the reduced order 

process models are treated as forcing terms. In our illustrative example, the reduced-order process 

models for the three Subsystems Si, S2, and S3 are given by 

S1: x(l)(k)=/(l) (x(l)(k-1),dC1\k-1)) + eC1>(k) 

S2: xC2)(k)=/C2) (xC2)(k- l),d<2)(k-1)) +e<2)(k) 

83: xC3)(k)=/(3) (x<3)(k-1),d(3)(k-1)) +e<3)(k) 

(2.29) 

(2.30) 

(2.31) 

where d(1)(k) = {X4 (k)}, d(2)(k) = {X1(k), Xs(k)}, and d(3)(k) = {X3(k)} are the forcing terms. 

Finally, I note that a state variable may be estimated in more than one subsystem. For example, 

X2 and X3 in Fig. 2.3 are both shared between 81 and 82 with different local estimates. For each 

state variable Xn, (1 ~ n ~ nx), I define a different state-based neighbourhood 9n which includes 

subsystems having Xn in their local state vector. If 9n contains more than one subsystem, there 

are multiple estimates of Xn available. Fig. 2.4 lists state neighbourhood 9n and subsystem 

neighbourhood g<l) for system shown in Fig. 2.3. Next, I briefly review key state-of-the-art 

centralized and distributed estimation approaches. 

2. 2 Centralized Estimation 

The Kalman filter [41] and particle filter [43] are implementations of the general Bayesian filtering 

equations. While the Kalman filter is generally used for estimation in linear systems with additive 

Gaussian forcing terms, the particle filter is more general encompassing nonlinear systems with 

colored forcing terms. 
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2.2.1 The Kalman Filter 

In the Kalman filter framework, the state and observation functions /(-) and g(·) (Eqs. (2.3) 

and (2.4)) are linear as follows 

State Model: 

Observation Model at Node l: 

F(k)x(k - 1) + f.N(k) 

G(l)(k)x(k) + Cf)(k), 

(2.32) 

(2.33) 

where vectors eJ} (·),for (1 ::; l ::; N), and (N(-) are restricted to white Gaussian noise. Compared 

to Eqs. (2.16) and (2.17), /(x(k-1)) = F(k)x(k-1) and g(l)(x(k)) = c<l)(k)x(k) in the above 

model. The Kalman filter is a minimum mean square error (MMSE) estimator with the following 

notation used for the conditional mean of the state variables during the prediction step 

x(klk- l) ~ IE{x(k)iz(l:k-1)}, (2.34) 

at iteration k given observations up to time k - 1. The conditional covariance matrix of x(k) 

given the observations z(l : k - 1), i.e., the covariance associated with the estimate x(klk - 1), is 

defined as follows 

P(kJk - 1) ~IE{ (x(k) - x(kik - 1)) (x(k) - x(kJk - l)f Jz(l: k - 1) }. (2.35) 

Conventional Kalman Filter: For a single sensor scenario ( N = 1), one can drop index l in 

Eq. (2.33), and the Kalman filter equations are 

Prediction Step: 

P(kJk -1) 

x(klk - 1) 

S(kJk - 1) 

K( k) 

F(k)P(k - llk - l)[F(k)]T + Q(k) 

F(k)x(k - lJk - 1) 

[G(k)]T P(kJk - l)G(k) + R(k) 

P(kJk - l)G(k)S(kJk - 1)-1 
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(2.37) 

(2.38) 

(2.39) 



Observation Update Step: 

x(klk) x(klk - 1) + K(k)(z(k) - [G(k)]r x(klk - 1)) (2.40) 

P(klk) P(klk - 1) - P(klk - l)G(k)S(klk - l)-1[G(k)]T P(klk - 1) 

[I - K(k)[G(k)]T]P(klk - 1). (2.41) 

Matrix R(k) denotes the error covariance matrix for the global observation (N(k) and Q(k) 

denotes the covariance matrix associated with the forcing terms eN(k) in the state model. As for 

the prediction step, the following notation is associated with the conditional mean and covariance 

of the estimated state variables 

x(klk) ~ lE{x(k)lz(l: k)} (2.42) 

and P(kjk) ~ lE{(x(k) - x(kjk))(x(k) - x(kjk))T}, (2.43) 

Information Filter: In the centralized implementation, all observations are forwarded to the 

fusion centre where Eq. (2.36)-(2.41) are used to compute the state estimates. To reduce the 

computational complexity of the Kalman filter, an implementation of the Kalman filter called the 

information filter (41] is derived using the matrix inversion lemma (41]. The following definitions 

are used in developing the information filter implementation. The information state is defined 

as y(klk) ~ P(klk)- 1x(klk), and the information matrix is defined as Y(klk) = P(klk)- 1. The 

update equations (Eqs. (2.40) and (2.41)) for the information filter are given by 

y(klk) = y(kjk - 1) + [G(k)]T R(k)- 1z(k) 

i(k) 

Y(kjk) = Y(klk - 1) + G(k)R-1(k)[G(k)]r, 

I(k) 

(2.44) 

(2.45) 

where the prediction equations (Eq. (2.36)-(2.39)) are expressed in terms of y(klk-l) and Y(klk-
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1) as follows 

y(klk - 1) (I - f!(k))F-T(k)y(k - llk -1) (2.46) 

Y(klk -1) M(k) - f!(k)E(k)[f!(k)]T, (2.47) 

with I being the identity matrix of appropriate dimensions, 

M(k) (2.48) 

E(k) M(k) + Q-1
, (2.49) 

and f!(k) M ( k) [E ( k) ]-1
. (2.50) 

The derivation of the information filter is given in [41]. The main advantage of the information fil-

ter over the Kalman filter is the relative simplicity of its update stage for centralized architectures. 

However, the simple observation update step of the information filter comes at the price of more 

complicated predication equations for computing y(klk - 1) and Y(klk - 1). The information 

filter is also suitable for networks with hierarchical architecture. For an N-sensor network, the 

centralized information vector i ( k) and its associated information matrix I ( k) can be expressed 

in terms of their localized counterparts as i(k) ~ Ef'::1 i(l)(k) and I(k) ~ Ef'::1 J(l)(k). Then 

Eqs. (2.44)-(2.45) are reduced to 

N 

y(klk) = y(klk - 1) + L [G<l)(k)]T R(l)-
1 
(k)z(l)(k), (2.51) 

l=l i(l)(k) 

N 

and Y(klk) = Y(klk-1) + L c<l)(k)R(l)-l (k)[G(l)(k)]T. (2.52) 
l=l J(l)(k) 

For a hierarchical AN/SN, I(k) and i(k) are obtained from their local counterparts, i.e., I(k) ~ 

Ef'::1 J(l)(k) and i(k) ~ Ef'::1 i(l)(k). These terms are computed locally and forwarded to the 

fusion centre. 

Combination of the Kalman and the Information Filters: A third form of the Kalman 
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filter is derived below which is a combination of the conventional Kalman filter and the information 

filter with simple update and prediction steps. By rearranging Eq. (2.45), I have 

I - P(klk)G(k)R- 1(k)[G(k)V = P(klk)P- 1(klk - 1), (2.53) 

where I is an identity matrix with appropriate dimension. Eq. (2.53) results in the following 

Kalman filter equations 

Prediction Step: 

P(klk-l) 

x(klk-1) 

Observation Update Step: 

F(k)P(k-llk-l)[F(k)]T + Q(k) 

F(k)x(k-llk-l) 

(2.54) 

(2.55) 

P(klk)- 1 

x(klk) 

P(klk-1)- 1 + G(k)R-1(k)[G(k)]T (2.56) 

x(klk-l) + P(klk)G(k)R- 1(k) ( z(k)-G(k)x(klk-l)) 

x(klk-1) + P(klk) ( i(k)-I(k)x(klk-l)). (2.57) 

Finally, I note that for a linear dynamical system with normally distributed forcing terms and 

observation noise, the Kalman filter is optimal. In many practical applications, however, the 

state-space model is non-linear and the forcing terms are non-Gaussian. 

2.2.1.1 Kalman Filter for Nonlinear Systems 

A well known approximation of the Kalman filter for non-Gaussian, nonlinear Bayesian estimation 

is the extended Kalman filter (EKF) [43]. The EKF filter is based on the principle of linearizing 

the state and observation models using Taylor series expansions for the observation update step 

(Eqs. (2.40)-(2.41)). The series approximations in the EKF algorithm can, however, lead to poor 
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representations of the nonlinear functions and probability distributions of interest. As a as result, 

the EKF filter can diverge from the optimal solution. Another form of the Kalman filter for 

nonlinear systems is referred to as the unscented Kalman filter (UKF) (44]. The UKF is based 

on the intuition that it is easier to approximate a Gaussian distribution than it is to approximate 

nonlinear functions. Generally, the UKF leads to more accurate results than the EKF for nonlinear 

systems. Below I review the UKF which is incorporated later in the Thesis to develop distributed 

nonlinear estimation implementations of the particle filter. 

Unscented Kalman Filter: In the UKF, the statistics (estimate x(klk) and error covariance 

matrix P(klk)) of the state variables are updated using the unscented4 transform. In principle, 

the UKF uses the true nonlinear state and observation models and, instead, approximates the 

distribution of the state variable with a Gaussian distribution. In other words, the filtering 

density P(x(k - l)lz(l: k - 1)) in the UKF is represented with a Gaussian distribution which 

is specified using a set of deterministically selected sample points, referred to as sigma points. 

These sigma points completely capture the mean and covariance of the filtering density at time 

k - 1. When propagated through the nonlinear functions, the sigma points capture the posterior 

mean and covariance of the filtering density P(x(k)iz(l: k)) at time k. Given the state estimate 

x(k - llk - 1) and its error covariance matrix P(k - llk - 1), the UKF involves the following 

steps for iteration ( k). 

1. A set of (2nx + 1) deterministic samples (referred to as the sigma points) {Wi, Xi(k-1)};,:0 

are calculated based on the following equation 

Xi(k-1) = x(k-llk-1) ± { J(nx + K)P(k-llk-1) }i' for 1 ~ i ~ 2nx, (2.58) 

where term { J(nx + K)P(k-llk-l)}i corresponds to the ith column of the square root of 

4Unscented transform is a method for evaluating the statistics of a random variable after a non-linear transfor­
mation as is described in the context of the UPF in this section [44]. 
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matrix (nx + K)P(k-llk-1) and the initial condition is given by xo(k) = x(k-llk-1). The 

corresponding weights for the Sigma points { wi} ;:1 are given by wi = 1 I ( 2 ( nx + K))' where 

K is a scaling parameter and the initial condition for the sigma points is W0 = K/(nx + K). 

2. The sigma points computed in Step 1 are propagated through the state equation (Eq. (2.3)) 

to generate the predicted sigma points 

Xi(klk-l) = f(Xi(k-l)), for i = 0, ... , 2nx. (2.59) 

3. The predicted sigma points Xi(klk-1) are then propagated through the observation equation 

(Eq. (2.4)) to generate the predicted observation sigma points 

Zi(klk-l) = g(xi(klk-l)), for i = 0, ... , 2nx. (2.60) 

4. The predicted state estimate x(klk -1), its error covariance matrix P(klk -1), and the 

predicted observation estimate z(klk-1) are computed from the following expressions 

2nx 

x(klk-1) = L wixi(klk-l), (2.61) 

P(klk-1) 

z(klk-1) 

i=O 
2nx T 

Lwi(xi(klk-1) -x(klk-1)) (xi(kJk-1) - x(klk-1)) , (2.62) 
i=O 
2nx 

L WiZi(klk-l). (2.63) 
i=O 

5. The autocovariance Pzz(kJk-1) of predicted observations, the cross-covariance Pxz(klk-1) 

between predicted observation and predicted state estimates are computed as follows 

2nx T 

Pzz(klk-l) = L:::wi(zi(klk-l)-z(klk-1))(zi(klk-l)-z(klk-1)) , (2.64) 
i=O 
~ T 

Lwi(Xi(klk-l) - x(kJk-1)) (zi(kJk-1)- z(kJk-1)) . (2.65) Pxz(kJk-l) 
i=O 
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6. The final step is to compute the updated statistics as follows 

x(klk) 

P(klk) 

x(klk-1) + JC(k) ( z(k) - z(klk-1)) 

P(klk-l) -1C(k)Pzz(klk-l)1CT(k), 

where the Kalman gain is given by JC(k) = Pxz(klk-l)Pzz(klk-1)- 1 . 

(2.66) 

(2.67) 

Note that in the UKF algorithm, Steps 1-5 can be performed off-line and the new measurements 

are only involved in Step 6. The UKF has, however, the limitation that it approximates the 

filtering density P(x(k)lz(l: k)) as a Gaussian distribution. The particle filter presented next 

does not impose any such restriction. 

2.2.2 The Particle Filter 

For nonlinear systems with non-Gaussian excitation, in general, no analytic solution can be deter­

mined. Consequently, the direct Kalman filter cannot be used and one has to rely on numerical 

Sequential Monte Carlo (SMC) approaches, also known as the bootstrap filtering, condensation 

algorithm, and particle filters [45], as approximates to the Bayesian estimators. The particle filter 

does not impose any restrictions on the filtering density. The particle filter is based on the prin­

ciple of sequential importance sampling [43], a suboptimal technique for implementing Bayesian 

estimator recursively (Eqs. (2.10)-(2.13)) through Monte Carlo simulations. Below, I describe the 

principle of sequential importance sampling (SIS) [44], a subcategory of the SMC approach. 

2.2.2.1 Importance Sampling 

Importance sampling is an approach to evaluate an integral, e.g., 

lEP(xiz){h(x)} = J h(x)P(xlz)dx (2.68) 
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where lE{.} denotes expectation. A numeric way to compute lE{ h(x)} is to draw N8 random 

samples Xi, for (1 ::; i ::; N 8 ), from the probability distribution P(xlz), evaluate the function h(x) 

at these samples, and then compute their statistical mean as follows 

Ns 

lE{h(x)} ~I: h(Xi)P(XiJz). (2.69) 
i=l 

In practice, however, the distribution P(xlz) is either unavailable, or, it is difficult to obtain 

particles from this distribution. Therefore, the particles are instead derived from a proposal 

distribution q(xlz). Eq. (2.68) can then be written as a function of the proposal distribution as 

follows 

IE{h(x}} = J h(x) :(~l:i q(xlz)dx, 
~ 

w 

where W is called the weight function. Eq. (2.69), therefore, changes to 

Ns 

lE{h(x)} ~ L h(Xi)WiP(Xilz) 
i=l 

with weights Wi = P(Xilz)/q(Xilz), for (1 ::; i::; N 8 ), associated to the vector particles Xi. 

2.2.2.2 Centralized Particle Filter 

(2.70) 

(2.71) 

With relation to the state model, Eq. (2.3), the particle filter iteratively estimates the state vec-

tor x(k), for (k ~ 1), based on the overall observations z(l: k) and the given value of the previous 

state x(k - 1). The centralized particle filter uses a set of samples (or 'particles') {Xi(k)}~1 and 

associated weights {Wi(k)}~1 to estimate the system state x(k). At the end of iteration k -1 in 

steady state, let 

(2. 72) 

denote an nx-dimensional vector sample (referred to as a vector particle). Based on a statistical 

distribution, a combination of N8 vector particles are used to represent the true posterior distri-
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bution of the state vector x(k - 1). Subscript i, for (1 ~ i ~ N 8 ), therefore, indicates that N 8 

number of nx-dimensional particles are available to represent the state vector x( k - 1) at time 

instant k - 1. To represent the time evolution of the particles, I use the notation 

Xi(O: k-1) = [X1,i(O: k - l),X2,i(O: k -1), ... ,Xnx,i(O: k -1)], (2.73) 

for (1 ~ i ~ N 8 ). Time index (0: k-1) implies that all nx-dimensional vector particles from time 

iteration 0 to k -1 are available. Associated with each vector particle Xi ( k -1) is its corresponding 

weight Wi(k - 1), for (1 ~ i ~ N 8 ). The weights are normalized such that '2:~1 Wi(k - 1) = 1 

at iteration k - 1. As for the state particles, notation Wi(O : k - 1) represents the evolution of 

the weights over time. If required, the overall filtering distribution of the state vector at iteration 

k - 1 can be expressed in terms of the particles and their associated weights as 

Ns 

P(x(k - l)lz(l :k - 1)) ~ L Wi(k -1)8(x(k - 1) - Xi(k -1)), (2.74) 
i=l 

where 8(·) denotes the Dirac delta function. 

Given particles Xi(k - 1), the values of the particles Xi(k) at time instant k are updated 

by generating random particles from the proposal distribution q(x(O: k)jz(l: k)). For SIS, the 

proposal distribution is chosen such that it satisfies the following factorization 

q(x(O:k)lz(l:k)) = q(x(O:k-l)lz(l:k-l))q(x(k)jx(l:k-1),z(l:k)), (2.75) 

then one can obtain particles Xi(O: k) ,....., q(x(O: k)jz(l: k)) by augmenting each of the existing 

samples Xi(O: k - 1),....., q(x(O: k-l)lz(l: k-1)) with the new particles generated as follows 

Prediction Step: Xi(k),....., q(x(k)lx(O: k-1), z(l: k)). (2.76) 

The next step is to update the weights as follows 

Observation Update Step: ( ) ( ) 
P(z(k)IXi(k))P(Xi(k)IXi(k-1)) 

W· k ex W· k - 1 -----------
i i q (xi ( k) I xi ( o : k - 1), z ( 1 : k)) ' 

(2.77) 
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where notation ex: stands for the proportional sign, which changes to an equality with the intro­

duction of a constant. The accuracy of this importance sampling approximation depends on how 

close the proposal distribution is to the true posterior distribution. The optimal choice [44] for the 

proposal distribution that minimizes the variance of importance weights is the filtering density 

conditioned upon x(O: k - 1) and z(l: k), i.e., 

q(x(k)lx(O:k-1),z(l:k)) = P(x(k)lx(O:k-1),z(l:k)). (2.78) 

Because of the difficulty in sampling Eq. ( 2. 78), a common choice [ 44] for the proposal distribution 

is the transition density, P(x(k)lx(k - 1)), referred to as the sampling importance resampling 

(SIR) filter, where the weights are pointwise evaluation of the likelihood function at the particle 

values, i.e., 

(2. 79) 

If the weights Wi(k) are all equal from the previous iteration, then Wi(k) ex: P(z(k)l:Xi(k)). The 

likelihood function P(z(k)l:Xi(k)) is derived from the observation equation (Eq. (2.4)). Algo­

rithm 1 highlights the main steps in the SIR filter. 

Fig. 2.5 shows a graphical representation of the SIR algorithm for iteration k. In the top 

plot, the particles :Xi(k) are generated from the transitional density P(x(k)lx(k - 1)) which is a 

Gaussian distribution in this example. In the middle plot, the weights are computed from the 

likelihood function P(z(k)lx(k)) which results in the weighted particle {:Xi(k), Wi(k)}~1 as shown 

in the third plot. 

The SIR filter has two drawbacks. First, it does not use the newly acquired observations. 

Second, it leads to degeneracy in the particle filter with a few samples having relatively higher 

weights, i.e., after a few iterations, most of the vector particles have negligible weights. A measure 

of degeneracy is the effective sample size Neff(k) = 1/(2:~1 Wl(k)). A typical approach to 
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P(x(k) I x(k-1)) 
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P(z(k) I x(k)) 

P(x(k) I z(k)) J._______.__..__ll ............... 11111 __.___ T 

Figure 2.5: The SIR filter for estimating the posterior conditional probability (represented by blue bars). 

avoid the degeneracy problem is to introduce the re-sampling [30] whenever Neff(k) falls below a 

threshold. Algorithm 2 highlights the main steps in the systematic resampling algorithm, where 

U(.) stands for uniform distribution. The re-sampling algorithm maps particles Xi(k) and their 

weights Wi(k) to resampled particles {Xi*(k)}~1 such that P{Xi*(k) = Xj(k)} = Wj(k). The 

resulting sample sequence is independent, identically distributed (IID) and, hence, the new weights 

are uniform (same). 

Fig. 2.6 depicts the basic concept of the particle filter in the form of a graphical representation. 

In this example, a standard particle filter starts at time k- l with a set of uniformly weighted 

particles {Xi(k-1), 1/Ns}~1 (the top yellow dots), which yields an approximation of the prediction 

density P(x(k-l)Jz(l: k-2)). Each particle Xi(k - 1) is updated to Xi(k) by generating random 

samples from the proposal distribution. In the filtering step, the importance weight wi ( k) is 
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Figure 2.6: A pictorial description of the particle filter [44]. 

updated using the observation z(k) made at time k (the top red line). This results in the weighted 

particles {Xi(k), Wi(k)}f::1 , which provide an approximation of P(x(k)lz(l: k)) (the top purple 

dots). Next, the resampling step selects only the particles with significant weights and resamples 

to obtain the new particles with uniformly weighted particles {Xi(k), 1/Ns}f::1 which still is an 

approximation of P(x(k)lz(l: k)). This process is executed recursively. 

As noted previously, the particle filter implementation presented above is referred to as the 

SIR filter. Later in the Thesis, other forms of the particle filters are discussed, e.g., the unscented 

particle filter. Having presented a review of the centralized Kalman filter and particle filter, Sec-

tion 2.3 presents distributed Kalman filters which serves as a precursor to distributed estimation 

for non-linear systems. 
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Input: (i) {:Xi(k - 1)}~1 - State particles, and; (ii) z(k) - Observation. 

Output: (i) {:Xi(k)}~1 - Updated state particles, and; (ii) {Wi(k)}~1 - weights for updated 

state particles. 

1: for i = 1 : N 8 , do 

•Update particles by sampling P(x(k)J:Xi(k - 1)). 

• Compute weights based on Wi(k) ex P(z(k)J:Xi(k)). 

2: end for 

3: Determine the normalization factor s = E~1 wi ( k). 

4: for i = 1 : N 8 , do 

•Normalize Wi(k) = Wi(k)/s. 

5: end for 

6: Resample based on Algorithm 2. 

2.3 Distributed Kalman Filters 

The Kalman filter has a simple recursive structure which makes it suitable for distributed esti-

mation problems. Several, distributed Kalman filter approaches [77-81] have been proposed for 

both full-order and reduced-order estimations. I describe two general frameworks (estimate-then-

fuse (state estimation fusion) and fuse-then-estimate (observation fusion)) that are common to all 

approaches. 

2.3.1 State Estimation Fusion (Estimate-Then-Fuse) 

In the estimate-then-fuse framework for the Kalman filter [42], the local state estimates are first 

computed and then fused together to form the global state estimate. Node l, for (1 ::; l ::; 
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Input: (i) {Xi(k), Wi(k)}~1 - State particles and their associated weights. 

Output: (i) {Xj*(k), Wi(k)}f::::1 - Resampled state particles and their associated weights, and; 

(ii) { i j} ~ 1 - The index of the parent for each res am pied particle. 

1: Initialize the cumulative sum of weights (CSW): C1 = W1(k) 

2: for i = 2 : N 8 , do 

• Construct CSW: Ci = Ci-1 + Wi(k) 

3: end for 

4: Start at the bottom of the CSW: i = 1 

5: Draw a starting point: U1 rv U[O, Ns- 1] 

6: for j = 1: N 8 , do 

•Move along the CSW: Uj = u1 + N 8-
1(j - 1) 

7: while Uj >Ci do 

• i=i+l 

8: end while 

•Assign weight: Wj(k) = N;1 

• Assign parent: ij = i. 

9: end for 

N), maintains its own estimated version y(O(klk) = [P(l)(klk)]- 1:X(l)(klk) of the information 

vector and the corresponding information matrix y(l)(klk) = [P(l)(klk)]- 1 . Since the prediction 

equations only depend on the state model (Eq. (2.3)), they can be computed locally without 

requiring any cooperation from the neighbouring nodes. The local prediction step at node l is 
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Local Prediction Step: 

y(l)(klk - 1) 

y(l)(klk - 1) 

(I - n,(l)(k))F-T(k)y(l)(k - llk - 1) 

M<z)(k) - n,<l)(k):E<z)(k)[n<L)(k)]r, 

where I is an identity matrix of proper dimension and 

M(l)(k) 

:E(l)(k) 

and n,(l)(k) 

p-T(k)Y(l)(k - llk - l)F- 1 (k), 

M(l)(k) + Q-1, 

M(l) (k) [:E(l) (k )]-1. 

The local observation update equations for node l are then given by 

Local Observation Update Step: 

y(l)(klk) 

y(l)(klk) 

y(l)(klk - 1) + G(l)(kf R(l)-
1 
(k)z(l)(k) 

y(l)(klk-1) + G(l)(k)R(l)-
1 
(k)G<W (k), 

(2.80) 

(2.81) 

(2.82) 

(2.83) 

(2.84) 

(2.85) 

(2.86) 

The global state estimate is then computed at each node by fusing its local state estimates with 

the communicated state estimates of its neighbouring nodes. A problem with estimate-then-track 

is the correlation between the local state estimates. The local state estimates across the neigh­

bouring nodes are correlated due to the following two reasons: (i) The same forcing/excitation 

term is used in the localized state models for the neighbouring nodes, and; (ii) Some past ob­

servations incorporated in the local estimates may also be common between the local nodes [42], 

e.g., two nodes may have both received observation from a common third node during a previous 

iteration, or, they may have directly communicated to each other and incorporated the other 

nodes observation in updating their local estimates. 

Next, I will review the channel filter approach [42) which associates an additional filter for 

each communication link to track the common information between a pair of neighbouring nodes. 
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Using channel filters, one can implement the optimal distributed Kalman filter for linear systems 

observed with An/SN configured using the tree conneCted network topologies. 

2.3.1.1 Channel Filters 

The channel filter framework was proposed in [42) to ensure consistency of the fused estimate by 

removing common information between own local estimate and the received estimate from the 

neighbouring node. In the context of distributed Kalman filter for tree connected networks the 

channel filter framework associates a channel filter for each communication link connecting a pair 

of local nodes. Using the channel filter, the local information vector y< i) ( k I k) at node i and the 

local information vector y(j)(klk) at node j are combined to form the fused information vector 

y (ij) ( k I k) as follows 

(2.87) 

where y(inj)(klk) is the channel filter's information vector as explained below. Similarly, the fused 

information matrix is computed as follows 

y(ij)(klk) = y(i)(klk) + y(i)(klk) - y(inj)(klk), (2.88) 

where y(inj)(klk) is the channel filter's information matrix as explained bellow. Eqs. (2.87) 

and (2.88) have a number of important implications: (i) When the common information set is 

empty, the joint estimate can be computed by summing local estimates in their information form; 

(ii) There is no need for a fusion center to provide the global predictions which simplifies the 

computation and reduces the communication, and; (iii) Once the common information is decided, 

the rest of distributed estimation is straightforward. The problem, however, is how to determine 

such common information. Based on Eqs. (2.44) and (2.45), the channel filter extracts the common 
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information using the following equations 

y(inj)(klk) = y(inj)(klk - l)+[y(i)(klk) -y(inj)(klk-1)] + [Y(j)(klk) -y(inj)(klk-1)] 

= y(i)(klk) + y(j)(klk) - y(inj)(klk-1), (2.89) 

and y(inj)(klk) = y(i)(klk) + y(j)(klk) - y(inj)(klk-1). (2.90) 

where the predictive channel filter equations are obtained in a similar fashion as the prediction 

step of the the information filter (Eqs. (2.91)-(2.55)), i.e., 

and y(inj)(klk - 1) 

where I is an identity matrix of proper dimension, 

(2.91) 

(2.92) 

(2.93) 

(2.94) 

(2.95) 

By using the estimate of the common information (provided by channel filters), node l, for (1 ~ 

l ~ N), uses the following fusion rules 

Y(fused,l)(klk) = y(l\klk -1) + L (y(i)(klk) -y(lni)(klk-1)) (2.96) 

iEN~~1~0 (k) 

and y(fused,l)(klk) = y(l)(klk-1) + L (y(i)(klk)-Y(lni)(klk-1)), (2.97) 

iEN~~~0 (k) 

where N~~se ( k) is set of the neighbouring nodes for node l. The channel filters only provide the 

consistent estimate when the network is tree-connected. 
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2.3.1.2 Distributed Unscented Kalman Filter 

Distributed unscented Kalman filter (DUKF) [7, 82, 83] is another example of the Kalman filter 

based distributed state estimation fusion algorithms. The centralized UKF was described in 

Section 2.2.1.1. Below, the distributed implementation of the UKF based on [7] is presented. 

Please refer to [82,83] for alternative DUKF implementations. The DUKF for iteration k is based 

on the following two steps: 

1. Each node runs a local UKF based on its local observation z(l)(k), the fused global state 

estimate X:(fused,l)(k - ljk - 1) and its corresponding error covariance matrix p(fused,l)(k -

ljk -1) from the previous iteration (k -1) of the DUKF. The localized version of the UKF 

is based the six steps outlined in Section 2.2.1.1. In Step 1, the global statistics from the 

previous iteration (X:(fused,l)(k- ljk-1) and p(fused,l)(k- ljk-1)) are used to calculate the 

local sigma points {Wp),x~l)(k-1)};~0 . Steps 2-5 remain the same in nature and compute 

localized statistics (superscript (l) is added to different terms computed in Steps 2-5 to show 

their localized nature). In Step 6, the local observation z(l)(k) is used instead of the global 

observation vector z(k) to compute the following updated local statistics 

p(l)(klk) 

x<l) (klk-1) + JC(l) (k) ( z(l) (k) - z<l) (klk-1)) 

p(l)(klk-1) - JC(l)(k)P}Q(klk-l)[JC(l)(k)V, 

(2.98) 

(2.99) 

2. The global statistics are then computed distributively based on the following fusion rules [7] 

p(fused,l) (kjk) (2.100) 
l=l 

N 

X(fused,l) (kjk) [p<rused,l)(kik)r1 x I: [P<z)(kik)r1:x.:<z)(kik). (2.101) 
l=l 
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The two summation terms in Eqs. (2.100) and (2.101) are computed distributively by running 

two vector consensus runs (one for the global mean and one for the global covariance matrix). 

2.3.2 Likelihood/Observation Fusion (Fuse-Then-Estimate) 

As stated in the previous section, care should be taken to compensate for the common information 

present in the local state estimates in the estimate-then-fuse framework. An alternative approach 

is based on the fuse-then-estimate framework, which leads to the fusion of the weighted observa­

tions and associated covariances. The issue of the common information in the state estimates is, 

therefore, automatically resolved. Based on the combined KF /IF implementation (Eqs. (2.54)­

(2.57)), iteration k of the fuse-then-track framework consists of the following four steps: 

Step 1. Given the fused local state estimate x(fused,l)(k - Ilk - 1) for iteration k - I and its 

corresponding error covariance matrix p(fused,l)(k - Ilk - I), node l, for (I :::; l :::; N), performs 

the prediction step as follows 

x(l)(kJk - I) 

p(l)(klk - 1) 

F(k )x(fused,l) (k - IJk - I) 

F(k)P(fused,l)(k - Ilk - I)[F(k)]T + Q(k). 

(2.102) 

(2.103) 

Step 2. Node l computes its local information vector i(l)(k) and the local information matrix 

J(l) ( k)) as follows 

[G(l)(k)]T R(l)- 1 (k)z(l)(k), 

G(l) (k)R(l)- 1 (k) [G(l) (k)]T, 

and communicates them to its immediate neighbouring nodes. 
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Step 3. Once node l has received data from all its neighbouring nodes, it fuses them as follows 

i(fused,l)(k) = 2: [G(i) (k )]T R<W
1 
(k)z(i) (k) (2.106) 

iE N~:.~0 ( k) 

J(fused,l)(k) = 2: [G(i) (k)]T R(i)-i (k)G(i) (k). (2.107) 

iEN~~~0 (k) 

Step 4. The observation update state of the Kalman Filter (Eqs. (2.56)-(2.57)) is then performed 

locally as 

p(fused,l) (klk) (2.108) 

X(fused,l) (klk) 

(2.109) 

In an all-to-all communication network, i.e. when there exists a direct link between node land 

all other nodes in the network, Eqs. (2.108) and (2.109) result in the centralized estimates at each 

node. In other words, the local estimates at each node are the same as the centralized estimate. 

Having an all-to-all communication network is, however, a limiting constraint. Consensus-based5 

distributed implementation of the Kalman filter is developed based on this framework to extend 

distributed estimation to arbitrary network topologies. Such methods compute the summation 

terms in Eq. (2.106) and Eq. (2.107) over the entire network instead of limiting the summation 

terms to local neighbourhoods, i.e., 

N 

i(fused,l)(k) = L[G(i)(k)]T R(W1 (k)z(i)(k) (2.110) 
i=l 

N 

J(fused,l)(k) = L[G(i)(k)f R(W1 (k)G(i)(k). (2.111) 
i=l 

Two average consensus algorithms (as explained below in Section 2.4) can be used to compute 

Eq. (2.110) and Eq. (2.111) in a distributed fashion. 

5 Consensus in distributed filtering is the process of establishing a consistent value for some statistics of the state 
vector across the network by interchanging relevant information between the connected neighboring nodes. 
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In the next section, I will present the aforementioned consensus algorithms in more detail. 

2.4 Average Consensus Algorithms 

Consensus algorithms and their randomized counterparts, the gossip algorithms [88], form the 

foundation of distributed computing [89] with a long history in distributed processing and deci­

sion making [90], information processing in sensor networks [32,33], multi-agent collaboration [91], 

vehicle formation [92], tracking and data fusion [79, 93], and distributed inference [94]. Consensus 

algorithms are generally iterative in nature, where each node begins with a set of local infor­

mation. At each iteration, data is exchanged between a subset of nodes, which assimilates new 

information to update the local parameters. A recent review on the average consensus algorithms 

can be found in [32] or [33]. These consensus algorithms do not require specialized routing [33] 

and perform reasonably well even in imperfect scenarios such as sensor networks with error-prone 

communications, node/link failures, and channel noise [95-97]. Further, average consensus algo­

rithms have been extended in many directions, e.g., continuous time average consensus algorithms 

as described in [32] and non-linear average consensus algorithms [98, 99]. The design of fast con­

sensus algorithms has been investigated in [100], the concept of consensus likelihood described 

in [21] and the concept of Kalman-consensus which considers the problem of consensus seeking 

with relative uncertainty in distributed systems presented in [101]. In this chapter, I limit the 

discussion to the discrete time linear average consensus algorithms, a sub-class of the classical 

average-consensus algorithms. 

2.4.1 Discrete Time Linear Consensus Algorithms 

Suppose there are N-nodes with inconsistent information denoted by X~l) (t), (1 ~ l ~ N), where 

t is the consensus time index that is different from the filtering time index k. With reference to 
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my previous discussion in Section 2.3.2, at iteration k, node l, for (1 ::; l ::; N), initializes its local 

consensus state X~l) (0) as follows 

(2.112) 

The objective of the consensus algorithm is to communicate relevant information amongst the neigh-

bouring nodes to iteratively update the consensus state X~l) ( t) at node l such that it eventually 

converges to its centralized counterpart i(fused,l)(k) given by Eq. (2.110). Mathematically, the 

updated value at node l is 

(2.113) 

where ~i~se(k) represents the set of neighbouring nodes for node l in graph Q. Eq. (2.113) 

represents a distributed algorithm because each node only receives/ communicates information 

from/to its neighbouring nodes via communication links permitted by graph Q. 

Definition: A distributed algorithm for graph Q can achieve consensus asymptotically if: 

1. There exists a time instant Tc such that X~l) (Tc) = a, for (1 ::; l ::; N), i.e., 

(2.114) 

2. All nodes reach a common value asymptotically 

lim x<l)(t) =a, 
t~oo c 

(2.115) 

where a E ~ is the collective decision of the sensor nodes in the network and is referred to 

as the group decision, stationary, converged, or equilibrium value. 

Moreover, if this common value is the average of the initial values of the consensus states, i.e., 

a= 1/N'L~1 X~l)(O), then the algorithm is said to achieve average consensus. In other words, 

reaching a consensus implies an asymptotic convergence to a one-dimensional agreement space 
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defined as X~1)(t) = X~2)(t) = ... = X~N)(t), for (t 2'.: Tc)· Collecting all X~l)(t)'s in a vector 

Xc(t), the agreement space can be expressed as Xc(t) =al, for (t 2'.: Tc), where 1 = [1, 1, ... , l]T 

is a unit column vector with 1 as its entries. A further distinction is made based on whether the 

consensus is constrained or unconstrained. 

1. Unconstrained consensus is simply an alignment problem where the agreement value 

is not important and it only suffices that the consensus states of all nodes asymptotically 

converge to the same value. 

2. Constraint consensus, referred to as the x-consensus in this chapter, requires the con-

sensus state to asymptotically converge to a function x(xc(O)) of initial values. 

An average consensus algorithm is ax-consensus algorithm with x(xc(O)) = 1/NE~1 X~l)(O), 

which is often used in distributed signal processing applications. The goal of an average consensus 

algorithm is to guarantee the convergence of the algorithm to the mean value for any choice of 

initial conditions. 

An important class of a discrete time, linear average consensus algorithm is given by 

x~t>(t + 1) = Uu(t)x~t>(t) + L ulj(t)X~j)(t), 
jEN~:1~0 (k) 

(2.116) 

which can alternatively be expressed as xc(t + 1) = U(t)xc(t) in the matrix-vector format, where 

U ( t) ~ { Uij} E SR_( N x N) is referred to as the consensus matrix representing the configuration of 

graph g. In other words, the sparsity pattern of the consensus matrix models the communication 

network over which the neighbouring nodes can communicate. A possible choice for U(t) is 

described later. A third form for Eq. (2.116) is given by 

x~t>(t + 1) = x~t>(t) + L Utj(t) ( x~t>(t) - x~i>(t)), 
jEN~~~0 (k) 
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Figure 2.7: An example of average consensus algorithm with 20 sensor nodes. 

derived by exploiting the stochastic matrix property U(t)l = 1. Note that this property implies 

that the sum of the entries of any row of matrix U is always 1, i.e., Uu(t) = 1- L 'EN<'> (k) Utj(t), 
J fuse 

which when substituted in Eq. (2.116) results in the new expression. Eq. (2.117) provides an 

intuitive interpretation for average consensus as a control action to the old consensus value that 

corrects for the difference from the consensus state. 

Fig. 2. 7 shows an example of an average consensus algorithm in a network with 20 nodes. 

Connections between neighbouring nodes are shown with dotted lines in the small block on the 

lower right of Fig. 2. 7. Node l, for (1 ~ l ~ 20), initializes its consensus state X~l) (0) with the 

value shown in Fig. 2.7 and uses Eq. (2.116) to update its consensus state. After 45 iterations the 

. (l) "°'N (l) ( ) consensus converges, i.e., Xe (t) = L...Jl=l Xe 0 = 0.4592, for t > 45. 

There are two scenarios that may arise in the context of specific signal processing applications: 

(i) Deterministic consensus where the consensus matrix U is given and remains fixed, i.e., U(t) = 

U, and; (ii) Randomized consensus, where U(t) is drawn from some distributions on a set of 
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stochastic matrices defined as o/I. For fixed communication, Eq. (2.117) implies that Xe(t) 

utxe(O). In addition, from Eq. (2.115) we have 

1 N 1 
lim Xe(t)= lim utxe(O)=N("°' Xe(O))l=N(lTxe(O))l=(llT/N)xe(O), 

t-+oo t-+oo ~ 
(2.118) 

i=l 

which is equivalent to the matrix equation limt-+oo ut = 11 T / N. Linear consensus algorithms 

(Eq. (2.116) or (2.117)) converges to the average for any initial vector Xe(O) E ~N if and only if 

the identity limHoo ut = 11 TIN holds. 

Finally, the asymptotic convergence rate of a consensus algorithm is defined as follows 

[
II Xe(t) - Xe 112] l/t 

rasym(U) = . sup II (O) _ _ II , 
hmt--+oo Xe Xe 2 

(2.119) 

where II · 112 is the Euclidean L 2 norm, i.e., II Xe II~ vx.rx;.. The following theorem [100] provides 

the necessary and sufficient conditions for convergence of a consensus algorithm. 

Theorem 1. An average consensus algorithm {e.g., Eq. {2.117)) converges, i.e., limt-+oo ut = 

11 T / N holds if and only if 

(2.120) 

Ul 1 (2.121) 

p(U - UT /N) < 1, (2.122) 

where p(.) denotes the spectral radius of a matrix, i.e., the largest eigenvalue of a matrix in the 

absolute values. Moreover, the asymptotic convergence rate can be expressed as 

rasym(U) = p(U - liT /N). (2.123) 

The following results are observed from Theorem 1. First, Eq. (2.120) states that 1 is the left 

eigenvector of U associated with the eigenvalue of 1. For this case, we have 

N N 

z=x~i)(t) =IT Xe(t) = lTUxe(t-1) = 1T Xe(t-1) = L:x~i)(t -1). (2.124) 
i=l i=l 
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Eq. (2.124) is referred to as the preserving property i.e., the average of the consensus states is 

preserved at each iteration of consensus algorithm. Second, Eq. (2.121) illustrates that 1 is also 

the right eigenvector of U associated with the unitary eigenvalue. This condition sates that once 

consensus is reached, the value of the consensus variables remains unchanged, i.e., 1 is a fixed 

point of the linear iteration. Together with the first two conditions, Eq. (2.122) implies that 1 is a 

simple eigenvalue of U on the unit disk and its algebraic multiplicity is 1, i.e. it is a simple root of 

the characteristic polynomial of U. Eq. (2.122) also implies that all other eigenvalues are strictly 

less than one in magnitude, i.e., l..\i(U)I < 1 Vi = {2, ... , N}. For the subclass of consensus 

algorithms considered in here, a result from [31] shows that 

(2.125) 

i.e., the convergence rate of a discrete time linear consensus algorithm (Eq. (2.123)) is dependent 

on the second largest eigenvalue of the consensus matrix. To study the convergence rate, one must 

develop techniques to bound the eigenvalues of the consensus matrix. Fast linear consensus algo­

rithms [100] are designed by minimizing the second largest eigenvalue of the consensus matrix. For 

continuous time consensus algorithm, the graph Laplacian L matrix and its spectral properties [32] 

are important graph related parameters which play a crucial role in the convergence analysis [32]. 

Necessary and sufficient conditions to guarantee convergence of average consensus algorithms in 

different scenarios, e.g., in presence of communication time-delays, packet drops, channel noises, 

link failures and quantization errors have been studied by many researchers [31-33, 95-97]. For 

a more detailed review of the convergence properties of the consensus algorithms, please refer 

to [31]. 

The question of how to assign the weight matrix U in Eq. (2.116) arises naturally at this point. 

A common choice is U =I - tL where EE (0, 1
9

] and U satisfies [32] the conditions expressed in 

Eqs. (2.120)-(2.122). For other possible forms of the consensus matrix U, please refer to [31-33]. 
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For example, the Kalman-consensus method proposed in [101] designs the consensus matrix U by 

allocating proper weights to individual nodes with greater certainty in their performed estimation. 

Finally, I note that alternative approaches to the consensus algorithms are the gossip algo­

rithms which are generally randomized counterparts of the consensus algorithms. The difference 

in consensus and gossip algorithms lie in the selection of the neighbouring nodes to which the 

information is shared at each iteration. While consensus algorithms communicate with all neigh­

bouring nodes, gossip algorithms randomly select a subset of neighbouring nodes and communicate 

only with that subset. Generally, the subset with which each node communicates varies from one 

gossip iteration to another. Another alternative to reach consensus on predefined statistical pa­

rameters is to use spanning trees [36) where the topology is specifically designed and known at 

each node. 

2.5 Distributed Particle Filters 

The distributed particle filter implementations considered in this section use the following state 

dynamics and observation model at node l, for (1 :::; l :::; N) 

J(x(k - 1)) + e(k) 

g(l)(x(k)) + ((l)(k), 

(2.126) 

(2.127) 

with the entire state vector x( k) is estimated by running a localized particle filter at each node. So 

the following overview of the existing distributed implementations of the particle filter is mainly 

focused on full-order distributed configuration for nonlinear systems. 

Since the seminal work by Gordon et al. [45], the particle filters have been widely used for 

statistical estimation but mostly in the centralized configuration. Developing distributed imple­

mentations of the particle filter is computationally demanding and places considerable bandwidth 
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overhead for information transfer between the local processing nodes. Following the classification 

taxonomy shown in Fig. 1.4, distributed particle filter implementations can be organized into 

two main categories: Message passing schemes [16, 17] where information flows in a pre-defined, 

sequential manner from a node to one of its neighboring nodes via a cyclic path till the entire 

network is traversed, and; Diffusive schemes [18-27, 29, 30] where each node communicates its 

local information across the network by interacting with its immediate neighbors. In dynami­

cal environments, where frequent changes in the underlying network topology due to mobility, 

node failure, and intermittent connectivity are a common practice, diffusive schemes significantly 

improve the robustness at the cost of certain communication overhead. 

Consensus-based approaches are a special subcategory of diffusive schemes applicable to arbi­

trary network topologies [32, 33]. The basic idea behind the consensus-based distributed imple­

mentations is to express the fusion problem in a way such that it only involves average quantities. 

Although the consensus-based distributed Kalman filter implementations [32, 33, 77, 79-81] have 

been widely explored for estimation and tracking problems in linear systems, there is much room 

for developing distributed particle filter implementations for nonlinear systems. Further refine­

ment of the consensus-based distributed particle filter implementations is based on the nature of 

the information transfers between the processing nodes. Examples of the information communi­

cated within the network include the raw observations, local likelihoods, functions of the local 

observations [18-22], local state posterior, and local state estimates [23-27]. Coates et al. [16] 

use a parametric model of the partial likelihood function commonly referred to as the DPF via 

observation/likelihood fusion. Sheng et al. [17] approximate the partial local posteriors with a 

Gaussian mixture model ( G MM) and communicate the parameters of the local G MM models be­

tween the neighboring nodes using a message passing setup. Sheng's implementation is commonly 

referred to as DPF via state estimation fusion. The DPF approaches based on state estimation 
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fusion and observation/likelihood fusion are considered next. 

2.5.1 DPF via State Estimation Fusion (Estimate-then-Fuse) 

The state estimation fusion based DPF implementation is explained in terms of the SIR form 

of the particle filter (Section 2.2.2, Eqs. (2.76) and (2.77)). It consists of two steps: the local 

particle filtering step implemented at each node to evaluate the local particles X~l)(k) and their 

corresponding weights w?\ k) and the fusion step to combine local estimates into the global 

estimate. Based only on the local observations made at node l, the local observation update and 

the following fusion step are described below. 

1. Local Particle Filters: At node l, the local particle filter first updates its particles as follows 

Local Prediction Step : (2.128) 

The weights are pointwise evaluation of the local likelihood function at the particle values 

computed as 

Local 0 bservation Update Step : 

The local particle filter at node l approximates the local filtering density P(x(k)lz(l)(l: k)) 

as a Dirac mixture with a set of particles and their associated weights {:X~l) (k), w?) (k)} as 

Ns 

P(x(k)lz(l) (1: k)) ~ L wP) (k)o(x(k) - :x~l\k))' (2.130) 
i=l 

where o ( ·) denotes the Dirac delta function. 

2. Fusion of Local Particles: The global state estimate is computed by fusing the local filtering 

densities P(x(k)lz(l)(l: k)) represented via local particle sets {X~l)(k), w?)(k)} across all 

nodes. To highlight the issues involved in the fusion step, the fusion problem between two 
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nodes i and j is first considered. For node i and j, the joint filtering density is given by 

P(x(k)lz(i)(l:k) Uz(j)(l:k)) = P(x(k)lz(i)(l:~)) x P(x(~)lz(j)(l:k)) 
P(x(k)lz(i)(l:k)nz(J)(l:k)) ' 

(2.131) 

where P(x(k)lz(i)(l: k) U z(j)(l: k)) is the fused filtering density based on observations at 

node i and j, and P(x(k)lz(i)(l: k) n z(j)(l: k)) is the filtering density corresponding to 

the common information between nodes i and j. Computing Eq. (2.131) based on the local 

particles is challenging due to the following two main problems: (i) Transferring the whole 

particle set requires extensive communication resources, and; (ii) Even if the particles can be 

communicated, twoseparatediracmixtures (e.g., {X~l)(k), wp)(k)} and {X~u)(k), Wi(u)(k)}) 

may not have the same region of support and their multiplication/division could be zero 

everywhere. To tackle these issues, a transformation is required on the particle representa-

tions ( {X~l) (k), wP) (k)}) prior to communication. Gaussian distributions [24], grid-based 

techniques [47], GMMs [17] and Parzen representations [25,27] are different parametric con-

tinuous distributions used in the DPF implementations. Next, I consider the transformation 

approach based on Gaussian distribution for the local particles [24]. 

Instead of communicating the particles for fusion, node l approximates its local filtering density 

with a Gaussian distribution whose statistics (mean and covariance) are computed from the local 

particles. The statistics of the global filtering density are then calculated across the network from 

the local statistics by using average consensus algorithms on the local means and covariances. 

More specifically, the global filtering density (Eq. (2.15)) given by 

N 

P(x(k), lz(l:k)) <X P(x(k)lz(l:k-1)) II P(z<l)(k)lx(k)), (2.132) 
i=l 

is factorized in terms of geometric mean of the modified local filtering densities as 

N 

P(x(k)lz(l:k)) <X NII P(x(k)lz(l)(l:k)), (2.133) 
l=l 
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where the modified local filtering density at node l, for (1 ::; l ::; N), is given by 

P(x(k)lz(l)(l: k)) = P(x(k)lz<O(l:k-1)) x pN (z<O(k)lx(k)). (2.134) 

Reference [24] has proposed to approximate .P(x(k)iz<O(l: k)) as a Gaussian distributionN(x(l)(k), 

.f>(l) ( k)) where its statistics are computed from the local particles as follows 

N .• 

L wP)(k)x~l)(k), (2.135) 
i=l 

(2.136) 

Since the product of Gaussians is itself a Gaussian, it can be shown [129] that 

N 

P(x(k)Jz(l: k)) oc N IJ N(x(l)(k), .f>(l)(k)) 
l=l 

zjN(p,(fused)(k), .f>(fused)(k)) = N(p,(fused)(k), N X _p(fused)(k))(2.137) 

where 

N 

[P(fused)(k)]-1 I: [P(i)(k)rl, (2.138) 
i=l 

N 

and p,(fused)(k) = p(fused)(k) L [.f>(i)(k)]-lx(i)(k). (2.139) 
i=l 

Note that in computing the local weights wP\k), the weight update equation (Eq. (2.77)) changes 

as follows 

[P(z<l) (k) JX~l) (k)) JN P (x~l) (k) JX~l) (k-1)) 
w.<l)(k) oc w.<0(k -1) . 

i i q ( x~ l) ( k) Ix~ l) ( k -1), z < l) ( k), z ( 1 : k -1)) (2.140) 

If the proposal distribution is selected to be equal to the transitional density then Eq. (2.140) 

reduces to 

(2.141) 

The statistics of the global filtering density given by Eq. (2.138)-(2.139) are obtained from the 

local statistics using several average consensus algorithms. 
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2.5.2 DPF via Likelihood/Observation Fusion (Fuse-then-Estimate) 

The DPF via observation/likelihood fusion differs from the centralized particle filter mainly in the 

observation update step, i.e., in computing the weights (Eq. (2.77)). It consists of the following 

two steps. 

1. Local Prediction is more or less similar to Eq. (2.128). However, algorithms of this category 

commonly implement synchronized local particle filters [16], i.e., a set of parallel particle 

filters where their random number generators have been initialized at the same point and, 

therefore, generate the same set of particles at each iteration. In other words, xi ( k) = x~l) ( k) 

for, (1 ~ l ~ N), i.e., particles at different nodes are the same, therefore, the index l 

is dropped for the notation used to denote the particle sets. The particles at node l are 

updated as follows 

(2.142) 

resulting in the same set of local predictive particles at each node. 

2. Global Observation Update: Considering the conditional independence of the observations 

made at neighbouring nodes (Eq. (2.5)) and using the global likelihood representation form 

Eq. (2.14), the weight update equation (Eq. (2.77)) is given by 

N 

Wi(k) ex wi(k-l)P(z(k)IXi(k)) = wi(k-1) II P(z(l)(k)IXi(k)). (2.143) 
l=l 

In the centralized implementation, all observations are available at the fusion centre and 

Eq. (2.143) could potentially be used to evaluate the global likelihood function and to update 

the weights. In the distributed implementation, node l has restricted access limited to its 

local observation z(l) ( k) and can, therefore, only evaluate its local likelihood P( z(l) ( k) I Xi ( k)) 

based on its vector particle Xi(k). The likelihoods P(z(m)(k)IXi(k)), m fl, are not available 
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at node l and need to be communicated for updating the weights. A brute force distributed 

approach is to, first, express the weight update equation (Eq. (2.143)) as 

N 

logWi(k) ex logWi(k-1) + Llog (P(z(l)(k)IXi(k))), (2.144) 
l=l 

and then run average consensus algorithms across the network to compute the value of the 

summation term for each particle Xi ( k). A total of N 8 synchronous consensus runs are used 

to compute the summation terms for each particle (where N8 is the number of particles). 

There are two main issues with the DPF implementations using the likelihood/observation 

fusion. First, using synchronized local particle filters is somewhat restrictive. Second, re-

quiring a total of N 8 synchronous consensus algorithms introduces extensive communication 

overhead. Next, an alternative algorithm (namely DPF via set membership [20]) is proposed 

to address these issues. 

2.5.2.1 DPF via Set Membership 

The distributed implementation of the particle filter via set membership is a 4-step set-theoretic 

approach proposed in [20] to reduce the number of the particles communicated in the fusion step. 

In principle, the DPF via set membership reduces the communication overhead by computing 

the weight update equation (Eq. (2.144)) only for a small subset of particles selected using a 

set-theoretic approach as explained below. 

1. Local set selection: Node l, for (1 :::; l :::; N), implements a local particle filter and performs 

local set selection as follows 

(a) Oversample the particles and weights {Xi(k-1), Wi(k-1)}~1 to extend the number of 

particles and obtain {Xi'( k -1), Wi'( k -1)} f, ~ f s where L E N, and N denotes the set 

of natural numbers. 
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(b) Sample the transitional density P(x(k)l:Xi'(k -1)) and compute the corresponding 

weights based on the local likelihood P(z(l) (k)lx(k)) to obtain {Xi'(k), wi~l) (k)}~~fs. 

Assuming local set selection was successful in the previous iteration, all nodes had the 

same extended set of particles and associated weights. After sampling of the transi-

tional density, the weights would be different at the local nodes. 

(c) Resample N 8 particles from N 8 x L particles to obtain the local set of particles and 

weights {:X~l) (k), Wi(l) (k) }~1 . After this step, local nodes would have different particles 

which explains why the superscript l reappears. The resampled particles are from local 

posterior P(x(k)lx(k-1), z(l)(k)). 

(d) Node l, for (1 ~ l ~ N), computes the coordinates of a box £(l)(k) containing its 

particles. Term £(l)(k) represents the region where P(x(k)lx(k-1), z(l)(k)) contains 

the majority of its mass. 

2. Global Set Determination: All nodes cooperatively compute the intersection of their local 

boxes, i.e., the global box £(k) which contains samples corresponding to the region with 

the highest likelihood. Note that this can be implemented by running a combination of 

maximum and minimum consensus algorithms on £(l)(k). 

3. Distributed Importance Density Sampling: Once the global box is determined, it is used to 

form an approximate of the optimal proposal distribution P (x(k)lx(k-1), z(k)) as follows 

U (x(k)lx(k-1),£(k))= od(x(k) E £(k)) + (3I(x(k) ~ £(k)) P(x(k)lx(k-1)), (2.145) 
'Y 

where 'Y is the normalizing constant to make U(·) a proper density, I(·) is an indicator 

function, and (3 «a. Node l generates the predicted particles form the proposal distribution 

given by Eq. (2.145). Specifically, each node first draws particle from the transitional density 
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P(x(k)lx(k - 1)). If the sample belongs to the global box £(k), it is accepted with high 

probability. Otherwise, the sample is discarded with high probability. 

4. Weight Update: For each accepted vector particle, a distributed average consensus algorithm 

computes its corresponding weights using Eq. (2.144). 

5. Resampling: Finally, resampling is performed to generate N 8 uniformly weighted particles. 

The DPF via set membership [20] is an example of algorithms belonging to the fuse-then-estimate 

category. Alternative algorithms belonging to this category are [19, 21, 22]. Algorithms proposed 

in [21, 22] are applicable when the global likelihood is exponentially distributed. In such scenarios, 

References [21, 22] approximate the global likelihood as a function g' ( ·) of the summation of some 

other function g"(-) of the local observations, i.e., P(z(k)Jx(k)) = g'("i:,{: 1 g"(z(l)(k))), which 

can be computed distributively using average consensus algorithms. Reference [19] constructs a 

distributed auxiliary particle filter algorithm such that every node has a copy of the same filter 

(the same weights and particles). To do this, local nodes execute a synchronization routine so that 

their random number generators have the same seeds; in this way, they always sample the same 

values. The algorithm proposed in [19] is similar in concept to the DPF via set membership [20]. 

A subset of effective particles are selected first by distributively computing preliminary weights for 

all the particles using gossip algorithms (randomized counterpart of consensus algorithms). The 

effective particles are the ones with the highest preliminary global weights. Once the effective 

particle set is selected, another runs of gossip algorithms are used to computed the updated 

weights. 

Finally, in the context of distributed implementation of the Kalman filter, communicating 

state posteriors (fuse-then-estimate category (Section 2.3.1)) is advantageous over communicating 

functions of local observations or local likelihoods (fuse-then-estimate category (Section 2. 3. 2)) 
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because the later would result loss of information in case packets are lost. If instead, information 

on the state posteriors is communicated, lost information can be recovered since it is implicitly 

present in the future state posteriors. In the context of DPF implementations, however in terms 

of the accuracy, the algorithms belonging to fuse-then-estimate category (Section 2.5.2) are less 

sensitive to the algorithms belonging to estimate-then-fuse category (Section 2.5.1). This is mainly 

due to the role of the proposal distribution. The algorithms belonging to the former category 

(Section 2.5.2), typically, use a distributively computed proposal distribution while algorithms 

belonging to the latter category (Section 2.5.1) usually incorporate a locally designed proposal 

distribution. Intuitively speaking, a combination of two categories will be able to both recover lost 

information (which is a property of algorithms belonging to estimate-then-fuse category) and at 

the same time implement a reasonable proposal distribution and reduce the sensitivity of the DPF 

implementation (which is a property of algorithms belonging to fuse-then-estimate category). 

In summary, the existing distributed implementations of the particle filter suffer from some of 

the following drawbacks: 

1. A large number of iterative parallel consensus runs is required to reach consensus on a 

selected set of global parameters between two consecutive iterations of the local particle 

filters. Algorithms belonging to the fuse-then-estimate category, such as the DPF via set 

membership, are more sensitive to this problem because they require a significant number 

of consensus runs. 

2. Most of the existing distributed particle filter implementations are based on the SIR filter 

and use the transitional P(x(k)lx(k-1)) (Eq. (2.78)) as the proposal distribution. Such a 

selection is not optimal. Choosing the transitional distribution is a major challenge and a 

bottleneck to the performance of the distributed particle filters. 
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3. Some form of the Gaussian approximation is commonly used in the DPF implementations. 

For example, the global likelihood is approximated with a Gaussian distribution in [18]. 

Likewise, the global filtering/posterior distribution is assumed to be Gaussian in (23,24]. The 

advantage of the particle filter is lost by approximating the global posterior by a Gaussian 

distribution. 

4. The consensus step used by the local particle filters is assumed to converge within the time 

interval available between two successive observations. The performance of the distributed 

approaches degrades substantially if consensus is not reached within two consecutive it­

erations of the local particle filters. A major problem in distributed estimation networks 

is unreliable communication (especially in large and multi-hop networks), which results in 

communication delays, information loss and, therefore, delays in convergence of the consen­

sus step. Referred to as intermittent network connectivity [123, 124], this issue has not been 

investigated in the context of the distributed particle filter implementations. 

5. Computation of the global estimates from local estimates during the consensus step is based 

on an sub-optimal fusion rules (e.g., local averaging) which ignores the problem of common 

information between the local state estimates and results in the degradation of the overall 

performance. 

In summary, drawback 4 is common to all existing DPF implementations. In addition, the DPF 

implementations suffer either from Drawback 1 (extremely high communication overhead (19, 20]) 

or combination of Drawbacks 2, 3, and 5 (strong approximations and suboptimal fusion (21-24]). 

In the subsequent chapter, I develop distributed implementations of the particle filter to address 

the aforementioned issues. 
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2.6 Applications 

In this section, I review potential applications of the distributed implementation of the particle 

filer considered in the thesis. 

2.6.1 Bearing Only Tracking 

The problem of bearings-only tracking (BOT), also referred to as target motion analysis, arises 

in a variety of non-linear signal processing applications including radar surveillance, underwater 

submarine tracking in sonar, and robotics (102, 103). In terms of our state model (Eq. (2.3)), 

the state vector is given by x(k) = [X(k), Y(k), X(k), Y(k)]T. The trajectory of the target is 

described using different state models such as (103): (i) Constant velocity model; (ii) Clockwise 

coordinated turn model; (iii) Anticlockwise model; (iv) Constant acceleration model, or; (v) some 

combination of (i)-(iv). For example, the clockwise coordinated turn state model is given by 

Eq. (2.3) with the state function 

1 0 sin(n(k)6T) 1-cos(n(k)6T) 
n(k) O(k 

0 1 1-cos(n(k)~T) sin{n(k)~T) 

O(k) = Am ' f(x(k)) = O(k) n(k) 
with 

0 0 cos(O(k)~T) - sin(O(k)~T) V(X(k))2 + (Y(k))2 

0 0 sin(O(k)~T) cos(O(k)~T) 

(2.146) 

where ~Tis the sampling time and Am is the manoeuvre acceleration parameter. Measurements 

are the target's bearings with respect to the platform of each node referenced (clockwise positive) 

to the y-axis, i.e., 

(
X(k) - X(l,m)(k)) (l ) 

atan Y(k) - y(l,m)(k) + ( ,m (k), (2.147) 
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Figure 2.8: The configuration and bearing measurements. (a) Initial sensor locations and one realization 

of the target's trajectory. (b) Bearing measurements at four randomly selected nodes. 
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(X(l,m)(k), y(l,m)(k)) are the coordinates of node sensor m connected to processing node l. 

The overall observation vector is a combination of the local observations z<t,m)(k) as given by 

Eq. (2.147). As shown in Eqs. (2.146) and (2.147), BOT is inherently a non-linear application with 

its non-linearity incorporated in the state dynamics and/or in the measurement model depending 

on the choice of the coordinate system used to formulate the problem. Fig. 2.8(a) plots the tar­

get's track as modeled by Eq. (2.146) along with the locations of the processing nodes. Fig. 2.8(b) 

shows the bearing measurements (in degree) obtained from four randomly selected nodes. The 

objective is to design a practical filter capable of estimating the kinematics (position [X, Y] and 

velocity [X, Y]) of the target from the bearing angle measurements and prior knowledge of the 

target's motion. 

Since each node has a limited communication range, local nodes configured using the central­

ized architecture have to send their local observations indirectly via multihop relay to the fusion 

centre. The fusion centre in the centralized particle filter needs to wait for all observations and 

then perform the estimation update which results in significant latency in computing the state 

estimates. In dynamic networks where the network size and connections can change due to node 

failure and/or communication link failure, observations may not reach the fusion centre at times. 

Further, any lost observation not reaching the fusion centre can not be recovered since estimation 

is limited to the fusion centre. Last but not the least, nodes in the immediate neighbourhood of 

the fusion centre relay more data which means that the energy consumption (energy required for 

transferring a massage times the number of massages) is unbalanced in the centralized architec­

ture, and mostly concentrated near the fusion centre. Distributed estimation, on the other hand, 

overcomes these issues by maintaining local state estimates across the network and limiting the 

communication to local neighbourhoods. Most significantly, the latency issue can be resolved in 

the distributed estimation approaches with appropriate control of the consensus overhead. 
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2.6.2 Range Only Tracking 

As the second application, I consider a distributed unicycle mobile robot localization problem 

using range only measurements [6, 7]. This is a good benchmark since the underlying dynamics is 

non-linear with non-additive forcing terms resulting in a non-Gaussian transitional state model. 

The state vector of the unicycle robot is defined by x(k) = [X(k), Y(k), B(k)]T, where (X(k), Y(k)) 

is the 2D coordinate of the robot and B( k) is its orientation. The velocity and angular velocity are 

denoted by V(k) and W(k), respectively. The following discrete-time non-linear unicycle model [6] 

represents the state dynamics of the robot 

X(k) 

Y(k) 

and B(k) 

X(k-l) + ~(k-l) (sin (o(k-1) + W(k-l)~T) - sin (B(k-1))), (2.148) 
W(k-l) 

Y(k-1) + ~(k-l) (cos (e(k-1) + W(k-l)~T) - cos (B(k-1))), (2.149) 
W(k-l) 

B(k-1) + W(k-l)~T + ee~T, (2.150) 

where ~Tis the sampling time and ee is the orientation noise term. The observations are range-

only measurements given by 

z(l,m)(k) = J (X(k) - X(l,m)(k)) 2 + (Y(k) - y(t,m)(k)) 2 + ((l,m)(k), (2.151) 

where (X(l,m)(k), y(l,m)(k)) are the coordinates of node sensor m connected to processing node l. 

Since the state is locally unobservable, the sensors have to cooperate with each other to estimate 

the robot's location. Distributed localization via range-only measurements is another application 

of distributed estimation algorithms where the state model is non-linear and is locally unobservable 

at individual sensor nodes. 
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2.6.3 Acoustic Source Localization 

Another application of distributed particle filter approaches is in acoustic source localisation 

using an acoustic vector sensor (AVS) network. The AVS [105] employs a co-located sensor 

structure capable of providing 2-D (azimuth and elevation) direction of arrival (DOA) informa-

tion. Recently, advances in distributed AN/SN systems have motivated the deployment of AVS 

networks for acoustic source localization. To track NT acoustic sources located at xm(k) = 

[Xm(k),Ym(k),Zm(k)JT E IR3 x 1, for (1::::;; m::::;; NT), at time instant k, assume N AVS nodes at 

fixed locations x(l) = [X(l), y(t), z(l)jT E IR3 x 1 , for (1 ::::;; l ::::;; N), are arbitrarily deployed. The 

DOA of the acoustic signal associated with the mth source at the lth AVS node is given by 

(t) _ _ 1 (Xm(k) - X(l)) . 
cPm (k) - tan Ym(k) _ y(l) , 

(t) k -1 ( Zm(k) - z(t) ) 

'l/Jm ( ) =tan J(Xm(k) - X(l))2 + (Ym(k) - y(l))2 ' (2.152) 

where c/>~(k) E [-7r, 7r] and 'l/J~(k) E [-7r/2, 7r/2] represent the azimuth angle and the elevation 

angle respectively, and superscript T denotes the transpose. Let 

u~(k) = [cos 'l/J~(k) cos c/>~(k), cos'lj;~(k) sin c/>~(k), sin 'l/J~(k)r (2.153) 

be the unit direction vector pointing out from the lth AVS sensor towards the mth source. · As-

suming that at time step k, To number of snapshots are considered, the collection of acoustic 

source signals sm(k), (1 ::::;; m::::;; NT), is given by 

(2.154) 

The received signal model for the lth AVS node is as follows 

(2.155) 

where X(k) = [xf(k), ... , x~T(k)jT is the source state, g(l)(X(k)) = [a~(k), ... , a;{T(k)] with 

a~(k) = [1,u~(k)JT is the steering vector, and E(l)(k) E c4 xTo represent the channel noise in-
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eluding the pressure and velocity noise terms. Note that the particle velocity terms are normalized 

by multiplying by a constant term -p0c0 , where p0 and c0 represent the ambient density and the 

propagation speed of the acoustic wave in the medium respectively. The noise process e(l)(k) 

is a sequence of complex-valued Independent and identically distributed (IID) circular Gaussian 

random variables with zero mean and covariance matrix r. 

Since dynamic sources are considered, the source state Xm ( k) is constructed by cascading the 

original position component x~ ( k) with a velocity component x~ ( k). Constant velocity model is 

employed here to model the source dynamics as follows 

X(k) = F X(k -1) + G(v(k)), (2.156) 

where v(k) is the global uncertainties in the state process. The coefficient matrix F and G are 

defined respectively as 

(2.157) 

where Iq denotes the qth order identity matrix, D..T represents the time period in seconds between 

the previous and current time step, and © denotes the Kronecker product. Eqs. (2.155) and 

(2.156) present the state-space model for the AVS network based tracking problem. 

2.6.4 State Estimation in Power Grids 

State estimation [106-109] in electrical power grids is used to monitor the state of the grid, enable 

energy management, optimize power flows, and perform reliability /security assessment. State 

forecasts are also used to analyze contingencies and determine necessary corrective actions against 

possible failures in the power systems. In the electric power distribution networks, the underlying 

state and observation models are highly nonlinear. The observations are geographically distributed 
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across the entire distribution grid. The large dimensionality of the estimation problem precludes 

the direct application of the centralized particle filter primarily due to its high computational 

complexity. In other words, although the centralized approach is optimal, it is neither robust nor 

scalable to such large-scale dynamical systems with geographical distributed observation nodes 

primarily because of two reasons. First, extensive computations are required at the fusion node 

due to the high dimensionality of the dynamical systems. Second, the centralized implementation 

requires a large number of information transfers to the fusion center thus adding considerable 

latency (a major drawback for real-time applications) to the estimation mechanism. 

The state estimation approaches in complex electric power distribution networks, typically 

consider the overall system as a union of several low-dimensional subsystems. Each subsystem 

is a combination of multiple, geographically distributed nodes representing a variety of power 

devices such as generating stations, compensators, or loads. Within each subsystem, the voltage 

and power supplied to a feeder at the substation are usually the only real time measurements 

available to the system operator at the distribution control centre. More extensive real time 

monitoring and control are required for effective operation of the system and for good quality 

of service to the customer coupled with the need to prevent wide-spread power blackouts. As 

outlined below, there are at lease three major aspects in the power grids that directly impact state 

estimation approaches and motivate development of distributed estimation implementations. 

1. Monitoring the power grid over large geographical areas calls for distributed control, and 

hence, distributed state estimation to facilitate coordinated monitoring. 

2. More advanced measurement technologies like phasor measurement units (PMUs) have of­

fered hope for near real-time monitoring of the power grid. However, the latency introduced 

by the centralized estimation architecture is a major barrier toward achieving this goal. 
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3. To facilitate smart grid features such as demand response and two-way power flow, timely 

and accurate models and estimation approaches are required which calls for distributed 

on-line state estimation at the distribution level. 

2.6.5 State Estimation in Distributed Camera Networks 

Over the past decade, large-scale camera networks (110] have become increasingly popular in 

a wide range of applications, including: (i) Sports analysis; (ii) Security and surveillance; (iii) 

disaster response, and; (iv) Environmental modeling, where the objective is to follow the trajectory 

of a key target, e.g., a star player in a soccer game or a suspect in a surveillance environment. 

In many applications, bandwidth constraints, security concerns, and difficulty in storing and 

analyzing large amounts of image data centrally at a single location necessitate the development 

of distributed camera network (DCN) architectures [111]. In distributed tracking via camera 

network each camera acts as a local agent and estimates certain parameters of the target using 

a signal processing algorithm based upon its own set of video sequences. The local estimates are 

then shared with the neighboring cameras in an iterative, decentralized, gossip-type fashion, and 

a final estimate is computed across the network using consensus algorithms. 

Most of the recent focus on distributed tracking algorithms for DCN is devoted to developing 

distributed implementation of the Kalman filters [111]. Although particle filters are popular for 

visual tracking [112, 113] in a centralized architecture, their distributed implementations are less 

explored for tracking in DCNs. Distributed particle filter approaches proposed in the Thesis can 

be applied (with proper modifications) for tracking problems in DCN. 
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2.7 Summary 

In this Chapter, the Bayesian estimation approaches were reviewed as background material. The 

centralized and distributed Bayesian estimation framework were introduced in Section 2.1. Start­

ing with linear systems, three implementations of the Kalman filter were presented in the Sec­

tion 2.2.1. In many signal processing applications, the underlying processes are non-Gaussian and 

the state-space models are nonlinear. Direct implementation of the Kalman filter is, therefore, 

not practical. The particle filter was described in Section 2.2.2 as an alternative estimation ap­

proach for nonlinear systems. After presenting an overview of centralized estimation approaches, 

common distributed implementations of the Kalman filter were discussed in Section 2.3 for linear 

systems. Distributed implementation of the particle filter (DPF) were considered in Section 2.5 

as an alternative to distributed Kalman filters for systems with nonlinear dynamics. The DPF 

were classified into 2 main categories: (i) Estimate-then-Fuse where local state estimates are first 

computed and then fused to compute the global estimate, and; (ii) Fuse-then-Estimate where 

the observation/likelihood information is communicated within local neighbourhoods in order to 

construct distributed implementation of the particle filter. 

In summary, the following issues were identified with the existing distributed particle filter 

implementations: (i) A large number of parallel consensus runs is required by the local particle 

filters adding considerable overhead to the system; (ii) Selection of the proposal distribution 

is not optimal; (iii) Some form of the Gaussian approximation of the global posterior density 

and/or global likelihood is used in the DPF implementations, which affects the overall accuracy 

of the estimation mechanism; (iv) Requiring the consensus step to converge within the duration 

between two successive observations is a strict condition that may not be satisfied in networks 

with intermittent connectivity, and; (v) A sub-optimal fusion rule is used to derive the global 

estimate. 
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3 Consensus-based Distributed Implementation of the 

Particle Filter 

Chapter 2 provided an overview of some of the existing distributed particle filter implementations 

developed for systems with nonlinear dynamics and non-Gaussian forcing and observation noise 

terms. A number of issues such as large communication overhead for the consensus step, sub­

optimal selection of the proposal distribution, and requirement for the consensus step to converge 

between two consecutive observations were identified. Chapter 3 proposes three consensus-based 

distributed implementation of the particle filter to address some of these issues. The first ap­

proach is referred to as the constrained sufficient statistic based distributed implementation of 

the particle filter (CSS/DPF). The CSS/DPF belongs to the DPF via likelihood/observation fu­

sion category (Section 2.5.2) and is proposed for distributed bearing-only tracking (BOT) and 

joint bearing/range tracking applications. The CSS/DPF runs localized particle filters at each 

sensor node and computes the global sufficient statistics of the overall system as a constraint 

function (summation) of the local sufficient statistics. The CSS/DPF is, therefore, a two stage 

procedure: (i) First, the average of the local sufficient statistics are computed distributively by 

running average consensus algorithms to derive the global sufficient statistics, and; (ii) Each node 

then updates its localized particle filter using the global sufficient statistics. The number of 

parallel average consensus runs in the CSS/DPF is lower in comparison to the state-of-the-art 
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distributed particle filter implementations, thereby, reducing the communication complexity and 

bandwidth requirement. The second approach presented in this chapter is referred to as the CSS 

based unscented distributed particle filter (CSS/DUPF) which is a combination of the CSS/DPF 

and UCD/DPF for BOT and joint bearing/range tracking applications. The CSS/DUPF im­

proves upon the CSS/DPF by introducing the UKF as the proposal distribution which is a better 

approximation of the optimal proposal distribution as compared to the transitional density. 

The third proposed DPF approach is referred to as the unscented, consensus-based, distributed 

implementation of the particle filter (UCD/DPF). The UCD/DPF couples the unscented Kalman 

filter (UKF) with the localized particle filter at each node such that the UKF estimates a Gaussian 

approximation of the posterior distribution, which is then used as the proposal distribution in 

the particle filter. The UCD /DPF belongs to the DPF via state estimation fusion category 

(Section 2.5.1). Compared to the existing distributed implementations of the particle filter, the 

UCD /DPF offers two advantages. First, it uses all available local observations including the most 

recent ones in deriving the proposal distribution. Second, computation of the global estimate 

from local estimates during the consensus step is based on an optimal fusion rule. 

Table 3.1 compares the proposed full-order distributed particle filter implementations. A range 

of characteristics for each implementation are compared in the table. Characteristics 1 and 2 define 

the type of fusion used in the distributed implementation. Characteristics 3 to 9 define important 

properties useful in selecting the implementation appropriate for the application at hand. Going 

from left to right, the CSS/DPF has the lowest computation and communication complexity but 

has a specialized implementation structure limited to specific applications. The CSS/DUPF is 

relatively more accurate than the CSS/DPF but has a higher computational complexity and still 

specifically designed for BOT and joint bearing/range tracking applications. The UCD/DPF has 

less communication complexity than the CSS /DUPF and generalizable to most applications. 
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Table 3.1: Comparison of different full-order DPF implementations. 

Characteristics CSS/DPF CSS/DUPF UCD/DPF 

1. Likelihood/Observation fusion x x 

2. State estimation fusion x x 

3. Gaussian approximation for 
x x 

the global likelihood 

4. Gaussian approximation for 
x 

the global posterior 

5. Requires consensus convergence x x x 

6. Application specific x x 

7. Restrict the proposal to 
x 

the transitional distribution 

8. Recovery from loss of information x x 

9. Communication complexity low high medium 

The organization of the chapter is as follows. The proposed CSS /DPF is presented in Sec­

tion 3.1 followed by the CSS/DUPF in Section 3.2. The UCD/DPF implementation is presented 

in Section 3.4. Section 3.3 illustrates the effectiveness of the proposed framework in tracking 

applications through Monte Carlo simulations. Finally Section 3.5 concludes the chapter. 

3.1 The CSS/DPF Implementation 

In distributed Kalman filters, it is well known [32, 114] that the mean of the observations recorded 

across the sensor network provides sufficient statistics to reconstruct the optimal estimate. Ex­

tending this sufficient statistics approach to nonlinear systems, the section proposes a constraint 
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sufficient statistics-based distributed implementation of the particle filter (CSS/DPF) for bearing­

only [102-104] and joint bearing/range [115] tracking problems. Following [116], I show that if 

the global likelihood satisfies certain constraints then it can be expressed as a function S(-) of 

the known local statistics. In the CSS/DPF, I impose another constraint and restrict S(-) to 

the summation operation so that the global statistics can be computed efficiently using average 

consensus. 

3.1.1 Sufficient Statistic-Based Framework 

In this section, the sufficient statistic based framework for distributed implementation of the 

particle filter is developed in terms of the local observations z(l) (k) and the global observation 

z(k) = {z(l)(k)}~ 1 with N denoting the total number of nodes in the network. The global likeli­

hood P(z(k)jx(k)) and predicted density P(x(k)lz(l k - 1)) provide a complete characterization 

of the estimation problem as previously shown in Eq. (2.10). Let S(z(k)) be the sufficient statis­

tic corresponding to the global likelihood function P(z(k)lx(k)). Based on the Fisher-Neyman 

factorization theorem [117], the global likelihood is factorized as 

(3.1) 

where 'Ti(·) and 72(·) are functions of enclosed variables. 7i(z(k)) is independent of the state x(k) 

and can be considered as the normalization constant. In other words, when node l, (1 ::; l ::; N), 

knows the sufficient statistic S(z(k)) it can evaluate the global likelihood P(z(k)jx(k)) locally for 

any given value of the state vector x(k) or its vector particle representation X~l)(k). Below, I 

define the local and global sufficient statistics. 

Definition 1. Any sufficient statistic that pertains to the overall observation z(k) used to describe 

the global likelihood P(z(k)jx(k)) is called the global sufficient statistic (GSS) G(k). 
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Definition 2. Any sufficient statistic that pertains to the local observation (z(l) (k), for 1 ~ l ~ N) 

used to describe the global sufficient statistics is referred to as the local sufficient statistic (LSS) 

The following lemma provides the conditions for the existence of LSS and GSS, and relates 

the GSS of the global likelihood function to the LSSs at node l, (1 ~ l ~ N). 

Lemma 1. If the global likelihood P( z( k) Ix( k)) at iteration k satisfies the factorization defined in 

Eq. (2.14) and the local likelihood P(z(l)(k)lx(k)) possesses a sufficient statistic y(l)(k), (1 ~ l ~ 

N), then {Y(1)(k) , ... ,y(N)(k)} are jointly sufficient for estimating x(k) in terms of the global 

likelihood function. 

The proof of Lemma 1 is included in Appendix A.l. With some additional constraints on the 

nature of the factorization admitted by P(z(k)lx(k)), there exists a function S(-) such that the 

GSS G(k) equals S(Y(1)(k), ... ,y(N)(k)) as summarized in the following lemma. 

Lemma 2. Assuming the local observation are independent given the state variable which results 

in the following factorization of the global likelihood function 

N 

P(z(k)lx(k)) = IJ P(z(l)(k)lx(k)), 
l=l 

and let the global likelihood P(z(k)lx(k)) (similarly the local likelihood P(z(l)(k)lx(k)) at node l) 

be factorizable, i.e., 

P(z(k)lx(k)) = hi(z(k))h2(z(k),x(k))h3(x(k)) (3.2) 

with the conditions: 

(i) h1 (z(k)) > 0, and; 

(ii) for nodes i f:- j 

h~i)(z(k),x(k))h~1)(z(k),x(k)) = h2 (¢(z(i)(k),z(j)(k)),x(k)) h4 (z(i)(k),z(j)(k)), (3.3) 
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then there exist LSSs {Y(l) (k ), ... , y<N) (k)} and a function S( ·) such that the GSS is given by 

G(k) = S(y(l)(k), ... ,y(N)(k)). (3.4) 

Note that hi(·), h2(·), h3(·), h4(·), as well as their localized counterparts hi*\), h~i)(·), h1i)(·), 

h~i) ( ·), and ¢( ·) denote functions of the enclosed variables. 

The proof of Lemma 2 is provided in Appendix A.2. Lemmas 1 and 2 show that the GSS 

can be represented as a function of the LSSs under the constraints specified in Eqs. (3.2)-(3.3). 

Several standard distributions satisfy these constraints including the Gaussian distribution for 

the observation noise ((l)(k) at node l (a standard model used in the bearing and range tracking 

problems [103]). To provide more insight into the nature of the LSSs and GSSs, I consider the 

following simplified case of a distributed network with identical sensor nodes and Gaussian noise, 

i.e., all sensor nodes follow the same observation model 

z<l)(k) = g(x(k)) + c<l)(k), (3.5) 

for (1 ~ l ~ N), where (<l)(k) rvN(o,a<0
2
(k)). Expressing the global likelihood (Eq. (2.14)) as 

It is noted that node l, (1 ~ l ~ N), has three LSSs, i.e., Y?)(k) = z(l)
2
(k)/2a<l)

2
(k), y~l)(k) = 

l/2a<0
2
(k), and y~l)(k) = z(l)(k)/a<l)

2
(k). The three LSSs will result in three GSSs as follows 

G1(k) 
N z(l)2(k) N (l) 
~ 2a<z)2(k) = ~Y1 (k) (3.7) 

N N 
G2(k) I: i I: (l) (3.8) 2a<l)2(k) = Y2 (k) 

l=l l=l 

G3(k) t z<O(k) t (l) 
l=l a(lF(k) = l=l Y3 (k). 

(3.9) 
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The GSS can be computed by running average consensus algorithms on the GSS across the 

network. Note that the result of the average consensus algorithm needs to be multiplied by the 

number of nodes N to be used in Eq. (3.6). The number of nodes in the proposed CSS/DPF 

are assumed known. If not, one additional consensus run with all nodes set to 0 except for the 

originating node that is set to 1 can be used to determine the number of active nodes in the 

network. 

In the CSS/DPF, I impose another constraint and restrict SO defined in Lemma 2 to a 

summation such that a GSS can be computed efficiently using an average consensus algorithm. In 

other words, I design the LSSs and GSSs in the CSS/DPF such that SO is given by the following 

summation 

N 

G(k) = S(Y(1)(k), ... , y(N)(k)) = Ly(l)(k). (3.10) 
l=l 

Below, the bearing-only tracking (BOT) in two and three dimensions is considered, which is then 

extended to joint range/bearing tracking [102-104]. 

3.1.2 CSS/DPF for Bearing and Range Tracking 

In applications with locally dependent observation models, g(l)(x(k)) is not only a function of 

the state variables x(k) but may also depend on additional local variables, say )..(l)(k). The BOT 

problem belongs to this category where the local observation model at node l, (1 ~ l ~ N), is a 

function of the state variables and the coordinates {X(l)(k), y(l)(k)} of node l. In such scenarios, 

the observation model needs to be factorizable as follows 

(3.11) 

for which the LSSs and GSSs are computable. Next, the CSS/DPF is developed for the 2D bearing 

only tracking problems. 
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3.1.2.1 2D Bearing-only Tracking 

Recall that bearing-only tracking (BOT) estimates the kinematics of the target (position and 

velocity). In the 2D tracking scenario, the state representing the target is defined as x(k) = 

[X(k) X(k) Y(k) Y(k)]T, where T denotes transposition, [X, Y] the position, and [X, Y] the 

velocity of the target. Sensor node l records the bearing between the sensor-target line of sight 

with respect to the platform of the sensor nodes referenced (clockwise positive) to the y-axis 

(azimuth) as 

(l) _1 (X(k) - X(l)(k)) 
Ze (x(k))=tan Y(k)-Y<O(k) ' (3.12) 

where )..(l)(k) = (X(l)(k), y(l)(k)) are the known coordinates of node l. The scalar observation 

z~l)(k) made at node l is the true bearing z~l)(x(k)) plus additive noise as follows 

(3.13) 

The participating nodes can be either static or mobile. For mobile nodes, a cooperative self local-

ization algorithm, based on the global positioning system (GPS) or using some other anchor-based 

algorithm [121) is required to ascertain the locations of the observation nodes. The CSS/DPF 

uses the following result to factorize the global likelihood for the 2D-BOT problem. 

Theorem 2. In an agent network comprising N local nodes with local bearing observations z~O(k), 

{1 ~ l ~ N), and under conditions specified in Lemmas 1 and 2, the global likelihood function for 

the 2D BOT can be expressed as follows 

P(zo(k)lx(k)) = Co~k) exp { - ~ [co,1(k) + X 2
(k)Go,2(k) 

+ Y 2(k)G9 ,3 (k) - 2X(k)Y(k)G9,,(k) + 2X(k)Go,s(k) - 2Y(k)Go,6(k)]} (3.14) 
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where 

N [z~l)(k)]2 
Go,1(k) = L R(l)(k) ' 

l=l 0 
'---v---" 

Y~'.i(k) 
N . 2 ( (l) (k)) 

( )
- ~sm Z0 

Go,3 k - ~ (l) , 
l=l Ro (k) 

'----v-----' 

Y~'.~(k) 
N (l) ( (l) ) 

( ) 
~ Z 0 ( k) cos Z 0 ( k) 

Go,5 k = ~ (l) , 
l=l Ro (k) 

N 2( (l)( )) 
( )

- ~cos Z0 k 
Go,2 k - ~ (l) , 

l=l Ro (k) 
~ 

Y~'.~(k) 
N ( (l) ( )) . ( (l) ) 

( ) 
~cos Z 0 k sm Z 0 ( k) 

Go,4 k = ~ (l) , 
l=l Ro (k) (3.15) 

Y~'.~(k) 

and 
N z<t) (k) · (z<t) (k)) 

G (k)-~ o sm o 
o,6 - {=: R~l)(k) 

Y~'.~(k) 

Parameter R~l) (k) is the variance of observation noise at node l, Co(k) = (27r)N/2 TI{:,1 (R~l) (k) )112 , 

and 

(3.16) 

with (X(l)(k),Y(l)(k)) the coordinate of node lat time k. 

The proof of Theorem 2 is included in Appendix A.3. Terms G*(k) are the GSSs expressed as 

functions of the LSSs Yil)(k), (1 :::; l :::; N). Theorem 2 shows that a total number of six global 

sufficient statistics (GSS) and an additional term Co(k) are needed at each local particle filter to 

be able to evaluate the global likelihood locally. Because the LSSs are only functions of local quan-

tities, the six GSSs can be computed using six parallel average consensus algorithms. If needed, 

term Co(k) can also be computed distributively using another average consensus algorithm. After 

the consensus step, the global likelihood can be evaluated locally from the consensus values of 

the GSS G1 (k) to G6 (k) and Co(k). Based on Theorem 2, the CSS/DPF is explained in terms of 

Algorithm 3. 
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Algorithm 3 CSS/DPF IMPLEMENTATION FOR 2D BOT PROBLEM. 

Local node l, (1 ~ l ~ N), performs the following steps to update its particle set for iteration k. 

1: Compute LSSs: Node l, (1 ~ l ~ N), computes the LSSs (Y?)(k) -Y~l\k)) from its local 

observation Z~l)(k) based on Eq. (3.23). 

2: Compute GSSs (Consensus Step): A total of 6 parallel average consensus algorithms are 

performed to compute the GSSs (G1(k) - G6 (k)) as defined in Eq. (3.23). 

3: Particle Generation Step: For each particle X~l)(k-1), for (1 ~ i ~ N~l)), a new predicted 

particle x~l)(k) is sampled form the transitional density P(x(k)lx(k-l))lx(k-l)=X~k)(k-1) (the 

proposal distribution). 

4: Weight Update: The weights associated with the predicted particles x}l)(k) (computed in 

Step 2) are calculated based on the global likelihood (Eq. (3.14)) using the values of the GSSs 

computed in Step 3 as follows 

5: Compute State Estimates: An approximation of the global MMSE state estimate y.:(l)(k) 

at node l is computed from {X}l), wp)(k)}~1 and its corresponding error covariance p(l)(k) 

as follows 

(3.17) 
i=l 

N(t) 

pCl)(k) = N~I) t, (xll) (k)-x(l)(k)) (xll) (k)-jiJI) (k)) T (3.18) 

6: Resampling: To avoid degeneracy, the updated particles x}z) (k) are resampled using Algo-

rithm 2. 
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3.1.2.2 3D Bearing-Only Tracking 

In this section, I extend the CSS/DPF to the 3D BOT problem with state vector x(k) 

[X(k), X(k), Y(k), Y(k), Z(k), Z(k)]T. Compared to 2D BOT, the Z-coordinate Z(k) and its 

velocity component Z(k) are included in the state vector. For 3D BOT, measurements often in-

volve a pairwise combination between azimuth bearing, conical bearing, or elevation bearing [102]. 

Without loss of generality, I consider the pair of azimuth and elevation bearings with the azimuth 

bearing given by Eq. (3.12). The elevation bearing is defined as 

(3.19) 

with the overall observation model 

[ 

z~l)(k) l = [ tan-
1 (~~~~=;;'.'.IZ?) l + [ ,~l)(k) l 

z(l) (k) tan-1 ( Z(k)-Z (k)) (ll) (k) 
</> z~> (x(k)) '+' 

(3.20) 

at node l. Term z~) ( x( k)) is the true range between the sensor node and the target as follows 

z~)(x(k)) = V (X(k)-X(l)(k)) 
2 + (Y(k)-Y(l)(k)) 

2 
(3.21) 

and (X(l)(k), y(l)(k), zCl)(k)) is the 3D coordinate of the sensor node l. 

Theorem 3. In an agent network comprising of N sensor nodes with elevation bearing obser-

vations z~l)(k) and under conditions specified in Lemmas 1 and 2, the global likelihood function 

for the 3D BOT problem can be expressed collectively in terms of Eqs. (3.14) and the following 

equation 

P(z¢(k)lx(k)) C¢~k) exp { ~l ( G¢,1(k) - 2Z(k)G¢,2(k) + 2X(k)G¢,3(k) 

+ 2Y(k)G¢,4(k) + Z 2 (k)G¢,5(k) + X 2 (k)G¢,6(k) + Y 2 (k)G¢,1(k) 

2X(k)Z(k)G¢,s(k) - 2Y(k)Z(k)G¢,9 (k) + 2X(k)Y(k)G<1>,10(k))} (3.22) 
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where 

G<P,s(k) 

y~l.)6(k) 

f, sin2 (Z~I) ( k)) sin2 ( z~l) (k)) 

l=l R~)(k) ' 

G<P,s(k) 

(3.23) 
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with 
N 

C¢(k) = (27r)N/2 II (R~)(k))l/2, (3.24) 
i=l 

the elevation bearing noise variance ( 119 j given by 

(3.25) 

and parameter 

z~l) (k) = z~l) (k) cos(z~l) (k) )-x<l) (k) sin(z~l) (k)) sin(Z~l) (k) )-Y(l) (k) sin(z~l) (k)) cos(z~l) (k) ). 

(3.26) 

The proof of Theorem 3 is included in Appendix A.4. The CSS/DPF algorithm for 3D BOT 

tracking is similar to the 2D BOT scenario except for Steps 1 and 2, where LSSs {Y~l,~(k)} and 

associated GSSs for elevation {G~!i(k)}, (1:::; i:::; 10), are needed in addition to the LSSs {Y~~~(k)} 

and GSSs {G~l,~(k)}, (1:::; i:::; 6), for azimuth. The number of consensus runs is 16 in this case. 

3.1.2.3 2D Joint Bearing and Range Tracking 

In 2D joint bearing and range tracking, the range measurements (as defined below) are available 

in addition to the bearing measurements (Eq. (3.12)) at all local nodes. The overall observation 

model is given by 

where the range observation noise (~) ( ·) is assumed to be independent of bearing observation 

noise dl)(k). The global likelihood for the range observations is expressed in terms of the LSSs 

and GSSs in the following theorem. 
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Theorem 4. In an agent network comprising of N local nodes with range and bearing observations 

{Z~)(k), z~l)(k)}, {1 ~ l ~ NJ, and under conditions specified in Lemmas 1 and 2, the global 

likelihood function can be expressed as Eqs. (3.14) and (3.28) given by 

P(zR(k)lx(k)) = c:(k) exp { -H GR,1(k) + X 2(k)GR,2(k) 

+Y2(k)G R,3(k) + 2X(k)Y(k)G R,4(k) - 2X(k)G R,5(k) - 2Y(k)G R,6(k) l} (3.28) 

where 

N sin 2 ( Z ~ l) ( k)) 
GR,2(k)= L (l) ' 

l=l RR (k) 
'---v--' 

Yh1.~(k) 
N (z<l) (k)) · (z<l) (k)) 

GR 
4 

( k) = _""""' cos e sm e , 
, 8 RW(k) 

Y~.~(k) 
N z~)(k) cos (z~O(k)) 

GR,6(k)=L: (l) ' 
l=l RR (k) 

Yi:.~(k) 

(3.29) 

where CR ( k) is the normalization factor independent of the state variables, R~) ( k) is the variance 

of node l's range observation noise, and 

(3.30) 

The proof of Theorem 4 is included in Appendix A.5. Algorithm 3 can again be applied to 

estimate the states except for Steps 1 and 2, where LSSs {Y~:i(k)} and associated GSSs for 

range {G~~i(k)}, (1 ~ i ~ 6), are needed in addition to the LSSs {Y~~~(k)} and GSSs {G~l,~(k)}, 

(1 ~ i ~ 6), for azimuth. The number of consensus runs is 12 in this case. 
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3.1.2.4 Adaptation of the CSS/DPF to Dynamic Networks 

In this section, we investigate the application of sufficient statistics-based cooperative target lo­

calization approach (CSS/DPF) to dynamic networks, where nodes join and leave the cooperation 

at any time. In this context, two situations are observed which are describe next. Note that in the 

CSS/DPF, the LSSs are being communicated between the neighbouring nodes. Next we assume, 

without loss of generality, that tnode m joins/rejoins the network at iteration k of the CSS/DPF. 

1. A Brand New Node Joins the Cooperation: The new node has no previous state 

estimates available and needs to go through an initialization stage. One of the neighbouring 

nodes transfers the global filtering density P(x(k-l)Jz(l: k-1)) to the new node. Since this 

is an one time initialization, therefore, the initialization overhead is bearable and a good 

aproximation of P(x(k-l)Jz(l: k-1)) (such as the Gaussian Mixture Model (GMM) [17) 

and Parzen representation [27)) of the noeighbouring node can be transfered to the new 

node, which now joins the network. At iteration k, the new node makes an observation 

z(m)(k) and calculates the LSSs which are based on only its local observation. It now starts 

contributing to the consensus step of the CSS/DPF. Once the consensus step converges, all 

nodes including the new node has access to the GSSs. Given P(x(k-l)Jz(l: k-1)) and the 

GSS, the new node can form its own global state estimates and is now a full member of the 

network. 

2. A previously cooperating node that had left the network rejoins the cooperation: 

In this scenario, we assume that the node was making its own observations prior to rejoining 

and has its own local estimates as well as the local filtering density P(x(k-l)Jz(m) (1: k-1) ). 

Node m has two options. It can either treat itself as a new node joining the network and 

follow the peocedure outlined for Case 1. Allternatively, it can combine/fuse its local filtering 
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density P(x(k-l)lz(m)(l: k-1)) with the global filtering density P(x(k-l)iz(l: k-1)) obtained 

from one of the neighbouring nodes and rejoin the network as a full member cooperating 

in the consensus step for computing the GSSs. However, there is an issue with combining 

P(x(k-l)lz(m)(l: k-1)) with P(x(k-l)iz(l: k-1)). Due to existing correlations, direct 

fusion is not feasable as it results in double counting of common information and degrades the 

overall performance. A conservative approach, e.g., covariance intersection can be applied. 

3.1.2.5 Communication Complexity 

The overall communication complexity of the CSS/DPF for the angle-only target localization 

problem at each node (i.e., the number of messages transferred at each iteration of the distributed 

particle filter) is of O((ncss + l)~gNc(U)) where Nc(U) is the total number of consensus itera­

tions required for convergence. Recall that the consensus matrix U is a function of the connectivity 

of the network. It can be shown [120] that Nc(U) = -1/ max2<i<N log(l-\i(U) I), where Ai(U) are 

the eigenvalues of the consensus matrix U. The communication complexity of the CSS/DPF is, 

therefore, related to the properties of the communication network. For [23,24,59], the communica­

tion complexity is of O(n;~gNc(U)), which implies an improvement by a factor of n;/(ncss + 1) 

in favor of the CSS/DPF. The computational complexity of the CSS/DPF is difficult to compute 

due to presence of the non-linear terms. Note, however, that the computational burden in the 

CSS /DPF is distributed evenly across the nodes, while the fusion center performs most of the 

computations in the centralized particle filter. In general, the number of computations at each 

node in the distributed implementation is significantly lower than these of the fusion centre in its 

centralized counterpart. This places an additional power energy constraint on the fusion center 

causing the system to fail if the power of the fusion center drains out. 

In conclusion, the CSS/DPF is a distributed implementation of the SIR filter and belongs to 
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the DPF via likelihood/observation fusion category (Section 2.5). The CSS/DPF implementation 

significantly reduces the number of required consensus runs for bearing-only and joint bearing­

range tracking applications. The CSS /DPF requires the global likelihood function to satisfy 

conditions of Lemma 1 and 2. Though fairly straightforward and simple to implement, the 

CSS/DPF has the following drawbacks. 

1. The CSS /DPF is designed specifically for bearing-only and joint bearing and range tracking 

applications. Extending the CSS /DPF to other applications is generally not straightforward. 

2. Choosing the transitional distribution P(x(k)lx(k-1)) as the proposal distribution is not 

optimal. 

3. In the CSS/DPF, some function of the local observations are transferred to neighbouring 

nodes. Communicating state posteriors is advantageous over communicating functions of 

local observations or local likelihoods because the later would result loss of information in 

case packets are lost. If instead, information on the state posteriors is communicated, lost 

information can be recovered since it is implicitly present in the future state posterior. 

4. The CSS /DPF is limited to the Gaussian likelihoods. 

5. As is the case for the existing consensus-based distributed particle filter implementations (18, 

20, 23, 24], the CSS/DPF assumes that the consensus algorithm converges within the time 

interval available between two successive observations. Such an assumption in large networks 

is non-realistic and the consensus step loses synchronization with localized filters. 

Next, I extend the proposed framework (CSS/DPF) to distributed implementation of the un­

scented particle filter, referred to as the CSS/DUPF which addresses drawbacks 2 and 3 of the 

CSS /DPF as follows: 
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1. Instead of choosing the transitional distribution P(x( k) Ix( k-l)) as the proposal distribution, 

the CSS/DUPF uses an approximation of the optimal proposal distribution and therefore 

uses all available global observation including the most recent ones in deriving the proposed 

distribution. 

2. Unlike the CSS/DPF where only local observations were transferred between the neighbour­

ing nodes, in the CSS/DUPF local state estimates are also communicated between neigh­

bouring nodes. Therefore, in the CSS/DUPF, lost information (e.g., due to link and/or 

node failure) can be recovered since it is implicitly present in the future state estimates. 

3.2 The CSS/DUPF Implementation 

The CSS/DUPF couples a distributed unscented Kalman filter (D/UKF) with the CSS/DPF such 

that the optimal proposal distribution function (Eq. (2. 78)) is approximated with a Gaussian 

distribution whose statistics (mean and error covariance matrix) are computed using the D /UKF 

estimates. The CSS/UDPF is assumed to be in steady state and at iteration k - 1, i.e., all nodes 

have computed the global state estimates (x<l) ( k - 1) and f'(l) ( k - l)) at time instant k - l (based 

on Step 5 of Algorithm 3). A new measurement z(l)(k) is now available at the local nodes. 

Step 1. Similar to CSS/DPF, node l, for (1 ~ l ~ N), computes its LSSs and fuse them distribu­

tively to form the GSSs. Based on the computed GSSs, node l, can locally. evaluate the global 

likelihood P(z(k)lx(k)) for any given particles. 

Step 2. Node l generates a set of (2nx + 1) deterministic samples (referred to as the sigma points) 

S = {Wfl), x;l)(k)};~0 based on the following selection procedure 

xlll (k - 1) = x(ll(k - 1) ± { Jcnx + t<)POl(k - 1)},, (3.31) 
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where term { J(nx + "")P(l)(k - l)h corresponds to the ith column of the square root of matrix 

(nx + "")f'(l)(k -1) and the initial condition is given by xg)(k) = x_(l)(k -1). The corresponding 

weights for the Sigma points {Wi};~1 are given by wJZ) = 1/(2(nx + "")), where "" is a scaling 

parameter and the initial condition for the sigma points is w6l) = K,/(nx + /'l,). 

Step 3. Node l, (1 :::; l :::; N), computes an estimate of its local posterior as follows. 

Step 3.1 The sigma points computed in Step 1 are propagated through the state model (Eq. (2.3)) 

to generate the predicted sigma points 

x~l)(klk - 1) = f(x~l)(k -1)), for i = 0, ... '2nx. (3.32) 

Step 3.2 The predicted sigma points x~l)(klk - 1) are then propagated through the observation 

model (Eq. (3.12) and/or Eq. (3.21)) to generate the predicted observation sigma points 

z~l)(klk - 1) = g(x~l)(klk - 1)), for i = 0, ... '2nx. (3.33) 

Step 3.3 The predic;:ted state estimate x~kp(klk - 1), its error covariance matrix PS~F(klk - 1), 

and the predicted observation estimate zgkp(klk - 1) are computed as follows 

2n., 

xgkp(klk - 1)= L w?)x~l) (klk - 1), (3.34) 
i=O 

2~ T 
PS~p(klk - 1)= L wP) ( x}z) (klk - 1) - xgkp(klk - 1)) ( x~l) (klk - 1)-xgkF(klk - 1)) (3.35) 

i=O 
2n., 

zgkp(klk - 1)= L wP) z~z) (klk - 1). (3.36) 
i=O 

Step 3. 4 The au to covariance Pzz ( k I k-1) of predicted observations, the cross-covariance Pxz ( k I k-
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1) between predicted observation and predicted state estimates are computed as 

2nx T 

P;;)(klk - 1) =I: w?) ( z~l) (klk - 1) - z<l) (k + 11k)) ( z~l) (klk - 1) - z(l) (klk - 1)) , (3.37) 
i=O 

~ T 
P~Q(klk - 1) = L w?) c~~l)(klk - 1) - xgkF(klk - 1)) ( z~l)(klk - 1) - zgkF(klk - 1) )(3.38) 

i=O 

Step 3. 5 The final step is to estimate the statistics of the proposal distribution as follows 

p,(l) (k) 
UKF 

xgkF(kjk - 1) + JC(l) (k) ( z(l)(k) - zgkF(kjk - 1)) 

PSkF(klk - 1) - K:(l)(k)P;;)(klk - l)[K:(l)(k)]T, 

where the Kalman gain is given by 

(3.39) 

(3.40) 

(3.41) 

Step 4. The next step in the CSS/DUPF is to cooperatively compute statistics of the proposal 

distribution. Based on the Chong-Mori-Chang track-fusion theorem [127], the CSS/DUPF algo-

rithm uses the following fusion to fuse local statistics {xgkp(k), PSkF(k)}~ 1 into a common set 

of global statistics denoted by xg~sed) (k) and PS{;sed) (k) 

N 

[PSi{;sed)(k)r
1 = [PSkF(klk - 1)r

1 + L:rPi/Jp(k)r
1 

- [Pi/Jp(klk - 1)r
1 

(3.42) 

A (l.Fused) (k) 
XUKF 

j=l 

Pc(oo) 

[PSi<~sed)(k)]- 1 
[[PSkF(klk-1)r

1
xgkF(klk- l) 

N 

+ I: [P{/Jp(k)r
1
xg{<F(k) - [P{/Jp(klk - l)r1

xgkF(klk -1)], (3.43) 
j=l 

Xc(oo) 

In Eqs. (3.42) and (3.43), {xc(oo), Pc(oo)} are obtained by iterating the following average con-

sensus equations where t E (0, 1/ ~g) [32]. 

(3.44) 
jEN(L) 

P?>(t + 1) = P?>(t) + t L (P~j)(t) - P?>(t)), (3.45) 
jEN(L) 
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till converge to {xc(oo), Pc(oo)}. The initial conditions are 

[Pi/JF(k)t 1 
- [Pi/JF(klk - l)t1 (3.46) 

[Pi/JF(k)t 1xgkF(k) - [Pi/JF(klk - l)t 1xgkF(klk - 1). (3.47) 

In other words, Eq. (2.116) is used to reach consensus with x~l)(t) used instead of X~l)(t) for the 

first consensus run and P?)(t) used instead of X~l\t) for the second run. 

Step 5. Node l, for (1:::; l:::; N), generates Ns random particles X~l)(k) from the following proposal 

distribution 

and computes their associated weights wp) ( k) based on the following weight update equation 

(3.49) 

where the global likelihood function P(z(k)lx(k)) is computed based on the GSSs. The imple-

mentation of the CSS /DUPF is outlined in Algorithm 4. 

Similar to the CSS /DPF, the CSS /DUPF is applicable specifically to bearing-only and joint 

bearing/range tracking applications. Extending the CSS/DUPF to other applications is generally 

not straightforward. Besides, the CSS /DUPF restricts the global likelihood a Gaussian distri-

bution. Next, I propose the UCD /DPF implementation of the particle filter which is applicable 

to more general problems and addresses does not require the global likelihood to be a Gaussian 

distribution. 

3.3 Simulation Results for the CSS/DPF and CSS/DUPF 

In this section, the performances of the proposed CSS/DPF, CSS/DUPF, and UCD/DPF are 

evaluated through Monte Carlo simulations. All simulations were performed using a commer-
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Algorithm 4 CSS/DUPF IMPLEMENTATION 

N(t) 

Input: {X~l)(k - 1), Wi(l)(k - l)h:1 , x<l)(k-1), P(l>(k-1), and z<l)(k). 

N(t) 

Output: {X~l)(k), wp>(k)}i:I, x(l>(k) and p<l)(k). 

Local node l performs the following steps to update its particle set for iteration (k). 

1: Compute LSSs: Same as Step 1 of Algorithm 1. 

2: Compute Statistics of the Proposal Distribution: 

3A: Compute GSSs (Consensus Step): Same as Step 2 of Algorithm 1. 

•Local UKF Step: A local state estimate x(k) is computed via local UKF based on (i) The 

previous global statistics (x<l)(k-1) and p(l)(k-1)), and; (ii) Local observation z(l)(k). 

• Fusion of Local UKFs (Consensus Step): Local state estimates and their corresponding 

error covariance matrix are combined to compute the statistics of the proposal distribution 

(xg~sed) (k) and PSf;sed) (k)) using the fusion rules given by Eqs. (3.42) and (3.43). 

3B: Particle Generation Step: For each particle X~l)(k-1), for (1::; i::; N~l)), a new predicted 

particle x~l)(k) is sampled form the following proposal distribution 

where its statistics are available from Step 3A. 

4: Weight Update: The weights associated with the predicted particles X~l)(k) (computed in 

Step 2) are calculated from the global likelihood Eq. (3.14) and the proposal distribution 

computed in Step 3 as follows 

and then normalized. 

5: Compute State Estimates: Same as Step 5 of Algorithm 1. 

6: Resampling: Same as Step 6 of Algorithm 1. 
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cial software package (MATLAB R2012a, The MathWorks, Inc., Natick, Massachusetts, United 

States). Simulations were performed on a computer with Intel Core i5 CPU 2.27 GHz with 4 GB 

of RAM. 

First, a distributed 2D BOT application (102) is used to quantify the performance of the 

proposed CSS/DPF and CSS/DUPF implementations. As stated in Section 2.6.1, the objective 

is to design a practical filter capable of estimating the kinematics (position [X, Y] and velocity 

[X, Y]) of the target from the bearing measurements and prior knowledge of the target's motion. 

The state vector is, therefore, given by x(k) = [X(k), Y(k), X(k), Y(k)]. BOT is inherently 

a non-linear application with its non-linearity incorporated either in the state dynamics or in 

the measurement model depending on the choice of the coordinate system used to formulate the 

problem. The nonlinear state model is given by x(k+l) = f(x(k))x(k)+e(k+l) where the target's 

motion f(x(k)) is described using different models such as: (i) Constant velocity (CV) model; (ii) 

Clockwise coordinated turn (CCT) model; (iii) Anticlockwise coordinated turn (ACT) model; (iv) 

Constant acceleration (CA) model, or; (v) some combination of (i)-(iv). In this section, f(x(k)) 

is considered to be the non-linear CCT kinematic motion model given by 

1 0 sin(O(k~D.T) 1-cos(O(k)D.T~ 
O(k) O(k 

0 1 1-cos(O(k~D.T) sin{O(k)D.T~ 

f(x(k)) = 
O(k) O(k) 

(3.50) 
0 0 cos(O(k)~T) - sin(O(k)~T) 

0 0 sin(O(k)~T) cos(O(k)~T) 

with the mode-conditioned turning rate O(k) given by 

O(k) = Am 

V(X(k))2 + (Y(k))2 
(3.51) 

The typical manoeuvre acceleration parameter for the filters was set to am = 1.08x 10-5m/s2 [103). 

In the following simulations, an AN/SN is considered comprising of N = 20 observation nodes 

where sensors are distributed randomly in a (15 x 15) m2 square region, unless stated otherwise. 

104 



Within the area under surveillance, each sensor communicates only within a connectivity radius 

of J21og(N)/N meters as previously used by [24]. In addition, the network is assumed to be 

connected with each node linked to at least one other node in the network. The measurements 

z(l)(k) available at node l are the target's bearings with respect its platform referenced (clockwise 

positive) to the y-axis, i.e., 

(l) _ (X(k) - X(l)) (l) 
Z (k) - atan Y(k) _ y(l) + ( (k), (3.52) 

where { x<l), y(l)} are the coordinates of node l. Both state and observation noises are assumed to 

be normally distributed, i.e., e(k) '""'N(O, Q) and ((k) '""'N(O, R). Further, the observation noise 

model is assumed to be state dependent such that the bearing noise variance a~(t) ( k) at node l 

depends on the distance r<l)(k) between the observer and target. Based on [166], the variance of 

the observation noise at node l is given by 

(3.53) 

where different values for parameter Bm are used to test various signal to noise ratios (SNR). 

In other words, R(k) = diag[a~<l) (k)]. In each run, the target starts its track from coordinates 

{10, 10}, with the initial course set at -110° with the standard deviation of the process noise 

ae(k) = 1.6 x 10-2 meter. Matrix Q depends on ae(k) as defined in [103]. Eqs. (3.50)-(3.53) define 

the state-space model completely (Eqs. (2.3) and (2.4)). The performance metric used to evaluate 

different implementation is the root mean square position error (RMS) [103] given by 

(3.54) 

where nMc is the number of Monte Carlo simulations. In the following simulations, 100 Monte 

Carlo runs are implemented. Both the centralized and distributed BOT tracking algorithms 

require an initialization step which is described next. 
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3.3.1 BOT Initialization: 

To derive the initial values for the state vector 

x(l) (0) = [X(l) (0), y(l) (0), X(l) (0), y(t) (O)]T 

at node l, the initialization procedure proceeds as follows. Given the first bearing measurement 

z(l)(l) at node l, the relative position components {X(O), Y(O)} of the target state vector are 

computed based on the procedure described in [103], i.e., 

and IY(O) - y(l)I = f(l) cos(z(l)(l)), 

where { X(l) and y(l)} are coordinates of node l assumed known. The range r(l) of the target 

from node l is initialized at random from other normal distributions, i.e., r<l) ,....., N(r(l), a;). 

The velocity components are initialized using a similar procedure by selecting from a random 

distribution, i.e., s ,....., N(s, a;) and c ,....., N(c, a~), respectively. The velocity components of the 

target state vector is then initialized as X(O) = ssin(c) and Y(O) = s cos(c). The means r<l), s, 

and c along with their corresponding variances a;, a;, and a~ are assumed known. The initial 

error covariance matrix associated with x(O) is modeled as follows 

(J2 2 0 0 x (Jxy 

2 (J2 0 0 
P(O) = 

(Jyx y 
(3.55) 

0 0 a? x 
a?. 

xy 

0 0 2 (J~ aiJx y 

where the constituent elements in P(O) are derived based on [103]. 

In the distributed implementations, the initialization step is performed at each node individ-

ually with the initial observation noise variance of ao = 2.5°. Below four different scenarios are 

considered to evaluate the performance of the proposed distributed estimation framework. 
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Figure 3.1: Scenario 1: Realization of the sensor placement along with the target's trajectory. The 

number of iterations required for achieving consensus in this network is Nc(U) = 5. 

3.3.2 Scenario 1 

To quantify the tracking performance of the proposed CSS/DPF and CSS/DUPF, five different 

estimation algorithms are considered: (i) Centralized scenario where one node has access to the 

observations of all other nodes. (ii) Distributed scenario using the CSS/DPF, (iii) Distributed see-

nario using the CSS/DUPF, (iv) Distributed unscented Kalman filter proposed in [7], referred to 

as distributed UKF, and; (v) Distributed particle filter proposed in [23], referred to as Gu et al. 

For comparison, we also plot the posterior Cramer Rao lower bound (PCRLB)-a lower bound 

on the performance of the optimal distributed estimators The PCRLB is computed based on a 

centralized recursive algorithm presented in [148]. The theory of the PCRLB is introduced in 

Chapter 5 where we present novel distributed algorithms to compute the PCRLB. The initializa-
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tion parameters for the simulation run is obtained by following the filter initialization procedure 

described above with the standard deviations for the measurement and velocity models given by 

Ur= .7, Uc= 7r/VT2, and <78 = .7, and the mean values given by c = -110° ands= 0.4 meter. 

The mean value r<l) of range is the noise corrupted true range between node l and the moving 

target. Resampling in the particle filtering was carried out if Neff(k) < N 8 /3. The number N 8 

of vector particles used at the fusion center in the centralized implementation is 10, 000, while 

the number of particles (NccF or NuPF) used at each node in the distributed implementations is 

1000. Fig. 3.1 shows one realization of the sensor placement along with the target trajectory. 

Due to state-dependent noise variance, the signal to noise ratio (SNR) is time-varying and dif­

fers from one node to the other depending on the location of the target. Two different SNR cases 

(averaged across all nodes and time) are considered: (i) High SNR, where the SNRs at different 

nodes varies form 16dB to 29dB (Fig. 3.2(a)), (ii) Low SNR, where the SNRs ranges from 5dB to 

17dB across the network (Fig. 3.2(b)). In Figs. 3.2(a) and (b) the RMS error computed based on 

Eq. (3.54) corresponding to the CSS/DPF and CSS/DUPF (schemes (ii) to (iii)) are compared 

versus that of the centralized particle filter (scheme (i)), schemes (iv) to (v), and the dPCRLB 

lower bound [51]. In Figs. 3.2(a) and (b) the consensus step is allowed to converge between two it­

eration of the localized filters. Each node initializes its local filter separately, therefore, the initial 

state estimates :X(l) (0) are potentially different. In the centralized particle filter implementation, 

only one node (fusion centre) runs the particle filter based on the initial state estimate of that 

node. It is observed from Figs. 3.2(a) and (b) that the performance of the CSS/DPF and the 

CSS/DUPF are fairly close to each other and that of the centralized particle filter and approaches 

the PCRLB. Both CSS/DPF and CSS/DUPF outperform the distributed particle filter imple­

mentation proposed by Gu et al. (scheme (v)). The distributed UKF implementation (scheme 

(iv)) totally loses the track and eventually diverges. 
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Figure 3.2: Scenario 1: Comparison between the centralized particle filter, the CSS/DPF, the 

CSS/DPF, distributed UKF [7], Gu et al. [23], and the PCRLB: (a) High SNR, and; (b) Low SNR. 
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3.3.3 Scenario 2 

In the second scenario, the performance of the proposed CSS/DUPF using a limited number of 

consensus iterations is compared with that of the centralized particle filter. The purpose of this 

set of simulations is to determine the impact of a limited number of consensus iterations on the 

proposed CSS/DUPF. The consensus algorithms are stopped abruptly after a fixed number of 

iterations without allowing them to converge. The three remaining distributed implementations 

diverge if the consensus algorithm is not allowed to converge and are not plotted here since 

their RMS errors go out of scale. The results are shown in Fig. 3.3 where Fig. 3.3(a) shows the 

RMS error plots for the CSS/DUPF implemented in the network shown in Fig. 3.1 where the 

number of consensus iterations kept at 2 and 3. It is observed that the CSS /DUPF with only 2 

consensus runs catches up with the centralized particle filter. Fig. 3.3(b) depicts the RMS plots for 

another network topology and target track where the number of iterations required for achieving 

the consensus in this network is twice that of the network shown in Fig. 3.1. The implemented 

CSS/DUPF runs a reduced number of consensus iterations. Results for 1, 2, and 3 consensus 

iterations are shown. The results confirms that the RMS error from the CSS /DUPF remains 

bounded and approaches that of the centralized particle filter. 

3.3.4 Scenario 3 

Fig. 3.4 shows the RMS error plots for joint bearing/range tracking problem. The bearing mea­

surements are generated based on the description given in Scenario 1. The range measurements 

are corrupted by Gaussian noise with standard deviation 0.14m. The CSS/DUPF with one to 

three consensus iterations is compared with the centralized particle filter. It is observed that the 

CSS/DUPF with even one consensus iteration provides reasonable results. The performance of 

the CSS /DUPF with two and three consensus iterations are converging to the centralized plot. 
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Figure 3.3: Scenario 2: Comparison between the centralized particle filter and the CSS/DUPF with 

different number of consensus iteration: (a) Based on the network shown in Fig. 3.1, and; (b) Based on 

another network where the number of iterations required for achieving the consensus is twice. 
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Figure 3.4: Scenario 3: Comparison of the centralized particle filter and the CSS/DUPF for joint 

bearing/range tracking problem. 

3.3.5 Scenario 4 

The purpose of this scenario is to evaluate the performance of the CSS/DUPF as a function of 

the number of active nodes in the network. In this scenario, an AN /SN is considered comprising 

of (10 ~ N ~ 50) observation nodes where sensors are distributed randomly in a (60 x 60) 

m2 square region. Other parameters for this simulation are the same as in Scenario 1. Two 

examples of the sensor placements are shown in Fig. 3.5(a) and (b) where Fig. 3.5(a) shows 

the realization of the sensor placement along with the target's trajectory for N = 10. Most of 

the time the target is outside the surveillance region of the local nodes. Because of the state-

dependent nature of the observation noises, large errors are expected in this scenario even for 

the centralized implementation. In other words, N = 10 observation nodes are not enough to 

track the target in this scenario. Fig. 3.5(b) shows the realization of the sensor placement along 
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Figure 3.5: Scenario 4: (a) Realization of the sensor placement along with the target's trajectory for 

N = 10. (b) Realization of the sensor placement along with the target's trajectory for N = 40. (c) 

RMS tracking performance at iteration k = 20 for varying network sizes and for the centralized filter, the 

CSS/DUPF with two consensus runs and the CSS/DUPF with three consensus runs. 
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with the target's trajectory for N = 40. It is observed that in contrary to Fig. 3.5(a), the sensor 

nodes collectively have a better coverage in this case. Fig. 3.5(c) shows the RMS error plots for 

different numbers of nodes (10 :::; N :::; 50) at iteration k = 20 for the centralized particle filter 

and the CSS/DUPF with only two iteration for each consensus run. It is observed that when 

the number of nodes is N = 20 and higher, the performance of the CSS /DUPF with a limited 

number of consensus iterations catches up with its centralized counterpart. Compared to the 

previous scenarios (Scenario 1 and 2), the surveillance region considered here is relatively larger 

which makes the tracking more challenging and increases the corresponding error. 

3.4 The UCD /DPF Implementation 

The unscented, consensus-based, distributed implementation of the particle filter (UCD /DPF) 

couples the unscented Kalman filter (UKF) [44] with the particle filter such that the UKF esti­

mates the Gaussian approximation of the proposal distribution which is then used to generate 

local particles. The UCD /DPF involves the following four steps: 

1. Individual sensor nodes run localized, unscented particle filters to approximate their local 

posterior distributions. 

2. A pre-specified set of local statistics of the state variables are computed at each node from 

the local posterior distributions. 

3. At each node, a consensus algorithm fuses local statistics computed in Step 2 into global 

statistics. 

4. Once the global statistics are available, an unscented Kalman filter (UKF) propagates the 

global statistics into the proposal distributions to be used during the next iteration of the 

UCD/DPF. 
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In terms of contributions, the UCD/DPF makes two important improvements to the existing DPF 

framework 

1. Unlike existing distributed implementations [24, 27] of the particle filter, the UCD/DPF 

uses all available global observations including the most recent ones in deriving the proposal 

distribution based on the distributed UKF. In other words, the UCD/DPF computes the 

local proposal density based on both the global statistics as well as the local observations. 

2. Computation of the global estimates from local estimates during the consensus step is based 

on an optimal fusion rule which compensates for the problem of common information be­

tween the local state estimates. 

Improvement 2 replaces the commonly used local averaging approach and, along with improve­

ment 1, enhances the performance of the UCD/DPF. Further, the UCD/DPF paves the way for 

incorporating future developments in consensus-based distributed Kalman filters to the distributed 

particle filtering framework. Below, the main steps followed at node l, for (1 ~ l ~ N), of the 

UCD/DPF are outlined. The filter is assumed to be in steady state and at iteration k-1, when all 

nodes are assumed to have reached a consensus with values :X(l,Fused)(k-1) and p(l,Fused)(k-1). 

A new measurement z<l)(k) is now available at each local node. 

Step 1. This step is similar to Step 2 of the CSS/DUPF with one difference, i.e., node l, for 

(1 ~ l ~ N), generates the Sigma points {X~l) (k-1)};:0 based on Eq. (3.31) using X:(l,Fused)(k-1) 

and p(l,Fused)(k - 1) instead of x_(l)(k - 1) and p(l)(k - 1). 

Step 2. This step is similar to Step 3 of the CSS/DUPF where node l, for (1 ~ l ~ N), computes 

the statistics of its local proposal distribution (x~kF(k), P8kF(k)) using Eqs. (3.39)-(3.40). 
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Step 3. For (1 ~ l ~ N), node l generates N 8 random particles X~l)(k) from its proposal distribu-

tion defined as follows 

x~l) (k) rv N(x<l) (k) p,<O (k)) 
i UKF ' UKF · (3.56) 

Step 4. Node l, for (1 ~ l ~ N), computes the corespondent weight wp)(k) of its particles as 

follows 

(3.57) 

After this step, node l has a set of particles and their associated weights that approximate the 

local filtering distribution P(x(k)lz(l)(l:k),z(l: k-1)). 

Step 5. Based on Eqs. (3.17)-(3.18), node l computes the MMSE estimate x_(l)(k) and its corre-

sponding error covariance p(l) ( k) (local statistics) of the state variables. 

Step 6. The final step of the UCD/DPF algorithm is the consensus step used to compute a 

consistent set of values for the global statistics :X:(l,Fused)(k) and p(l,Fused)(k) at time k. The 

UCD/DPF uses the following fusion rules (instead of Eqs. (3.42)-(3.43) used in the CSS/DUPF) 

N 

[P<z,Fused)(k)r
1 

= [PSkF(klk - 1)r
1 +I: [P(j)(k)r

1 
- [P~JF(klk - 1)r

1 
(3.58) 

j=l 

Pc(oo) 

x<t,Fused)(k) [p(l,Fused)(k)r1 [[PSkF(klk - 1)r1xtkF(klk - 1) 

N 

+ I: [P(j>(k)r
1
x.(j)(k) - [P~JF(klk - l)r 1x~kF(klk - 1)], (3.59) 

j=l 

Xc(oo) 

where {xc(oo) and Pc(oo)} are obtained using Eqs. (3.44)-(3.47). 

In conclusion, the UCD /DPF implementation of the particle filter belongs to the DPF via state 

estimation fusion category (Section 2.5) and addresses the first four drawbacks of the CSS/DPF 
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listed right before Section 3.4. Though the UCD /DPF is more generally applicable than the 

CSS/DPF, it has the following drawbacks: 

1. The UCD /DPF approximates the global posterior density with a Gaussian distribution and 

computes its statistics via consensus algorithms based on a set of optimal nonlinear fusion 

rules. 

2. Similar to the CSS/DPF, the UCD/DPF assumes that the consensus is reached between 

two successive observations. Such an assumption is only reasonable in applications where 

communication is relatively inexpensive as compared to sensing, e.g., in rendezvous control 

or coordination of mobile sensors. 

In Chapter 4, I develop the CF /DPF framework which does not restrict the global posterior 

density to a Gaussian distribution and removes the time constraint on the consensus convergence. 

Finally, I note that the three proposed DPF implementations in this chapter suffer from one 

common drawback, i.e., they require the consensus to be reached between two successive ob­

servations. The performance of these methods degrades if consensus is not reached within two 

consecutive iterations of the local particle filters. Chapter 3 extends the distributed estimation 

framework to unreliable networks with intermittent connectivity. Intermittent network connec­

tivity results in information loss, significant delays in the convergence of the consensus algorithm, 

and loss in synchronization between the localized filters. In the next chapter, I study a generic 

framework for distributed estimation in intermittently connected networks from the consensus­

convergence perspective where the fundamental question is: How can loss of synchronization 

between the localized filters and the fusion step can be adequately resolved to compensate for delays 

in the convergence of the consensus algorithms? 
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3.4.1 Simulation Results for the UCD/DPF 

As stated in Section 3.4, the UCD /DPF can be considered as a generalized version of the 

CSS /DUPF for applications other than BOT and joint bearing/range tracking where the CSS /DPF 

and CSS/DUPF are not applicable. Although the UCD/DPF is more general than the CSS/DUPF, 

but due to the absence of a sufficient statistic based step for computing the global likelihood in 

the UCD/DPF, we expect the performance of the CSS/DUPF to be superior in BOT and joint 

bearing/range tracking scenarios. Therefore, the UCD /DPF is evaluated separately for a tracking 

scenario where the CSS /DUPF is not applicable. 

In this section, the range-only tracking application is considered to quantify the performance 

of the proposed UCD/UPF. Similar to the previous simulations, a single CCT model (Eq. (3.50)) 

with known statistics of the process noise e(k) is considered. An AN/SN with N = 20 nodes 

with random geometric graph model is considered where sensors are distributed randomly in a 

(15 x 15) m2 square region. The observations are now range-only measurements given by 

z<L)(k) = V (X(k) - X(l)(k)) 2 + (Y(k) - y(l)(k)) 2 + ((l)(k), (3.60) 

where {X(l)(k), y(l)(k)} are the coordinates of node l. Two scenario are considered in this section 

to evaluate performance of the UCD /DPF. The first scenario considers a constant value for the 

variance of the observation noise across the network while in the second scenario the variance of 

the observation noise at node l is state dependent as follows 

(3.61) 

The target starts its track from coordinates {10, 10} meters. The initial course is set at -110° with 

the standard deviation of the process noise ae(k) = 1.6 x 10-2
. The initialization is performed 

at each node by selecting an initial location :X:(l)(O), for 1 ::;; l ::;; N, from the following initial 
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Gaussian distribution N(x(O) + 0.5, cri(k)). Other parameters are the same as the ones used in 

Scenario 1 above. 

To quantify the tracking performance of the UCD/DPF three schemes are considered: (i) 

Centralized scenario where each node has access to the local observations of all other nodes. The 

performance of the centralized UPF is considered as the base performance; (ii) The proposed 

UCD/DPF implementation, and; (iii) Distributed particle filter proposed in [23], referred to as 

Gu et al. Fig. 3.6 shows the RMS error plots corresponding to schemes (i)-(iii) for a range-only 

tracking application. Fig. 3.6(a) shows the result for the constant high SNR scenario. Fig. 3.6(b) 

shows the RMS error plots for the variable high SNR scenario. It is observed that the performance 

of the proposed UCD/DPF remains close to its centralized counterpart in both scenarios. However, 

while the centralized and UCD/DPF implementations show low RMS errors, the other distributed 

implementation shows a significant increase in error. 

3.5 Summary 

In this chapter, I proposed three consensus-based, distributed implementations of the particle fil­

ters. First, a constraint sufficient statistic based distributed implementation of the particle filter 

(CSS/DPF) is proposed for bearing-only and joint bearing/range tracking applications where I 

exploit the property that the global sufficient statistics (GSS) attributed to the global likelihood 

function can be expressed as a summation of the local sufficient statistics (LSS) under certain 

constrains. I further derived explicit expressions for LSSs and their corresponding GSSs for 2D 

and 3D bearing-only tracking and 2D joint bearing and range tracking. The CSS/DPF imple­

mentation is a two stage algorithm based on first computing the GSS from the means of the LSS 

via consensus algorithms, and then updating the local particle filters using the modified GSS. 

The communication overhead of the CSS/DPF is reduced significantly in comparison with the 
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Figure 3.6: Comparison between the centralized particle filter, the UCD/DPF, and Gu et al. [23): (a) 

Constant SNR, and; (b) High SNR but varying from a node to another. 
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other state-of-the-art distributed implementation of the particle filter. Second, the CSS/DUPF 

is proposed which improves the CSS/DPF by introducing a proposal distribution other than the 

transitional density which incorporates the global observations and therefore a is closer approxi­

mation of the optimal proposal distribution. Finally, consensus-based distributed implementation 

of the unscented particle filter (CD/UPF) is introduced which extends consensus-based distributed 

Kalman filtering framework to nonlinear systems. The CSS /DPF has the lowest computational 

complexity in comparison with other distributed implementations of the particle filter. Numeri­

cal simulations illustrate the superiority of the CSS/DUPF over other sufficient statistics based 

distributed particle filters. The performance of the CSS/DUPF catches up with that of the cen­

tralized particle filter even with a limited number of iterations per consensus run. 
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4 Distributed Particle Filter with Intermittent/Irregular 

Consensus Convergence 

In Chapter 3, I proposed three full-order consensus-based distributed implementations of the 

particle filter: the CSS/DPF (Section 3.1), the CSS/DUPF (Section 3.2), and the UCD/DPF 

(Section 3.4). All of these proposed approaches have one common limitation, i.e., the requirement 

for each node to wait until consensus is reached before running the next iteration of the local­

ized particle filters. To incorporate observations without delay, the consensus algorithm should 

converge between two consecutive observations. Such an assumption is reasonable in applications 

where communication as compared to sensing is relatively fast to allow for consensus convergence, 

e.g., in rendezvous control or coordination of mobile sensors. Fig. 4.1 considers an alternative sce­

nario where the consensus convergence takes twice as long as the duration between two successive 

observations (b.T). In such cases, the consensus algorithm continues to lag behind localized fil­

ters incorporating the local observations such that the global estimate for current particle filter 

implementation is delayed. Referred to as intermittent network connectivity (123, 124], this issue 

has been investigated broadly in the context of linear systems based on Kalman filter (123, 124] 

and have not yet been explored for non-linear systems. 

In this chapter, I propose a multi-rate consensus/fusion based framework for distributed im-
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Figure 4.1: (a) Situations where CSS/DPF and UCD/DPF are applicable, i.e., consensus converges 

within the duration LlT of two consecutive observations. (b) A scenario where the consensus convergence 

Tc is greater than ~T. The lag between the global estimates and the local estimates grows exponentially. 

plementation of the particle filter (CF /DPF)6 for nonlinear systems. The CF /DPF offers two 

distinct advantages over its counterparts. First, the CF /DPF framework is suitable for nonlinear 

systems with intermittent network connectivity and consensus can not be reached between two 

consecutive observations. Second, the CF /DPF is not limited to the Gaussian approximation for 

the global posterior density. Below, I summarize the key contributions of the chapter. 

1. Fusion filter: In addition to the localized particle filters, referred to as the local filters, the 

CF /DPF introduces separate consensus-based filters, referred to as the fusion filters, to derive the 

global posterior distribution by consistently fusing local filtering densities in a distributed fashion. 

The localized implementation of the particle filter and the fusion filter used to achieve consensus 

are run in parallel, possibly at different rates. Achieving consensus between two successive itera-

tions of the local filters is, therefore, no longer a requirement. The CF /DPF compensates for the 

common past information between local estimates based on an optimal non-linear Bayesian fusion 

rule (127]. The fusion concept used in the CF /DPF is similar to (27] and (42], where separate 

6 The conventional particle filter has been chosen in developing the CF /DPF as a proof of concept. The proposed 
framework can be generalized to other variants of the particle filter such as the marginalized particle filter [125], 
the approximate condition mean particle filter [126] and the unscented particle filter [44] with some modifications. 
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channel filters (one for each communication link) are deployed to consistently fuse local estimates. 

In the CF /DPF, the number of fusion filters are limited to one per processing node, a considerable 

saving over (27] and (42]. 

Fig. 4.2 compares the proposed CF /DPF framework with the channel filter framework and 

centralized estimation. In the centralized estimation (Fig. 4.2(a)), all the nodes forward their 

raw observations (either directly or via help of other nodes) to the FC where the state vector is 

estimated. In the channel filter framework (Fig. 4.2(b)), one channel filter is associated with each 

communication link to fuse the local estimates of two neighbouring nodes and finally compute the 

global estimate. These filters are in addition to the localized filters run at the nodes. Note that, 

the channel filter approach can only be implemented for a tree-connect network topology (27] as 

shown in Fig. 4.2(b) and can not be extended to any arbitrary network, for example the one shown 

in Fig. 4.2(a). In the CF/DPF (Fig. 4.2(c)) each node only implements one additional fusion filter 

per node irrespective of the neighbouring connections thus reducing the number of fusion filters 

compared to (27] and [42]. Further, the CF /DPF is applicable to any network configuration. 

2. Modified Fusion filters: In the CF /DPF, the fusion filters can run at a rate different form 

that of the local filters. I further investigate this multi-rate nature of the proposed framework, 

recognize three different scenarios, and describe how the CF /DPF handles each of them. For 

the worse-case scenario with the fusion filters lagging the local filters exponentially, I derive a 

modified-fusion filter algorithm that limits the lag to an affordable delay. 

Table 4.1 provides a comparison of the CF /DPF with the approaches discussed in Chapter 3. 

The CF /DPF belongs to the state estimation fusion category and offers two advantages over its 

counterparts. The CF /DPF does not impose any restriction on the form of the global likelihood 

or global posterior distribution and it is resilient to the intermittence in the connectivity of the 

network. 
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Random Sensor Network 

-------![~~~~------

(b) Channel Filter Distributed Implementation 

CH: Channel Filter 
LF: Local Filter 
FF: Fusion Filter 

Figure 4.2: (a) Centralized implementation where all nodes communicate their local estimates to the 

fusion center. (b) Distributed implementation using channel filters where a separate filter is required for 

each communication link. ( c) The proposed CF /D PF implementation where sensor nodes connect through 

their fusion filters (one fusion filter per node). In terms of the number of extra filters, the CF /DPF falls 

between the centralized and channel filters. 
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Table 4.1: Comparison of different full-order DPF implementations. 

Characteristics CSS/DPF UCD/DPF CSS/DUPF CF/DPF 

1. Likelihood/Observation fusion x x 

2. State estimation fusion x x x 

3. Gaussian approximation for 
x x 

the global likelihood 

4. Gaussian approximation for 
x 

the global posterior 

5. Requires consensus convergence x x x 

6. Application specific x x 

7. Restrict the proposal to 
x 

the transitional distribution 

8. No restriction on the 
x 

form of likelihood/posterior 

9. Resilience to intermittent 
x 

connectivity 

10. Recovery from loss of 
x x x 

information 

11. Communication complexity low midi um high high 

The chapter is organized as follows. The proposed CF /DPF algorithm and the fusion filter 

are described in Section 4.1. The modified fusion filter is presented in Section 4.2. Section 4.3 

illustrates the effectiveness of the proposed framework in tracking applications through Monte 

Carlo simulations. Finally, Section 4.4 concludes the chapter. 
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4.1 The CF /DPF Implementation 

As shown in Fig. 4.2(c), the CF/DPF implementation runs two localized particle filters at each 

sensor node. The first filter, referred to as the local filter, comes from the distributed implemen­

tation of the particle filter described in Section 4.1.1 and is based only on the local observations 

z(l) (1: k ). The CF /DPF introduces a second particle filter at each node, referred to as the fusion 

filter, which estimates the global posterior distribution P(x(O:k)iz(l:k)) from the local filtering 

distributions P(x(k) lz(l) (1: k)) and local prediction distributions P(x(k) lz(l) (1: k-1)) as described 

in Section 4.1.2. 

4.1.1 Distributed Configuration and Local Filters 

Recall that the distributed estimation framework as presented in Section 2.5 (Eqs. (2.126)-(2.127)) 

is given by 

f(x(k - 1)) + e(k) 

g<t)(x(k)) + ((l)(k), 

( 4.1) 

(4.2) 

for sensor nodes (1 ::; l ::; N). In the CF /DPF, the entire state vector x(k) is estimated by 

running localized particle filters at each node. These filters, referred to as the local filters, come 

from the distributed implementation of the particle filter and are based only on local observations 

z(l)(l : k). In addition to updating the particles and their associated weights, the local filter 

at node l provides estimates of the local prediction distribution P(x(k)lz(l)(l : k - 1)) from the 

particles as explained below. 

Computation and Sampling of the Prediction Distribution: From the Chapman-Kolmogorov 

equation (Eq. (2.13)), a sample based approximation of the prediction density P(x(k)lz(l)(l : 
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k - 1)) is expressed as 

Ns 

P (x(k)lz(l\1: k-1)) = :LwP·LF)(k- l)P (x(k)IX~l,LF)(k-1)), (4.3) 
i=l 

which is a continuous mixture. To generate random particles from such a mixture density, a 

new sample X~l,LF)(klk - 1) is generated from its corresponding mixture P(x(k)IX~l,LF\k - 1)) 

in Eq. ( 4.3). Its weight Wi(l,LF) (k - 1) is the same as the corresponding weight for X~l,LF) (k - 1). 

The prediction density is given by 

Ns 

p ( x(k)lz<O(l : k - 1)) = L wP·LF)(k - 1)8 ( x(k) - x;l,LF)(klk - 1)) . 
i=l 

Once the random samples are generated, the mean square error estimates (MSE) of the parameters 

can be computed. 

4.1.2 Fusion Filter 

The CF /DPF introduces a second particle filter at each node, referred to as the fusion filter, which 

computes an estimate of the global posterior distribution P(x(O: k) lz(l: k)). Being a particle filter 

itself, implementation of the fusion filter requires the proposal distribution and the weight update 

equation. Theorem 5 expresses the global posterior distribution in terms of the local filtering 

densities, which is used for updating the weights of the fusion filter. The selection of the proposal 

distribution will be explained later in Section 4.1.5. Each node, for (1 ~ l ~ N), propagates 

forward in time two sets of particles: {X~l,LF) (k), wP·LF) (k)}f::1 associated with the local filters 

and {X~ l ,FF) ( k), wp ,FF) ( k)} [:;{ associated with the fusion filter. 

Theorem 5. Assuming that the observations conditioned on the state variables and made at 

node l are independent of those made at node j, (j =/= l), the global posterior distribution for an 
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N -sensor network is 

IJ::1 P( x(k)iz<l)(l: k)) 
P(x(O:k)lz(l:kJ) oc ( ) xP(x(O:k)lz(l:k-1)), (4.4) IJ::1 P x(k)iz(l)(l:k-1) 

where the last term may be factorized as follows 

P( x(O: k)iz(l: k-1)) = P( x(k)ix(k-1) )P( x(O: k-l)iz(l: k-1)). (4.5) 

The proof of Theorem 5 is included in Appendix B.1. Note that the optimal distributed 

protocol defined in Eq. ( 4.4) consists of three terms: (i) Product of the local filtering distribution 

IJf:,1 P(x(k)iz<l)(l : k)) which depends on local observations; (ii) Product of local prediction 

densities IJf:,1 P(x(k)iz(l)(l : k-1)), which is again only based on the local observations and 

represent the common information between neighboring nodes, and; (iii) Global prediction density 

P (x(O: k)lz(l: k-1)) based on Eq. (4.5). The fusion rule, therefore, requires consensus algorithms 

to be run for terms (i) and (ii). The proposed CF /DPF computes the two terms separately (as 

described later) by running two consensus algorithms at each iteration of the fusion filter. An 

alternative is to compute the ratio of two terms at each node and run one consensus algorithm for 

computing the ratio term. In the CF /DPF, I propose to estimate the numerator and denominator 

of Eq. ( 4.4) separately because maintaining the local filtering and prediction distributions is 

advantageous in networks with intermittent connectivity as it allows the CF /DPF to recover from 

loss of information due to delays in convergence. 

4.1.3 Weight Update Equation 

Assume that the local filters have reached steady state at iteration k, i.e., the local filter's com-

putation is completed up to and including time iteration k where a particle filter based estimate 

of the local filtering distribution is available. The weight update equation for the fusion filter is 
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given by 

P (x~l,FF) (k) Jz(l: k)) 
W.(l,FF) ( k) = . 

i q (x~l,FF)(k)Jz(l:k)) 
(4.6) 

Given particles x~l,FF)(k-1), the values of the particles x~l,FF)(k) at time instant k are updated by 

generating random particles from the proposal distribution q(x(O: k)Jz(l: k)). As stated previously 

in Section 2.2.2, the proposal distribution is chosen such that it satisfies the following factorization 

q(x(O:k)Jz(l:k)) = q(x(O:k-l)Jz(l:k-l))q(x(k)Jx(l:k-1),z(l:k)), (4.7) 

then one can obtain particles X~l,FF) (0: k) ,...., q(x(O: k)Jz(l: k)) by augmenting each of the existing 

samples X~l,FF)(O: k - l) rv q(x(O: k-l)Jz(l: k-1)) with the new particles generated as follows 

Prediction Step: X~l,FF)(k) rv q(x(k)Jx(O: k-l), z(l: k)). (4.8) 

A filtered estimate of the state variables P(x( k) Jz(l: k)) at each iteration is of interest, therefore, 

following [43] I approximate q(x(k)Jx(l: k-1),z(l: k)) = q(x(k)Jx(k-l),z(k)). The proposal 

density is then dependent only on x(k) and z(k). In such a scenario, one can discard the history 

of the particles x~l,FF) (0: k-2) at previous iterations [43]. Substituting Eq. ( 4.5) in Eq. ( 4.4) and 

using the result together with Eq. (4.7) in Eq. (4.6), the weight update equation is given by 

TI~1 P (x~l,FF)(k)Jz<l)(l :k)) P (x~l,FF)(k)JX~l,FF)(k-1)) 
w.<l,FF)(k) ex: w.<l,FF)(k-l)----------....,.-

1, 1, Tii:1 p (x~l,FF)(k)jz(l)(l:k-1)) q (x~l,FF)(k)JX~l,FF)(k-l),z(k))' 

(4.9) 

where 
P (x~l,FF)(k-l)Jz(l:k-1)) 

W.(l,FF)(k-l) = . 
i q (x~z,FF)(k- l)Jz(l:k-1)) 

(4.10) 

Given the weights w?·FF)(k- l) from the previous iteration, Eq. (4.9) requires all nodes to 

participate in the computation of the following two terms 

N 

IT P (x~l,FF)(k)Jz(l)(l:k)) and 
N 

IlP(xY·FF)(k)Jz(l)(l:k-1)). (4.11) 
l=l l=l 
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The numerator of the second fraction in Eq. ( 4.9) requires the transitional distribution P(x(k) lx(k-

1)), which is known from the state model. Its denominator requires the proposal distribution 

q(x(k)lx(k-1), z(k)). Below, I show how two terms (Eq. (4.11)) and the proposal distribution are 

determined. 

4.1.4 Distributed Computation of Product Densities 

The two terms in (4.11) are not determined by transferring the whole particle vectors and their 

associated weights between the neighboring nodes due to an impractically large number of in­

formation transfers. A second issue lies due to representing the localized posteriors as a Dirac 

mixture in the particle filter. Two separate Dirac mixtures may not have the same support and 

their multiplication could possibly be zero. In order to tackle these problems, a transformation is 

required on the Dirac function particle representations by converting them to continuous distri­

butions prior to communication and fusion. Gaussian distributions [4, 5, 7, 23, 24, 59], grid-based 

techniques [47], Gaussian Mixture Model (GMM) [17] and Parzen representations [27] are dif­

ferent parametric continuous distributions used in the context of the distributed particle filter 

implementations. The channel filter framework [27] fuses only two local distributions, therefore, 

the local probability density functions can be modeled [27] with such complex distributions. In­

corporating these distributions in the CF /DPF framework is, however, not a trivial task because 

the CF /DPF computes the product of N local distributions. The use of a complex distribution 

like GMM is, therefore, computationally prohibitive. 

In order to tackle this problem, I approximate the product terms in Eq. ( 4.9) with Gaussian 

distribution which results in local filtering and prediction densities to be normally distributed as 

P (x(k)iz(l)(l:k)) ocN (µ<l)(k),p(l)(k)) and P (x(k)iz(l)(l:k-1)) ocN (v<l)(k),R(l)(k)), 

(4.12) 
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where µ(l)(k) and p(l)(k) are, respectively, the mean and covariance of local particles at node l 

during the filtering step of iteration k. Similarly, v(l)(k) and R(l)(k) are, respectively, the mean 

and covariance of local particles at node l during the prediction step. It should be noted that I 

only approximate the product density for updating the weights with a Gaussian distribution and 

the global posterior distribution is not restricted to be Gaussian. The local statistics at node l 

are computed as 

i=l 

NB T 
and p(l)(k) = z=wp,LF)(k) (xY,LF)(k)-µ<O(k)) (x~l,LF)(k)-µ<O(k)) . (4.13) 

i=l 

Reference [129] shows that the product of N multivariate normal distributions is also normal, i.e., 

N N 

flP(x(k)lz<O(l:k)) ~ flN(µ<O(k),P(l)(k)) = ~ xN(µ(k),P(k)), (4.14) 
l=l l=l 

where C is a normalization term (Reference [129] includes the proof). Parameters µ(k) and P(k) 

are given by 

N -1 

P(k) = (2= (p<l)(k)) rl 
l= 1 '-----v-----" 

x~? (o) 

N 1 

and µ(k) = P(k) x L (p(l)(k))- µ<O(k). ( 4.15) 
l=l'--~~--~~--

x~~(O) 

Similarly, the product of local prediction densities (Term (4.11)) is modeled with a Gaussian 

density 

N(x(k); v(k), R(k)), where the parameters v(k) and R(k) are computed as follows 

N -1 

R(k)=(L:(R(l)(k)) )-
1 

l = 1 '-----v-----" 
X~~(O) 

N 1 

and v(k)=R(k)xL(R(l)(k))- v<l)(k). 
l=l--~~--~~--

x~~ (0) 

( 4.16) 

The parameters of the product distributions only involves average quantities and can be provided 

using average consensus algorithms as follows: 

(i) Node l, (1 ~ l ~ N), initializes its consensus states to X~L](o) = (P(l)(k))- 1 , x~~(O) = 

(P(l)(k))- 1µ<0(k), X~~(O) = (R(l)(k))- 1 , andx~2(o) = (R<l)(k))- 1v<l)(k), thenEq. (2.116) 
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is used to reach consensus with x~?(t) used instead of X~l)(t) in Eq. (2.116) for the first 

consensus run. Similarly, x~~ (t) is used instead of X~l) (t) for the second run and so on. 

(ii) Once consensus is reached, parameters µCl)(k) and p(l)(k) are computed as follows 

P(k) 

R(k) 

1/N x ,Ii,~ { (x~![(t) r'} 
1 IN x ,Ii,~ { ( x~ ( t) r'} 

and µ(k) =,Ii,~ { ( x~? (t) r' xx~~ (t)} (4.17) 

and v(k) =,Ii,~ { (x~%l r' x x~2(tJ}. (4.18) 

Based on aforementioned approximation, the weight update equation of the fusion filter (Eq. ( 4.9)) 

is given by 

N(X~l,FF) (k)· µ(k) P(k))P(X~l,FF) (k)IX~l,FF) (k-1)) 
w.(l,FF)(k)cxw.Cl,FF)(k-l) i ' ' i i • (4.19) 

i i N(X~l,FF) (k); v(k ), R(k) )q(X~l,FF) (k )IX~l,FF) (k-1), z(k)) 

Eq. (4.19) requires the proposal distribution q(x(k)lx(k-1),z(k)) which is introduced next. 

4.1.5 Proposal Distribution 

In this section, I describe three different proposal distributions which can be used in the CF /DPF. 

4.1.5.1 SIR Fusion Filter 

The most common strategy is to sample from the probabilistic model of the state evolution, i.e., 

to use transitional density P(x(k)lx(k+l)) as proposal distribution. The simplified weight update 

equation for the SIR fusion filter is obtained from Eq. (4.19) as follows 

w.(l,FF) (k) ex w.(l,FF) (k-1) N(XY'FF) (k); µ(k), P(k)). 
i i N(x~l,FF) (k); v(k), R(k)) 

( 4.20) 

This SIR fusion filter fails if a new measurement appears in the tail of the transitional distribution 

or when the likelihood is too peaked in comparison with the transitional density. 
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4.1.5.2 Product Density as Proposal Distribution 

We are free to choose any proposal distribution that appropriately considers the effect of new 

observations and is close to the global posterior distribution. The product of local filtering densities 

is a reasonable approximation of the global posterior density as such a good candidate for the 

proposal distribution, i.e., 

N 

q(x(k)lx(k-1),z(l:k)) £ IJ P (x(k)lz(l)(l:k)), (4.21) 
l=l 

which implies that the fusion filter particles {X~l,FF)(k)}~1 are generated from N(µ(k), P(k)). 

In such a scenario, the weight update equation (Eq. (4.19)) simplifies to 

( 
(l,FF) (l,FF) ( )) 

w.(l,FF)(k)cxw.<L,FF)(k-l)P xi (k)IXi k-1 . 
i i N(X~l,FF)(k);v(k),R(k)) 

(4.22) 

Next I justify that the product term is a good and reasonable choice for a proposal distribution 

that incorporates all the new observations available across the network. Assume at iteration k, 

node l, for (1 ~ l ~ N) computes an unbiased local estimate x(l)(k) of the state variables x(k) 

from its particle-based representation of the filtering distribution with the corresponding error 

and error covariance denoted by ~~)(k) = x(k)- x(l)(k) and f>(l)(k). When the estimation error 

~1i)(k) and ~<j)(k), for (1 ~ i,j ~ N) and i -I j are uncorrelated, the optimal fusion of N 

unbiased local estimates x<l)(k) in linear minimum variance scene is shown [76] to be given by 

N N 
and x(k) = (L (p(l)(k))-

1
)-

1 x L (P(l)(k))-
1 
x<t)(k). 

l=l l=l 

( 4.23) 

where x(k) is the overall estimate obtained from P(x(k)lz(l : k)) with error covariance P(k). 

Eq. (4.23) is the same as Eq. (4.15), which describes the statistics of the product of N normally 

distributed densities. The optimal proposal distribution is also a filtering density [43], therefore, 

the proposal distribution defined in Eq. ( 4.21) is a good choice that simplifies the update equation 
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of the fusion filter. Further, Eq. (4.21) is a reasonable approximation of the optimal proposal 

distribution. From the framework of unscented Kalman filter and unscented particle filter, it is 

well known [44) that approximating distributions will be advantageous over approximating non-

linear functions. The drawback with this proposal density is the impractical assumption that the 

local estimates are uncorrelated. I improve the performance of the fusion filter using a better 

approximation of the optimal proposal distribution, which is described next. 

4.1.5.3 Gaussian Approximation of The Optimal Proposal Distribution 

I consider the optimal solution to the fusion protocol (Eq. ( 4.4)) when local filtering densities are 

normally distributed. In such a case, P(x(O: k) lz(l: k - 1)) is also normally distributed [127) with 

mean x(l,global)(k) and covariance p(l,global)(k) 

-l N N 
_p(l,global)-\k) = ( R(l) (k)) + L p(j)-1 (k) - L R(j)-1 (k) ( 4.24) 

j=l j=l 
'-----v----' '-----v----' 

x~L[(oo) X~~(oo) 

x(l,global) (k) pCl,global)- 1 (k) [ ( R(l) (k) )-
1 

vCl) (k) 

N N _
1 

+ Lp(j)-
1
(k)µU)(k)- L(R(j)(k)) vCj)(k)]. (4.25) 

j=l j=l 

The four terms x~? ( oo), x~~ ( oo), X~~ ( oo), and x~2 ( oo) are already computed and available at 

local nodes as part of computing the product terms. Fusion rules in Eqs. (4.24) and (4.25) are 

obtained based on the track fusion without feedback [127). In such a scenario, particles X~l,FF)(k) 

are drawn from N(x(l,global)(k), p(l,global)(k)) and the weight update equation (Eq. (4.22)) is 

given by 

N(X~l,FF) (k)· µ(k) P(k)) P(X~l,FF) (k)IX~l,FF) (k-1)) 
w(l,FF)(k) w(l,FF)(k-1) i ' ' i i (4 26) 

i ex i N(X~l,F'F) (k); v(k), R(k) )N(X~l,FF) (k); x~~)1obal), Pc~)global)) · · 
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Algorithm 5 FUSION FILTER({X~l,FF)(k -1), Wi(l,FF)(k- l)}~[) 

Input: {X~l,FF)(k -1), wP·FF)(k - l)}~iF - Fusion filter's particles and associated weights. 

Output: {X~l,FF\k), w?·FF)(k)}[::1 Fusion filter's updated particles and associated weights. 

1: for l = 1 : N, do 

2: end for 

3: DoFusion( {µ(l) (k), p(l) (k)}~1 ) computes {µ(l,FF)(k), p(l,FF) (k)} for numerator of Eq. ( 4.4). 

4: DoFusion({v(l)(k),R(l)(k)}~ 1 ) computes {v(l,FF)(k),R(l,FF)(k)} for denominator of (4.4). 

5: for i = 1 : N, do 

• Generate particles { x~l,FF) (k)} :;F by sampling proposal distribution defined in Sec­

tion 4.1.5 . 

• Compute weights w<L,FF)(k) using Eq. (4.22). 

6: end for 

7: Resampling: ( {X~l,FF) (k), w?·FF)(k)}~{) = Resample( {X~l,FF)(k), w?·FF)(k)}~{). 

The various steps of the fusion filter are outlined in Algorithm 5. The filtering step of the CD /DPF 

is based on running the localized filters at each node followed by the fusion filter, which computes 

the global posterior density by running consensus algorithm across the network. At the completion 

of the consensus step, all nodes have the same global posterior available. 

4.1.6 Computational complexity 

In this section, I provide a rough comparison of the computational complexity of the CF /DPF 

versus that of the centralized implementation. Because of the non-linear dynamics of the particle 

filter, it is somewhat difficult to derive a generalized expression for its computational complexity. 
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There are steps that can not be easily evaluated in the complexity computation of the particle filter 

such as the cost of evaluating a non-linear function (as is the case for the state and observation 

models) (131]. In order to provide a rough comparison, we consider below a simplified linear state 

model with Gaussian excitation and uncorrelated Gaussian observations. Following the approach 

proposed in (131], the computational complexity of two implementations of the particle filter is 

expressed in terms of flops, where a flop is defined as addition, subtraction, multiplication or 

division of two floating point numbers .. The computational complexity of the centralized particle 

filter for N-node network with N8 particles is of 0 ( ( n; + N)Ns). The CF /DPF runs the local 

filter at each observation node which is similar in complexity to the centralized particle filter 

except that the observation (target's bearing at each node) is a scalar. Setting N = 1, the 

computational complexity of the local filter is of 0 ( n;NLF) per node, where NLF is the number 

of particles used by the local filter. There are two additional components in the CF /DPF: (i) 

The fusion filter which has a complexity of O(n;NFF) per node where NFF is the number of 

particles used by the fusion filter, and; (ii) The CF /DPF introduces an additional consensus 

step which has a computational complexity of O(n;.6.gNc(U)). The associated convergence time 

Nc(U) = 1/ log(l/rasym(U)) provides the asymptotic number of consensus iterations required for 

the error to decrease by the factor of 1/e and is expressed in terms of the asymptotic convergence 

rate Tasym(U). Based on (31], Nc(U) = -1/ max2:::;i:::;N log(l>.i(U)I), where Ai(U) is the eigenvalue 

of the consensus matrix U. The overall computational complexity of the CF /DPF is, therefore, 

given by max {O(Nn;(NLF+NFF)), O(n;.6.gNc(U))} compared to the computational complexity 

0 ( ( n; + N)N8 ) of the centralized implementation. 
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Figure 4.3: Multi-rate implementation of the local and fusion filters. (a) The ideal scenario where 

the fusion filter's consensus step converges before the new iteration of the local filter. (b) The 

convergence rate of the fusion filter varies according to the network connectivity. ( c) The lag 

between the fusion filter and the local filter grows exponentially. 

4.2 Modified Fusion Filter 

In the CF /DPF, the local filters and the fusion filters can run out of synchronization due to 

intermittent network connectivity. The local filters are confined to their sensor node and unaffected 

by loss of connectivity. The fusion filters, on the other hand, run consensus algorithms. The 

convergence of these consensus algorithms is delayed in cases where connectivity is temporarily 

lost or the communication bandwidth is reduced. In this section I develop ways of dealing with 

such intermittent connectivity issues. First, let me introduce the notation. I assume that the 
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observations arrive at constant time intervals of fl.T. Each iteration of the local filters is performed 

within this interval, which I will refer to as the local filter's estimation interval. The duration (the 

fusion filters's estimation interval) of the update cycle of the fusion filter is denoted by Tc. Fig. 4.3 

illustrates three scenarios dealing with different fusion filter's estimation intervals. Fig. 4.3(a) is 

the ideal scenario where Tc :::; fl.T and the fusion filter's consensus step converges before the 

new iteration of the local filter. In such a scenario, the local and fusion filters stay synchronized. 

Fig. 4.3(b) shows the second scenario when the convergence rate of the fusion filter varies according 

to the network connectivity. Under regular connectivity Tc < fl.T and with limited connectivity 

losses, the fusion filters manages to catch up with the localized filters in due time. Fig. 4.3(c) 

considers a more problematic scenario when Tc > fl.T. Even with ideal connectivity, the fusion 

filter will continue to lag the localized filters with no hope of its catching up. The bottom two 

timing diagrams in Fig. 4.3(c) refer to this scenario with Tc = 2fl.T. As illustrated, the lag 

between the fusion filter and the localized filters grows exponentially with time in this scenario. 

An improvement to the fusion filter is suggested in the top timing diagram of Fig. 4.3(c), where 

the fusion filter uses the most recent local filtering density of the localized filters. This allows 

the fusion filter to catch up with the localized filter even for cases Tc > fl.T. Such a modified 

fusion implementation requires an updated fusion rule for the global posterior density, which is 

considered next. 

At iteration k + m, I assume that node l, for (1 :::; l :::; N), has a particle-based approximation 

of the local filtering distributions P(x(k + m)lz(l)(l: k + m)), while its fusion filter has a particle­

based approximation of the global posterior distribution P(x(O: k) lz(l: k)) for iteration k. In other 

words, the fusion filters are lagging the localized filters by m iterations. In the conventional fusion 

filter the statistics of P(x(k+l)lz(l)(l:k+ 1)), for (1:::; l:::; N) are used in the next consensus 

step of the fusion filter which then computes the global posterior P(x(O: k + l)lz(l: k + 1)) 
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based on Theorem 5. The modified fusion filter uses the most recent local filtering distributions 

P(x(k + m)Jz(l)(l: k + m)) according to Theorem 6. 

Theorem 6. Conditioned on the state variables, assume that the observations made at node l are 

independent of the observations made at node j, (j i= l). The global posterior distribution for a 

N-sensor network at iteration k+m is then given by 

P(x(O:k+m)Jz(l:k+m)) oc 

N Ilk+m P(x(k')Jz<l)(l·k')) k+m 
II k~;;;k+l 

1 
l . ·, II P (x(k')Jx(k' -1)) x P (x(O: k)Jz(l: k)) .(4.27) 

l=1 Ilk'=k+i P (x(k )Jz< >(l.k -1)) k'=k+l 

The proof of Theorem 6 is included in Appendix B.2. In the consensus step of the modified 

fusion filter, two average consensus algorithms are used to compute TI{:1 TI~t~+l P(x(k')Jz(l)(l: 

N k+m N 

II II P (x(k')lz(l)(l:k')) oc IIN(µ<l)(k+l:k+m),P(l)(k+l:k+m)) (4.28) 
l=l k'=k+l l=l 

N k+m N 

and II II P(x(k')Jz<l)(l:k'-1)) cxIIN(v(l)(k+l:k+m),R(l)(k+l:k+m)), (4.29) 
l=l k'=k+l l=l 

instead of computing TI{:1 P(x(k)Jz<l)(l: k)) and TI{:1 P(x(k)Jz<l)(l: k-1)) as was the case for 

the conventional fusion filter. The modified fusion filter starts with a set of particles :X~MFF ,l) ( k), 

wi(MFF,l)(k) approximating P(x(O: k)Jz(l : k)) and generates updated particles :x~MFF,l)(k+ 

m), Wi(MFF,l) (k+m) for P(x(O: k+m)Jz(l: k+m)) using the following weight update equation 

n~:-~ 
1 

p (x~l,MFF) (k') ix~l,MFF) (k' - l)) 
W?'MFF)(k+m)cxWi(l,MFF)(k)x - + , (4.30) 

N(X~l,MFF)(k+m); v(k+l :k+m), R(k+l :k+m)) 

which is obtained directly from Eq. ( 4.27). Note that the normal approximation in Eqs. ( 4.28)-

( 4.30) are similar to the ones used in the conventional fusion filter. Furthermore, I note that the 

modification requires prediction of the particles from iteration k all the way to k+m in order to 

evaluate the second term on the right hand side of Eq. (4.30). Algorithm 6 outlines this step and 

summarizes the modified fusion filter. 
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Algorithm 6 MODIFIED FUSION FILTER 

Input: {X~l,MFF)(k), w?·MFF)(k)}~rFF - Fusion filter's particles and associated weights. 

Output: {X~l,MFF)(k+m), w?·MFF)(k+m)}~1 updated particles and associated weights. 

1: fork'= k+l: k + m, do 

N (µ (l) ( k'), p<l) ( k')) = SaveGaussian ( {X~l) ( k'), wp) ( k')} ~1) 

N(v<l)(k'),R<l)(k')) = SaveGaussian({x}t)(k'+llk'), w?)(k')}~1 ) 

2: end for 

3: N(µ<L)(k+l: k+m), p(t)(k+l: k+m)) = SaveGaussian(TIZ/=~1 N(µ<t)(k'), p(t)(k'))). 

4: N( v<l)(k+l: k+m), R(l)(k+l: k+m)) = SaveGaussian(I1Zt~1 N( v<l)(k'), R(l)(k'))). 

5: {µ{l,MFF)(k+l: k+m), p(l,MFF)(k+l: k+m)} =DoFusion( {µ{l)(k+l: k+m), p(l)(k+l: k+m)}~l). 

6: { v<l,MFF) ( k+ 1: k+m), R(l,MFF) ( k+ 1: k+m)} = DoFusion( { v<l) ( k+ 1: k+m), R(l) ( k+ 1: k+m) }~1 ). 

7: for i = 1 : Npp, do 

8: fork'= k+l: k+m-1, do 

x~t,MFF) (k') ,...., P(x(k')IX~t,MFF) (k' -1)). 

9: end for 

x~l,MFF)(k+m) f'V N(µ(l,MFF)(k+l: k+m), p(l,MFF)(k+l: k+m)). 

Compute weights wP·MFF)(k+m) using Eq. (4.30). 

10: end for 

4.3 Simulation Results 

In this section, different scenarios with non-linear target kinematics and non-Gaussian observation 

model are considered to investigate the properties of the proposed CF /DPF implementation. As 

stated previously, the CF /DPF and the UCD /DPF are not application specific and are applicable 

to any nonlinear dynamical system. Appendix B.3 provides a rough comparison of the computa-
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Figure 4.4: Scenario 1: (a) Target's tracks obtained from the centralized, CF /DPF and stand-alone 

algorithms (the consensus is allowed to converge). (b) CDFs for the X-coordinate of the target from the 

centralized and CF /DPF approaches for k = 5, 22. 

142 



tional complexity of the UCD /DPF and CF /DPF versus that of the centralized implementation. 

A sensor network of N = 20 nodes with random geometric graph model in a square region of 

dimension (16 x 16) m2 is considered. Each sensor communicates only with its neighboring nodes 

within a connectivity radius of J2 log( N) / N units. In addition, the network is assumed to be 

connected with each node linked to at least one other node in the network. Measurements are the 

target's bearings with respect to the platform of each node referenced (clockwise positive) to the 

y-axis as defined in Eq. (3.52). The observations are assumed to be corrupted by the non-Gaussian 

target glint noise [165] modeled as a mixture model of two zero-mean Gaussians [165], one with a 

high probability of occurrence and small variance and the other with relatively a small probability 

of occurrence and high variance. The likelihood model at node l, for (1 :::; l :::; N), is described as 

P(z(l) lx(k)) = (1 - E) x N(x; 0, a~<l) (k)) +Ex N(x; 0, 104a~(t) (k)), ( 4.31) 

where E = 0.09 in the simulations. Furthermore, the observation noise is assumed to be state 

dependent such that the bearing noise variance a~<l)(k) at node l depends on the distance r(l)(k) 

between the observer and target. Based on [166], the variance of the observation noise at node l 

is, therefore, given by 

a~<t) (k) = 0.08r<0
2 

(k) + 0.115or<O(k) + 0.7405. (4.32) 

Due to state-dependent noise variance, the signal to noise ratio (SNR) is time-varying and differs 

(within a range of - lOdB to 20dB) from one sensor node to the other depending on the location 

of the target. Averaged across all nodes and time, the mean SNR is 5.5dB. In the simulations, I 

chose to incorporate observations made at all nodes in the estimation, however, sensor selection 

based on the proposed distributed PCRLB can be used, instead, which will be considered later 

in Section 6. Both centralized and distributed filters are initialized based on the procedure de­

scribed in Section 3.3.1. 

143 



The target starts from coordinates (3, 6) units The position of target the target ([X, Y]) in 

first three iterations are (2.6904, 5.6209), (2.3932, 5.2321), and (2.1098, 4.8318). The initial course 

is set at -140° with the standard deviation of the process noise av= 1.6x10-3 unit. The number 

N 8 of vector particles for centralized implementation is N 8 = 10, 000. The number NLF and NFF 

of vector particles used in each local filter and fusion filter is 500. The number of particles for the 

CF /DPF are selected to keep its computational complexity the same as that of the centralized 

implementation. To quantify the tracking performance of the proposed methods three scenarios 

are considered. In Scenario 1 and 2, the nonlinear CCT state model (Eq. (3.50)) presented in 

Section 3.3 is used. Scenario 3 considers distributed unicycle mobile robot localization problem 

as introduced in Section 2.6.4 where the state model is given by Eqs. (4.33)-(4.34). 

4.3.1 Scenario 1 

Scenario 1 accomplishes two goals. First, the performance of the proposed CF /DPF is compared 

versus the centralized implementation. The fusion filters used in the CF /DPF are allowed to 

converge between two consecutive iterations of the localized particle filters (i.e., following the 

timing subplot (a) of Fig. 4.3). Second, the impact of the three proposal distributions listed in 

Section 4.1.5 on the CF /DPF are compared. The performance of the CF /DPF is computed for 

each of these proposal distributions using Monte Carlo simulations. 

Fig. 4.4(a) plots one realization of the target track and the estimated tracks obtained from: 

(i) The CF /DPF; (ii) the centralized implementation, and; (iii) a single node estimation (stand 

alone case). In the CF /DPF, the Gaussian approximation of the optimal proposal distribution is 

used as the proposal distribution (Case 3 in Section 4.1.5). The two estimates from the CF /DPF 

and the centralized implementation are fairly close to the true trajectory of the target so much so 

as that they overlap. The stand alone scenario based on running a particle filter at a single node 
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(shown as the red circle in Fig. 4.4(a)) fails to track the target. Fig. 4.4(b) plots the cumulative 

distribution function (CDF) for the X-coordinate of the target estimated using the centralized 

and CF /DPF implementations for iterations k = 5 and 22. We note that the two CDFs are close 

to each other. Fig. 4.4 illustrates the near-optimal nature of the CF /D PF. 

Fig. 4.5 compares the RMS error curves for the target's position. Based on a Monte-Carlo 

simulation of 100 runs, Fig. 4.5 plots the RMS error curves for the estimated target's position via 

three CF /DPF implementations obtained using different proposals distributions. It is observed 

that the SIR fusion filter performs the worst in this highly non-linear environment with non­

Gaussian observation noise, while the outputs of the centralized and the other two distributed 

implementations are fairly close to each other and approach the PCRLB. Since the product 

fusion filter requires less computations, the simulations in Scenario 2 are based on the CF /DPF 

implementation using the product fusion filter. 

4.3.2 Scenario 2 

The second scenario models the timing subplot ( c) of Fig. 4.3. The convergence of the fusion filter 

takes up to two iterations of the localized filters. The original fusion filter (Algorithm 5) is unable 

to converge within two consecutive iterations of the localized particle filters. Therefore, the lag 

between fusion filters and the localized filters in the CF /DPF continues to increase exponentially. 

The modified fusion filter described in Algorithm 6 is implemented to limit the lag to two localized 

filter iterations. The target's track are shown in Fig. 4.6(a) for the centralized implementation, 

original and modified fusion filter. Fig. 4.6(b) shows the RMS error curves for the target's position 

including the RMS error resulting from Algorithm 5 and the extended PCRLB (Appendix E). 

Since consensus is not reached, therefore, the fusion estimate from Algorithm 5 is different from 

one node to another. Result from one randomly selected node is included. The node performs 
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poorly due to consensus not reached. The performance of the modified fusion filter remains close 

to its centralized counterpart, therefore, it seems capable of handling intermittent consensus steps. 

In Fig. 4.6(b), the extended PCRLB overlaps with its centralized counterpart. 

4.3.3 Scenario 3 

In the third scenario, a distributed mobile robot localization problem [6, 7] is considered based 

on angle-only measurements. This is a good benchmark since the underlying dynamics is non-

linear with non-additive forcing terms resulting in a non-Gaussian transitional state model. This 

scenario is introduced to check if the CF /DPF can handle non-Gaussian state models, therefore, 

the consensus is assumed to converge between two consecutive observations. As stated previously 

in Section 2.6.4, the state vector of the unicycle robot is defined by x = [X, Y, 8]I', where (X, Y) 

is the 2D coordinate of the robot and e is its orientation. The velocity and angular velocity are 

denoted by V(k) and W(k), respectively. The following discrete-time non-linear unicycle model [6] 

represents the state dynamics of the robot 

X(k+l) 

Y(k+l) 

and B(k+l) 

X(k)+ ~(k) (sin(B(k)+W(k)~T)-sin(B(k))) 
W(k) 

V(k) -
Y(k)+ W(k) (cos(O(k)+W(k)~T)-cos(O(k))) 

e(k) + W(k)~T + ~e~T, 

( 4.33) 

( 4.34) 

( 4.35) 

where ~Tis the sampling time and ~e is the orientation noise term. The design parameters are: 

fj.T = 1, a mean velocity of 30 cm/s with a standard deviation of 5 cm/s, and a mean angular 

velocity of 0.08 rad/s with a standard deviation of 0.01 rad. The observation model is similar 

to the one described for Scenario 1 with non-Gaussian and state-dependent observation noise. 

The robot starts at coordinates (3, 5). Fig. 4.7(a) shows one realization of the sensor placement 

along with the robot's trajectories estimated from the proposed CF /DPF, centralized particle 
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filter and distributed unscented Kalman filter (UKF) [7) implementations. We observe that both 

centralized particle filter and CF /DPF closely follow the robot trajectory, while the distributed 

UKF deviates after some initial iterations. Fig. 4. 7(b) plots the RMS error plots obtained from 

Monte-Carlo simulation of 100 runs, which corroborate our earlier observation that the CF /DPF 

and the centralized particle filter provide better estimates that are close to each other, while the 

UKF produces a different result with the highest RMS error. 

4.4 Summary 

In this chapter, I propose a multi-rate consensus/fusion based framework, referred to as the 

CF /DPF, for distributed implementation of the particle filter. In the proposed framework, two 

particle filters run at each sensor node. The first filter, referred to as the local filter, recursively 

runs the particle filter based only on the local observations. I introduce a second particle filter 

at each node, referred to as the fusion filter, which consistently assimilate local estimates into a 

global estimate by extracting new information. The proposed CF /DPF implementation allows the 

fusion filter to run at a rate different from that of the local filters. Achieving consensus between 

two successive iterations of the localized particle filter is no longer a requirement. The fusion 

filter and its consensus-step are now separated from the local filters, which enables the consensus 

step to converge without any time limitations. Numerical simulations verify the near-optimal 

performance of the CF /DPF. The CF /DPF estimates follow the centralized particle filter closely 

approaching the PCRLB at the SNRs that we tested. 

150 



5 Posterior Cramer-Rao Lower Bound for Distributed 

Architectures (dPCRLB) 

The Cramer-Rao lower bound (CRLB) is widely used for assessing the performance of an estima­

tion algorithm. In the simplest form, the CRLB provides a lower limit on the error variance of an 

unbiased estimator of a deterministic parameter. An unbiased estimator that achieves the CRLB 

is considered to be efficient. In dealing with stochastic dynamical models, the state variables 

are often random necessitating the need for a Bayesian estimator with the bound on the error 

variance taken with respect to a posterior density function. In cases where statistics related to 

a random variable are being estimated, a lower bound (132] that is analogous to the CRLB is 

referred to as the posterior Cramer-Rao lower bound (PCRLB) (at times also referred to as the 

Bayesian CRLB or the Van Trees version of the CRLB). A common form of the PCRLB is the 

conventional (non-conditional) PCRLB determined primarily from the state model, observation 

model, and prior knowledge of the initial state of the system. Most PCRLB formulations does not 

allow for a recursive implementation and suffer from computational complexity as the dimension 

of the state vector grows in time. 

The chapter derives recursive distributed algorithms for online computation of the optimal 

PCRLB for distributed sensor/agent networks (AN/SN). The motivation for this work comes from 

sensor selection decisions (133-141] especially in geographically dispersed networks deploying an 
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unrestrictedly large number of sensor nodes. Limitations in power, frequency, and bandwidth 

restrict the maximum number of active sensors that can simultaneously participate in the decen­

tralized estimation process. The problem of sensor selection is to determine the optimal way of 

dynamically selecting a subset of sensors over time that provides the best estimation performance. 

Among other criteria proposed for sensor resource management, the PCRLB [15, 142-147] pro­

vides a predictive measure of the achievable optimal performance. More importantly, this PCRLB 

is independent of the estimation mechanism. In the past, sensor management algorithms based 

on the PCRLB have only been presented for the centralized networks with a fusion centre. No 

such work has been pursued for distributed estimation networks primarily because of the diffi­

culty in computing the PCRLB distributively. The chapter addresses this gap and as a first step 

derives optimal recursive PCRLB expressions, referred to as the distributed PCRLB (dPCRLB), 

for sensor networks configured using distributed architectures. I reiterate that the centralized com­

putation of the PCRLB cannot be realized f 15} for dynamic resource allocation in decentralized 

networks due to the absence of the fusion centre and the only alternative is real-time, recursive 

computation of the dPCRLB in a distributed fashion especially for sensor selection. 

The seminal work of Tichavsky et al. (148] provides a recursive formula to update the Fisher in­

formation matrix (FIM), i.e., the inverse of the PCRLB, iteratively for a general multidimensional, 

discrete time, nonlinear, estimation problem in the centralized architecture while keeping the di­

mensions of the FIM constant. Based on [148], there has been a surge of interest in extending the 

PCRLB to more practical scenarios, e.g., to include measurement origin uncertainty [149, 150], 

to consider issues related to the quantization of sensor data, to compute approximated online 

PCRLB (151], and to derive online conditional PCRLB [152]. Subsequently, the PCRLB theory 

has been extended to several applications, e.g., for adaptive resource management (146], dynamic 

sensor selection [145], bearing-only tracking [154] and multiple target tracking [155]. As stated 
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earlier, previous derivations of the PCRLB are limited to the centralized [146, 149, 152] and hi­

erarchical estimation architectures [145] and only recently a suboptimal PCRLB expression [15] 

has been derived for the distributed architectures. In this chapter, optimal dPCRLB algorithms 

are derived for full-order distributed approaches, where the entire state vector is estimated lo­

cally at each observation node without resorting to a fusion centre. In the full-order dPCRLB 

computation, average consensus algorithms are used to distributively compute the summation 

terms involving local statistics such as the local FIMs. In the discussions that follow, a connected 

network with at least one path traversing the complete network is assumed. Also, observability 

over the entire network is assumed though local observability is not required. Some of the results 

presented in this chapter have been appeared previously in [53-55, 64] 

To summarize, the chapter makes the following important contributions. 

1. Exact expressions for computing the non-conditional (conventional) dPCRLB for full-order 

distributed architectures are derived. A Riccati-type recursion that sequentially determines 

the optimal distributed FIM from localized FIMs of the distributed estimators is derived, 

which is used to compute the full order dPCRLB (FO/dPCRLB). 

2. As an alternative to the non-conditional (conventional) dPCRLB (Item 1), the conditional 

dPCRLB is proposed for full-order distributed estimation in AN /SN systems. The con­

ventional PCRLB considers observations and state variables as random, therefore, the ex­

pectations are taken with respect to the joint probability distribution of the states and 

observations. As mentioned previously, the conventional PCRLB is determined primarily 

from the state model, observation model, and prior knowledge of the initial state of the 

system leading to an offtine bound' with actual observations averaged out over time. An 

alternative is to express the PCRLB as a function of the past history of observations, which 

inherently contains information of the current realization of the system state. The resulting 
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PCRLB is referred to as the conditional PCRLB [I52], which is an online bound leading 

to a more accurate representation of the systems's performance and a better criteria for 

sensor-selection. Current conditional PCRLB expressions [152] are limited to centralized 

architectures utilizing a FC, which make them inappropriate for distributed topologies. 

The rest of the chapter is organized as follows. Section 5.I revisits old notation as well as introduces 

new ones and reviews the centralized PCRLB. Section 5.2 derives an expression for computing 

the non-conditional dPCRLB for a full-order distributed architecture. Section 5.3 extends the 

result to the conditional dPCRLB for a full-order distributed architecture. Section 5.4 illustrates 

the effectiveness of the proposed bounds through Monte Carlo simulations. Finally, Section 5.5 

concludes the chapter. 

5.1 PCRLB for Centralized Architecture 

As previously stated in Chapter 2, k > I, x(k) is defined to be the estimate (i.e., the expected 

value) of the state vector x(k) at time step k based on observations taken up to k, and P(k) is 

defined to be the mean squared error (covariance) associated with estimate x( k), i.e., 

x(k) A IE{x(k)lz(I: k)} 

and P(k) A IE{(x(k) - x(k))(x(k) - x(k))T}, 

(5.I) 

(5.2) 

where IE{-} is the expectation operator and z(I : k) are the accumulative observations upto k. 

Similarly, the predicted value of the state vector and its associated error covariance are 

x(k +Ilk) A IE{x(k + I)lz(I: k)} (5.3) 

and P(k +Ilk) ~ IE{(x(k +I) - x(k +Ilk)) (x(k +I) - x(k + Ijk))T}. (5.4) 
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In a distributed estimation setup, each node establishes its local estimates based on its own 

observations. Such a local estimate at node l, (1 :::; l :::; N), is defined as 

x_(l)(k) ~ IE{x(l)(k)lz(l)(l: k)} (5.5) 

and p(l)(k) ~ IE{(x<l)(k) - x_(l)(k)) (x(l)(k) - x_(l)(k))T}. (5.6) 

Likewise, the locally predicted state estimate at node l is 

(5.7) 

5.1.1 PCRLB for Centralized Architecture 

The PCRLB inequality [148] states that the mean square error (MSE) associated with the estimate 

x(O: k) of the state vector x(O: k) is lower bounded by 

IE{(x(O:k)-x(O:k))(x(O:k)-x(O:k)f} 2:: [J(x(O:k))i- 1
. 

Matrix J(x(O: k)) is referred to as the Fisher information matrix (FIM) [148), i.e., the inverse of 

the PCRLB, derived from the joint probability density P(x(O: k ), z(l: k) ). Let V7 and ~ denote, 

respectively, the operators for the first and second order partial derivatives as follows 

and ~x(k) 
x(k-1) 

A common form [148] of the FIM is defined as 

{} {} T 

[8X1(k)' ... ' 8XnJk)] 

J(x(O: k)) =IE{ - ~:~~;~~ logP(x(O: k),z(l: k))}, (5.9) 

where the expectation is with respect to the joint distribution of the states and observations. An 

alternative expression for the FIM is derived by expressing 

P(x(O: k),z(l: k)) = P(x(O: k)lz(l: k))P(z(l: k)). (5.10) 
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Since P(z(l: k)) is assumed independent of the state, Eq. (5.10) leads to the following definition 

for the FIM. 

Definition 3. The Fisher information matrix for the state vector x(O: k) from time 0 to k is 

given by 

J(x(O: k)) IE{ - ~:~~~~~log P(x(O: k)lz(l : k))} 

- j ~:~~~~~logP(x(O:k)lz(l:k))P(x(O:k),z(l:k))dx, (5.11) 

where the expectation is taken with respect to P(x(O: k), z(l: k)) and the integration is multidi-

mensional depending on the state dimensions. 

The global FIM J(x(O: k)) is factorized as follows [148] 

[ 

A(k) 
J(x(O: k)) ~ 

JIB(k)T :: : ; ] = [ :f ~-:~l~)~~ll-~;:-~i~i}f-~i t:;~l~~~o;;:~rJ] 
(5.12) 

where Pc(k) = P(x(O: k)lz(l: k)). The FIM J(x(k)) associated with the estimate x(k) is obtained 

by taking the inverse of (nx x nx) right-lower square block of [J(x(O: k))]- 1 using the following 

Lemma [152]. 

Lemma 3. Matrix inversion Lemma: 

(5.13) 

where subblocks {A, B, C} have conformable dimensions, n = A - Bc-1 BT, and cl> = C -

Based on Lemma 3, the FIM J(x(k)) is given by 

J(x(k)) = C(k) - IIB(k)T A(k)- 1IIB(k), (5.14) 
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Proposition I (derived in [I48]) presents the centralized sequential formulation of the FIM J(x(k)) 

that requires a central fusion centre but without the need of computing the inverse of J(x(O: k)) 

or inverse of other large matrices, e.g., A(k). 

Proposition 1. The centralized F IM { J ( x( k))} associated with the filtered estimate x( k) recurses 

as 

J(x(k +I)) = D 22 (k) - D 21 (k)(J(x(k)) + D 11 (k))-
1 
D 12 (k), (5.15) 

where 

1E{ - ~:~~~ logP(x(k + I)lx(k)) }, 

[D21 (k)f = 1E{ - ~:~~t1) logP(x(k + I)lx(k)) }, 

(5.I6) 

(5.I 7) 

D 22 (k) = 1E{ - ~:~~!g log P(x(k + I)lx(k))} + 1E{ - ~:~~!g log P(z(k + I)lx(k +I))}. 

J(z(k+l)) 

(5.I8) 

The initial condition is J(x(O)) =1E{-~:~~~ logP(x(O))}. 

In the following discussion, I derive a bound similar to J(x(k + I)) except for the state 

prediction estimate x( k + I I k) as defined below. 

Definition 4. Term J(x(O: k +Ilk)) denotes the FIM corresponding to the predicted estimate of 

x(O: k +I) derived from the prediction density P(x(O: k + I)lz(I: k)). 

As for J(x(k)), the FIM J(x(k +Ilk)) associated with the predicted estimate x(k +Ilk) can 

be computed by taking the inverse of the (nx x nx) right-lower block of [J(x(O: k + Ijk))J- 1 . This 

procedure is computationally intense. Instead, Proposition 2 derives an alternative expression for 

computing J(x(k + llk)) from J(x(k)). 

I57 



Proposition 2. The centralized FIM {J(x(k+llk))} for the predicted estimate x(k+llk) recurses 

as 

J(x(k+llk)) = B 22 (k) - D 21 (k)(J(x(k)) + D 11 (k))-
1 
D 12 (k), (5.19) 

where J(x(k)) is derived from Proposition 1. Terms D 11 (k), D 12 (k), and D 21 (k) are given by 

Eqs. (5.16)-(5.17) and the additional term 

B 22 (k) = JE{ - ~~~~!g log P(x(k + l)lx(k)) }. (5.20) 

The proof of Proposition 2 is included in Appendix C.l. In centralized estimation, where all raw 

observations are forwarded to the central processing unit (fusion centre) for processing, Propo­

sition 1 provides a recursive procedure for updating J(x(k)) without the need for computing 

J(x(O: k)). The predicted FIM J(x(k + llk)), when needed, can be obtained from J(x(k)) using 

Proposition 2. A second configuration that uses a centralized fusion centre is the hierarchical ar­

chitecture where each node communicates its local estimates or other statistics based on its local 

observations to the fusion centre. The latter forms the global estimate and updates the global 

posterior density P(x(O: k)lz(l: k)). Reference [145] shows that the PCRLB equations for the 

centralized architecture are also valid for the hierarchical architecture. Therefore, Propositions 1 

and 2 can be used for both centralized and hierarchical architectures. 

The focus of this chapter is on distributed estimation, where a fusion centre is not implemented 

and all processing is performed locally at the nodes constituting the network. The primary moti­

vation for this work is development of distributed PCRLB based resource management techniques 

to dynamically select a subset of candidate sensor nodes participating in distributed state esti­

mation. Due to the absence of the fusion centre, such sensor selection approaches necessitate the 

PCRLB to be computed online in a distributed fashion as is discussed next. 
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5.2 dPCRLB for Full-order Distributed Estimation 

The problem I want to solve is to compute the theoretical lower bound, i.e., PCRLB, on the error 

in the global state estimate. Below, I explain the proposed dPCRLB computation algorithm for 

the full-order state estimation. In Appendix E, I show that the equations used to compute the 

global FIM as a function of the local FIMs are similar in nature to those for reduced-order state 

estimation with some modifications. 

5.2.1 Full-order dPCRLB (FO/dPCRLB) 

This section derives the recursive expression for computing the full-order dPCRLB, i.e., expresses 

the global information sub-matrix, denoted by JFo(x(k+l)), as a function of its value JFo(x(k)) 

for the previous iteration, local FIMs J~i ( x( k + 1)), and local prediction FIMs J~lb ( x( k + 1 I k)), 

1 ::; l ::; N. 

Definition 5. Term J~b(x(O: k)), for 1 ::; l ::; N, denotes the local FIM corresponding to the 

local estimate :X(l) (0: k) of x(O: k) derived from the local posterior density P(x(O: k) iz(l) (1: k)) for 

a full order local estimator defined as 

J~b(x(O: k)) = lEP(x(O:k),z<L)(l:k)) { - ~:~~~~~log P(x(O: k) iz(l) (1: k))}. (5.21) 

Definition 6. Term J~b(x(O: k+llk)) denotes the local FIM corresponding to the local prediction 

estimate :X(l)(O: k+llk) ofx(O: k+l) derived from the local prediction density P(x(O: k+l)iz<l)(l: 

k)) for a full-order local estimator defined as 

(l)( (. I))- { Ax(O:k+l)l ( ( ·k )I (l)(. ))} J FO X 0. k + 1 k - lEP(x(O:k+l),z(L)(l:k)) - ux(O:k+l) og P x 0. + 1 z 1. k . (5.22) 

Note that the inverse of the local filtering FIM, i.e., [J~lb(x(k))J- 1 , is equal to the (nx x nx) 

right-lower block of [J~lb(x(O: k))]- 1 as explained previously for J(x(k)) based on Lemma 1. 
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The expressions for recursively computing J~l6(x(k)) are similar in nature to Eqs. (5.15)-(5.18) 

except that the likelihood function P(z(k + l)jx(k + 1)) originally used in J(z(k + 1)) = lE{ -

~:~~!~~ logP(z(k + l)jx(k + 1))} (defined in Eq. (5.18)) is replaced by its corresponding local 

likelihood P(z(l)(k + l)lx(k + 1)), i.e., J(z(l)(k + 1)) = lE{-~~~~!g logP(z(l)(k + l)jx(k + 1)) }. 

Similarly, computation of J~i(x(k + ljk)) is also based on Proposition 7 except J(x(k)) gets 

replaced by J~i(x(k)). 

In deriving the optimal recursive expressions for computing the dPCRLB, another form of 

the local FIM (denoted by J~l6 ( x( k))) associated with the local state estimate is encountered as 

defined below, which is derived from the local filtering distribution P(x(k) jz(l) (1 : k) ), i.e., 

(5.23) 

Similarly, the prediction FIM J~l6(x(k + ljk)) associated with the local prediction estimate is 

given by 

Difference between J~l6(x(k)) and J~l6(x(k)): The localized FIM J~l6(x(k)) is obtained by 

inverting the (nx x nx) right lower square block of [J~i(x(O: k))J- 1 using Eqs. (5.12)-(5.14) 

directly or its recursive implementation using Eq. (5.15). On the other hand, its counterpart 

j~l6(x(k)) is derived directly from Eq. (5.23) by taking the expectation and Laplacian of the 

local conditional posterior. A way of obtaining term J~l6(x(k)) is by re-initializing (renew­

ing) the system prior probability density function (PDF) at time k with the posterior PDF, 

i.e., P0 (x(k)) = P(x(k)lz(l)(k)). While J~l6(x(k)) can be computed recursively, determining 

J~l6(x(k)) is not generally straightforward [146]. For linear systems with Gaussian excitation, it 

has been shown [152] that the two FIMs are the same. For nonlinear systems, the two FIMs are 

generally different. A comparison of J~i(x(k)) and J}l6(x(k)) is difficult due to complex integral 

160 



terms. Further explanation on the differences between J~lb(x(k)) and J~lb(x(k)) is presented 

in [146, 152). A similar difference exists between the localized predictive FIMs J~lb(x(k+ llk)) 

derived from J~i(x(O: k)) using Eq. (5.19) and J~i(x(k+ llk)) obtained from Eq. (5.24). 

Scenario 1 (Estimation based only on local measurements): Theorem 7 presented below provides 

the optimal recursive formula for computing the distributed FIM corresponding to the global 

estimation from the local FIMs J~i(x(k)) and local prediction FIMs J~lb(x(k+llk)) for Scenario 1 

(Section 2.1.2.1). 

Theorem 7. The sequence { J FO ( x( k))} of information sub-matrices for the global estimates 

fallows the recursion 

Jpo(x(k + 1)) = ci2a(k) - cp0 (k)(Jpo(x(k)) + c}b(k))- 1c}2a(k) (5.25) 

where terms C}1cJ(k), ci1cJ(k), C}2a(k) and ci2a(k) are given by 

C}1cJ(k) IE{ - ~:~Z~ log P(x(k + l)lx(k))}, (5.26) 

c}2cJ(k) [c;b(k)f = lE{ - ~:iZt1) logP(x(k+l)lx(k)) }, (5.27) 

N N 

and c;2a(k) L J~b(x(k+l)) - L J~b(x(k+llk)) + lE{-~:~Z!~~ log P(x(k + l)lx(k)) }. 
l=l l=l 

(5.28) 

In order to approximately compute the dPCRLB and specifically to compute C~b(k), I propose 

to replace J~i(x(k)) with J~lb(x(k)) (and similarly J~lb(x(k + llk)) with J~lb(x(k + llk))) in 

Eq. (5.28) ), i.e., 

N N 

C~b(k) ~ L J~i(x(k + 1)) - L J~z6(x(k+llk)) +IE{ - ~:~Z!g logP(x(k + l)lx(k)) }.(5.29) 
l=l l=l 

Note that Eq. (5.29) is an approximation given that J~i(x(k)) may be different from J~i(x(k)) for 

nonlinear systems. In our simulations for a nonlinear /Gaussian system, I illustrate through Monte 
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Carlo simulations that Eq. (5.29) provides reasonably accurate results. The proof of Theorem 7 

for Scenario 1 is included in Appendix C.2. 

Scenario 2 (Estimation based on local measurements and previous global estimate): I extend 

Theorem 7 to compute the global FIM as a function of the local FIMs for Scenario 2 (Sec-

tion 2.1.2.1) where the local estimator at node l, for 1 :::; l :::; N, is still restricted to local 

observations but additionally uses the previous estimated global state. 

Corollary 1. Theorem 7 provides the optimal expression for Scenario 2 except for ( 5.28) involving 

C}2a(k), which changes to 

N 

C}2a(k) = LlE{-~:~~~logP(x(k+l)lz(l:k),z(l)(k+l))} 
l=l 
N 

L J~b(x(k+llk)) + lE{ ~:~~!~~ logP(x(k+l)lx(k))} (5.30) 
l=l 

where the first term on the right hand side {RHS) of Eq. (5.30) associated with the local state 

estimate is derived from the local filtering distribution P(x(k)lz(l: k), z(l)(k + 1)). 

The proof of Corollary 1 is included in Appendix C.3. Eq. (5.30) can be further approximated as 

N 

cn(k) ~ L J~i(x(k + 1)) - N Jpo(x(k + llk)) + lE{ - ~:~~!g log P(x(k + l)lx(k)) }, (5.31) 
l=l 

where I use the local FIM J~lb(x(k + 1)) instead of the first term on the RHS of (5.30). 

The following observations are made from Theorem 7. 

For updating Jpo(x(k+l)), reference [15] derives the following approximate expression 

N 

JFo(x(k+l)) = L(J~i(x(k+l))-J~lb(x(k+llk))) + lE{-~:~~!~~ logP(x(k + l)lx(k))} 
l=l 

C~b(k) ( J~zb (x(k)) +C~b(k) )- 1 c~~(k). (5.32) 

There is one notable difference between Eq. (5.32) and Theorem 7. The third term on the 

RHS of (5.32) is based on the previous local FIM J~lb(x(k)) at node l thus making it 
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node-dependent. The corresponding term in (Eq. (5.25)) is based on the overall FIM from 

the previous iteration. When the PCRLB is computed in a distributed manner, Eq. (5.32) 

differs from one node to another. Theorem 7 is, therefore, an exact result. 

Theorem 7 is optimal but computationally more intense that the approximated Eq. (5.32), 

which is the price paid for increased accuracy. 

In additive Gaussian state-space models, the forcing term e(k) and observation noise (<l)(k) 

in Eqs. (2.16)-(2.17) are assumed to be uncorrelated and normally distributed with zero 

mean and covariance matrices Q(k) and R(l)(k), respectively. Eqs. (5.26)-(5.29) are then 

reduced to 

c~b(k) IE{ [V x(k)fT (x(k))] Q- 1 (k)(V x(k) /T (x(k)) J T} (5.33) 

c~t(k) (C~b(k))T =-iE{ [Vx(k)/T(x(k))]Q- 1 (k)} (5.34) 

N 

and c~t(k) L ( J~lb(x(k+l)) - J~i(x(k+llk))) + Q- 1 (k). (5.35) 
l=l 

x~i>(o) 

Theorem 7 provides a recursive framework for computing the FO / dPCRLB. Knowing the 

state transition model P(x(k+l)lx(k)), Terms cn(k+l) and C~b(k+l) can be computed 

locally at each node. In Section 5.2.2, I describe how C~b(k) is computed distributively. 

Theorem 7 computes the FO/dPCRLB with communication occurring at every observa-

tion time step. Below, I present an extension of Theorem 7 to cases where the global 

FO / dPCRLB is computed after every m > 1 iterations. This typically happens in networks 

with intermittent communications. The local FIM includes no communication and can be 

computed as soon as the local observation is made. The global FIM needs to fuse local 

FIMs, which in this case will be possible only when communication is restored. Assume 

that the global FIM Jpo (x(j)) is available for iteration j = (k+ 1-m) and the next fusion 
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occurs at iteration k + 1. For such a scenario, Theorem 7 is extended as 

(5.36) 

where C~b(k) and cn(k) = [cib(k)]T are given by Eqs. (5.26) and (5.27), and 

N 

cn(k) = L [ J~i(x(k+l)) - J~i(x(k+llj))] + lE{ - li~~Z!~~ log P(x(k+l)lx(k)) H5.37) 
l=l 

Term Jpo(x(klj)) is the global m-step-ahead predictive FIM. Similarly, J~lb(x(k+llj)) is 

the local predictive FIM. For more details on predictive FIMs, please refer to [156]. 

A lack of invertibility of the local FIM J~lb(x(k)) indicates that the states are locally un­

observable. This happens if the condition number K(J~i(x(k))), i.e., the common loga-

rithm of the ratio of its largest eigenvalue >.~~x to its smallest eigenvalue >.~{n, given by 

K(J~lb(x(k))) = log10 (>.~~x/>.~n), is a large number. When the local FIM at node l is 

singular, the local node can not track the target on the basis of only its local observations. 

Therefore, it can not update its local FIM. In cases when the local FIM at node l is not 

invertible, the dPCRLB algorithm drops node l from the consensus step. Consensus is 

achieved using the remaining nodes. The local FIM J~lb(x(k)) at node l is then updated 

using the global FIM obtained from the consensus step. 

Finally, I investigate the communication overhead for the FO /dPCRLB. When average 

consensus is used to distributively compute the summation terms in Eq. (5.25), the com-

munication overhead is of O(n;l~(l)INc) at each node, where nx is number of states, l~(l)I 

the number of nodes in the neighbourhood of node l, and Ne is the number of consensus 

iterations. The communication overhead for the approximate expression (Eq. (5.32)) is 

the same. 
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5.2.2 Distributed Computation of the Full-order dPCRLB 

Assume submatrices J~i(x(k)), J~i(x(k+llk)), and Jpo(x(k)) are available from iteration k of 

the dPCRLB update (or via initialization). Below, I explain iteration (k + 1) for updating the 

dPCRLB. 

Step 1: Node l, for 1 ::; l ::; N, computes terms Cbb(k), Cffe.b(k), and Cbb(k) using Eqs. (5.26)-

(5.27). Since these terms are based on the global state mode (Eq. (2.16)), they can be computed 

locally at each node without requiring any communication with the neighbouring nodes. 

Step 2: Compute term Cffe,'b(k) using (5.29). This involves the local FIMs J~lb(x(k + 1)) and 

J~i(x(k + llk)) representing the bound on the local estimator at node l. Term J~lb(x(k + 1)), 

for example, is computed by extending Proposition 1 to the distributed estimation model as 

where 

and 

[D~b(k)] (l) 

[D~b(k)](l) 

lE{ - Li:~~~ log P(x(k + l)lx(k))} (5.39) 

(5.40) 

[nit(k)] (l) lE{-Li:~~!~~ log P(x(k + l)lx(k))} + lE{-Li:~~!~~ log P(z(l)(k+l)lx(k+l)) }. 

(5.41) 

Scenario 2 replaces Eq. (5.38) with 

with the local FIM at iteration k on the RHS of Eq. (5.38) replaced by the global FIM at 

iteration k. Note that Eqs. (5.38)-(5.41) only require information available locally at each node. 
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The expression for computing J~lb(x(k+llk)) is based on Proposition 2 expanded as follows 

[Bib(k)]<l) - [D~b(k)]<l) (J~lb(x(k)) + [Dib(k)](l))-
1
[Dib(k)]<t) (5.43) 

where [B~b(k)]<l) IE{ -~:~Z!g log P(x(k + I)lx(k)) }. (5.44) 

Across the network, J~lb(x(k+l)) and J~lcS(x(k+llk)) will have different values. Having computed 

J~lb(x(k+l)) and J~i(x(k+llk)), term X~Lj(O) in Eq. (5.35) (summation terms EJ~i(x(k+l)) 

and EJ~i(x(k+llk))) can be computed using an average consensus algorithm [32] in a distributed 

fashion as explained next7. Node l, for 1 ~ l ~ N, initializes its consensus state as 

(5.45) 

and continues to iterate 

x~Lj (t + 1) = x~Lj (t) + E L ( x~{) (t) - x~z{ (t)) (5.46) 
jEN(L) 

till convergence to 

(5.47) 

is achieved. In Eq. (5.46), E is a small value satisfying E E (0, D.
1a] and ~g1 = maxz n<l) is the 

maximum degree for fusion graph g I and n<l) is the number of neighboring nodes for fusion 

node l. Once the consensus converges, each fusion node substitutes the result of Eq. (5.47) in 

Eq. (5.29) to compute C~b(k). Note that the consensus approach in Eq. (5.46) is a distributed 

algorithm where each node communicates only with its neighboring nodes. The final expectation 

term in (5.29) depends only on the state model and can be derived locally. 

Step 3: Theorem 7 is now used to compute the dPCRLB, which is the same at all nodes. 

7The derivation of a summation term using average consensus algorithm requires information on the total 
number N of active nodes. Since the prime motivation for computing the dPCRLB is sensor selection, therefore, 
the number of active nodes should be known beforehand. I note that when N is unknown, an additional average 
consensus step with the value of one node set to 1 and others to 0 can instead be used to determine the number 
of nodes in the network. Average consensus will converge to 1/N and its reciprocal will provide the value of N. 
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Note that only Step 2 requires cooperation among the neighbouring nodes achieved using a 

consensus algorithm across the network, while Steps 1 and 3 can be computed locally at each 

processing node. Finally, I note that when the dPCRLB is computed using average consensus 

algorithms with (i) the network being connected; (ii) fast connectivity allowing for consensus 

to be achieved between two consecutive observations, the proposed dPCRLB coincides with its 

centralized value. This is in fact exploited by the dPCRLB algorithm. I note that, assumptions (i) 

and (ii) are commonly used in the consensus-based literature related to distributed implementation 

of the particle filter and the Kalman filter [1,32]. Such assumptions are reasonable in applications 

where compared to sensing communication is relatively inexpensive, e.g., in rendezvous control or 

coordination of mobile sensors. 

5.2.3 Particle Filter Realization for full-order dPCRLB 

In nonlinear dynamical systems, direct computation of { C~1a(k), C~'b(k), Cffe.1a(k), Cffe'b(k)} as 

well as localized terms {[D~1a(k)](l), [D~b{k)](l), [D~b(k)](l), [D~t{k)](l)} is difficult due to the 

involvement of nonlinear terms within the expectation operator [157]. Sequential Monte Carlo 

methods (such as the particle filter [158, 159]) are usually used to compute these terms. For 

completeness, the following section explains how the expectation terms in the FO / dPCRLB are 

computed using particle filters specifically in terms of the CF /DPF proposed in Chapter 4. In 

the CF /DPF, an additional higher order particle filter (referred to as the global/fusion/consensus 

filter) is introduced that assimilates the local statistics from these local filters into global statis­

tics8. In the sequel, {X~l,FF\k), w?·FF)} refers to the global particle set computed at node l, for 

8 0ther distributed implementations of the particle filter [7, 19, 20, 24] do not maintain separate local and global 
particle sets. Only one set of particles is maintained. Information or statistics from local particle sets is then fused 
in a distributed way to update the particle set to better represent the global posterior. The proposed distributed 
computation of dPCRLB is also applicable in such cases as long as the global particle sets are available at each 
node. 
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1 ::; l ::; N 8 , using the higher order global filter. In a general case, the global particle set and 

associated weights can be used to implement Steps 1-3 of the full order dPCRLB computational 

algorithm described in Section 5.2.2. For the sake of completeness, I summarize Eqs. (5.26)-(5.28) 

in terms of the global particle set {X~l,FF\k), wP,FF)} of the distributed particle filter followed 

by their equivalent representation for the case where the forcing terms are additive Gaussian. 

Representing (5.26) in terms of the global particle filter set, I get 

Np 

C~b(k) ~ - z:=wp,FF)(k)(~~~Zj1ogP(x(k+l)lx(k))l)I (!FF> . (5.48) 
i=l x(k)=Xi ' (k) 

For the additive Gaussian forcing terms, Eq. (5.48) simplifies to 

NP 

C~b(k) ""8 w,(l,FF) (k) (l\7 x(k)/T (x(k))] q-1
(k)[V' x(k)/T (x(k))f) L(k)~xi•,FF)(k). (5.49) 

Similarly, Eq. (5.27) in terms of the global particle set is 

which for the additive Gaussian forcing terms simplifies to 

Term C~'b(k) in Eq. (5.29) requires participation of all the local fusion nodes to compute the 

submatrices J~l6(x(k + 1)) and J~l6(x(k +Ilk)) of the local FIM. Submatrix J~l6(x(k + 1)) is 

computed based on Eq. (5.38) with terms [DFo 11 (k)] (l), [DFo12 (k)] (l), and [DFo 22 (k)] (l) having 

particle filter representations similar to the ones expressed for Eqs. (5.26)-(5.27). Below, I write 

these terms for the Gaussian case 

[.Bib(k)] (l) 
Np 

~ L wi(l,LF) (k) ( [\7 x(k)fT(x(k))] Q- 1(k)[\7 x(k)/T(x(k))f) I (! LF) (5.52) 
i=l x(k)=Xi ' (k) 

[n~t(k)] (l) 
T Np 

[ [Dib(k)] (l)] ~ ~ WP'LF) (k) ([\7 x(k)!T (x(k))] Q-1(k)) lx(k)=X:~l,LF)(k~q.53) 
i=l • 
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and 

Nv 

[.Di~(k)](l) ~ Q-1 (k) + DvP·LF)(k)([\7x(k+l)Y(l)(k+l)JR- 1(k+l)[\7x(k+l)Y(l)(k+l)JT)l(k) = 

i=l 

(5.54) 

where particles X~l,LF)(k+ljk) are computed by propagating particles xY·LF)(k) through the 

transitional density P(x(k+l)jx(k)) obtained from the state equation (Eq. (2.16)). Note that the 

required terms in Eqs. (5.52)-(5.54) are computed based on the available particles for iteration k. 

Eqs. (5.43)-(5.44) are then used to compute J~i(x(k+llk)). 

The aforementioned procedure using particles and weights associated to the distributed particle 

filter can readily be extended to non-Gaussian forcing terms. 

5.3 Conditional Full-order dPCRLB 

In the previous section (Section 5.2), I derived expressions for computing the non-conditional 

dPCRLB distributively for full-order state estimation. In this section, I extend my non-conditional 

dPCRLB framework to conditional dPCRLB for full-order estimation. Compared to the non-

conditional PCRLB, the conditional PCRLB is a function of the past history of observations made 

and, therefore, a more accurate representation of the estimator's performance and, consequently, 

a better criteria for sensor selection. Previous algorithms to compute the conditional PCRLB are 

limited to centralized architectures, which involve a fusion centre, thus making them unsuitable for 

decentralized topologies. The section addresses this gap. Extending the non-conditional dPCRLB 

to conditional dPCRLB is challenging due to the following issues: 

1. The underlying expectations in the conditional dPCRLB are with respect to the condi-

tional posterior, hence, the Chong-Mori-Chang theorem can not be used directly. A new 

factorization expression for the conditional posterior is required. 

169 



2. The recursive expressions for the conditional Fisher information matrix (FIM), i.e., inverse 

of the PCRLB, utilize an auxiliary FIM corresponding to the previous iteration (instead of 

its own previous value), therefore, distributed expressions for computing the auxiliary FIM 

are now needed. 

3. In addition, recursive expressions for computing the predictive conditional PCRLB from the 

auxiliary FIM are required. 

I start by introducing the centralized conditional PCRLB in the next sub-section. 

5.3.1 Centralized Conditional PCRLB 

Before introducing the conditional PCRLB, I define first the auxiliary FIM which is constructed by 

performing the expectation in Eq. (5.9) with respect to the posterior distribution P(x(O: k)lz(l: k)) 

leading to the following definition 

JAux(x(O:k)) ~ lEP(x(O:k)lz(l:k)){ - ~:~~~Z~ logP(x(O:k)lz(l:k))}. (5.55) 

Reference (152] has derived recursive expressions for computing JAux(x(k)) (the inverse of (nx x 

nx) right-lower square block of the inverse of JAux(x(O: k))). Similar to JAux(x(O: k)) (and 

JAux(x(k))) the predictive auxiliary FIM JAux(x(O:klk-1)) is defined as 

JAux(x(O:klk-1)) ~ lEP(x(o:k)lz(l:k-1)){ - ~:~~~Z~ logP(x(O:k)lz(l:k-1))}, (5.56) 

My scheme extends (152] to distributed topologies. 

The conditional PCRLB provides a bound on the performance of estimating x(O: k) given that 

the past observations z(l: k-1) are known [152]. The conditional MSE in the estimate x(O : k) 

of the state vector x(O: k) is lower bounded by 

I(x(O:k)) ~ lEP(x(O:k),z(k)lz(l:k-1)){ - ~~~~~~~ logP(x(O: k),z(k)lz(l: k-1))}, 
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where Pc(k) ~ P(x(O: k), z(k)iz(l : k - 1)). The conditional FIM L(k) is defined the inverse of 

the (nx x nx) right-lower block of [I(x(O:k))]-1. A centralized recursive expression for updating 

L(x(k)) is derived in Reference [152]. For deriving the conditional dPCRLB, I need recursive 

expressions for computing the predictive conditional PCRLB defined as 

I(O : k + llk) ~ IEP(x(O:k+i)lz(l:k)) { - Li:~~~z!g log P(x(O: k+ 1) iz(l: k))}. (5.58) 

Term L(x(k+llk)) is defined as the inverse of the (nx x nx) right-lower block of [I(x(O: k+llk))]-1. 

Using the factorization 

P(x(O: k + l)iz(l: k)) = P(x(k + l)jx(k))P(x(l: k)lz(l: k)), 

The following Lemma 4 recursively computes L(x(k+llk)) from JAux(x(k)). 

Lemma 4. The predicted conditional FIM {L(x(k+llk))} recurses as follows 

where 

and 

B 11 (k) 

B12(k) 

n;2 (k) 

IE{ - Li:~~~ logP(x(k + l)lx(k)) }, 

[B21 (k)jI' =IE{ - Li:~Z~ 1 ) logP(x(k + l)lx(k)) }, 

IEPv(k+l){ - Li:~Z!~~ logP(x(k + l)lx(k)) }. 

Next, I compute the conditional dPCRLB distributively. 

5.3.2 Distributed Conditional dPCRLB 

(5.60) 

(5.61) 

(5.62) 

The section computes the global conditional FIM from the local conditional FIMs, which are 

defined below. 
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Definition 7. The local conditional FIM I~b(o: k+ 1) corresponding to the local estimate :X(l) (0: 

k + 1), for {1 ::; l ::; N), is defined as follows 

I~b(x(O: k+l)) ~ IEP(x(O:k+l),zCL)(k+l)lz(l)(l:k)){-Li=~~;~!g logP(x(O:k+l),z(l)(k+l)lz(l)(l:k))}, 

(5.63) 

The local bound L~b(k+l) on x<O(k+llk+l), is given by the inverse of the (nx x nx) right-lower 

block of [4lb(x(O:k+l))J- 1. 

Definition 8. The local predictive conditional FIM I~b(x(O: k+llk)) is defined as follows 

I~b(x(O: k + llk)) ~ IEP(x(O:k+l)lz<t>(l:k)){ - Li=~~;~!g logP(x(O:k + l)lz(l)(l:k))}, (5.64) 

The local bound L~b(x(k+llk)) on x(l)(k+llk) is given by the inverse of the (nx xnx) 

right-lower block of [I~b(x(O: k+llk))J- 1
. Note that centralized bound [152] can be used to 

compute both L~b(k+ 1) and L~b(k+ llk) with relevant local distributions replacing the global 

ones. The local auxiliary FIMs [JFo,Aux(x(k))J(l) and [JFo,Aux(x(kik-l))]<l) are derived from 

[JFo,Aux(x(O:k))]<l) and [ho,Aux(x(O:klk-1))]<0, which have definitions similar to Eqs. (5.55) 

and (5.56) except that the local distributions are used. Another format for the local FIMs is 

i~b(k + 1) 

i~b(k + llk) 

IE{ - Li=~~!g log P(x(k + 1), z<l)(k + l)lz(l)(l: k))} 

IE{ - Li=~~~ logP(x(k + l)lz(l)(l: k)) }. 

(5.65) 

(5.66) 

where the expectations are with respect to P(x(k+l),z(l)(k+l)lz(l)(l: k)). It can be shown 

that in Gaussian linear systems, i~b(x(k+l)) and L~b(x(k+l)) (similarly i~b(x(k+llk)) and 

L~b(x(k+llk))) are equivalent. 

Now that I have defined the local conditional FIMs, Theorem 8 provides the optimal recursive 

formula for computing the overall conditional FIM as a function of these local terms. 
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Theorem 8. The sequence {LFo(x(k+l))(x(k))} of the global information sub-matrices follows 

the recursion 

LFo(x(k+l)) 

C}b(k) 

C}2a(k) 

and 

c;2a(k)-c;b(k) ( J Fo,Aux(x(k)) + c}b(k) )-c}2a(k) 

IEPc(k+l){ - Li:~~~ logP(x(k + l)lx(k)) }, 

IEPc(k+l){- Li:~~t) logP(x(k + l)lx(k))}, 

N N 

(5.67) 

(5.68) 

(5.69) 

ci2a(k)= L l~b(x(k+l))-L l~b(x(k+llk)) + lEpc(k+l) {-Li:~~!~~ log P(x(k + l)_lx(k)) }. 
l=l l=l 

(5.70) 

Theorem 8 proposed for computing the conditional dPCRLB is similar in structure to the 

recursive expression for computing the conventional dPCRLB derived in Section 5.2. with two 

differences: (i) The local conditional FIMs (L~b(x(k+l)) and L~b(x(k+llk))) are used instead 

of their non-conditional counterparts, and; (ii) The global FIM for previous time JFo(x(k)) is 

replaced by the global auxiliary FIM JFo,Aux(x(k)). 

In order to compute the conditional dPCRLB, term l~b(k+ 1) is replaced with L~b(k+ 1) 

and similarly l~b(k+llk) is replaced with L~b(k+llk). Later, I derive distributed recursive 

expression for computing JFo,Aux(x(k)). Theorem 8 is proved by extending Chong-Mori-Chang 

track-fusion theorem [127) to conditional posterior as follows. 

Lemma 5. Assuming that the observations conditioned on the state variables are independent, 

the global posterior for a N -sensor network is factorized as follows 

) ( )I ( )) 
TI~1P(x(k+l),z(l)(k+l)lz(l)(l:k))TI~ 1P(x(k)lz(l)(l:k)) P(x(O: k + 1 z k+ 1 z 1 : k ex -----=.--==-=-'------------=-=--'--__.:....._....;;;.._...;__ ___ _..:.... 

' TI~ 1P(x(k+l)jz(l)(l:k)) TI~ 1P(x(k)jz(l)(l:k-1)) 
x P(x(k+l)lx(k) )P(x(k)lx(k-1) )P(x(O: k-l)lz(l: k-1)). (5.71) 
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The proof of Lemma 9 is provided in Appendix C.4 followed by proof of Theorem 8 in Ap-

pendix C.5. 

In general, there is no recursive method to calculate JFo,Aux(x(k)). An approximated centralized 

recursive expression is proposed in [152]. Next, Proposition 3 presents a decentralized recursive 

expression for computing JFo,Aux(x(k)) using the approximation stated in [152]. 

Proposition 3. The global sequence { J FO,A ux(x( k))} of information sub-matrices follows the 

approximated recursion, i.e., 

Jpo,Aux(x(k)) ~ MJ,2a(k-1) -MJ,b(k-l)(JFo,Aux(k-l)+M}b(k-l))-M}2a(k-l) (5.72) 

where 

M}b(k-1) = lEpa(k){- ~:~z::::g logP(x(k)ix(k-1))}, 

M}2a(k-1) JEPa(k){- ~:~Z~i) logP(x(k)ix(k-1))}, 
N N 

MJ,2a(k-l) L[JAux(x(k))](l) - L[JAux(x(klk-l))](l) 
l=l l=l 

+ JEPa(k) {-~:~Z~ log P(x(k)ix(k-1)) }. 

The proof of Proposition 3 is similar to that for the non-conditional dPCRLB. 

5.3.3 Practical Application of the Conditional dPCRLB 

(5.73) 

(5.74) 

(5.75) 

Recent advances in sensor technology allow deployment of a large number of sensor nodes. Limi-

tations in power, frequency, and bandwidth restrict the maximum number of active sensors with 

only an active subset participating in the estimation process at each iteration. For such activation 

decisions, the PCRLB has been utilized as an effective criteria [15, 67, 146, 152], since it can be 

computed predictively and is independent of the estimation mechanism. The conditional dPCRLB 

expressions proposed in the thesis are derived in this context. Two different types of nodes are 
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considered [15]: (i) Sensor nodes: with limited power used only to record measurements, and; 

(ii) Processing nodes: responsible for sensor-selection within their neighbourhoods and for per­

forming decentralized estimation. Below, I consider two different dPCRLB-based sensor-selection 

scenarios. Case 1 [67] is near-optimal but requires high communication overhead. By comput­

ing the dPCRLB within local neighbourhoods, Case 2 [15] does not require consensus and has a 

reduced overhead. 

Case 1: The conditional dPCRLB (Theorem 1) is computed over the entire network and used 

for sensor-selection. The global submatrix JFo,Aux(k) and local submatrices [JAux(x(k))](l) are 

assumed available from iteration k at node l. Iteration (k+l) for computing conditional dPCRLB 

is as follows. 

Step 1: Compute terms C~b(k), cn(k), and C~'b(k) using (5.68) and (5.69), and terms MJb(k), 

M~b(k), and MJb(k) using (5.73) and (5.74). Although these terms are global, they are based 

on the state model and computed locally. 

Step 2: Compute the local FIMs J~i(k+l) and J~i(k+llk) and local auxiliary FIMs [ho,Aux(k+ 

l)](l) and [JFo,Aux(k+llk)]<l) as explained in Section 5.3.2. 

Step 3: Compute cib(k) using (5.70). Term L:t: 1 {J~l~(x(k+l)) - J~i(x(k+llk))} is com­

puted distributively across the network using consensus. Similarly, M~b(k) in (5.75) includes a 

summation term that is also requires consensus. 

Step 4: Theorem 8 computes the conditional dPCRLB. Likewise, for next iteration, Proposition 3 

computes JFo,Aux(k+l). 

Under Case 1, Step 3 involves communication overhead. If average consensus is used to 

distributively compute the summation terms, the communication overhead at each processing node 

is of O(n;IN(l)INc), where nx is number of states, IN(l)I the number of nodes in the neighbourhood 

of node l, and Ne is the number of consensus iterations. In decentralized sensor-selection, this 
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overhead is restricted to the processing nodes. 

Case 2: fuses local conditional PCRLBs within local neighbourhoods [15] for sensor-selection. 

Consensus is not needed that reduces overhead. Steps 1 and 2 are the same as in Case 1. 

Step 3: Processing node l computes l:N<l){J~lb(x(k+l))-J~lb(x(k+llk))} over local neighbour­

hoods N(l). 

Step 4: Theorem 8 is used at processing node l to compute the conditional dPCRLB within local 

neighbourhoods N(l). Proposition 3 computes JFo,AUX ( k+ 1) but within local neighbourhoods. 

In Case 2, the communication overhead at each processing node is of O(n;IN(l) I), an improve­

ment of a factor of Ne over Case 1. Instead of computing the dPCRLB over the entire network 

that leads to a high overhead, Case 2 only fuses dPCRLB within local neighbourhoods of the 

processing nodes. 

5.4 Simulation Results 

In this section, Monte Carlo simulations are performed to determine the accuracy of the proposed 

dPCRLB expressions for full-order (Theorem 7, Section 5.2.2 and Theorem 8, Section 5.3.2) 

systems by comparing them with the results obtained using the centralized PCRLB (Proposition 1) 

as well as from the approximated bound proposed in [15]. 

5.4.1 Non-Conditional dPCRLB Computational Algorithms 

A distributed bearing-only target tracking (BOT) application [102] as explained in Section 3.3 

is used to demonstrate the accuracy of the proposed full-order dPCRLB. The dPCRLB com­

parison includes results from three : (i) The centralized PCRLB (Proposition 1); (ii) Proposed 

FO /dPCRLB approach (Sections 5.2.2); (iii) Approximated expression for dPCRLB given in [15] 

(Eq. (5.32)). Two different scenarios are considered, which described next. 
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Figure 5.1: (a) Target's track alongside the location of the local observation nodes. (b) Trace of the local 

PCRLBs computed at Nodes 1-4 based on Eq. (5.38)-(5.41). All nodes shown in Fig. 5.l(a) are used in 

the dPCRLB algorithm. 
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5.4.1.1 Scenario 1 

The first simulation [103) is based on a fixed target trajectory (i.e., the same track is used in each 

Monte Carlo run) and the true values of the state variables is used to compute different bounds. 

The proposed algorithm for full-order systems outlined in Section 5.2.2 is then used to compute 

the dPCRLB. In Step 3, Theorem 7 (Eqs. (5.33)-(5.35)) is used. This is a test case included to 

evaluate the correctness of the proposed dPCRLB and to see how close the proposed dPCRLB 

can potentially be to the centralized PCRLB. In reality, the exact state values are not known. 

Scenario 2 covers a more realistic case. Fig. 5.l(a) shows one realization of the sensor placement 

along with the target's track. Fig. 5.l(b) depicts the trace of the local PCRLBs computed using 

Eqs. (5.38)-(5.41) at four randomly selected nodes highlighted as Nodes 1-4 in Fig. 5.l(a). The 

local performance of nodes varies due to state dependent nature of the problem. The dPCRLB is 

then computed from all the local PCRLBs based on Theorem 7. Fig. 5.2 compares the proposed 

full-order dPCRLB, the centralized PCRLB based on a fusion centre (included here as the ground 

truth), and the suboptimal dPCRLB based on [15) over 200 Monte Carlo runs with the same sensor 

network configuration. Due to the state-dependent observation noise variance, we note that the 

SNR is time-varying and differs from one sensor node to the other depending on the location 

of the target. Two different SNR cases (averaged across all nodes and time) are considered: 

(i) High SNR, where the SNRs at different nodes varies form 17dB to 24dB with a mean value of 

20dB, (ii) Low SNR, where the SNRs ranges from OdB to lldB across the network with a mean 

value of 6dB. Fig. 5.2(a) plots the PCLRBs for the high SNR case, while Fig. 5.2(b) plots the 

bounds for the low SNR scenario. As illustrated in Figs. 5.2(a) and 5.2(b), the centralized and 

distributed PCRLBs virtually overlap. The proposed bound predicts the estimator's performance 

more accurately than the approximated approach [15). Finally, we note that for low SNR scenarios, 

the approximated full-order dPCRLB (Eq. (5.32)) degrades significantly from the true bound due 
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to the localized nature of the previous FIM (third term on the RHS of Eq. (5.32)). As illustrated 

in the first bullet after Lemma 2, the approximated expression uses J~lb(x(k)) instead of the 

global FIM Jpo(x(k)) which results in additional inaccuracies and as well as variations in the 

dPCRLB from one node to another. 

5.4.1.2 Scenario 2 

Scenario 2 uses the BOT model specified in Scenario 1 with the following differences: (i) The target 

track is not fixed (i.e., unlike Scenario 1 with fixed track, the track varies from one iteration to 

another in the Monte Carlo simulation); (ii) The dPCRLB is based on the estimated state values 

obtained from the particle filter [158] (as opposed to the true state values utilized in Scenario 1) 

in both centralized and distributed computation of the PCRLBs; (iii) In each Monte Carlo run 

(Monte Carlo simulation of 200 runs is performed), a different sensor network configuration is 

considered, with N = 20 nodes randomly scattered in a square region of dimension (16 x 16) m2 • 

Because of these differences, the baseline (centralized PCRLB) and the comparison results are 

different between Figs. 5.2 and 5.3. 

The full-order dPCRLB algorithm explained in Section 5.2 is used to compute the dPCRLB 

with Step 3 (incorporating Theorem 7) based on Eqs. (5.51)-(5.54), which includes expectations. 

We use consensus/fusion based distributed implementation of the particle filter (CF /DPF) [50] to 

compute the expectation terms over possible realizations of the state and observation sequences. 

For the BOT problem, the computation of the Jacobian terms Y'x(k)!T(k) and Y'x(k+l)Y(l)r (k + 

1) used in Eqs. (5.51)-(5.54) and the initialization step are further described in [103]. Matrix 

[Dib(k)] (l) in Eq. (5.54) is derived based on the particle based approximation given in [141]. 

We note that both the centralized PCRLB and dPCRLB use state estimates from the par­

ticle filters. The centralized PCRLB uses state estimates computed by the centralized particle 
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Figure 5.2: Scenario 1 in Full-order System: Comparison between the centralized, proposed and approx-

imated [15] dPCRLBs at: (a) High SNR (average 20dB), and; (b) Low SNR (average 6dB). The exact 

full-order dPCRLB from Theorem 1 computed using Eq. (36) is shown in red solid line, the centralized 

PCRLB from Proposition 1 in green dotted line, and the approximated dPCRLB from Eq. (39) in blue 

dotted line with circles. 
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filter, while the distributed PCRLB uses estimates from the distributed particle filter such as the 

CF /DPF (25]. Consequently, any drop in the accuracy of the state estimates (due to for exam­

ple a reduction in the SNR) affects both bounds. As long as the distributed particle filter is an 

optimal implementation of the centralized particle filter, the centralized PCRLB and dPCRLB 

should result in similar bounds. 

Fig. 5.3( a) is for the high SNR case, while Fig. 5.3(b) plots the bounds for the low SNR scenario. 

In both cases, the centralized PCRLB and proposed dPCRLB are close (almost overlapping), while 

the approximated dPCRLB [15] fluctuates from the true value. In Figs. 5.3(a) and 5.3(b), the 

PCRLBs are higher than Figs. 5.2(a) and 5.2(b) because estimated values for states are used 

instead of the actual values and the target track varies between different runs of the Monte Carlo 

simulation. 

5.4.2 Conditional dPCRLB Computational Algorithms 

In this section, the proposed recursive algorithm (Eqs. (5.67)-(5. 70)) for computing the online 

conditional dPCRLB is evaluated as an alternative to the offline non-conditional dPCRLB . Pre­

vious conditional PCRLB algorithms are limited to centralized architectures using a fusion centre 

which makes them inappropriate for decentralized sensor management. The proposed conditional 

dPCRLB is an accurate representation of its centralized counterpart. Since it is a function of 

the past observations made, the conditional PCRLB is a more reliable criteria for decentralized 

sensor-selection applications. 

Another distributed BOT application (67] based on a sensor network of N = 30 nodes com­

pares the proposed conditional dPCRLB with the centralized conditional PCRLB. A nonlinear 

clockwise coordinate turn (CCT) motion model (Eq. (3.50)) is considered for the target. Node l's 

observation is the target's bearings as outlined in Section 5.4 where both process and observation 
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noises are normally distributed with the observation noise model assumed to be state dependent 

such that the bearing noise variance at node l depends on the distance between the observer and 

target. Simulations consider the two Cases described in Section 5.3.3. For Case 1, Fig. 5.4(a) 

compares the proposed conditional dPCRLB (obtained from Theorem 8), the centralized condi­

tional PCRLB (using the centralized bound [152]), and the approximated conditional dPCRLB 

based only on the first two terms on the RHS of Eq. (5.70) (similar to [15)). It is observed 

that the proposed conditional dPCRLB and the centralized bound overlap across various itera­

tions. The approximated PCRLB fluctuates widely over time. Having justified that the proposed 

dPCRLB is an accurate representation of its centralized counterpart, Fig. 5.4(b) plots the condi­

tional dPCRLB results for Case 2 (local fusion with no consensus). Results from two randomly 

selected nodes are plotted in Fig. 5.4(b). Due to localized fusion in Case 2, some variation in the 

conditional dPCRLBs is observed at the two nodes but the proposed bound is still superior to 

the approximated bound as plotted in Fig. 5.4(a). Fig. 5.4(b) also suggests that some nodes are 

self-confined where global fusion is not needed. On the basis of local information, some nodes 

are, however, unable to reach the true bound and extra communication may be needed if higher 

accuracy is desired. Still, Case 2 is sufficient for sensor selection decisions in the current form. 

5.5 Summary 

The chapter derives the dPCRLB for distributed full-order and reduced order estimation archi­

tecture in distributed AN /SN systems without the need of a central processing unit. The cen­

tralized PCRLB can not be computed for these networks. The chapter proposes the distributed 

PCRLB ( dPCRLB) algorithms for full-order (FO /dPCRLB) expressed in terms of Theorem 1. 

Theorem 1 is applicable when the estimates of the entire state vector is available locally at each 

node. In reduced-order estimation, a different subset of the state vector is estimated at the lo-
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cal nodes. The dPCRLB for reduced-order estimation is derived in Appendix E. Motivated by 

resource management decisions in sensor networks, optimal and near-optimal expressions for re­

cursively computing the FO / dPCRLB are derived. The proposed dPCRLBs and their practical 

implementations are compared for a variety of full-order systems using Monte Carlo simulations. 

Our results indicate that the proposed dPCRLB algorithms provide an exact bound and overlap 

the PCRLB plot derived from the centralized architecture. 
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6 Sensor Selection in Distributed Networks 

Recent developments in sensor hardware and advances in communication have paved the way for 

deploying an unrestrictively large number of sensor nodes for long periods of time. Limitations 

in power, frequency, and bandwidth, however, restrict the maximum number of sensors that 

can be simultaneously active. Algorithms dealing with the activation of the sensor nodes (or 

alternatively, the scheduling of the sensing activities) are referred to as sensor selection algorithms, 

since they select which nodes participate in the sensing task. Adaptive sensor selection refers to 

the dynamical activation of the sensor nodes within a sensing task. In other words, the active 

sensors may change from one iteration of the algorithm to another, adaptive sensor selection 

is, therefore, introduced as an essential task in geographically distributed networks. Adaptive 

sensor selection [133-137) is a stochastic problem that involves optimization of a pre-defined 

cost function, e.g., the volume of the uncertainty ellipsoid [138), the estimated states' mean 

square error (MSE) [139) or information driven methods [140). Adaptive sensor selection arises in 

several applications, e.g., cellular networks [161), distributed tracking in wireless Ad hoc sensor 

networks [162), robotic localization and underwater networks [7). 

My previous work [49-52, 59, 61-63) and likewise, a large majority of the existing state-of­

art distributed, non-linear estimation algorithms for agent/sensor networks (AN /SN) (18-21, 23, 

24, 27, 29) incorporate observations locally in a distributed fashion from all observation nodes. 

The chapter focuses on a more challenging distributed estimation problem that optimizes an 
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additional constraint of limiting the number of active nodes and selecting a subset of observation 

nodes (sensors) at each iteration. For such an adaptive sensor selection problem, the PCRLB [141, 

147, 160] has been proposed as an effective criteria because it provides a near-optimal bound of the 

achievable tracker's performance and can be calculated predictively. Further, it is independent 

and not constrained by the estimation methodology employed. I propose a distributed diffusive 

PCRLB-based sensor selection procedure for distributed AN/SN systems where the performance of 

each local estimator is characterized by its local FIM. Local FIMs can be used as a criteria for local 

sensor selection decisions. Such decisions are limited to local observations and the global sensor 

information is not incorporated. A fusion rule is, therefore, needed to combine local FIMs into 

the global FIM for taking globally optimal sensor subset selection decisions. The non-conditional 

dPCRLB computational algorithm, presented in Chapter 5, is proposed as the objective function 

for distributed adaptive sensor selection. A combination of minimum and average consensus 

algorithms are then used to select a subset of observation nodes. 

The chapter extends the non-conditional dPCRLB framework to conditional dPCRLB for full­

order adaptive sensor selection problems. As stated previously, the conventional (non-conditional) 

PCRLB considers observations and state variables as random, consequently, it is determined 

primarily from the state model, observation model, and prior knowledge of the initial state of 

the system leading to an offiine bound with actual observations averaged out over time. The 

conditional PCRLB, on the other hand, is a function of the past history of observations which, 

therefore, leads to a more accurate representation of the system's performance and a better criteria 

for adaptive sensor-selection. 

Finally, the chapter addresses another critical restriction in large, geographically distributed 

AN /SN systems imposed by limitations in power budget, system bandwidth, and communication 

capabilities, i.e., only quantized observations are exchanged between the sensors and process-
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Figure 6.1: (a) A sample distributed scenario [15] consisting of 9 local processing nodes and 150 obser-

vation nodes (sensors). (b) Fusion-to-fusion communication constraints. 

ing nodes. Within its observation neighbourhood, a local processing node, therefore, activates 

a small subset of sensors to receive the quantized version of their observations. The chapter 

derives distributed computational techniques for determining the conditional dPCRLB for quan-

tized, distributed AN/SN systems, referred to as CQ/dPCRLB. Analytical expressions for the 

CQ/dPCRLB are derived, which are particularly useful for particle filter-based estimators. 

The rest of chapter is organized as follows. Section 6.1 provides necessary background on the 

sensor selection model. Section 6.3 presents the non-conditional dPCRLB based sensor selector. 

Section 6.4 extends the sensor selection framework based on conditional dPCRLB. Section 6.5 

extends the dPCRLB algorithm to quantized local observations. Section 6.6.1 illustrates the 

effectiveness of the proposed framework in tracking applications through Monte Carlo simulations. 

Finally, Section 6. 7 concludes the chapter. 
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6.1 System Description 

Unlike Chapter 2 to 5, where no distinction is made between the observation and processing 

nodes, the chapter considers a distributed AN/SN topology (as shown in Fig. 6.l(a)) with two 

different types of nodes [15]: (i) Observation nodes (sensors): with limited power used to record 

measurements, and; (ii) Local processing nodes: responsible for selecting sensors within their 

neighbourhoods, process the data locally, and cooperate distributively with other connected pro­

cessing nodes to reach a consensual tracking estimate for the target. Such a configuration has the 

added advantage of not requiring global knowledge of the network topology at the local processing 

nodes and is suitable for any Ad hoc AN/SN. Within its neighbourhood, each local processing 

node activates a small subset of sensors. These sensors forward their observations to the as­

sociated local processing node. After processing the local observations, local processing nodes 

communicate some statistics related to the localized state estimates within themselves, typically 

using a gossip type algorithm [1), to form the global state estimate. Fig. 6.l(b) illustrates the 

fusion-fusion neighbourhood. To prevent data incest [137] (i.e., to avoid observation redundancy 

and correlation between locally estimated tracks), I impose a commonly used assumption [15] 

that a sensor node once selected for information processing by a local processing node does not 

forward its observations to a second processing node during the same iteration. 

6.1.1 Distributed Sensor Selection Model 

An AN/SN is considered comprising of N1 local processing nodes (e.g., in Fig. 6.l(a) N1 = 9). The 

distributed sensor selection entails a scenario where each local processing node can communicate 

only with sensors and other local processing nodes within its surveillance region (immediate 

neighbourhood). Local processing node l, (1 :s; l :s; N1 ), is associated with a set of N~~) sensors 

within its local neighbourhood. The total number of observation nodes in the network is, therefore, 
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given by 

N1 

N - "°'N(l) 
SS - L....J SS• (6.1) 

l=I 

For example in Fig. 6.l(a) Nss = 150. Due to physical limitations, only a subset N~l~8 (k) of N~;) 

sensors connected to processing node l, for (1 :::; l :::; N1 ), is active at iteration k. Further, only a 

maximum number N~~x(k) of sensors can be activated by node l, i.e, IN~l~8 (k)I :::; N~~x(k) where 

l·I denotes cardinality operator. The total number Nmax(k) of observation nodes simultaneously 

active in the network is also restricted, i.e., 

N1 

L N~~~ax(k) :::; Nmax(k) :::; Nss· (6.2) 
l=l 

The observation subset N~l~8 (k) at local processing node l can only be changed after Nchange 

iterations. 

Each sensor in the network observes a set of nx state variables x = [Xi, X2 , ... , Xn.,V· The 

observation model (Eq. (2.3)) corresponding to sensor m in the fusion neighbourhood of the 

processing node l is given by 

z(l,m)(k) = g(l,m)(x(k)) + '(l,m)(k), (6.3) 

where g(l,m) ( ·) and ((l,m) ( ·) are, respectively, the local observation model and uncertainty at sensor 

node m connected to processing node l. For sensor selection problem, term z(N~~s) ( k) denotes the 

local observation vector z(l)(k) in Eq. (2.2). The collection of all observations associated with the 

processing node l at time instant k is given by 

(6.4) 

The full-order state-space model (Eqs. (2.127) and (2.126)) for the distributed sensor selection 
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problem is modified as follows 

x(k) f(x(k - 1)) + e(k) (6.5) 

( (l) ) ( (!) ) 
g Nobs ( x( k)) + ( Nobs ( k), (6.6) 

for local processing nodes (1 :::; l :::; N1 ). The entire state x(k) is estimated by running localized 

filter at each local processing node, while observations are restricted to z(N~~s) ( k) obtained from the 

observation nodes in the fusion neighbourhood N~l~8 (k) selected by fusion node l. Since N~l~8 (k) 

varies with time, the dimensions of the observation vector is not fixed. I also define a fusion-

to-fusion neighbourhood N}~se that includes the set of processing nodes connected to the local 

processing node l. Fig. 6.l(b) shows an example of the fusion-to-fusion neighbourhood N}~se· 

6.2 Sensor Selection Objective Function 

Sensor selection is a stochastic problem that involves optimization of a pre-defined objective func-

tion, e.g., the estimated states' mean square error (MSE) [139) or an entropy-based information 

measure such as the expected maximum likelihood [135, 140). Recently the PCRLB [136, 137, 

141, 145-147, 152, 160) has been proposed as an effective cost function for centralized sensor se-

lection because it provides a near-optimal bound of the achievable tracker's performance and can 

be calculated predictively [15). Further, it is independent and not constrained by the estimation 

methodology employed. 

In this chapter the dPCRLB from Section 5.2 is used as the objective function for sensor 

selection. The subscript FO is omitted from dPCRLB expressions to keep the notion simple. As 

stated previously, the MSE of the estimate x( 0: k) of the state variables x( 0: k) is lower bounded 

by the PCRLB as follows 

1E{(x(O: k) - x(O: k))(x(O: k) - x(O: k))T} ~ [J(x(O: k))t 1 (6.7) 
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where IE denotes expectation. Matrix J(x(O: k)) is derived from the joint probability density 

function P(x(O: k), z(l: k)) and is referred to as the Fisher information matrix (FIM). Different 

forms of the FIM J(x(O:k)) are introduced in Section 5.2.1. Term J(l)(x(O:k)) denotes the local 

FIM at processing node l, for ( 1 ::; l ::; N f) corresponding to the local estimate xCl) ( 0 : k) based 

on the local posterior density P(x(O: k)lzN~
1

~s(l: k)). Similarly, J(l,mt)(x(O: k)) denotes the local 

single-observation FIM at processing node l based on observation made at the observation node 

ml only. 

The global FIM at the processing nodes is computed in a distributed configuration using the 

dPCRLB expressions stated under Theorem 7. Below, iteration (k+ 1) for updating the dPCRLB 

is explained in terms of Steps 1-3. Submatrices J(l,mi)(x(k)), J(l,mt)(x(k+ llk)), and J(x(k)) are 

available from iteration k of the dPCRLB update. Besides, each processing node runs the CF /DPF 

distributed implementation of the particle filter introduced in Chapter 4 and has available two 

particle sets: The first set results from the local filter and is denoted by {X~l,LF), w?·LF)}. The 

second set results from the fusion filter and is denoted by {X~l,FF), w?·FF)}. At the end of 

a CF /DPF iteration, the fusion filter has achieved consensus such that its particles (though 

different at the processing nodes) represent the same global posterior distribution. Since iteration 

k of the CF /DPF is also complete, therefore, the local particles {X~l,LF)(k), w?·LF)(k)} and fusion 

particles {X~ l ,FF) ( k), wp ,FF) ( k)} are also available. 

Step 1: Based on particles {X~l,FF) (k), w?·FF)} of the fusion filter, processing node l com­

putes terms C 11 (k), C 21 (k), and C 12 (k) using Eqs. (5.26)-(5.27). Since the fusion particles 

represent the same global posterior distribution, the resulting values are similar at all pro­

cessing nodes. 

Step 2: Processing node l computes term C 22 (k) using (5.28). This involves the local 

FIMs J(l,mt)(x(k+ 1)) and J(l,mt)(x(k+ llk)), which are computed based on the framework 
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presented in Section 5.2. Since these are local entities, these are based on the particles 

{X~l,LF)(k), wP·LF)(k)} of the local filters at the fusion nodes. Consequently, J(l,md(x(k + 

1)) and J(l,mt)(x(k + llk)) will have different values at the processing nodes. Based on the 

sensor selection model introduced in Section 6.1.1, term J(l,mi)(x(k + 1)), for example, is 

computed as follows 

where 

[Du(k)](l) 

[D12(k)] (l) 

[D22(k)](l,mt) 

lE{ - ~~~~~ logP(x(k + l)lx(k))} (6.9) 

( [D21 (k)] (l)) T = lE{- ~~~~~l) log P(x(k + l)lx(k))} (6.10) 

lE{-~~~~!~~ log P(x(k + 1) lx(k))} 

+ lE{-~~~~!~~ log P(z(l,mt) (k+ l)lx(k+l)) }. (6.11) 

Step 3: Theorem 7 is now used to compute the dPCRLB, which is the same at all processing 

nodes. 

As a special case and without loss of generality, I develop the distributed particle filter tracker 

and the dPCRLB-based sensor selector for 2D bearing-only tracking (BOT) applications. As 

stated previously, the objective in BOT is to estimate the kinematics (position [X, Y] and velocity 

[X, Y]) of the target from the bearing angle measurements (referenced clockwise positive to the 

y-axis), i.e., 

z(l,mt)(k) = atan - + ((l,mt)(k) 
(

X(k) x<l,m1)) 
Y(k) - y(l,mt) ' 

(6.12) 

where (X(l,mt), y(l,mt)) are the coordinates of sensor node l. 

Gaussian forcing terms: A common BOT model [103] assumes that the forcing term e(k) and ob-

servation noise ((l,mt)(k) in Eqs. (6.5) and (6.3) to be uncorrelated and normally distributed with 
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zero mean and covariance matrices Q(k) and R(l,mt)(k), respectively. In such cases, Eqs. (5.33)-

(5.35) are used instead of Eq. (5.26)-(5.28). For the sensor selection model used in this chapter, 

Eqs. (5.33) and (5.34) remain the same and Eq. (5.35) changes as follows 

N1 

c 22 (k) =I: I: ( J(l,mt)(x(k+1)) - J(l,mt)(x(k+11k))) + Q-1(k) (6.13) 

l=l m1EN~~s x~l(n1)(0) 

Eqs. (5.33) and (5.34) can be expressed in terms of the fusion filter's particles as follows 

Np 

Cll(k) ~ ~wp,FF)(k) x ([\7x(k)!T(k)]Q-1(k)[\7x(k)!T(k)])L(k)=X~1,FF)(k)' (6.14) 
~1 • 

Term C 22 (k) requires participation of all local processing nodes to computeL:z L:mx~limi)(O), 

which depends on the submatrices J(l,md(x(k + 1)) and J(l,md(x(k + ljk)) of the local FIM. 

Submatrix J(l,mi) (x(k + 1)) is computed using Eq. (6.8) with terms [D11 (k)] (l), [D12 (k)] (l), and 

[D22(k)](l,mt) approximated as 

[.iJ12(k)] (l) 

[.iJ22(k)] (l,mt) ~ Q-l(k) + 1 ~ W.(l,LF)(k) 
R(l,md(k) {:t i 

H(l,m1)(k) H(l,m1)(k) 0 0 
(1,1) (1,2) 

H(l,m1)(k) H(l,m1)(k) 0 0 
(2,1) (2,2) 

x 

0 0 0 0 

0 0 0 0 
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1\~l,LF) (kf-llk) 

(6.18) 



with 

H(l,mt) (k) 
(1,1) 

H(l,m1) (k) _ H(l,mi) (k) 
(1,2) - (2,1) 

H(l,mi)(k) 
(2,2) 

(Y(k+l) - y(l,mi))2 
[(X(k+l) - X(l,md)2 + (Y(k+l) _ y(l,mi))2]2 

-(X(k+l) - X(l,mi))(Y(k+l) - y(l,mi)) 

[(X(k+l) - X(l,mi))2 + (Y(k+l) - y(l,mi))2]2 

(X(k+l) - X(l,md)2 

[(X(k+l) - X(l,md)2 + (Y(k+l) _ y(L,mi))2]2 · 

(6.19) 

(6.20) 

(6.21) 

Approximations (6.16)-(6.18) use local filter particles instead of particles from the fusion filters 

from the CF /DPF. Prediction particles X~l,LF) (k +Ilk) in (6.18) are computed by propagating 

x~l,LF)(k) through the transitional density P(x(k + l)lx(k)) obtained from the state equation 

(Eq. (6.5)). Note that all required terms in Eqs. (6.16)-(6.21) are computed based on the avail­

able particles for iteration k. Having computed J(l,mi)(x(k + 1)) and J(l,mi)(x(k + llk)), term 

Ll Lm x~lim'\O) in Eq. (6.13) is obtained using an average consensus algorithm in a distributed 

fashion as discussed in Section 5.2. 

This completes the review of the computation and fusion of local FIMs J(l,md(x(k + 1)). Fi-

nally, note that the approach for computing J(l,md(x(k+llk)) is similar, please refer to Section 5.2 

for more details. Next the dPCRLB-based sensor selection algorithm is presented. 

6.3 dPCRLB based Sensor Selection 

In this section, I present the dPCRLB based distributed sensor selection algorithm for full-order 

distributed estimation problems. The dPCRLB from Section 6.2 is used as the objective func-

tion for sensor selection. The dPCRLB based sensor selection is illustrated in Fig. 6.2 where 

iteration k has just been completed. At each node, the CF /DPF has its local particle set 

{X~l,LF) (k) W.(l,LF) (k)}f'!s and fusion particle set {X~l,FF) (k) W.(l,FF) (k)}f'!FF available based on 
i ' i i=l i ' i i=l 

the active network configuration determined by the sensor selection algorithm. From the previ-

ous iteration at time index k of the sensor selection, the following quantities are available: local 
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Observation Clusters 

{N~~!(k)}, Jffii"(x(k)) Jmin(x(k)) 
_;__;_;_;_---:~~_.__--+-~~~~~....;___;_....;,,,;_i 

Fisher Information Matrices 
{J(ll(:i:(k)l(k-1)} 
p(ll(:i:(k))} 

To iteration (k+2) 

{X~l,CF), wp 1cF) (k+ l)} 

{X~l,LF), wP·LF) (k+l)} 

{N~~(k+l)}, Jmin(x(k+l)) 
'----~~~~~----;~~--

!p<1l(:i:(k+l)lk)} 

1P<'>(:i:(k+l))} 
' ' l ......................................................................................................................................................................................................... . 

Figure 6.2: Iteration (k + 1) of the proposed dPCRLB based distributed target tracker with the obser-

vation node selection feature. 

PCRLBs J(l,mi)(x(k)), for (1 :::; l:::; N) and (mz E N~~8 ), the global dPCRLB J(x(k)) optimized 

for N~l~s at k. Iteration k + 1 uses the overall dPCRLB to compute the local and global PCRLBs 

as explained in Section 6.2. 

After computing the local and overall FIMs for the dPCRLB (the "dPCRLB computation" 

block in Fig. 6.2), the next stage constitutes the observation node selector for the processing 

nodes. As shown in Fig. 6.2, the selector requires the following inputs: 

PCRLB Parameters (from dPCRLB computation block): 

J(x(k+l)), J(l)(x(k+l)), J(l)(x(k+llk)), D 11 (k), D 12(k) 

Selector Parameter (from the previous selector iteration:) 

Jmin(x(k)), i.e., the overall dPCRLB optimized for N~l~s at k. 

I illustrate the proposed sensor selection approach in terms of the BOT problem. The overall 

cost function C(k + 1) used by the BOT selectors is based on the dPCRLBs related to the (x, y) 
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coordinates of the target, i.e., 

C(k + 1) = [J(x(k+l))J;l + [J(x(k+l))J;J. (6.22) 

where [J(x(k + 1))];} is the dPCLRB corresponding to the x-coordinate at iteration k + 1. 

Similarly, [J(x(k + l))Jy-J is the dPCLRB corresponding to they-coordinate at iteration k + 1. 

In general, sensor selection is an NP-hard combinatorial optimization problem [163]. Finding 

the optimal solution in real time is difficult especially when the number of possible combinations 

is impractically large, hence, a near-optimal procedure is generally used. The observation node 

selection is carried out in several iterations t 2:: 1. To select the best observation node at each 

local processing node, the following local cost function (expressed in terms of processing-node-

observation-node (l, mz) combination) is used 

( ) ( (1) ) ( (1) ) . 
C l,m1 (t) = [J Nobs (t)];} + [J Nobs (t)]yJ. (6.23) 

where [J(N~~~s) (t)];} and [J(N~~s)(t)Jy-J are the dPCLRB corresponding to the x and y-coordinates in 

(6.24) 

with 

Note that Eqs. (6.24) and (6.25) are representations of Eqs. (5.25) and (5.28) for a single processing­

node-observation-node (l, ml) combination. Notation J(N~
1

~s)(t) correspond to the FIM for esti-

mates obtained from the iterating neighbourhood N~~8 (t) as it is being optimized. Once opti­

mized, N~l~s(k + 1) = N~l~8 (t). Parameters C 21 (k) = [C12 (k)JT and C 11 (k) are available from the 

dPCRLB computation block and are fixed for various iterations of the senor selector. Parameter 

J(min)(x(k)) corresponds to the dPCRLB from the previously optimized neighbourhood in the 
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last k iteration. Parameter [C22 (t)J(l,mt) is local for the (l, ml) processing-node-observation-node 

combination and is obtained from Eq. (6.25). Parameter J(l,mt)(x(k+l)) and J(l,mt)(x(k+llk)) 

are the dPCRLBs corresponding to the filtering and prediction estimates obtained at process-

ing node l from a single observation at observation node ml. Finally, Jk:~lk(t) and Jk:~lk+i (t) 
are the FIMs corresponding to the filtered and predicted estimates obtained from the iterating 

neighbourhood N~l~8 (t). Having defined the cost function, I describe the iterative consensus-based 

sensor selection approach expressed in terms of the following two steps. 

6.3.1 Initial Sensor Selection Step 

The initial step of the distributed sensor selection has the following sub-steps. 

1.1. At local processing node l, for (1:::; l:::; Ni), the local FIMs J(l,mi)(x(k+l)) and the cost 

function C(l,mi)(l) corresponding to the processing-node-observation-node (l, ml) combina-

tion are computed based on Eqs. (6.23)-(6.25). 

1.2. From all (l, ml) combinations, node l selects one observation node for which C(l,mi) (1) is 

minimum. In other words, a single observation node is selected by each local processing 

node that provides the optimal performance at that node when at the most one observation 

is used. 

1.3. At this stage, a complete enumeration encompassing all processing nodes (1 :::; l :::; N1) is 

performed. One processing-node-observation-node combination ( q = l, mq = ml) is selected 

with the minimum cost function associated to it across the network. A minimum consensus 

algorithm accomplishes Step 1.3. 

1.4. Matrices 

and 
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corresponding to the FIMs for the combination ( q, mq) are communicated across the network. 

The neighbourhood structure is given by N(l) = {N~l~8 (1)}N1. After the initial selection, all 

N~l~8 (1) = {} (i.e., empty sets) except for l = q where N~~s = {mq}· Note that I have added 

time index t = 1 to each neighbourhood to indicate the iteration number for the selection 

stage. The FIMs J(l,mi)(x(k+l)) computed in Step 1.1 are limited to the observation nodes 

within the communication range of node l. 

6.3.2 Subsequent Sensor Selection Step 

Each local processing node l, (1 ::::; l ::::; N1 ), selects an observation node in its immediate neigh­

bourhood and for it computes the cost function taking into account the previously selected neigh­

bourhood (N~l~8 (t)) and the associated FIMs J~~~lk(t) and J~~~lk+i (t). The subsequent selection 

is based on the following sub-steps. 

2.1. Local processing node l computes [C22 (t)]<l,mi), for (mt fj. N~l~8 (t)), using Eq. (6.25). The 

predicted dPCRLB J(N~~J (t) is based on Eq. (6.24). 

2.2. Given J(N~~~s) (t), Eq. (6.23) is used to compute the local cost function C(l,mi) (t). 

2.3. Select the local processing node .C and observation node m.c combination corresponding to 

the minimum overall cost function using a minimum consensus algorithm. 

2.4. Append the neighbourhood structure to include the new combination N~~s ( t+ 1) = { N~~s ( t)} 

appended with the new combination. The overall FIM corresponding to the appended 

neighbourhood combination is denoted by J(.C,mc.)(x(k + 1)). 

2.5. Matrix J(min)(x(k + 1)) now equals to J(.C,mc.)(x(k + 1)), which now corresponds to the 

overall FIM corresponding to the selected sensors. The new value of matrix J(min)(x(k+l)) 

is communicated across the network. 
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The selection is terminated, if Nmax has been reached, otherwise Step 6.3.2 is continued. 

In this section a dPCRLB-based sensor selection algorithm is proposed. The next section 

extends the non-conditional dPCRLB framework to conditional dPCRLB for full-order adaptive 

sensor selection problems. The non-conditional dPCRLB [148] considers observations and state 

variables as random, consequently, it is determined primarily from the state model, observation 

model, and prior knowledge of the initial state of the system. The conditional dPCRLB, on the 

other hand, is a function of the past history of observations and, therefore, leads to a more accurate 

representation of the systems's performance and a better criteria for adaptive sensor-selection. 

6.4 Conditional dPCRLB based Sensor Selection 

As stated previously, the conditional PCRLB provides a bound on the performance of estimating 

x(O: k) given that the past observations z(l: k-1) are known [152]. Contrary to its conventional 

counterpart, the conditional PCRLB does not assume the observations to be random. Instead the 

actual observations are used. The cost function C(k+l) used by the sensor selectors is now based 

on the conditional dPCRLBs related to the (x, y) coordinates of the target, i.e., 

C(k + 1) = [L(x(k+l))];I + [L(x(k+l))];y1. (6.26) 

where [L(x(k+l))];} is the conditional dPCLRB corresponding to the x-coordinate at iteration 

k+ 1. Similarly, [L(x( k + 1)) J;J- is the conditional dPCLRB corresponding to the y-coordinate 

at iteration k+ 1. Similar to the previous section, the observation node selection is carried out 

in several iterations. During initialization at each iteration, the best observation node for each 

processing node is picked. One observation node among N1 selected sensors forms the initial 

neighbourhood. The process is repeated till the desired number of observation nodes is included in 

the neighbourhood set. To select the best observation node at each processing node, the following 
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local cost function (expressed in terms of processing-node-observation-node (l, mz) combination) 

(6.27) 

where [L(N~
1

~s)(t)];} and [L(N~~s)(x(k+l))J;i are the conditional dPCLRB corresponding to the 

x and y-coordinates in 

(6.28) 

with 

Notation L(N~
1

~s)(t) correspond to the FIM for estimates obtained from the iterating neighbour­

hood N~l~s ( t) as it is being optimized. Once optimized, N~l~s ( k + 1) = N~l~s ( t). Parameters 

C 21 (k) = [C12 (k)]T and C 11 (k) are available from the conditional dPCRLB computation block 

and are fixed for various iterations of the senor selector. Parameter Ji_~~) ( x( k)) corresponds to 

the auxiliary PCRLB from the previously optimized neighbourhood in the last k iteration. Pa­

rameter [C22 (t)](l,mi) is local for the (l, mz) processing-node-observation-node combination and 

is obtained from Eq. (6.29). Parameter L(l,mt)(x(k + 1)) and L(l,mt)(x(k + ljk)) are the condi­

tional dPCRLBs corresponding to the filtering and prediction estimates obtained at processing 

node l from a single observation at observation node mz. Finally, Li:i~~(t) and Li:i~~+l (t) are 

the conditional FIMs corresponding to the filtered and predicted estimates obtained from the 

iterating neighbourhood N~l~8 (t). Having defined the cost function, the iterative consensus-based 

distributed sensor selection approach is described next in terms of the following two steps. 

1. Initial Selection: has the following sub-steps: (a) At processing node l, for (1 ~ l ~ N1 ) 

the conditional FIMs L(l,mt)(x(k + 1)) and the cost function C(l,mt)(l) corresponding to 
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the processing-node-observation-node (l, mt) combination are computed based on (6.27)­

(6.29). (b) From all (l, ml) combinations, the processing node l selects one observation 

node for which C(l,mt)(l) is minimum. In other words, a single observation node is selected 

by each processing node that provides the optimal performance at that node when at the 

most one observation is used. (c) At this stage, a complete enumeration encompassing all 

processing nodes (1 S l S N1) is performed. We select one processing-node-observation-

node combination (q = l, mq =ml) with the minimum cost function associated to it across 

the network. A minimum consensus algorithm accomplishes Step Le. (d) Matrices 

and 

corresponding to the conditional FIMs for the combination (q, mq) are communicated across 

the network. The neighbourhood structure is given by N(l) = {N~l~8 (1)}N1. After the initial 

selection, all N~l~8 (1) = {} (i.e., empty sets) except for l = q where N~~s = {mq}· Note that 

we have added time index t = 1 to each neighbourhood to indicate the iteration number for 

the fusion selection stage. The FIMs L(l,md(x(k+l)) computed in Step La are limited to 

the sensors within the neighbourhood of processing node l. 

2. Subsequent Selection: is based on the following substeps: Each processing node l, (1 S l S 

N1 ), selects an observation node in its immediate neighbourhood and for it computes the 

cost function taking into account the previously selected neighbourhood (N~l~s ( t)) and the 

associated FIMs Li:i~~(t) and Li:i~~+l (t). (a) Processing node l computes [C22 (t)](l,mt), 

for (mt ¢: N~l~8 (t)), using (6.28) and (6.29). (b) Given £(N~
1

~s)(t), Eq. (6.27) is used to com­

pute the local cost function C(l,md(t). (c) Select the processing node £ and observation 
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node m c combination corresponding to the minimum overall cost function using a mini­

mum consensus algorithm. (d) Append the neighbourhood structure to include the new 

combination N~~s ( t+ 1) = { N~~s ( t)}, appended with the new combination. The overall FIM 

corresponding to the appended neighbourhood combination is denoted by L(C,m.c)(x(k+l)). 

(e) Matrix L(min)(x(k+l)) now equals to L(C,m.c)(x(k+l)), which now corresponds to the 

overall conditional FIM corresponding to the selected sensors. The new value of matrix 

L(min)(x(k + 1)) is communicated across the network. 

3. Termination: Check if Nmax has been reached. Else, go to Step 2. 

Although the conditional PCRLB is an effective sensor resource management criteria for large, 

geographically distributed sensor networks, the proposed algorithm for distributed computation of 

the conditional PCRLB ( dPCRLB) is based on raw observations leading to significant communi­

cation overhead to the estimation mechanism. The next section derives distributed computational 

techniques for determining the conditional dPCRLB for quantized, distributed AN /SN systems, 

referred to as the CQ/dPCRLB. Analytical expressions for the CQ/dPCRLB are derived, which 

are particularly useful for particle filter-based estimators. 

6.5 Conditional PCRLB for Quantized Distributed Particle Filters 

The section extends the conditional dPCRLB framework to quantized observations with emphasis 

on particle filter estimators. Additional contributions of the section include: (a) Both computa­

tional and communication complexity of conditional dPCRLB (Section 5.3) are reduced in the 

proposed conditional dPCRLB with quantized observations (CQ/dPCRLB). (b) In Section 5.3 and 

Section 6.4 the conditional FIM, i.e., the inverse of the conditional dPCRLB, is expressed as a 

function of the auxiliary FIM which is updated distributively at each iteration. The CQ/ dPCRLB 
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updates the conditional dPCRLB directly without the need of computing the auxiliary FIM lead-

ing to significant communication savings. Next, I formulate the distributed estimation framework 

with quantized observations 

6.5.1 Distributed Estimation with Quantized Observations 

Similar to the model presented in Section 6.1, processing node l, (1 ::; l ::; N1 ), is connected to a 

set of sensor nodes with only a subset active at each iteration. The active sensors connected to 

node l constitute its local observation neighbourhood N~l~s· The total number of active sensors 

in the network is Nss = E{':;1 IN~l~sl, where I · I denotes the cardinality operator. Sensor m in 

the observation neighbourhood of node l, i.e., m E N~l~s' makes observation z(l,m)(k). Instead of 

transferring the raw observation, sensor m communicates its quantized version y(l,m)(k) to the 

processing node l based on the following model 

y(l,m)(k) = Q(l,m1) (g(l,m)(x(k)) + (<l,m)(k) ), 

z<t,m)(k) 

(6.30) 

where Q(l,m)(·) is the local quantization operator at node l, and g(l,m)(.) and ((l,m)(·) are, respec-

tively, the local observation model and uncertainty at sensor m connected to processing node l. 

For simplicity and without loss of generality, the quantization operators Q(l,m) ( ·) are considered 

to be the same across the network (i.e., Q(l,m)(·) = Q(·)). Collectively, the overall quantized 

observation vector at node l is denoted by 

(6.31) 

Depending on how many sensors are activated by the processing node l, the dimension of the 

observation vector y(l) (k) is different at each processing node. As for the quantized observations 

y(l)(k), vector z<O(k) is the collection of all raw observations associated with the processing node 

204 



l, i.e., 

(6.32) 

In other words, y(l)(k) is the quantized version of z(l)(k). An NL-bit quantization scheme is 

considered, where node m's quantized observation y(l,m) (k) can take any discrete value between 

0 and 2Nf, - 1. The set of quantization threshold is denoted by q = [qo, qi, ... , q2N[, _ 1] where 

for brevity Qo = -oo and q2NL = oo. The likelihood that y(l,m)(k) is at level qi is denoted by 

P(qi:::; z(l,m)(k):::; qi+ilx(k)) 

P ([qi-g(l,m)(x(k))] :=;((l,m)(k):::; [qi+1-g(l,m)(x(k))J) (6.33) 

Section 5.1 reviews the local conditional dPCRLB for raw observations as presented in Section 5.3 

with one proposed modification. 

6.5.2 Modified Conditional dPCRLB for Raw Observations 

Based on the conditional PCRLB inequality, the mean square error (MSE) associated with the 

local estimate :X(l) ( 0: k + 1) of the state vector at node l is lower bounded as follows 

where pJl)(k + 1) £ P(x(O: k),z(l)(k+l)iz<O(l: k)), IE{-} denotes expectation, and e(l>(o: k+ 

1) £ x(O: k+l) - :X(l)(O: k+l) is the estimation error. The local accumulated conditional FIM 

J(l)(x(O: k+l)) corresponds to the state trajectory :X(l)(O: k+l) from iteration 0 to k+l and is 

given by 

(l)( ( . )) ~ { Ax(O:k+l) 1 (l)(k )} I x O.k+l - IEp~l)(k+l) - '"""x(O:k+l) ogPc +1 . (6.34) 
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Another local FIM is the local instantaneous conditional FIM £(l)(x(k + 1)) associated with 

:X(l)(k+l), which is obtained by taking the inverse of (nx x nx) right-lower block of [J(l)(x(O: k+ 

l ))]- 1 . Please refer to 

Below, I further highlight the relationship between the local accumulated conditional FIM 

J(l)(x(O: k+l)) and local instantaneous conditional FIM £(l)(x(k+l)). The local instantaneous 

conditional FIM £(l)(x(k+l)) is computed using either of the following three approaches: (i) 

Directly by inverting large matrix J(l)(x(O: k + 1)); (ii) Recursively as a function of the previous 

local instantaneous auxiliary FIM Jfbx(x(k)) (Section 5.3), and; (iii) Recursively as a function 

of the previous local instantaneous conditional FIM £(l)(x(k)) presented below in Result 1. In 

approach (i), first the local accumulated conditional FIM J(l)(x(O: k+l)) is factorized as follows 

(6.35) 

Then, the local instantaneous conditional FIM £(l)(x(k+l)) associated with the estimate x(k+l) 

is obtained by taking the inverse of the (nx x nx) right-lower square block of [J(l)(x(O: k+l))J- 1 by 

applying the matrix inversion Lemma 3. Based on Lemma 3, the local instantaneous conditional 

FIM is given by 

which requires inversion of large matrix [A11 (k+ l)]<l). Next, I describe approach (iii) in more 

details. Node l updates its local conditional FIM £(l)(x(k + 1)) as follows. 

Result 1. The instantaneous local FIM £(l)(x(k + 1)) associated with estimate :X(l)(k+l) at node 
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l is computed as fallows 

L(l)(x(k + 1)) 

[B11 (k)] (l) 

[B12(k)](l) 

and 

~ [B22 (k)](l) - [B21 (k)](l)(L(l)(x(k))+[B11 (k)](l))-
1

[B12 (k)](l), (6.37) 

lE{-~:~~~ logP(x(k + l)lx(k)) }, (6.38) 

lE{-~:~~t) log P(x(k + l)lx(k))} (6.39) 

[ B 22 (k)] (l) = lE{-~:~~!g log P(x(k + l)lx(k))} + lE{-~:~~!g log P(z(l) (k+l)lx(k+l)) }. (6.40) 

The derivation of Result 1 is included in Appendix D.2. In Chapter 5, L(l)(x(k+l)) is computed 

recursively from the local instantaneous auxiliary FIM [JAux(x(k))](l) which is the inverse of 

(nx x nx) right-lower square block of the accumulated auxiliary FIM (Jfbx(x(O: k))]- 1. The 

latter is defined as 

(6.41) 

with P~l)(k) ~ P(x(O: k)lz(l)(l: k)). The algorithm proposed in Chapter 5, therefore, requires 

distributed fusion of both the local FIMs and the local auxiliary FIMs, while Result 1 eliminates 

the need for fusing the local instantaneous auxiliary FIMs and, therefore, cuts the communication 

overhead by half. 

Distributed computation of the conditional PCRLB requires a recursive expression for the 

predictive local conditional FIM L(l) (x(k + 1 lk)) which is similar to (6.37) except [B 22 (k )]<l) is 

substituted with [B~2 (k)]<l) as 

(6.42) 

Having computed the local FIMs L(l)(x(k + 1)) and the local prediction FIMs L(l)(x(k + llk)) at 

iteration k + 1, the next step in the conditional dPCRLB is to fuse these local FIMs to compute 
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the global instantaneous conditional FIM L(G)(x(k + 1)). In Chapter 5, I derived a fusion rule 

for assimilating local conditional FIMs into the global conditional FIM when raw observations are 

available at each local node. Section 6.5.3 extends the derivations to quantized observations and 

eliminates the need for fusion of local instantaneous auxiliary FIMs. 

6.5.3 CQ/ dPCRLB with Quantized Observations 

In Result 1, raw observations zCl,m)(k) are replaced with their quantized version y(l,m)(k), 

which results in the quantized filtering conditional FIM Lg)(x(k + 1)). Since terms [B11 (k)]<l), 

[B12(k)]Cl), [B21 (k)]Cl) are based on the state model, they remain the same. Term [B22 (k)]Cl) in 

Eq. (6.40) is now computed using the quantized observation as follows 

[B~2 (k)] (l) = lE{-~:~~!~~ log P(x(k + l)lx(k))} + lE{ -~:~~!g log P(y<l) (k+l)lx(k+ 1) )}.(6.43) 

J(y(l) (k+l)) 

To compute J(y(l)(k + 1)), the likelihood P(y(l)(k+l)lx(k+l)) along with the second derivative 

of its logarithmic function is needed. Because of quantized observations, P(y(l)(k + l)lx(k + 1)) 

transforms into a probability mass function that is discrete with second derivative replaced by a 

double summation as described below. Given the state variables, local observations are assumed 

independent such that 

J(y<l)(k + 1)) 

where J(Y(l,m)(k+l)) 

L J(Y(l,m)(k + 1)), 

mEN~1~8 (k) 
(6.44) 

N1, 

L -lE{ <>(ycz,m)(k + 1) - i)~:~z~ log ( h~l,m)(k))} (6.45) 
i=l 
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and 8(·) is the delta function. We note that IE{8(Y(l,m)(k + 1) - i)}=h~l,m)(k), where h~l,m)(k) 

was defined immediately after Eq. (6.33) previously and has the second derivative 

82 log(hi1•m)(k)) 82 log(hi1•m)(k)) 
(8(X1 (k))) 2 ••• 8(X1(k))8(Xn., (k)) 

~:~~~ log(h~l,m)(k)) = (6.46) 

8 2 log(h~l,m)(k)) 8 2 log(h{l,m)(k)) 
8(Xnx (k))8(X1(k)) · • · (8(Xn., (k))) 2 

Under mild regularity conditions, the expected value of (6.46) is equal to the variance of its first 

moment, i.e., 

(6.47) 

Eqs. (6.44)-(6.47) are used to compute [B~2 (k)]<l). Finally, the local quantized filtering FIM is 

given by 

Eq. (6.48) is derived by applying the following factorization 

P(x(O: k + 1), y<l)(l: k + 1)) = P(x(O: k), y<l)(l: k))P(x(k + l)lx(k))P(y(l)(k+l)lx(k+l)), 

(6.49) 

to the quantized version of Eq. (6.34) and then taking the inverse of the (nx x nx) right lower 

block of [Jg)(x(O:k+l))]- 1 . The similarity between Eqs. (6.37) and (6.48) is intuitively pleasing. 

The local predictive FIM Lg)(x(k+llk)) is derived in the similar manner as (6.48) with [B22 (k)]<l) 

replaced by (6.42) 

Fusing Local FIMs (CQ/dPCRLB): Result 2 provides a fusion rule for assimilating the local 

FIMs with quantized observations to compute the global quantized FIM. 
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Result 2. The sequence {L~)(x(k + 1))} corresponding to the global information submatrix 

( CQ/ dPCRLB) with quantized local observations follows the following recursion 

L~G)(x(k+l)) ~ C~2 (k) - C~1 (k)(L~)(x(k)) + Cb1(k)f
1
Cb2(k) (6.50) 

where Cb1(k) lE{ - ~:~~~ logP(x(k + l)lx(k))}, (6.51) 

Cb2(k) lE{ - ~:~~t) log P(x(k + l)Jx(k)) }, (6.52) 

and 

N1 N1 

Cb2 (k) ~ L L~(x(k + 1)) - L LW (k + llk) + lE{ - ~:~~!~~log P(x(k_+ l)Jx(k))}. (6.53) 
l=l l=l 

The proof of Result 2 is included in Appendix D.3. 

Gaussian Observation Noise: The analytical expressions are derived for the case when lo-

cal observations z(l,m)(k) are zero-mean Gaussian with variance R(l,m)(k), i.e., z<t,m)(k) ,....., 

N(O, R(l,m)(k)). The likelihood that y(l,m)(k) is at level Qi is 

1 1Qif-1-g(L,rn)(x(k)) -t 
h~l,m) (k) = exp { }dt 

y'27rR(l,m)(k) Qi-g(l,rri)(x(k)) 2R(l,m)(k) 

<I> (qi - g(l,m)(x(k))) - <I> (Qi+l - g(l,m)(x(k))) 
y'R(l,m)(k) y'R(l,m)(k) ' (6.54) 

where <I>(·) is the standard cumulative Gaussian distribution. Based on (6.54), each derivative 

term in Eq. (6.47) is represented as 

8g(L,rn) (x(k)) 
8x(k) ( (-(qH1-g(l,m)(x(k))) 2

) (-(qi-g(l,m)(x(k))) 2)~ 
y'27rR(l,m)(k) exp 2R(l,m)(k) -exp 2R(l,m)(k) ~ .(6.55) 

6.5.4 Computation of The Conditional dPCRLB 

The analytical computation of the expectations in Result 2 is not practical and, therefore, particle 

filter-based approaches are proposed. If the state estimator is based on distributed particle fil-

ters (51], then the same particle set can be used in the CQ/dPCRLB algorithm. An active sensor 
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communicates its quantized observation to the associated processing node. The processing nodes 

themselves communicate the local conditional FIMs and statistics of local posteriors (i.e., local 

state estimates and their corresponding covariance matrices) to the neighbouring processing nodes 

which are then fused in a distributed fashion to compute the global state estimate and the global 

conditional FIM. I explain the CQ/ dPCRLB algorithm in the context of the CF /DPF implemen­

tation (Chapter 4) being used as the state estimator. Recall that the CF /DPF implements two 

particle filters at each node: (i) Local filter which approximates the local posterior at node l with 

a set of weighted particles {X~l,LF)(k), Wi(l,LF)}, and; (ii) Fusion filter which combines the local 

posteriors to estimate the global posterior with a second set of particles {X~l,FF)(k), w?,FF)}. All 

information regarding the observations collected up to time k at node l, are presented in the local 

particles X~l,LF) (k), while the information available across the network is provided by the global 

particles X~l,FF)(k). The CQ/dPCRLB comprises of the following steps: 

I. Local F!Ms: 

1. Eqs. (6.38)-(6.39) are computed at node l based on Monte-Carlo integration using local 

particles :%:~ l ,LF) ( k). 

2. For computing Eq. (6.43), first, node l computes the predictive particles X~l,LF)(k+llk) 

by propagating xY,LF)(k) through P(x(k+l)lx(k)), and then computes Eq. (6.43) using 

X:~l,LF)(k) and X~l,LF)(k+llk). 

3. The local FIMs are then computed using Eq. (6.48). 

II. Global FIM: 

4. The expectations in (6.51)-(6.53) are computed using the global particles X~l,FF)(k) to derive 

the FIMs CQ.*(k). Eq. (6.53) includes summation of local FIMs across the network typically 
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computed using the average consensus algorithms [55) in a distributed fashion. 

5. Result 2 is used to compute the global FIM based on the local FIMs computed in Step 4. 

6.5.5 Communication Savings with CQ/dPCRLB 

First, the transfer of quantized observation (instead of raw data) between sensors and associated 

processing nodes leads to significant communication savings. Second, the communication overhead 

for computing the global auxiliary FIM from the local auxiliary FIMs across the network is 

eliminated in the proposed CQ/dPCRLB algorithm. With average consensus [51), the second 

savings is of O(nxlN~~selNc) (i.e., the communication complexity reduces by half), where nx is 

number of states, IN~~sel the number of processing nodes in the neighbourhood of processing node 

l, and Ne the number of consensus iterations. The CQ/dPCRLB can be further extended to 

communicate quantized versions of the local state statistics (quantized local tracks [164)) and 

local FIMs between neighbouring processing nodes during the fusion filter stage which will be 

considered in future work. 

6.6 Simulation Results 

In this section the proposed distributed sensor selection algorithms are implemented using the 

non-conditional dPCRLB in Section 6.6.1 and the conditional dPCRLB in Section 6.6.2, and are 

compared in performance with some of the existing sensor selection algorithms. In Section 6.6.3, 

the conditional dPCRLB for quantized distributed estimation proposed in Section 6.5 is likewise 

evaluated using the Monte Carlo simulations. 

A large-scale distributed BOT application [103) based on Fig. 6.1 is simulated to test the pro­

posed consensus-based dynamic sensor selection approaches. An AN /SN consisting of N 88 = 225 

sensor nodes and N f = 9 local processing nodes scattered in a square region of dimension 

212 



- Proposed Sensor Selection Method 

- • - Random-Sensor Selection 1.8 . , ........................ '· 

!:1.6 
CQ 

\ 
.. -~ ...................... '. 

•-•-•Closest-Sensor Selection 

~ 1.4 .. 
p.. 
~ :€ 1.2 
ti) 

0 

t 1 
0 

0 
~0.8 

~ g.o.6 
(/} 

0.4 

" .·~·. . ....... ··:· ...... -~-. .. . .· ... ····"·41\ 
~~\ ... · ............. , .• '-r:~ .... ! ~fl : - ~.. •. :1l \ 
\~ : . ,,;,/ ..... \ \: ,,,, 
~-~·······~-· ....................................... , .. . 
'·: ... 
\ : ............................. .. .. :., ...........•. , ........................... : ............. · . .' .......... . ....... : . . .... ._ 

0.2~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

0 

2 

1.8 

1.6 

!: 1.4 

'"" 0 

5 10 15 

Iteration (k) 

(a) 

--Proposed Sensor Selection Method 
- - - Random-Sensor Selection 
·-•-•Closest-Sensor Selection 

. \. --dPCRLB 

20 25 

..... , .. ·····A· 

·' \ 
I \ : \ 

.. 1 ........ v· .. ,. 
:~I \ 

\ ,. \ ., . . ............ ' ............. ' .......... ,. '.. . ... , . 
\ I . \ 

30 

t:: 
i;.Ll 1.2 
~ 

\ I ' .. \' .. '............... ·;;.., .,. I ................. l. 

\ . , , - . '·' 0 

:~ 
0 

11.. 
(/} 

~ 0.8 

0.6 

0.4 

0.2 
0 

-:'\~·:···· .. ·:··/ .......... ~-

\. ·.I ~-tt. .. • . 
~- . ....... :''°•' .. . 

.... \ .... . ..... :, . . . . . . '. ·)'·. . '. ........... ···"· 
: \ '· , -'. .~: ·~ 
. ~ ~-~ ................... " ................................... -~~-. 

5 10 15 
Iteration (k) 

(b) 

20 25 

' 

30 

Figure 6.3: (a) The dPCRLB, and; (b) RMS error for target's position averaged over all processing nodes 

for the three approaches. 
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(1500 x 1500) m2 is considered. For simplicity, the observation nodes are assumed distributed 

uniformly with the processing node at the centre of its rectangular (500 x 500)m neighbourhood. 

Each processing node communicates only with selected observation nodes within its rectangular 

(500 x 500)m neighbourhood and other processing nodes within a connectivity radius of 550 m. 

Each processing node linked to at least one other processing node in the network. The CCT kine-

matic motion model (Eq. 3.50) defines the state model. Measurements are the target's bearings 

with respect to the platform of each node referenced (clockwise positive) to the y-axis as follows 

z(l,mi)(k) = atan - + (<l,mi)(k) [
X(k) x<t,mi) l 
Y(k) - y(l,mt) ' (6.56) 

where {X(l,mt), y(l,mt)} represents the coordinates of sensor (l, mz), i.e., sensor mz connected to 

processing node l, for (1 ~ l ~ N1 ). Both state and observation noises are normally distributed 

with the observation noise u:<l,mt)(k)) assumed to be state dependent such that the variance of 

the observation noise at sensor node (l, mz) given by 

(6.57) 

depends on the distance r(l,mt)(k) between sensor node (l,mz) and target. Consequently, the SNR 

is time-varying and differs from one sensor node to the other depending on the location of the 

target. 

6.6.1 Non-Conditional dPCRLB-based Sensor Selection 

In this section, the sensor selection algorithm based on the non-conditional dPCRLB proposed in 

Section 6.3 is evaluated through Monte Carlo simulations. The maximum number of active obser-

vation nodes at each iteration is N max = 32 with the additional constraint that each processing 

node can at the most select four sensors. Since the distributed dynamical system is non-linear, 

the distributed particle filter implementation (CF /DPF (Chapter 4)) is used to track the tar-
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gets, compute the local FIMs J(l)(x(k+l)) and J(l)(x(k+llk)), for (1 ~ l ~ N 1 ), and evaluate 

the global FIM J(x(k+l)). The number of vector particles used at each processing nodes is 

N 8 = 1000. The dPCRLB sensor selection approach is compared with other distributed sensor 

selection approaches [15] as follows. 

1. Random-sensor approach: 0 bservation nodes are selected randomly by each processing node 

from within its neighbourhood. 

2. Closest-sensor approach: If a target is present in the neighbourhood of a processing node, 

observation nodes closest to the estimated location of the target are selected. Else, sensors 

are selected randomly from the processing node's neighbourhood. 

In the experiments, a single target starts its maneuver from coordinates {100, 1400}. The initial 

course is set at -140° with the standard deviation of the process noise av= 1.6. Fig. 6.3(a) shows 

the position PCRLB for the three sensor selection approaches based on the selected sensors. The 

RMS error for the three approaches with the CF /DPF as the estimation algorithm are plotted in 

Fig. 6.3(b). In Fig. 6.3(a), the dPCRLB based sensor selection approach provides the minimum 

lower error bound as well as the minimum RMSE as shown in Fig. 6.3(b). Next, the conditional 

dPCRLB based sensor selection algorithm is evaluated. Fig. 6.3 reinforces our earlier result of 

the superiority of the dPCRLB based sensor selection approach. 

6.6.2 Conditional dPCRLB based Sensor Selection 

In this section, the sensor selection algorithm based on the conditional dPCRLB proposed in 

Section 6.4 is evaluated through Monte Carlo simulations. In other words, the sensor selection 

procedure is the same as in Section 6.6.1 except for using the conditional PCRLB as the selection 

criteria versus non-conditional PCRLB used in Section 6.6.1. As in the previous section, a large-
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scale distributed BOT application is simulated based on an AN /SN consisting of N 88 = 225 

sensor nodes and N1 = 9 fusion nodes scattered in a square region of dimension (1500 x 1500) 

m2 . A single target scenario is considered with the target starts its maneuver from coordinates 

(1400, 1400). The initial course is set at -140° with the standard deviation of the process noise 

av = 1.6. The maximum number Nmax of active observation nodes at each iteration is different 

from the earlier setup and set to 18 with the constraint that each processing node (shown as '•') 

can at the most select four sensors. The measurement equation is given by Eq. (6.56) and the 

target movies according to a CCT motion model given by Eq. (3.50) with maneuver acceleration 

parameter Am set to 1.08 x 10-5km/s2
. Fig. 6.4(a) shows the target tracks together with location 

of observation nodes and local processing nodes. The variance of the observation noise at sensor 

node (l, mz) is given by Eq. (6.57) which considers a state dependent noise model such that the 

bearing noise variance at sensor node (l, mz) depends on the distance r(l,mi)(k) between sensor 

node (l, mz) and target. Consequently, the SNR is time-varying and differs from one sensor node 

to the other depending on the location of the target. As stated previously the CF /DPF [50] is 

used to track the targets and compute the local FIMs. The conditional dPCRLB sensor selection 

approach is compared with other distributed approaches [15, 67] as follows: 

1. Non-conditional dPCRLB-based sensor selection: where the conventional dPCRLB is the 

selection criteria. 

2. Random-sensor approach: Observation nodes are selected randomly by each processing 

node from within its neighbourhood. 

3. Closest-sensor approach: where the observation nodes closest to the estimated location of 

the target are selected. 
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Fig. 6.4(b) shows the position RMSE for the four sensor selection approaches. The conditional 

dPCRLB based sensor selection approach outperforms the other methods and provides the min­

imum RMSE as shown in Fig. 6.4(b). Next, the conditional dPCRLB for quantized distributed 

estimation proposed in Section 6.5 is considered. 

6.6.3 Conditional dPCRLB for Quantized Distributed AN /SN Systems 

In this section, the performance of the CQ/ dPCRLB algorithm proposed in Section 6.4 is evalu­

ated through Monte Carlo simulations. Similar to the previous section, a large-scale distributed 

bearing-only tracker with nonlinear CCT model [51] given by Eq. (3.50) is considered. The ob­

servations are bearing measurements given by Eq. 6.56. Both process and observation noises are 

normally distributed with the observation noise (((l,mt)(k)) model assumed to be state dependent 

such that the bearing noise variance at sensor (l, ml) depends on the distance between the observer 

and target. A agent network (Fig. 6.5(a)) consisting of 225 static sensors and NJ = 9 processing 

nodes scattered in a square region of dimension (1500 x 1500)m2 is implemented. Our goal is 

to evaluate the performance of the proposed CQ/dPCRLB, therefore, the activated sensors are 

selected at random and limited to three sensors per processing node. 

The objective of the Monte Carlo simulations in this section is three folds. The first objective is 

to validate the effectiveness of the conditional FIM approximation (i.e., to replace the global auxil­

iary FIM with the global conditional FIM) in Result 2. Fig. 6.5(b) plots the conditional dPCRLB 

and CQ/dPCRLB with and without the proposed global conditional FIM approximation. In 

each case, results for both raw (bottom two plots) and quantized (top two plots) observations 

are included. Within each set of plots in Fig. 6.5(b), the bounds virtually overlap verifying the 

effectiveness of the global conditional FIM approximation. The second objective is to compare 

the CQ/ dPCRLB with quantized observations for accuracy against the conditional dPCRLB com-
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Figure 6.5: (a) A sample decentralized bearing only tracking setup. (b) Comparison of the conditional 

dPCRLBs [55] using raw observations with the CQ/dPCRLBs using 8-bit quantized observations. (c) 

Effect of quantization on the CQ/dPCRLB for different (4, 5, 6, 7, and 8 bit) quantization levels. 
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puted from raw observations [55]. Comparing bounds across the two sets of plots in Fig. 6.5(b), 

it is observed that the respective plots do not overlap but are fairly close to each other. Despite 

using quantized observations, the CQ/dPCRLB is a reasonable approximation of the dPCRLB. 

Illustrated in Fig. 6.5(c), the third objective is to quantify the potential CQ/dPCRLB perfor­

mance loss as a function of the number of quantization levels. The CQ/ dPCRLB approaches the 

dPCRLB as the number of quantization levels are increased. The relative performance gain with 

an increased number of quantization levels decreases beyond an 8-bit quantizer in our setup. The 

CQ/dPCRLB from an 8-bit quantizer is a good approximation. 

6.7 Summary 

The PCRLB has recently been proposed (15] as an effective selection criteria for distributed sensor 

resource management in large, geographically distributed sensor networks. Existing PCRLB-based 

selection techniques are, however, primarily limited to centralized and hierarchical architectures, 

and when extended to distributed topologies use approximate expressions [15] for computing the 

PCRLB. The chapter addresses this gap and proposes the distributed PCRLB (dPCRLB) as the 

sensor selection criteria for distributed AN /SN systems without any need for central fusion. In 

the chapter, dynamic sensor selection for reactive non-linear tracking applications in distributed 

AN /SN systems is considered. I proposed a consensus-based sensor selection approach based 

on the dPCRLB for a network with two types of nodes: observation nodes with limited power, 

no processing ability, which make observations, and; local processing nodes without any power 

constraints for processing and communication. Each processing node computes its local track 

based only on the observations limited to the selected observation nodes in its neighbourhood. The 

processing nodes cooperate distributively with each other to compute the global state estimate. 

The cost function for the consensus-based distributed iterative local node selection approach 
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is based on the dPCRLB. A distributed adaptive sensor-selection algorithm is then developed 

using the conditional dPCRLB. The conditional PCRLB is a function of the past history of 

observations made and, therefore, a more accurate representation of the estimator's performance 

and, consequently, a better criteria for distributed adaptive sensor selection. Finally, existing 

distributed algorithms for computing the PCRLB are typically based on raw observations resulting 

in a significant communication overhead. The chapter further derived the PCRLB for distributed 

estimators in an AN /SN system with quantized observations. Our numerical simulations verify 

the efficiency of the proposed distributed dPCRLB based sensor selection approaches. Through 

Monte Carlo simulations, we showed that the sensor selection algorithm based on the conditional 

dPCRLB is superior to the implementation using the conventional (non-conditional) dPCRLB. 

Finally, the proposed CQ/ dPCRLB with quantized observations is compared for accuracy with 

its centralized counterpart through Monte-Carlo simulations. 
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7 Contributions and Future Research Directions 

The chapter concludes the thesis with a list of important contributions made in the dissertation 

and some proposed directions for future work. 

7.1 Summary of Contributions 

A list of the main contributions of the thesis is as follows. 

1. Consensus-Based Distributed Implementation of the Particle Filter [49, 50, 59-

61]: I proposed three consensus-based, distributed implementations of the particle filter. 

First, a constrained sufficient statistic based distributed implementation of the particle filter 

(CSS/DPF) is proposed for bearing-only tracking (BOT) and joint bearing/range tracking 

problems encountered in a number of applications including radar target tracking and robot 

localization. Existing distributed consensus-based particle filter implementations proposed 

in the literature [20, 22] require a large number of parallel consensus runs at each iteration of 

the particle filter which adds considerable consensus overhead to the distributed estimator. 

The CSS/DPF is· proposed with the goal of developing a distributed particle filter that has 

reduced consensus overhead and affordable complexity. In the CSS/DPF, the number of 

parallel consensus runs is reduced to 6 for 2-D BOT, 16 for 3-D BOT, and 12 for joint 

bearing/range tracking. The proposed CSS/DPF still depends on the convergence of each 
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of the consensus runs which itself requires a large number of consensus iterations. To further 

reduce the consensus overhead, the CSS/DPF is extended to distributed implementation of 

the unscented particle filter, referred to as the CSS/DUPF which require limited number of 

consensus iterations. 

Although computationally efficient, the CSS/DPF and CSS/DUPF are dependent on the 

dynamics of the system and are applicable to applications where the global sufficient statis­

tics ( GSS) can be expressed as a linear combination (summation) of the local sufficient 

statistics (LSS). The unscented, consensus-based, distributed implementation of the parti­

cle filter (UCD /DPF) is proposed which is generalizable to systems with any dynamics. The 

UCD /DPF couples the unscented Kalman filter (UKF) with the particle filter such that the 

UKF estimates the Gaussian approximation of the proposal distribution, which is used to 

generate new particles for the next iteration of the particle filter. In terms of contributions, 

the UCD/DPF makes two important improvements to the existing distributed particle filter 

framework: (i) Unlike existing distributed implementations [24, 27] of the particle filter, the 

UCD /DPF uses all available global observations including the most recent ones in deriving 

the proposal distribution based on the distributed UKF, and; (ii) Computation of the global 

estimates from local estimates during the consensus step is based on an optimal fusion rule. 

2. The CF /DPF Framework [51, 52, 62, 63]: A major problem in distributed estimation 

networks is unreliable communication (especially in large and multi-hop networks), which 

results in communication delays and information loss. Referred to as the intermittent net­

work connectivity, this issue has been investigated broadly in the context of the Kalman 

filter. Such methods are, however, limited to linear systems and have not yet been extended 

to non-linear systems. The thesis addresses this gap. A multi-rate consensus/fusion based 

framework for distributed implementation of the particle filter, referred to as the CF /DPF, 
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is proposed. The CF /DPF framework is based on running localized particle filters to esti­

mate the overall state vector at each observation node. Separate fusion filters are designed to 

consistently assimilate the local filtering distributions into the global posterior by compen­

sating for the common past information between neighbouring nodes. The CF /DPF offers 

two distinct advantages over its counterparts. First, the CF /DPF framework is suitable 

for scenarios where network connectivity is intermittent and consensus can not be reached 

between two consecutive observations. Second, the CF /DPF is not limited to the Gaussian 

approximation for the global posterior density. 

3. Distributed Computation of the PCRLB (53-55, 64]: In order to evaluate the perfor­

mance of the proposed distributed, non-linear framework, the posterior Cramer-Rao lower 

bounds (PCRLB) are presented. The current PCRLB approaches assume a centralized or 

hierarchical architecture. The exact expression for distributed computation of the PCRLB 

is not yet available and only an approximate expression [15] has recently been derived. The 

thesis derives the exact expression, referred to as the dPCRLB, for computing the PCRLB 

for any AN /SN configured in a distributed fashion. 

4. Conditional dPCRLB: Motivated by the distributed adaptive resource management prob­

lems, the thesis derives recursive expressions for the online computation of the conditional 

dPCRLB [55]. Compared to the non-conditional PCRLB, the conditional PCRLB is a func­

tion of the past history of observations made and, therefore, a more accurate representation 

of the estimator's performance and, consequently, a better criteria for sensor selection. Pre­

vious algorithms to compute the conditional PCRLB are limited to centralized architectures, 

which involve a fusion centre, thus making them unsuitable for distributed topologies. The 

distributed algorithms for computing the conditional and non-conditional dPCRLBs are 

exact with resulting bounds same as those for the centralized PCRLB. 
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5. Distributed Sensor Selection [56, 67): Finally, the thesis considers the problem of sensor 

resource management for distributed, nonlinear estimation applications with the objective 

of dynamically activating a time-variant subset of observation nodes to optimize the net­

work's performance [67). The PCRLB is a predictive benchmark of the tracker's achievable 

performance and has recently been proposed as a criteria for sensor selection. Existing 

PCRLB-based sensor selection techniques are, however, primarily limited to centralized and 

hierarchical architectures, and when extended to distributed topologies use approximate 

expressions for computing the PCRLB. I proposed a near-optimal dPCRLB-based sensor 

selection procedure for distributed sensor networks. 

The algorithms listed under Items 1-5 are tested and compared with their state-of-art counterparts 

using Monte Carlo simulations for different tracking applications. In most cases the proposed 

algorithms outperform the existing state-of-art approaches. 

7 .2 Future Research Directions 

Below, I highlight some directions for future research work. 

1. In the thesis, I considered a single state model to represent the system's dynamics which 

is a common practice in distributed implementations of the particle filter [16-19, 23, 24, 

27). Extending the proposed distributed particle filter implementations to multiple state 

models [167) as is the case for source tracking applications where the source can manoeuvre 

differently is one direction for future research. 

2. In the thesis, the SIR and unscented particle filters have been chosen as proof of concepts 

to develop distributed particle filter implementations. The proposed frameworks can be 

extended/generalized to other variants of the particle filter such as the marginalized particle 
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filter [125] and the approximate condition mean particle filter [126], with some modifications 

which is another direction for future work. 

3. Consensus and Innovation based Distributed Particle Filter Implementation: 

The consensus-based distributed implementations of the particle filter require the consensus 

step to converge between two consecutive observations. In large sensor networks, conver­

gence often requires a large number of consensus iterations which adds considerable con­

sensus overhead to the distributed estimator. The impractically large number of consensus 

iterations in distributed consensus-based particle filters motivates future work to either come 

up with more efficient consensus algorithms or with distributed particle filter implementa­

tions that can cope with situations where consensus is l~mited to few (one to three) iterations 

between two consecutive observations. 

The thesis proposed the CSS/DPF which requires a reduced number of consensus runs per 

iteration, but still requires the consensus step to converge. To further reduce the consensus 

overhead, the CSS/DUPF is then proposed which can be considered as a consensus and 

innovation [168] distributed non-linear estimator. In other words, it can be shown that 

the CSS/DUPF is the non-linear (particle filter based) counterpart of the linear consensus 

and innovation filters [168] where its mean squared error (MSE) remains bounded when 

the number of consensus iterations between two consecutive observations is less than the 

number of iterations required for the consensus convergence. An interesting future research 

direction is to extend the CSS/DUPF to scenarios with communication constraints where 

the consensus is limited to one iteration between two consecutive observations (i.e., the 

communication time scale and sensing time scale are the same as shown in Fig. 7.1). 

4. Incorporating non-Parametric Statistical Models in the CF /DPF: The localized 
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Sensing time-scale 

Iteration 

Communication time-scale 

Figure 7 .1: Time-scales of sensing (dynamic estimation) and communication (consensus iterations). 

Consensus + innovation Kalman filtering where the consensus time (communication time) and the sens­

ing/filtering time are the same. 

posteriors in CF /DPF are represented as a Dirac mixture in the particle filter. Two separate 

Dirac mixtures may not have the same support and their multiplication could possibly be 

zero. In order to tackle this problem, a transformation is required on the Dirac function 

particle representations by converting them to continuous distributions prior to commu­

nication and fusion. The CF /DPF uses Gaussian approximation of the local filtering and 

prediction densities. Alternative parametric distributions which can be used in the CF /DPF 

are: grid-based techniques (47], Gaussian Mixture Model (GMM) [17] and Parzen represen­

tations [27]. Another interesting alternative solution is to use non-parametric statistical 

models instead of the above parametric models. For example, recently the support vector 

machines (SVM) have shown to perform well for density estimation problems where the 

PDF of the IID sample set can be learned and the entire sample set can be represented by a 

few support vectors and the associated kernel functions [170]. Another direction for future 

research is to incorporate SVMs in the CF /DPF implementation which should improve the 

estimation performance of the CF /DPF. 

5. Distributed Estimation with Measurement Origin Uncertainty: Extending the pro-
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posed computational algorithms to account for the measurement origin uncertainty [149, 160] 

is another direction of research that can be pursued to generalize the distributed particle 

filter implementations as well as computing the associated dPCRLBs. For example, Ref­

erence [149] has introduced a general framework for determining the PCRLBs that allows 

a marriage of non-linear measurements and uncertain dynamics for the centralized archi­

tecture. The distributed PCRLBs with measurement origin uncertainty has not yet been 

considered in the literature. Extending the proposed distributed PCRLB to include the 

measurement origin uncertainty is another direction for future research. 

6. Consensus-Based Distributed Sensor Selection for Multi-target Tracking: The 

proposed distributed sensor selection algorithms is considered for scenarios with a single 

target, or fixed and well-separated targets. A natural extension is the problem of distributed 

consensus-based sensor selection for large scale multi-target tracking applications where 

targets overlap and occlude each other. 

7. Reduced-Order Implementations: In the thesis, I focused primarily on the full-order 

distributed particle filter implementations where the entire state vector is estimated at each 

node. Appendix E presents some initiative results on distributed reduced-order particle 

filters and the corresponding reduced-order computation of the dPCRLB. Recall in reduced­

order estimation, a different subset of the state vector is estimated at the processing nodes. 

The overall system is divided into several coupled low-dimensional sub-systems. The particle 

filter implemented at one sub-system computes the marginal posterior density of the local 

state variables. Marginalizing a sampled representation (particle filter) has proved to be 

computationally straightforward [175], i.e., the marginal over a subset of state variables 

is represented by dropping the particles for other state components (ignoring them). This 

feature of the particle filters encourages further investigation of the reduced-order distributed 
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implementations. The key issue when distributing the particle filter for such reduced-order 

scenarios is to ensure that the local marginal posteriors approximate the centralized posterior 

in a meaningful way. If the local marginal posterior evolve independently at each sub-system, 

they may lose any coherence with the centralized posterior. Motivated by non-linear sparse 

and localized large-scale problems such as smart power grids [48], developing more accurate 

and near-optimal reduced-order distributed implementations of the particle filter is another 

important future research direction. 

7 .3 Applications of Distributed Particle Filter Implementations 

The theses focused primarily on distributed tracking application based on bearing and range 

measurements. Other areas where distributed particle filter can be applied are outlined below. 

1. State Estimation in Power Grids: State estimation [106-109] in electrical power grids 

is used to monitor the state of the grid, enable energy management, optimize power flows, 

and perform reliability /security assessment. State forecasts are also used to analyze con­

tingencies and determine necessary corrective actions against possible failures in the power 

systems. In the electric power distribution networks, the underlying state and observation 

models are highly nonlinear. The observations are geographically distributed across the 

entire distribution grid. The large dimensionality of the estimation problem precludes the 

direct application of the centralized particle filter primarily due to its high computational 

complexity. In other words, although the centralized approach is optimal, it is neither robust 

nor scalable to such large-scale dynamical systems with geographical distributed observa­

tion nodes primarily because of two reasons. First, extensive computations are required 

at the fusion node due to the high dimensionality of the dynamical systems. Second, the 

centralized implementation requires a large number of information transfers to the fusion 
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centre thus adding considerable latency (a major drawback for real-time applications) to 

the estimation mechanism. 

The state estimation approaches in complex electric power distribution networks, typically 

consider the overall system as a union of several low-dimensional subsystems. Each subsys­

tem is a combination of multiple, geographically distributed nodes representing a variety 

of power devices such as generating stations, compensators, or loads. Within each sub­

system, the voltage and power supplied to a feeder at the substation are usually the only 

real time measurements available to the system operator at the distribution control centre. 

More extensive real time monitoring and control are required for effective operation of the 

system and for good quality of service to the customer coupled with the need to prevent 

wide-spread power blackouts. As outlined below, there are at lease three major aspects in 

the power grids that directly impact state estimation approaches and motivate development 

of distributed estimation implementations. 

(a) Monitoring the power grid over large geographical areas calls for distributed control, 

and hence, distributed state estimation to facilitate coordinated monitoring. 

(b) More advanced measurement technologies like phasor measurement units (PMUs) have 

offered hope for near real-time monitoring of the power grid. However, the latency in­

troduced by the centralized estimation architecture is a major barrier toward achieving 

this goal. 

(c) To facilitate smart grid features such as demand response and two-way power flow, 

timely and accurate models and estimation approaches are required which calls for 

distributed on-line state estimation at the distribution level. 

Application of the proposed distributed particle filter implementations to the power grid 
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is an area of research that can be pursued in the future. Such applications would require 

extension of the particle filter approaches to reduced-order systems. 

2. State Estimation in Distributed Camera Networks: Over the past decade, large-scale 

camera networks [110) have become increasingly popular in a wide range of applications, 

including: (i) Sports analysis; (ii) Security and surveillance; (iii) disaster response, and; (iv) 

Environmental modeling, where the objective is to follow the trajectory of a key target, e.g., 

a star player in a soccer game or a suspect in a surveillance environment. In many appli­

cations, bandwidth constraints, security concerns, and difficulty in storing and analyzing 

large amounts of image data centrally at a single location necessitate the development of 

distributed camera network (DCN) architectures [111). In distributed tracking via camera 

networks each camera acts as a local agent and estimates certain parameters of the target 

using a signal processing algorithm based upon its own set of video sequences. The lo­

cal estimates are then shared with the neighbouring cameras in an iterative, decentralized, 

gossip-type fashion, and a final estimate is computed across the network using consensus 

algorithms. 

Most of the recent focus on distributed tracking algorithms for DCN is devoted to developing 

distributed implementation of the Kalman filters [111]. Although particle filters are popular 

for visual tracking (112, 113) in a centralized architecture, their distributed implementations 

are less explored for tracking in DCNs. Distributed particle filter approaches proposed in 

the thesis can be applied (with proper modifications) to tracking problems in DCN, which 

is another area of future research worth pursuing. 
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A Proof of the Results Reported in Chapter 3 

A.1 Proof of Lemma 1 

Proof. The local sufficient statistic yCl) ( k) ~ 73 ( z(l) ( k)) exists by assumption. Using the Fisher-

Neyman factorization theorem (Eq. (3.1)) and Eq. (2.14), the global likelihood P (z(k)lx(k)) can 

be stated as a product of a function only dependent on local observation vector z(l)(k) and a 

function depending on both x(k) and {Y(l) (k), ... , y(N) (k)} as follows 

N N 

P(z(k)lx(k)) = IJTi(l) (z(l)(k)) IJ72Cl) (y(l)(k),x(k)), (A.1) 
l=l l=l 

Hence, {Y(1)(k), ... ,y<N)(k)} are jointly sufficient for estimating the state variables x(k). D 

A.2 Proof of Lemma 2 

Proof. We start considering two observations, i.e., z(k) = [z(i)T (k), z(i)r (k)jT, where the global 

likelihood P(z(k)lx(k)) is factorized as follows using Eqs. (2.14) and (3.2) 

Application of Eq. (3.3) to Eq. (A.2), yields the following result 

P( z(k)lx(k)) = h2 ( ¢(z(i) (k ), z(j) (k)), x(k)) h1 (z(i) (k)) h1 ( zU) (k) )[h3 (x(k)) ]2 h4 ( z(i) (k ), zU) (k)). 

(A.3) 
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Therefore, a sufficient statistic ¢(z(i)(k),z(j)(k)) is found from z(i)(k) and z(j)(k). By induction 

to any number of nodes N, we observe that there exist a function S(·) such that the GSS equals 

D 

A.3 Proof of Theorem 2· 

Proof The true bearing to the target can be defined as follows 

[X(k)-X(l)] cos(Z~l)(x(k)))-[Y(k)-Y(l)] sin(z~l)(x(k))) = 0. (A.4) 

The bearing measurement z~l\k) observed by node l, for (1 ::; l ::; N) is noisy. When the noisy 

measured bearing is used in place of the true bearing in Eq. (3.12), Reference (119] shows that 

the relationship in Eq. (A.4) changes to 

which is reordered as 

z~1 > (k) 

= Y(k) sin(z~l)(k)) - X(k) cos(z~l)(k)) + (X2 (k) + Y2 (k)) 112 sin((o(l)(k)), (A.6) 

For (~l)(k) rvN(O,a~l)
2

(k)), noise V~l)(k) is zero mean with variance given by 

(A.7) 

obtained by observing that E{sin2 (dl)(k))} = 1/2(1 - exp(-2abl)
2

)). Evaluating R(l)(k) requires 

the propagation of the second moment matrix 

S(k) =E{J(x(k-l))JT (x(k-1))} + Q(k), (A.8) 

233 



obtained from state equation (Eq. (2.3)), where S(k) can be computed locally using particle 

Xi ( k- l) and their corresponding weights Wi ( k- l) as follows 

NP 

S(k)= L Wi(k-l) [/ (Xi(k-1)) IT (Xi(k-l)) ]+Q(k), (A.9) 
i=l 

and Q(k) is the second moment of the state noise e(k) in Eq. (2.3). Note that term E{X2(k) + 

Y2 (k)} in Eq. (A.7) equals the sum of the first two diagonal entries of S(k). Based on Eqs. (A.6)-

(A.8), the global likelihood function is then given by 

1 N (z~l)(k)-Q~z)(x(k))) 2 

P(zo(k)lx(k)) = C (k) exp { - L (l) } 
o l=l 2R0 (k) 

(A.10) 

where Co(k) = (27r)Nf2 il~ 1 (R~l) (k) )112 , and g~l) (x(k)) = Y(k) sin(z~l) (k) )-X (k) cos(z~l) (k) ). 

D 

A.4 Proof of Theorem 3 

Proof. First, Eq. (3.21) is rearranged as 

(A.11) 

Eq. (A.11) is further expanded as 

which is given by 

The global likelihood function is then given by 

1 N (z~l)(k)-Q~z>(x(k))) 2 

P(z¢(k)lx(k)) = C (k) exp { - L (l) }, (A.14) 
¢ l=l 2R<P (k) 
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z~O (k) = z~l) (k) cos(Z~t) (k) )-xCt) (k) sin(Z~t) (k)) sin(Z~t) (k) )-Y(t) (k) sin(Z~t) (k)) cos(Z~t) (k) ), 

(A.15) 

and 

(A.16) 

Finally based on (119], elevation bearing noise variance is 

(!)2 

R~)(k) =E{X2(k)+Y2(k)+Z2(k)}(l-exp-4
a<1> )/4. (A.17) 

The global elevation bearing likelihood function can be expressed as function of ten GSSs given by 

N 

G¢,1(k) = ''f)z~t)(k))2 /(R~)(k)) 
l=l 
N 

G¢,2(k) = L ( (z~l) (k) )2 cos2 (z~l) (k))) /(R~) (k)) 
l=l 

G (k) _ ~ z~l)(k) sin(Z~t)(k)) sin(z~l)(k)) 
¢,3 - ~ R(l) (k) 

l=l <P 

N zCt)(k) cos(z(t)(k)) sin(z(l)(k)) 
G 4(k) - """ <P 

9 
¢ 

</>, - {:-: R~)(k) 

N 

G¢,5(k) = L ( cos2 (Z~l)(k)))/(R~)(k)) 
l=l 
N 

G¢,6(k) = L ( cos(Z~t)(k)) sin(z~l)(k))) 2 /(R~)(k)) 
l=l 
N 

G¢,1(k) = L ( sin(Z~l) (k)) sin(z~l) (k))) 
2 /(R~) (k)) 

l=l 

N sin(zCO (k)) sin( zCl) (k)) cos( zCl) (k)) 
G¢,s(k) = L 9 R(lf (k) <P 

l=l <P 
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N cos(z(l)(k)) sin(z(l)(k)) cos(z(l)(k)) 
G (k) - "°" 9 

<P <P 
¢,9 - ~ R(l) (k) 

l=l <P 

N (l) . (l) (l) 
G 

10 
( k) = "°" cos ( Z 9 ( k)) sm ( Z 9 ( k)) cos ( Z 9 ( k)) 

¢, ~ R(l) (k) 
l=l <P 

D 

A.5 Proof of Theorem 4 

Proof. Based on Eqs. (A.11)-(A.13), the observation model for range based tracking can be ap-

proximated as 

which simplifies to 

z~l(k) 

~ X(k) sin (z~l)(k)) + Y(k) cos (z~l)(k)) +(~)(k). (A.19) 

The global likelihood function is then given by 

N ( (l) ) (l) ) 2 

P(zR(k)lx(k)) ex: exp { - L ZR (k -~)R (x(k)) }· 
l=l 2RR (k) 

(A.20) 

Based on [119], the range noise variance is given by 

[,,..(l)(k)]2(l + e-2t.~1)(k))2 
R~) ( k) = ..;:....':._R_...::.._ ____ _ 

4 
(A.21) 

By expanding Eq. (A.20), the global range likelihood function can be expressed as function of six 

GSSs given in Eq. (3.29). D 
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B Proof of the Results Reported in Chapter 4 

B.1 Proof of Theorem 5 {127} 

Proof Applying the Bayes' rule to Eq. (4.4), the posterior distribution is given by 

P(x(O: k) lz(l: k)) cxP(z(k)lx(k)) P(x(O: k)lz(l: k-1)). (B.1) 

Now, using the Markovian property of the state variables, Eq. (B.1) becomes 

P(x(O: k) lz(l: k)) ex P(z(k )lx(k)) x P(x(k) lx(k-1)) P(x(O: k-1) lz(l: k-1)). (B.2) 

Assuming that the local observations made at two sensor nodes conditioned on the state variables 

are independent of each other Eq. (B.2) becomes 

P(x(O: k)lz(l: k)) oc ([! P(zOl (k)lx(k})) x P(x(k)lx(k-l))P(x(O: k-l)lz(l: k-1)). (B.3) 

Using the Bays' rule, the local likelihood function P (z(l)(k)lx(k)) at node l, for (1 :::; l:::; N) is 

P (z(l)(k)lx(k)) = p (x(k)lz(l)(l:k)) P (z(l)(k)lz(l)(l:k-1)). (B.4) 
P (x(k)lz(l)(l :k-1)) 

Finally, the result (Eq. ( 4.4)) is provided by substituting Eq. (B.4) in Eq. (B.3). D 
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Table B.1: Comparison of the Computational Complexity. 

UKF/FF Particle Filter Consensus 

Complexity Complexity Step 

Centralized max(O(n~), O(N3), O(nxN2 )) O((n; + N)Ns) -

Per node O(n~) O(NupFn;) O(n;~gNc(U)) 
UCD/DPF 

Total O(Nn~) O(NNupFn;) O(Nn;b..gNc(U)) 

Per node O(NFFn;) O(NLFn;) O(n;~gNc(U)) 
CF/DPF 

Total O(NNFFn;) O(NNLFn;) O(Nn;~gNc(U)) 

B.2 Proof of Theorem 6 

Proof. Following the approach in the proof of Theorem 5 (Appendix B.l), we first write the 

posterior density at iteration k + m as 

Il~ P(x(k+m)lz(l)(l:k+m)) 
P(x(O:k+m)lz(l:k+m)) <X Nl-l ( ) P(x(O:k+m)lz(l:k+m-l))(B.5) 

Ilt=l P x(k+m)lz(l)(l:k+m-1) 

Then the last term is factorized as follows 

P (x(O: k+m)lz(l :k+m-1)) = P (x(k+m)lx(k+m-1)) P (x(O:k+m-l)lz(l :k+m-1)). (B.6) 

As in Eq. (B.5), we continue to expand P(x(O: k+m-l)lz(l: k+m-1)) (i.e., the posterior 

distribution at iteration k+m-1) all the way back to iteration k+l to prove Eq. (4.27). D 

B.3 Computational Complexity of The CF /DPF and UCD /DPF 

In this section, I provide a rough comparison of the computational complexity of the UCD /DPF 

and CF /DPF versus that of the centralized implementation. Because of the non-linear dynamics 

of the particle filter, it is somewhat difficult to drive a generalized expression for its computational 
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complexity. There are steps that can not be easily evaluated in the complexity computation of 

the particle filter such as the cost of evaluating a non-linear function (as is the case for the state 

and observation models) [131]. Below the simplified case of a linear state model with Gaussian 

excitation and observation noise is considered. Further, the observations are assumed to be 

uncorrelated. 

Following the approach proposed in [131], the computational complexity of different imple­

mentations of the particle filter is expressed in terms of flops, where a flop is defined as addition, 

subtraction, multiplication or division of two floating point numbers. In the analysis, I take into 

account the number nx of states, which are at times ignored in the computational complexity 

of the particle filter. Note that the computational complexity of multiplication or inversion of 

( nx x nx) matrices is of 0 ( n~), and multiplication of ( nx x nx) matrix with an ( nx x 1) vector 

is of 0 ( n~). As such, the total equivalent flop computational complexity (131] of the centralized 

particle filter for N-node network with Ns particles is derived as follows: 

1. State Update (based on Eq. ( 2.3)): 0 ( n;Ns) considering a linear state model. 

2. Evaluation of Weights (based on Eq. (2.79)): 0 (NN8 ) assuming uncorrelated observations 

with Gaussian distributions. 

3. Resampling (if needed): 0 (Ns) (a direct implementation of the resampling procedure has a 

complexity of O(Ns log(Ns)) [43], however, there are several alternative approaches including 

systematic resampling (43] which has a complexity of 0 (Ns)). 

The computational complexity of the centralized particle filter is given by 0 ((n~ + N)Ns), which 

includes the dependence on the number nx of states. Table B.1 compares the computational 

complexity of the centralized implementation versus its distributed counterparts: the UCD /DPF 

and CF /DPF. The CF /DPF runs two particle filters (local filter and fusion filter) at each node, 
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N LF denotes the number of particles used by the local filter and NF F denotes the number of 

particles used by the fusion filter. The number of particles used by the UCD /DPF implementation 

is denoted by NuPF· The derivation of the expressions listed in Table B.l is described below. 

The centralized implementation is based on an unscented particle filter [44], which uses an 

additional step of the unscented Kalman filter (UKF). The computational complexity of the UKF 

component is given by max(O(n~), O(N3
), O(nxN2

)), or, O(N3 ), for nx << N. The overall 

computational complexity of the centralized particle filter is, therefore, of O(N3 + N N8 ). 

The first distributed implementation based on the UCD /DPF runs a particle filter at each 

observation node. The individual particle filter is similar in complexity to the centralized par­

ticle filter (without the UKF) except that the observation (target's bearing at each node) is a 

scalar. Setting N = 1, the computational complexity of the UCD/DPF is of 0 (n;NuPF + NuPF) 

or 0 ( n;NuPF) per node, where NuPF is the number of particles at each sensor node in the 

UCD/DPF. The overall computational complexity of UCD/DPF is, therefore, of 0 (Nn;NuPF)· 

There are two additional components to the UCD/DPF. First, the unscented Kalman filter in 

the UCD/DPF has an overall computational complexity of O(Nn~). Second, the distributed 

implementations (UCD /DPF and CF /DPF) introduce an additional consensus step, whose com­

plexity is derived as a function of the maximum degree ~g of the network and the total number 

of consensus iterations Nc(U) required to reach a global consensus. The computational complex­

ity of the consensus step at each node is at most of O(n;~g) per iteration times total number 

of consensus iterations Nc(U), therefore, the consensus step has a computational complexity of 

O(n;~gNc(U)). The associated convergence time Nc(U) = 1/ log(l/rasym(U)), which provides 

the asymptotic number of consensus iterations (required for the error to decrease by the factor of 

1/e) can be computed using the asymptotic convergence rate (Eq. (2.119)). According to Theo­

rem 1, Nc(U) = -1/ max2<i<N log(J--\i(U)I). The computational complexity of the consensus step 
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is, therefore, related to the properties of the communication network and the consensus matrix 

U. Based on the aforementioned derivation, the computational complexity of the UCD /DPF is 

given by max{O(Nn;Nupp,Nn~,n;~gNc(U))}. 

The computational complexity of the CF /DPF is similarly derived and listed in Table B. l. 

The CF /DPF does not use the UKF instead it uses the fusion filter, which has complexity similar 

to the distributed particle filter as shown in column 2 of Table B.l. The computational complexity 

of the CF/DPF is, therefore, given by max{O(Nn;NLp,NNppn;,n;~gNc(U))}. 

Since the computational complexity of the three implementations involve different variables, 

it is difficult to compare them subjectively. In the simulations, the value of the variables are as 

follows: nx = 4, N = 20, N 8 = 10, 000, NuPF = NLF = NFF = 500, and Nc(U) = 8 which 

results in the following rough computational counts for the three implementations: Centralized 

implementation: 3.6 x 105 , CF /DPF: 3.4 x 105 , and UCD /DPF: 1.8 x 105 computational counts. 

This means that the three implementations have roughly the same computational complexity for 

the simulation. Note that the computational burden is distributed evenly across the nodes in 

the CF /DPF and UCD/DPF, while the fusion center performs most of the computations in the 

centralized particle filter. This places an additional power energy constraint on the fusion center 

causing the system to fail if the power in the fusion center drains out. Finally, I note that the 

UCD /DPF and CF /DPF require a higher number of information transfers but the goal here is to 

implement a distributed system without the fusion center. 
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C Proof of the Results Reported in Chapter 5 

C.1 Proof of Proposition 2 

Proof The proof of Proposition 2 uses the Markovian property of the state variables and is based 

on the following factorization of the joint prediction distribution 

P(x(O: k + l)lz(l: k)) = P(x(k + l)lx(k))P(x(O: k)lz(l: k)). 

The steps involved are similar to the proof of Theorem 7 included below and not repeated here. 0 

C.2 Proof of Theorem 7 

Proof. The proof for Theorem 7 is based on the following nonlinear Bayesian fusion rule [127] 

(Lemma 6), which expresses the global posterior density as a function of local filtering and pre-

diction densities. 

Lemma 6. Assuming that the observations conditioned on the state variables made at node l are 

independent of the observations made at a different node j, (j -=/:- l), the global posterior for a 

N -sensor network is 

P(x(O: k + l)lz(l: k + 1)) oc 

Il~1 P(x(k + l)lz(l)(l : k + l)) p (x(k + l)lx(k)) P (x(O: k)lz(l : k)). (C.1) 
Il~ 1 P (x(k + l)lz(l)(l: k)) 
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We first consider JFo(x(O:k)). Decomposing x(O:k) = [xT(O:k-1),xT(k)]T in JFo(x(O:k)), 

Eq. (6.34) from Definition 3 reduces to 

[ ~x(O:k-1) i ~x(k) ] [ 11 
x(O:k-1) j x(O:k-1) 

6 
AFo(k) 

JFo(x(O: k)) = lE{- ---------------~--------------- logP(x(O: k)lz(l: k))} = 
~x(O:k-1): ~x(k) 2l 

x(k) ! x(k) AFo(k) 

A}b(k) l 
Aib(k) 

(C.2) 

provided that the aforementioned expectations and derivatives exist. The bottom right block 

(denoted by A~b(k)) on the right hand side (RHS) of Eq. (C.2) corresponds to a (2 x 2) block 

matrix, i.e., Aib(k) ~ lE{-~~~~~ logP(x(O: k)lz(l:k))}, and similarly for the remaining AF-'Q's. 

Following the aforementioned procedure used to derive Eq. (C.2) for JFo(x(O:k+l)), we get 

~x(O:k-1) i ~ x(k) i ~ x(k+l) 

---~~?_:~~~!_i ___ ~~?_:~~~!_l ___ ~~?:~~~!_ 
-~;i~t='lj___~;iZ~ ____ j __ ~;i~Cl__ log P(x(o: k + I)lz(l : k + 1))} 

~x(O:k-1) j ~ x(k) j ~ x(k+l) 

JFo(x(O: k + 1)) 

x(k+l) i x(k+l) i x(k+l) 

EM)(k) E}b(k) E}b(k) 

E~t(k) Eib(k) E~b(k) 

Eit(k) En(k) Eib(k) 

(C.3) 

It can be shown that E~1a(k) = A}b(k), E~b(k) = A}b(k), Eib(k) = Eit(k) = 0, E~t(k) = 

A~b(k), E~b(k) = Aib(k) + cn(k), E~b(k) = cn(k), E~b(k) = C~t(k), and E~b(k) = 

c~b(k), which leads to the following structure (similar to the one in [148]) 

A}b(k) 0 

ho(x(O: k + 1)) = A~b(k) Aib(k) + cn(k) cn(k) (C.4) 

0 

where block 0 stands for a block of all zeros with the appropriate dimension. To save on space, 

we only prove the equalities E~t(k) = A}b(k) and E~b(k) = cn(k). The remaining entries 

can be proven following a similar procedure. 
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Case 1 (Proof for E~b(k) = A}b(k)): Factorizing the posterior distribution for the top left block 

in Eq. (C.3), 

x(O·k 1) ( ) Ax(O:k-1) lo P(z(k+l)lx(k+l))P(x(k+l)lx(k)) 
~x(O;k::::l)logP x(O:k+l)Jz(l:k+l) ux(O:k-l) g P(z(k+l)Jz(l:k)) 

+ ~:~~~Z::::~~ log P(x(O : k) lz(l : k) ), (C.5) 

which leads to 

E~b(k) ~ 1EP(x(o:k+i),z(1:k+i)) { - ~:~~~z::::g log P(x(O: k + l)lz(l : k + 1))} 

-ff ~:~~~z::::g logP(x(o: k)Jz(l: k)) 

x [/ f P(x(O: k + 1), z{l : k + l)}dx{k + l)dz(k + 1)] dx{O : k)dz{l : k). (C.6) 

The inner integral reduces to P(x(O: k), z(l: k)), which gives 

E~b(k) = - ff ~:~~;~::::~~logP(x(O:k)Jz(l:k))P(x(O:k),z(l:k))dx(O:k)dz(l:k) = A}b(k)(C.7) 

as per the definition of A}b(k) in Eq. (C.5). 

Case 2 (Proof for E~Mk) = C~b{k)): Based on Eq. (C.1), term log(P(x(O: k+l)lz(l: k+l))) is 

N N 

log P(x(O:k+l) lz(l:k+l)) Llog(P(x(k+l)lz(l) (l:k+l))) - L log ( P(x(k+l)lz(l) (1: k))) 
l=l l=l 

+ log(P(x(k+l)lx(k))) +log(P(x(O:k)lz(l:k))). (C.8) 

Substituting (C.8) in the definition of E~Mk) (Eq. (C.3)), we get 

E~~(k) :@: lE{-~:~~!~~log(P(x(k+l)Jx(k)))} 
N 

+ L:::JE{-~:~Z!g log (P(x(k+1)Jz(l)(1:k+1)))} 
l=l 
N 

- :LJE{-~:~Z!~~ log (P(x(k+l)Jz(l)(l: k))) }, 
l=l 

which equals cn(k) based on Eq. (5.28). 
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Going back to complete the proof of Theorem 7, we note that the information sub-matrix 

ho ( x( k+ 1)) is given by the inverse of the right bottom ( nx x nx) block corresponding to C~b ( k) 

in Eq. (C.4), i.e., 

Jpo (x(k+l)) 

(C.10) 

Further, Term Jpo(x(k)), defined as the information submatrix for estimating x(k), is given by 

the inverse of the (nx x nx) right-lower block of [ Jpo (x(O : k)) r 1 
in Eq. (C.2). Based on the 

matrix inversion Lemma [152], the middle term in Eq. (C.10) reduces to 

A~b(k) - A~b(k) [Aib(k)]- 1 
Aib(k) = Jpo(x(k)). (C.11) 

Substituting Eq. (C.11) in Eq. (C.10) proves Theorem 7. D 

C.3 Proof of Corollary 1 

Proof The proofs for Eqs. (5.30) and (5.31) are similar to that for Theorem 7 with the posterior 

factorization of P(x(O: k + l)lz(l: k + 1)) defined in Lemma 7, [127], below. 

Lemma 7. Assuming that the observations conditioned on the state variables made at node l are 

independent of the observations made at a different node j, (j =/= l ), the global posterior for a 

N -sensor network is 

TIN P(x(k+l)lz(l)(k+l) z(l·k)) 
P(x(O:k+l)lz(l:k+l))cx: l=l N ' · P(x(k+l)lx(k))P(x(O:k)lz(l:k)). 

Ilt=l P(x(k+l)lz(l: k)) 

(C.12) 
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The change in P(x(O: k+l) lz(l: k+l)) is due to the setup used in Scenario 2, where both current 

local observation and previous global observations are used in the current state estimate. D 

C.4 Proof of Lemma 9 

Proof Using the Markovian property 

P(x(O: k + 1), z(k + l)lz(l: k)) = P(z(k + l)lx(k + l))P(x(k + l)lx(k))P(x(O: k)lz(l: k)). 

(C.13) 

Considering independent observations given the state variables, the first term on the right hand 

side (RHS) of Eq. (C.13) is 

_ IJN (l) _ IJN P (x(k + 1), z(l)(k + l)Jz<l)(l: k)) 
P(z(k+l)lx(k+l))- P(z (k+l)lx(k+l))- ( ( )I (l)( . )) · 

l=l l=l p x k + 1 z 1 . k 

(C.14) 

Using the Chong-Mori-Chang track-fusion theorem [127], the third term on the RHS of Eq. (C.13) 

is factorized as follows 

P (x(O: k)iz(l : k)) ex v~1 P(x(k)lz(l)(l : k)) P (x(k)lx(k - 1)) P (x(O: k - l)lz(l : k - 1)). 
Ilt=l P (x(k)iz<O(l: k - 1)) 

(C.15) 

Finally, substituting (C.14) and (C.15) in (C.13), we get (5.71). D 

246 



C.5 Proof of Theorem 8 

Proof. Decomposing x(O: k+l) = [xT(o: k-l),xT(k),xT(k+l)jT, Eq. (6.34) for iteration k+l 

reduces to 

1(0: k + 1) 

~x(O:k-1): ~x(k) : ~x(k+l) 
---~~?_:~~~}_i ___ ~~?:~~~}_i ___ ~~?:~~~}_ 
-~;~~t'l_j ___ ~;~Zl__) 5~;t'l __ IogPc(k + 1)} 
~x(O:k-1) i ~x(k) i ~x(k+l) 

x(k+l) i x(k+l) i x(k+l) 

(C.16) 

A}b(k) 0 

A~b(k) A~b(k) + C~b(k) C~b(k) (C.17) 

0 C~b(k) 

Block 0 stands for a block of all zeros. Terms C~b ( k), en ( k) and C~b ( k) are defined as in 

Eqs. (5.68)-(5.69). Terms Aib(k), Ait(k), A~b(k), and A~b(k) are derived as follows 

AFo k AFo k = 1E - ---~~?~~~~l-f---~~?_:~~~}_ log Pa(k) 
[ 

11 () 12 () l { [~x(O:k-1) i~x(k) ] } 

A~b(k) A~b(k) ~:~~)k-l) ! ~:~~~ 
(C.18) 

where Pa(k) £. P(x(O: k)lz(l : k)). Term JFo,Aux(k) is the inverse of the (nx x nx) right-lower 

block of Eq. (C.18), i.e., 

Term C~b(k) = JE{-~:~~!g logPc(k+l)} is simplified as 

C~b(k) = lEpc(ktl){-~:~~!~~ log (P(x(k+l)lx(k)))} 

N 

+ LlEPc(k+-1){-~:~~!~~log(P(x(k+l), z(l) (k+l)) lz(l) (l:k)))} 
l=l 

N 

- LlEPc(kt-1){-~:~~!~~ log (P(x(k+l)lz(l)(l:k))) }· 
l=l 

(C.19) 

(C.20) 

Finally, using Eq. (C.20) and definitions (5.65)-(5.66), term cn(k) reduces to Eq (5.70). The 

information sub-matrix LFo(x(k+l)) can be calculated as the inverse of the right lower (nx x nx) 
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sub-matrix of [I(x(O:k+l))FoJ- 1 and Eq. (C.19) as follows 

Lpo(x(k+l)) 
[ 

A 11 (k) A12 (k) i-1 

[ o l 22 ( ) [ C21 (k)] FO FO CFO k - 0 FO 

A~b(k) A~b(k) + cn(k) C~b(k) 

cn(k) - cib(k)(ho,Avx(x(k)) + C~b(k)f 1cn(k). (C.21) 

D 

248 



D Proof of the Results Reported in Chapter 6 

D.1 Local Conditional FIM 

Below, we highlight the relationship between the local accumulated conditional FIM J(l) (0: k+ 1) 

and local instantaneous conditional FIM L(l)(k+ 1). The local instantaneous conditional FIM 

L(l)(k+l) is computed using either of the following three approaches: (i) Directly by inverting large 

matrix J(l)(O: k+l); (ii) Recursively as a function of the previous local instantaneous auxiliary FIM 

Jfbx(k) [55], and; (iii) Recursively as a function of the previous local instantaneous conditional 

FIM L < l) ( k) presented in Result 1. In approach ( i), first the local accumulated conditional FIM 

J(l)(O: k+l) is factorized as follows 

Then, the local instantaneous conditional FIM L(l)(k+l) associated with the estimate x(k+l) 

is obtained by taking the inverse of the (nx x nx) right-lower square block of [J(l)(O: k+l)]- 1 by 

applying the following matrix inversion Lemma [152]. 

Lemma 8. Matrix inversion Lemma: 

[ 

n-1 -A-1 B~-1 l 
-~-1 BT A-1 ~-1 ' 

(D.2) 
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where subblocks {A, B, C} have conformable dimensions, n = A - nc-1 BT, and <I> = c -

Based on Lemma 8, the local instantaneous conditional FIM is given by 

which requires inversion of large matrix [A11 (k+l)J(l)_ 

D.2 Proof of Result 1 

Here Result 1 is derived. We also show that under a minor constraint, the result in [55) reduces to 

Result 1, which is equivalent to replacing the local instantaneous auxiliary FIM [JAux(x(k))]<l) by 

the local instantaneous conditional FIM L(l)(k). The rational for the approximation is included 

after the proof. 

Proof. The conditional FIM given observations up to and including time k - 1 is factorized as 

follows 

(l) FO FO x(O:k-1) i x(O:k-1) (l) 

[ 

[A 11 (k)) (l) [A 12 (k)) (l) l , [D.. x(O:k-1) [ D.. x(k) ] } 

I (0: k) = [Aib(k)] (l) [A~~(k)J(l) = - ~:~~);;::1)-r---~:~ff- log pc (k) , (D.4) 

where pJl)(k) = P(x(O:k),z(l)(k)lz(l)(l:k-1)). Term L(l)(k) is the inverse of the right lower 

block of [J(l)(O: k)J- 1 which is given by (using the matrix inversion lemma) 

(D.5) 

For next iteration k+l, we have 

/:).. x(O:k-1) /:).. x(k) D,_x(k+l) 
x(O:k-1) x(O:k-1) x(O:k-1) 

JOl(o: k+l) = ll+ -~;l~i~~li: _:-:~;l~C ::~;l~f'):: logPJ
1
l(k++ 

/:).. x(O:k-1) /:).. x(k) D,.x(k+l) 
x(k+l) x(k+l) x(k+l) 

(D.6) 
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where pJl)(k+l) = P(x(O:k+l),z(l)(k+l)lz(l)(l:k)) which can be factorized as follows 

.P(x(O: k+l),zCl)(k+l)lz(l)(l: k)) P(z(l)(k + l)lx(k + 1)) (D.7) 

x P(x(k l)lx(k))P(x(O: k),z(l)(k)lz(l)(l: k-1)) 
+ P(z(l)(k)lz(l)(l: k-1)) 

Taking logarithm of Eq. (D.7). 

logPJL>(k+l) = logP(z{l)(k+l)lx(k+l)) 

+ log PJl) (k) +log P(x(k+ 1) lx(k) )-log P(z(l) (k) lz(l) (1: k-1)). 

Therefore, Eq. (D.6) reduces to 

(D.8) 

-~~~!-_':_~~~-~~~;~~~;-~-~~-~~-~-~~~l!-~~?L ______ ~-~~~~~~~-~~~-~~~~!~~~~-~~~-~~~~~-~:--------~--------~--------
JE ~x(O:k-1)1 P.(l)(k); lE ~x(k)l P.(l)(k) [Bll(k)]Cl):[B12(k)]Cl) 

- p~L)(k+l) x(k) og c 1- p~L)(k+l) x(k) og c + j ' 
------------------------o-----------------------r----------------------f .B2i(k)]<z) ________________________ ff .B22-(k)]<z)-

where PJL> (k) = P(x(O:k),z(l)(k)lz(l)(l:k-1)), [B11 (k)]Cl), [B12 (k)]Cl), [B21 (k))Cl), and [B22 (k)]Cl) 

are given by Eqs. (6.38)-(6.40). The four blocks on the top left sub-matrix of Eq. (D.8) are 

functions of z(l)(k) which make them different from [A**(k)]Cl) in Eq. (D.4). In order to recursively 

compute L(l)(k+l) from L(l)(k), these four terms are approximated by their expectations with 

respect to P(z(l)(k)lz(l)(l: k-1)), i.e., 

-JEp~l) (k+l) { ~:~~;~=g log pJl) (k)} ~ -JEP(z(l) (k)lz(l) (1: k-1)) { lE pJ')(k+l)~:~~;~=g log pJl>(k)} 

-j P(z(l)fk)lz(l)(l: k - l))PJZ)(k + 1) 

(D.9) 
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Similarly, it can be shown that 

-JE P~t> (k+i) { Ll:~~:k-l) log P2) ( k)} ~ [A12(k)](t). (D.10) 

JE {Llx(k:k-l)l p(l)(k)} 
- p~ 1 > (k+l) x(k) og c ~ [A21(k)]<l). (D.11) 

-lEp~l)(k+l) { Ll:~z~ logP?)(k)} ~ [A22(k)]<t). (D.12) 

Finally, Eq. (D.8) can be approximated as follows 

Going back to complete the proof, we note that the information sub-matrix L(l)(k+l) is given by 

the inverse of the right bottom (nx x nx) block of [J(l)(O: k)J- 1 (corresponding to [B22 (k)]<l) in 

Eq. (D.13)), i.e., 

[A12 (k)]<l) O 

l
-1 [ l 

[A22(k)]<l)+[B11(k)]<l) [B12(k)J(l) ' 

(D.13) 

which results in the following equation 

L(l)(k+l) = [B22 (k)](l) 

_ [B21 (k )](l) ([A 22(k )]<l) _ [A 21 (k))(t) [A 11(k)]<l)-
1
[A 12(k))(t) + [Bn (k)] (l)) (n12(k))(t)) 

(D.14) 

Based on Eq. (D.5), the middle term in Eq. (D.14) reduces to L(l)(k) + [B11 (k)J(l) which by 

substituting in Eq. (D.14) proves Result 1. D 

Finally we note that Result 1 is valid with the following approximation: 

The top left four blocks of the accumulated conditional FIM given by Eq. (D.8) are replaced 

by their expectations with respect to P(z(l)(k)lz(l)(l: k-1)). 
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As shown above, this leads to Eqs. (6.37)-(6.40) of Result 1. Comparing Eqs. (6.37)-(6.40) 

with our earlier result (55], we note that the instantaneous auxiliary FIM Jfbx(k) is replaced with 

the instantaneous conditional FIM L(l)(k). Consequently, the CQ/dPCRLB updates the condi­

tional dPCRLB directly without the need of computing the auxiliary FIM leading to significant 

communication savings (by a factor of 2). 

Finally, we note that the centralized conditional PCRLB [152] our earlier result (55] (dis­

tributed counterpart of (152]) and Result 1 use approximations at each iteration with the possibil­

ity that the error due to approximations accumulates over time (153]. It is difficult to perform an 

exact error comparison between the result in [55] and the proposed Result 1. Intuitively speaking, 

the approximation in [55] is only applied to the top left block of the auxiliary FIM, while in 

Result 1 the approximation is applied to all four blocks of the conditional FIM. Note however 

that the approximated block in [55] is involved in three inversions to complete the update at each 

iteration, which propagates the approximation to all the elements of the conditional PCRLB. As 

such, both approximations have comparable error. This explains why the gap between the two 

corresponding bounds is negligible as shown by simulations. 

D.3 Proof of Result 2 

Below, Result 2 is proved. First, we derive Lemma 9 which provides a factorization of the global 

quantized conditional posterior distribution PQ,c(k + 1) at iteration k + 1 as a function of the 

local quantized conditional posterior distribution Pg:c ( k + 1) at iteration k + 1 and the global 

quantized conditional posterior distribution PQ,c(k) at iteration k. 

Lemma 9. Assuming that the quantized observations conditioned on the state variables are in-
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dependent, the global posterior for a network with N f processing nodes is factorized as follows 

nN1 p(l) (k+l) 
PQc(k+l) ~ P(x(O:k+l),Y(k+l)jY(l:k)) ex: N l=l Q,c P(x(k+l)lx(k))PQc(k), 

, Tizl1 P(x(k+l)IYCL)(l:k)) ' 

(D.15) 

where 

PQ,c(k) ~ P(x(O:k),Y(k)IY(l:k-1)), 

and 

Proof of Lemma 9. Using the Markovian property 

PQ,c(k+l) = P(Y(k+ 1) lx(k+ l))P(x(k+ l)lx(k))P(x(O: k)IY(l: k)). (D.16) 

Comparing Eq. (D.15) with (D.16), we need to prove: (i) P(Y(k+l)lx(k+l)) ex: f1~1 Pg:c(k+ 

1)/P(x(k+l)IY(l)(l:k)), and; (ii) PQ,c(k) ex: P(x(O:k)IY(l:k)). 

Relationship (i): Given the state variables, the observations are assumed to be independent 

as is the case in most Bayesian estimators. Then, the first term on the right hand side (RHS) 

of (D.16) is given by 

N1 

P(Y(k+l)lx(k+l)) =IT P(Y(l)(k+l)lx(k+l)). (D.17) 
l=l 

We also factorize the local conditional distribution at node l, for (1 ~ l ~ N1 ), as follows 

P(x(k+ 1),Y(l)(k+ l)IY(l) (1: k)) = P(YCL) (k+ l)lx(k+ l))P(x(k+l)IY(l) (1: k)). (D.18) 

In terms of the local likelihood P(Y(l)(k + l)lx(k + 1)), Eq. (D.18) can be expressed as follows 

( 
(l)( )I ( )) _ P(x(k+l),YCL)(k+l)IY(l)(l:k)) 

P Y k+1 x k+1 - ( ( )I cz)( )) p x k+l y l:k 
(D.19) 
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Substituting Eq. (D.19) in Eq. (D.17), we have 

( 
( )I (k )) = ITNJ P (x(k+l),Y(l)(k+l)IY(l)(l:k)) 

Py k+l x +l l=l P(x(k+l)IY(l)(l:k)) ' 

which proves Relation (i). 

Relationship (ii): Term PQ,c(k) can be factorized as follows 

PQ,c(k) = P(x(O:k)IY(l:k))P(Y(k)IY(l:k-1)). (D.20) 

Since P(Y(k)IY(l: k-1)) is independent of the state variables, Eq. (D.20) can be expressed as 

follows 

PQ,c(k) ex P(x(O:k)IY(l :k)), (D.21) 

which proves Relation (ii). 

This completes the proof for Lemma 1. D 

Proof of Result 2. Given the quantized observations up to and including time k, the global accu-

mulated conditional FIM can be decomposed as follows 

{ [

.£'.ix(O:k-1) i.£'.ix(k) ] } [ 11 ( ) 12 ( l (G) x(O:k-1) i x(O:k-1) A Epo k Epo k) 
IQ (0: k)=IE - --------------:-------------- log PQ,c(k) = . 

~x(O:k-1), ~x(k) 21 22 
x(k) ! x(k) Ep0 (k) Epo(k) 

(D.22) 

As stated previously in Appendix A, the instantaneous conditional FIM L~G)(k) is obtained by 

taking the inverse of the right lower block of [I6G) (0: k)]- 1. Using Lemma 8 we get 

(D.23) 

For iteration k + 1, we decompose x(O: k+l) = [xT(O: k-l), xT(k), xT(k+l)jT. As for Eq. (D.22), 

the global accumulated conditional FIM for iteration k + 1 is then given by 

Li x(O:k-1) ~ x(k) ~ x(k+l) 
x(O:k-1) x(O:k-1) x(O:k-1) 

r&G>(o: k + 1) = { -~;~~f~ii-::::~_~@::: ::~;l~ji>:: logPQ,c(k + 1)}. (D.24) 

~ x(O:k-1) ~ x(k) ~ x(k+l) 
x(k+l) x(k+l) x(k+l) 
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Using Lemma 9, Eq. (D.24) reduces to 

-lEpQ,c(k+l)~:~~;~=~~ log PQ,c(k) -lEpQ,c(k+l)~:~~;k-l) log PQ,c(k) 0 
-------------------------------------------------- ------------------------------------------------------------ ------------

J~G) ( O: k+l)= -lEpQ,c(k+l)~:~~)k-l) log PQ,c(k) -IEPQ,c(k+I)~:~~~ log PQ,c(k) + cn(k) Cffeb(k) 
-------------------------------------------------- ------------------------------------------------------------ ------------

0 C~b(k) C~b(k) 

(D.25) 

where PQ,c(k+l) ~ P(x(O: k+l), Y(k+l)IY(l: k)). Similar to our discussion in Appendix B, 

the four blocks on the top left sub-matrix of Eq. (D.25) are functions of Y(k), which make them 

different from E**(k) in Eq. (D.22). In order to recursively compute L~G)(k+l) from L~G)(k), 

these four blocks are approximated by taking their expectations with respect to P(Y(k)IY(l: k-1)) 

resulting in 

Effeb(k) 0 

(D.26) 

0 

where block 0 denotes a block of all zeros. Terms Cb1 (k), Cb2 (k) and C~1 (k) were defined 

previously in Eqs. (6.52)-(6.53). Next, using Lemma 9, term C~2 (k) =IE{-~:~~!g log PQ,c(k + 1)} 

in Eq. (D.26) is expressed as 

lEpQ,c(k+l){-~:~~!g log (P(x(k+l)lx(k)))} 

N1 

+ LIEPQ,c(k+l){-~:~~!glog(P(x(k+l), y(l) (k+l) )IY(l) (l:k)))} 
l=l 
N1 

- LIEPQ,c(k+l){-~:~~!~~ log (P(x(k+l)IY(l)(l:k)))} 
l=l 

(D.27) 

Finally, we note that the two summation terms in Eq. (D.27) are individual sums of the local 

instantaneous conditional FIMs at iteration k+ 1, i.e., 

N1 N1 

LlEPQ,c(k+l){-~:~~!~~log(P(x(k+l), y(l) (k+l) )IY(l) (l:k)))} ~ L Lg) (k+ 1) (D.28) 
l=l l=l 

256 



and 

N1 N1 

LlEPQ,c(k+l){-Li:~~!~~log(P(x(k+l)IY(l)(l:k)))} ~ LLg)(k+llk). 
l=l l=l 

(D.29) 

Term C~2 (k) in Eq. (D.27), therefore, reduces to 

N1 N1 

C~2 (k) ~ LLg)(x(k+l))- LLg)(k+llk)+lE{-Li:~~!glogP(x(k+l)lx(k))}. 
l=l l=l 

The information sub-matrix L~G)(k + 1) can then be calculated as the inverse of the right lower 

(nx x nx) sub-matrix of [I~G)(O: k + l)J- 1 (Eq. (D.26)) as follows 

[ 

Eu (k) Ei'b(k) i-l [ o l L~G)(k + 1) ~ C~2 (k) - [o C~1 (k)] FO 

E~t(k) E~b(k) + Cb1 (k) Cb2 (k) 

(D.30) 

Simplifying Eq. (D.30), we get 

where Eq. (D.23) has been used to obtain the final result. This completes the proof for Result 2. 

D 

257 



E Reduced order Distributed Particle Filter 

The UCD/DPF (Section 3.4) , the CSS/DPF (Section 3.1), and the CF /DPF (Chapter 4) im­

plementations are all full-order distributed estimation algorithms (Section 2.1.2.1) where all the 

state variables are estimated at each node. In this section, I propose a reduced-order distributed 

implementation of the particle filter which is more suitable for large scale dynamical systems 

where the dimension of the state vector is relatively large and observations are localized. 

As previously stated in Section 2.1.2.2, reduced-order state estimation algorithms [84-86], 

decompose the large-scale system into smaller subsystems with only a subset of nx state vari­

ables estimated at each subsystem. Such methods are more efficient than full-order distributed 

implementations both in terms of the computational complexity and the number of transmis­

sions (information transfers) between neighbouring nodes. Most of the existing reduced-order 

distributed estimation approaches have been developed for linear dynamical systems (84], while 

their nonlinear counterparts [85, 86] decouple the subsystem dynamics from each other. In other 

words, the state model in the subsystems have no or little interaction between themselves. 

Motivated by the nonlinear, large-scale estimation problems as in smart grids [48], I propose 

a fusion-based reduced order, distributed implementation of the particle filter (FR/DPF). The 

FR/DPF partitions the overall system and implements a reduced order, localized particle fil­

ter at each lower dimensional subsystem. Unlike the existing nonlinear reduced-order tracking 

approaches [85, 86] that decouple the subsystems from each other, the state dynamics of the sub-
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systems overlap in the FR/DPF, i.e., they share common states and are coupled through local 

system interactions. The FR/DPF ensures the consistency of its localized marginal filtering dis-

tributions with those of its centralized counterpart by introducing state and observation fusion 

between neighbouring subsystems. 

Based on Eqs. (2.18) and (2.19), each subsystem runs a local particle filter and represents 

its marginalized filtering distribution with its own local particles X~l) ( k- l) and their associated 

weights Wi(l) (k-l). Iteration k of the FR/DPF consists of the following three steps (Section E.0.1-

E.0.3). 

E.0.1 Local Particle Filters (Observation Fusion) 

Updating the particles X~l) (k-1) at each subsystem is implemented in pretty much the usual way 

(Eq. (2.76)) but based on localized process models (Eq. (2.19)). In each subsystem, the particle 

update includes forcing terms d(l)(k-l), which are obtained in Section E.0.3, described later. The 

critical computation step in the local filters is the update of the particle weights wP\k-l). The 

weight update (Eq. (2.77)) requires calculation of the likelihood function, P(z(k)lx(k)) derived 

from the global observation model. Subsystem Sl, therefore, needs observations, local particles, 

and their associated weights from all other subsystems Sm, m =Fl, for (1 ::; m::; N). Alternatively, 

the weight update equation (Eq. (2. 77)) at subsystem Sl can be expressed in terms of the local 

state estimates instead of the particles for states not being estimated at Subsystem 81. The 

approximated expression is given by 

where X:(#l)(·) are estimates of the state variables not included in the local state vector x(l) 

for subsystem Sl. Note that Eq. (E.1) for Subsystem Sl still requires all observations from the 
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entire network. Clearly, such an approach is impractical. A further approximation is to limit the 

observation fusion to the neighbouring nodes g(t), which have shared states with Subsystem St. 

This also restricts the required non-local state estimates xi=l ( ·) to only those from g(t). Estimates 

xi=l ( k-1) are available at the neighbouring nodes in g(l) from the previous iteration. The predicted 

state variables :X:(i=l)(kik-1) are computed from particles ){(i=l)(kik-1) of the neighbouring nodes. 

In the context of the reduced-order illustrative example included in Section 2.1.2.2, Subsystem 

S1 updates vector particles X~ 1)(k-1) = [X~~f (k-1),X~~)(k-1),X~~)(k-1)] based on the reduced­

order process model defined in Eq. (2.29). For subsystem Si, :X:(i=I)(k) = [X4 (k), X5 (k)] and 

Eq. (E.1) reduces to 

wi(i) (k) ex wi(i) (k-1)P( z(k)IX~ 1 ) (k), X4(klk-1), Xs(klk-1)) 

P ( x~ 1) ( k) 1x~ 1 ) ( k -1), X4 ( k -1), x s ( k-1)) 
x q( Xl1

) (k)IXl1
) (k-1), X4(k-l), Xs(k-1), z(k)). 

(E.2) 

Limiting the observation z(k) to z(1)(k) and those at the neighbouring nodes g(i) = {S2}, (i.e., 

z(2)(k)), Eq. (E.2) reduces to 

x 

wp)(k- l)P(z(l)(k),z(2)(k)IX?)(k),X4(kik-1)) 

P ( x~ 1) ( k) Ix~ 1) ( k - 1) , x 4 ( k - 1)) 

q ( x~ 1) ( k) 1x~ 1 ) ( k - 1), x 4 ( k - 1), z ( 1) ( k) , z ( 2) ( k)) ' 
(E.3) 

where X4(klk-l) = E~1 wP)(k)X~~)(kik-1) is computed from the updated particles at Subsys-

tern S2 • Note that Eq. (E.3) restricts :X:(i=l) to estimates of the state variables at the neighbouring 

nodes. Intuitively speaking, this approximation works well because of the localized nature of the 

observations. The approach of restricting observations to their immediate neighborhoods is simi-

lar to the distributed estimation methodology used in linear systems [84). Subsystems S2 and S3 

also update their particles and weights using a similar localization approach. 
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E.0.2 Reduced-order State Fusion 

The FR/DPF based distributed implementation introduces different estimates of shared states 

across the network. For example, X2 and X3 are both shared between S1 and S2 with their own 

particle sets resulting in different local estimates. For each state variable Xn, (1 ~ n ~ nx), we 

define a different state-based neighbourhood 9n which includes subsystems having Xn in their 

local state vector. If 9n contains more than one subsystem, there are multiple estimates of Xn 

available. Fig. 2.4 lists state neighbourhood 9n and subsystem neighbourhood g(l) for system 

shown in Fig. 2.3. 

Fusing the estimated values is considered to provide consistency across the network. Two issues 

related to state fusion are observed: (i) In order to perform state fusion, the common information 

between the subsystems sharing the same state variable must be compensated for, or, instead, a 

conservative fusion rule should be used; (ii) Transferring particle sets corresponding to the shared 

sates is not practical due to an impractically large number of information transfers. I choose to 

use a conservative fusion rule and perform the fusion without sending complete set of particles for 

the shared states. For each shared state Xn(k), Subsystem St E Yn computes the minimum mean 

square error (MMSE) estimateµ~) (k) and its corresponding error covariance matrix P~t) (k). The 

fusion criterion used to merge is the following parallel estimation fusion rule [84] 

x~fused)(k) = (I: [p~t)(k)flf (I: [p~t)(k)rlµ~)(k)), 
tE9n tEQn 

(E.4) 

with error covariance p~rused)(k) = LtEgJP~t)(k)]- 1 . The summation terms in Eq. (E.4) are 

calculated using average consensus algorithms. Once the state fusion process for state Xn ( k) is 

complete, Subsystem St E 9n updates its local particles for state Xn by generating particles from 

N(XAfused) (k), p~fused) (k) ). 

In the context of the reduced-order illustrative example included in Section 2.1.2.2, I have 
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91 ={Si} for state X1(k) implying X1 is only observed at S1 and no fusion is needed. For state 

X2(k), 92 ={Si, S2}. Its fused estimate is 

The process is repeated for all remaining states S3, S4, and S5 . 

E.0.3 Computing Forcing Terms 

The final step is to compute d(l)(k) and x_(:f:l)(k) to be used in the next iteration (k+l). At this 

stage, all subsystems have consistent estimates for their shared states. Subsystem St requests 

the required forcing term d(l)(k) from its neighbours S1 E 9(l). Subsystem S1 computes d(l)(k) 

by taking a weighted combination of the particles X~j) ( k) corresponding to states included in 

d(l)(k). Term x_(l)(k) is computed the same way as for d(l)(k). In our running example, the 

forcing term required by Subsystem S1 is d(1)(k) = [X4 (k)]. Subsystem S2 computes d(1)(k) = 

L~1 wF)(k)Xi~](k), which is then transferred to S1. Similarly, for the forcing terms at other 

subsystems S2 and S3. 

E.0.4 Computational Complexity 

Following the approach suggested by Karlsson [122], the computational complexity of the particle 

filter for nx state variables and N 8 vector particles with ( nx x 1) dimension, is approximately given 

by O(n;N8 ) floating point operations (flops). By partitioning the overall system into N localized 

subsystems, the number of state variables per subsystem is roughly nx/N. If N8 vector particles 

for each reduced state is maintained at each subsystem and taking the extreme case with no state 

variables shared between neighbouring subsystems, the computational complexity of the FR/DPF 

is N x 0((~ )2 N8 ) ~ O(n;N8 /N). In other words, the FR/DPF provides a computational savings 
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of up to a factor of N over its centralized counterpart. Note that the above is a lower bound as 

some states will always be shared. 

E.1 PCRLB for Reduced-order Distributed Estimation 

In this section, I derive the recursive expression for computing the dPCRLB for reduced-order 

configured .systems. The problem I wish to solve is to express the global information sub-matrix, 

denoted by JRo(x(k+l)), in terms ofits previous iterate JRo(x(k)), local FIMs JRo(x(l)(k+l)), 

and local prediction FIMs JRo(x(l)(k + llk)), for 1::; l::; N. 

Definition 9. Term JRo(x(l)(O: k)), for 1::; l::; N, denotes the local FIM corresponding to the 

local estimate of x(l)(O: k) derived from the local posterior density P(x(l)(O: k)lz(l)(l: k)). We 

define JRo(x(l)(k)) as the FIM submatrix for estimating x(l)(k) given z(l)(l: k). 

Definition 10. Term JRo(x(l)(O : k + llk)) denotes the local FIM corresponding to the local 

prediction estimate of x(l) (0 : k+l) derived from the local prediction density P(x(l) (0 : k+l)lz(l) (1 : 

k)). Term JRo(x(l)(k + llk)) is defined as the FIM submatrix for estimating x(l)(k + 1) given 

z(l)(l: k). 

As for the full-order system, the inverse of the local filtering FIM, i.e., [JRo(x(l)(k))]- 1 is equal 

to the nx<t> x nx<L> right-lower block of [JRo(x(l) (0 : k))]- 1 . In deriving the recursive expression for 

computing the reduced-order dPCRLB, I encounter a second form of the reduced-order local FIM 

(denoted by JRo(x(l)(k))) as the bound on the local filtering distribution P(x(l)(k)lz(l)(l : k)), 

i.e., 

(E.6) 

The inverse of the prediction FIM JRo(x(l)(k+llk)) is given by the inverse of the nx<L> x nx<l) 
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right-lower block of [JRo(x(l)(O:k+llk))r
1

. The bound on the local prediction is 

(E.7) 

Next, I present Theorem 9 that forms the basis of the optimal recursive algorithm for updat-

ing JRo(x(k)). 

Theorem 9. The reduced-order FIM {Jno(x(k))} for the filtering estimate x(k) follows the 

recursion 

Jno(x(k+l)) C~20(k) - C~1a(k)(Jno(x(k)) + C11o(k))-
1
Ch2o(k) (E.8) 

Ch1a(k) IE{ - ~:~Z~logP(x(k+l)lx(k)) }, (E.9) 

C12o(k) [c~1a(k)f =IE{ - ~:~zt>1ogP(x(k+l)lx(k))}, (E.10) 

and C~2o(k+l) IE{-~:~Z!g log P(x(k+l)lx(k))} 
N 

+ L ([T(l)(k)J+[Jno(x<l)(k+l)) -lno(x<l)(k+llk))J[T<Z)(k)]+r). (E.11) 
l=l 

Derived for reduced-order estimation, Theorem 9 is similar in nature to Theorem 7 for the 

full-order dPCRLB (Eqs. (5.26)-(5.27)) except for Cfit{k) which involves local reduced-order 

FIMs JRo(x(l)(k)) and JRo(x<l)(k+ Ilk)). Terms CA1a(k), CA't(k) and Cfib(k) are the same 

as their counterparts and still based on the overall state model. As for full-order systems, terms 

JRo(x<l)(k+l)) and JRo(x<l)(k+llk)) are approximated by their counterparts JRo(x(l)(k+l)) and 

JRo(x(l)(k+llk)). Later in this section, I investigate how to compute these terms locally within 

each reduced-order subsystem. Theorem 9 (Eqs. (E.8)-(E.11)) provides the optimal recursive 

expression for computing the global FIM in terms of of local reduced-order FIMs, when the 

spatial decomposition of the system maintains the structure of the overall process model. The 

proof of Theorem 9 is provided below. 

Proof of Theorem 9. To prove Theorem 9, we use a different factorization of the posterior, which 
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expresses the global posterior distribution P(x(O: k)lz(l : k)) as a function of local reduced-order 

filtering distributions P(xCO(k)lz(l)(l: k)). Lemma 10 [176] describes the nonlinear fusion rule. 

Lemma 10. Assuming that the observations conditioned on the state variables made at node l are 

independent of the observations made at node j, (j -:/:- l), the global posterior for a reduced-order 

estimation model is given by 

N 

IJP (x(l)(k)lz(l)(l:k)) 

P(x(O:k)lz(l:k)) ex ~=l P(x(k)lx(k-l))P(x(O:k-l)lz(l:k-1)). 

IJP (x(l)(k)lz(l)(l:k-1)) 
l=l 

(E.12) 

Due to limited space, we only highlight the main steps of the proof. The FIM JRo ( x( 0: k+ 1)) 

and the associated notation E;;(k) for the reduced-order is similar in structure to Eq. (C.3) 

except the subscript 'FO' is replaced by 'RO'. Using factorization (E.12) in the first term on RHS 

of Eq. (C.3) for JRo(x(O:k+l)) and simplifying 

[

A 
11 (k) A 

12 
(k) : O ] RO RO : 

JRo ( x(O: k+ 1)) = ~-~~-~~! ___ ~1~~~!-~-~~~-~~!-t.~~~-~~! , 
o n 21 (k) : c 22 (k) RO : RO 

(E.13) 

where terms A~1a(k), Alf0 (k), A~1a(k) and A~~(k) are the same as their full-order counterparts 

(i.e., AR,0 (k) = Af.0 (k)) as defined in Eq. (C.2) and CAb(k), CA'b(k), C~b(k), and C~2a(k) are 

expressed in Eqs. (E.9)-(E.11). Note that the derivation of Eq. (E.13) is similar to the derivation of 

(C.4) included in the proof of Theorem 7. The information sub-matrix JRo(x(k+ 1)) is calculated 

as the inverse of the right lower (nxXnx) sub-matrix of [JRo(x(O:k+l))]-1 in Eq. (E.13) which 

is given by Eq. (E.8). D 
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E.1.1 Reduced-order Computation of RO/dPCRLB 

In order to compute the RO/ dPCRLB, one approach is to follow the steps listed for the full-order 

scenario in Section 5.2.2. This will result in the global FIM at each node. In a reduced-order 

system, the processing nodes do not have access to the global model nor estimates for all states, 

therefore, such an approach is impractical. Instead, I propose computation of a block of FIM that 

corresponds to the states local at a node. In my approach, subsystem l computes the diagonal 

block J~b°bal(x(l)(k + 1)) of the FIM JRo(x(k + 1)) corresponding to its local sates x<O(k). The 

FIM block for x<l)(k) is 

(E.14) 

where T(l)(k) denotes the (nx<i> x nx) transformation matrix. Exploiting the block banded struc­

ture of the global FIM, the dPCRLB for the local states is then computed from the local FIM 

block and the adjacent blocks obtained from the neighbouring nodes. This is explained later in 

Step 3. 

I first outline the procedure for updating FIM block J~bobal(x(l)(k + 1)) at node l. Using 

Theorem 9, Eq. (E.14) is expanded as follows 

J~b°bal(x(l)(k + 1)) = [Cfib(k)](l) 

-T(l)(k)Cfib(k) (J~b°ba1 (x(k)) + C~b(k))- 1 [T(l)(k)Cfib(k)]T (E.15) 

S(k) 

where [Cfib(k)]<O = T(l)(k)C~b(k)[T<l)(k)f. Next I describe the steps required to compute 

Eq. (E.15) in a distributed reduced-order fashion. 

Step 1: In order to compute [Cfib(k)]<l), node l, for 1 ::::; l ::::; N, needs to compute local FIM 

blocks JRo(x(l)(k + 1)) and JRo(x<l)(k+llk)). Based on Proposition 1 (following the procedure 
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for derivation of Eq. (5.38) ), I get 

with 

and [D~b(k)](l) 

lE [-~:~:~ ~~~ 1\ogP(x(l)(k+l) lx(l)(k ), d(l)(k ))] 

(!) 

lE [-~ x~~t> logP(x(l) (k+ 1) lx(l) (k), d(l) (k) )] 
x(k+1) 

(!) 

- lE r~ x~~>+ 1 > logP( z(l) (k+ 1) lx(l) (k+ 1) )] . 
t x(k+l} 

The local predictive FIM is similarly derived from Eq. (5.44) and is given by 

where 

(E.17) 

(E.18) 

(E.19) 

(E.20) 

(E.21) 

Note that terms (D~b(k)]<l), (D~b(k)]<l), (D~b(k)](l), and (B~b(k)](l) are based on reduced-order 

models and can be computed locally. 

Step 2: Having computed the local FIMs JRo(x<l)(k+l)) and JRo(x<l)(k+llk)), node l computes 

(C~b(k)]<l) with a modified version of Eq. (E.11) where the summation is limited to neighbouring 

nodes of node l with which it has shared states. Due to the sparse and localized nature of 

the process model, only the neighbouring nodes of subsystem l have shared states with node l. 

Therefore, the communication and computational overheads for the distributed computation of 

(C~b(k)]<l) is limited to its local neighbourhoods. 

Step 3: The next step is to compute the second term on the RHS of Eq. (E.15). (i) First, note 
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that because the local state model at node l only includes a subset of state variables, x<l) ( ·) 

and d(l)(·), derivations with respect to x(·) will result in a block of zero terms corresponding 

to the states not present in the local state model. Therefore, T(l)(k)C~b(k) is partitioned as 

[[c~b(k)J(l) i [C~b(k)]<t,d) i o], with 

(E.22) 

and 

Matrix T(l,d)(k) denotes the nd<'> x nx<'> nodal transformation matrix corresponding to the nd<'> 

required forcing terms d(l)(k) at node l. (ii) Second, based on the above partitioning, a subdivision 

of matrix S ( k) is constructed as follows 

[-i s~:~;-i~lv·;~.~~~~] = [-iT~><i~f lf ~~~~:~;-i~ll~vh:;~;~i~~~~~;;~;i(i~\jr-] -(E.
24 i 

Note that, T(l)(k)S(k)[T(l)(k)]T is (nx<'> x nx(l>), sub-block of S(k). (iii) Finally, the RHS of 

Eq. (E.15) is expanded as follows 

T(l) (k )C~b(k )S(k) [T<l) (k)C~b(k)V 

[C~b(k )](l) s<l) (k )[C~b(k )](l)T + [C~b(k)] (l) s<l,d) (k) [C~b(k )](l,d)T 

+ ([C~b(k))(l) 5(l,d) (k)[C~b(k)](l,d)r) T + [C~b(k)](l,d) S(d,d) (k)[C~b(k)](l,d)T. (E.25) 

Two issues need to be addressed at this step. First, although matrix S(k) is inverse of a large (nx x 

nx) matrix ( JRo ( x( k)) + CAb ( k)), it is not computed directly. Instead the four blocks defined in 

Eq. (E.24) are computed using block with dimension (nx<'> x nx<'>) at the most and without taking 

the inverse of large matrix. This can be accomplished using distributed iterate-collapse-inversion-

overrelaxation (DICI-OR) algorithm [84]. The DICI-RO is an iterative distributed algorithm 
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used for computing the inverse of the symmetric positive definite banded matrix S ( k) defined in 

Eq. (E.15), when its submatrices in the banded area are distributed among different local nodes. 

The DICI-RO is a 2-step algorithm with an iterate step and a collapse step. The iterate step is 

implemented to compute the corresponding (banded) elements of the inverse of S(k ). A nonlinear 

collapse step is then employed to compute the non-banded elements of the inverse of S(k) from 

already computed banded elements of the inverse of S(k). Please refer to [84] for further details. 

In our problem, we need to compute the inverse of S(k) from diagonal blocks distributed across the 

network at local subsystems. Matrix S(k) = J~g>bal(x(k)) + C:i\b(k) is assumed block-banded 

as only diagonal blocks corresponding to the local subsystems are computed in our algorithm. 

Matrix C~b ( k) is also banded because of the localized and sparse nature of the state model. 

Instead of using the global FIM JRo(x(k)) and C:i\,b(k), the DICI-OR algorithm [84] computes 

S(l)(k), S(l,d)(k), S(d,d)(k) based on the local FIMs J~g>bal(x(m)(k)) and [C~b(k)J{m) of the 

neighbouring nodes m E N(l) of node l. Second, term [C~b(k)J(l) can be approximated by its local 

counterparts, i.e., [C~b(k)J(l) ~ [D~b(k)]<O and term [C~b(k)](l,d) is obtained from the local 

matrix [D~b(k)](m) of neighbouring node m of node l's which has d(l) in its local state vector. 

Step 4: Finally, Eq. (E.15) is used to update J~b°bal(x(l)(k + 1)) at node l, for 1 ~ l ~ N. The 

convergence of the proposed computational algorithm for estimating a sub-block of the global 

FIM corresponding to the local state subset is guaranteed by the convergence properties of the 

DICI-OR algorithm. See [84) for details. 

E.1.2 Computing the RO/dPCRLB from localized FIM 

The inversion algorithm for block banded matrices can be used to compute the RO/ dPCRLB 

(i.e., to compute inverse of the FIM). One such approach, referred to as the DICI-RO. Note that 

the FIM is a full matrix and the RO/ dPCRLB approach suggested in Section E.1.1 updates only 
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its diagonal block entries. This may result in some variation in the RO/dPCRLB as compared to 

the approach suggested in Section 5.2.2. The accuracy of the block-banded FIM approach can be 

improved by computing the off-diagonal blocks, which will additional more computation overhead. 

In this appendix, I limit myself to obtaining the RO/dPCRLB from the diagonal blocks of the 

FIM. 

E.1.3 Particle Filter Realization for reduced-order dPCRLB 

The particle-based computation of the dPCRLB equations for the reduced-order systems is similar 

to the full-order scenario (Section E.1.3) except for the following differences. At subsystem l, 

derivations in Eq. (5.48)-(5.53) are now based on the local state vector x<l)(-). A reduced-order 

distributed implementation of the particle filter is employed to compute the required particle set 

{X~l,FF)(k), w?·FF)}. For example, Eq. (E.17) can be represented in terms of the reduced-order 

particle sets as 

For the additive Gaussian forcing terms, the above equation reduces to 

Nv 

[D~b(k)](l) ~ L:w?·FF)(k)([\7x<1)(k)fT(k)]Q-1(k)[\7x(k)fT(k)J)I (!FF) • 

i=l x(k)=Xi ' (k) 
(E.27) 

As a final note to the dPCRLB implementations, I note the differences between Theorem 7 (the 

dPCRLB algorithm for full-order systems) and Theorem 9 (the dPCRLB algorithm for reduced-

order systems). Theorem 7 is applicable when the estimates of the entire state vector is available 

locally at each node. In reduced-order estimation, a different subset of the state vector is estimated 

at the local nodes. Eq. (5.28) included in Theorem 7 cannot be implemented in the reduced-order 

systems and is replaced by Eq. (E.11) which allows for reduced-order FIMs corresponding to 

different subsets of the state vector to be fused to determine the overall FIM. In the reduced-

270 



order format, Theorem 9 includes Eqs. (E.9)-(E.10) which are similar to Eqs. (5.26)-(5.27). In 

reality, reduced-order systems can not compute Eqs. (E.9)-(E.10) directly which requires the entire 

state vector to be known at each node. In Section E.1.1, I discussed how Eqs. (E.9)-(E.10) in 

Theorem 9 are computed in a reduced-order fashion. 
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