
DISTRIBUTED IMPLEMENTATIONS OF THE PARTICLE FILTER WITH
PERFORMANCE BOUNDS

ARASH MOHAMMAD!

A DISSERTATION SUBMITTED TO THE FACULTY OF GRADUATE STUDIES
IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

GRADUATE PROGRAM IN
ELECTRICAL ENGINEERING AND COMPUTER SCIENCE (EECS)

YORK UNIVERSITY
TORONTO, ONTARIO

NOVEMBER 2013

@Arash Mohammadi, 2013

Abstract

The focus of the thesis is on developing distributed estimation algorithms for systems with

nonlinear dynamics. Of particular interest are the agent or sensor networks (AN/SN) consisting

of a large number of local processing and observation agents/nodes, which can communicate and

cooperate with each other to perform a predefined task. Examples of such AN/SNs are distributed

camera networks, acoustic sensor networks, networks of unmanned aerial vehicles, social networks,

and robotic networks.

Signal processing in the AN /SNs is traditionally centralized and developed for systems with

linear dynamics. In the centralized architecture, the participating nodes communicate their ob­

servations (either directly or indirectly via a multi-hop relay) to a central processing unit, referred

to as the fusion centre, which is responsible for performing the predefined task. For centralized

systems with liuear dynamics, the Kalman filter provides the optimal approach but suffers from

several drawbacks, e.g., it is generally unsealable and also susceptible to failure in case the fusion

centre breaks down. In general, no analytic solution can be determined for systems with non­

linear dynamics. Consequently, the conventional Kalman filter cannot be used and one has to

rely on numerical approaches. In such cases, the sequential Monte Carlo approaches, also known

as the particle filters, are widely used as approximates to the Bayesian estimators but mostly in

the centralized configuration.

Recently there has been a growing interest in distributed signal processing algorithms where:

ii

(i) There is no fusion centre; (ii) The local nodes do not have (require) global knowledge of the

network topology, and;· (iii) Each node exchanges data only within its local neighborhood. Dis­

tributed estimation have been widely explored for estimation/tracking problems in linear systems.

Distributed particle filter implementations for nonlinear systems are still in their infancy and are

the focus of this thesis.

In the first part of this thesis, four different consensus-based distributed particle filter im­

plementations are proposed. First, a constrained sufficient statistic based distributed implemen­

tation of the particle filter (CSS/DPF) is proposed for bearing-only tracking (BOT) and joint

bearing/range tracking problems encountered in a number of applications including radar target

tracking and robot localization. Although the number of parallel consensus runs in the CSS/DPF

is lower compared to the existing distributed implementations of the particle filter, the CSS/DPF

still requires a large number of iterations for the consensus runs to converge. To further reduce the

consensus overhead, the CSS/DPF is extended to distributed implementation of the unscented

particle filter, referred to as the CSS/DUPF, which require a limited number of consensus iter­

ations. Both CSS/DPF and CSS/DUPF are specific to BOT and joint bearing/range tracking

problems. Next, the unscented, consensus-based, distributed implementation of the particle fil­

ter (UCD /DPF) is proposed which is generalizable to systems with any dynamics. In terms of

contributions, the UCD /DPF makes two important improvements to the existing distributed par­

ticle filter framework: (i) Unlike existing distributed implementations of the particle filter, the

UCD /DPF uses all available global observations including the most recent ones in deriving the

proposal distribution based on the distributed UKF, and; (ii) Computation of the global esti­

mates from local estimates during the consensus step is based on an optimal fusion rule. Finally,

a multi-rate consensus/fusion based framework for distributed implementation of the particle fil­

ter, referred to as the CF /DPF, is proposed. Separate fusion filters are designed to consistently

iii

assimilate the local filtering distributions into the global posterior by compensating for the com­

mon past information between neighbouring nodes.' The CF /DPF offers two distinct advantages

over its counterparts. First, the CF /DPF framework is suitable for scenarios where network con­

nectivity is intermittent and consensus can not be reached between two consecutive observations.

Second, the CF /DPF is not limited to the Gaussian approximation for the global posterior density.

Numerical simulations verify the near-optimal performance of the proposed distributed particle

filter implementations.

The second half of the thesis focuses on the distributed computation of the posterior Cramer­

Rao lower bounds (PCRLB). The current PCRLB approaches assume a centralized or hierarchical

architecture. The exact expression for distributed computation of the PCRLB is not yet available

and only an approximate expression has recently been derived. Motivated by the distributed

adaptive resource management problems with the objective of dynamically activating a time­

variant subset of observation nodes to optimize the network's performance, the thesis derives

the exact expression, referred to as the dPCRLB, for computing the PCRLB for any AN/SN

configured in a distributed fashion. The dPCRLB computational algorithms are derived for

both the off-line conventional (non-conditional) PCRLB determined primarily from the state

model, observation model, and prior knowledge of the initial state of the system, and the online

conditional PCRLB expressed as a function of past history of the observations. Compared to the

non-conditional dPCRLB, its conditional counterpart provides a more accurate representation of

the estimator's performance and, consequently, a better criteria for sensor selection. The thesis

then extends the dPCRLB algorithms to quantized observations. Particle filter realizations are

used to compute these bounds numerically and quantify their performance for data fusion problems

through Monte-Carlo simulations.

iv

Acknowledgements

This thesis could have not been completed without the encouragement, collaboration, and support

of a tremendous number of people.

First and foremost, I would like to extend my sincere thanks to my advisor, Professor Amir

Asif for his encouragement, support, and patience throughout my Ph.D. studies. I would definitely

not reach this point without his support and encouragements. It was a privilege for me to work

with an extraordinary supervisor like him with unlimited patience.

I would like to extend my sincere appreciations to my supervisory committee members,

Profs. Natalija Vlajic and Hui Jiang for their great personality, friendly advice and valuable

guidance. I wish to thank my thesis defense committee members, Profs. Mark Coates, Spiros

Pagiatakis and Suprekash Datta for accepting to be members of the committee.

A special thanks to my family. Words can not express how grateful I am to my mother, father,

and my sister for all of the sacrifices that they have made for me.

My special thanks go to my dear wife, Farnoosh, for her unlimited love and endless support.

It is really fortunate to have someone who believes in you more than yourself. Farnoosh has

supported me constantly during all these years. Her true love provides me double motivation to

work harder. I would like to say that the PhD degree is earned by her, not me.

Finally, I would like to thank my fellow colleagues, Mohammad Sajjadieh, Nariman Farsad,

Mohammad Reza Faghani, and Alireza Moghadam for their help and support. Special thanks to

v

my best friends, Ehsan Karamad, Alireza Katebi, and Vahid Roshanaei.

vi

Table of Contents

Abstract

Acknowledgements

Table of Contents

List of Tables

List of Figures

Abbreviations

Symbols

1 Thesis Overview

1.1 Introduction .

1.1.1 AN /SN Estimation Architectures .

1.1.2 Classification of Distributed Estimation Algorithms in AN/SN

1.1.3 Distributed Particle Filters

1.2 Thesis Contributions

1.3 Organization of the Thesis .

vii

ii

v

vii

xiv

xv

xx

xx iii

1

1

4

8

10

11

14

1.4 Publications . 15

2 Literature Review of Distributed Estimation 20

2.1 Background

2.2

2.1.1 Centralized Bayesian Estimation

2.1.2 Distributed Bayesian Estimation

Centralized Estimation . .

2.2.l The Kalman Filter

2.2.2 The Particle Filter

2.3 Distributed Kalman Filters

2.3.1 State Estimation F\1sion (Estimate-Then-Fuse)

2.3.2 Likelihood/Observation Fusion (Fuse-Then-Estimate)

2.4 Average Consensus Algorithms

2.4.1 Discrete Time Linear Consensus Algorithms .

2.5 Distributed Particle Filters

2.5.1 DPF via State Estimation Fusion (Estimate-then-Fuse)

2.5.2 DPF via Likelihood/Observation Fusion (Fuse-then-Estimate) .

2.6 Applications

2.6.1 Bearing Only Tracking .

2.6.2 Range Only Tracking .

2.6.3

2.6.4

Acoustic Source Localization

State Estimation in Power Grids

2.6.5 State Estimation in Distributed Camera Networks

2. 7 Sununary .

viii

21

23

26

35

36

42

48

48

54

56

56

62

64

67

73

73

76

77

78

80

81

3 Consensus-based Distributed Implementation of the Particle Filter 82

3.1 The CSS/DPF Implementation 84

3.1.1 Sufficient Statistic-Based .Pramework 85

3.1.2 CSS/DPF for Bearing and Range Tracking 88

3.2 The CSS/DUPF Implementation 99

3.3 Simulation Results for the CSS/DPF and CSS/DUPP 102

3.3.1 BOT Initialization: . 106

3.3.2 Scenario 1 . 107

3.3.3 Scenario 2 . 110

3.3.4 Scenario 3 . 110

3.3.5 Scenario 4 . 112

3.4 The UCD /DPF Implementation 114

3.4.l Simulation Results for the UCD /DPF 118

3.5 Summary .. ' 119

4 Distributed Particle Filter with Intermittent/Irregular Consensus Convergence122

4.1 The CF /DPF Implementation 127

4.1.1 Distributed Configuration and Local Filters 127

4.1.2 Fusion Filter ' 128

4.1.3 Weight Update Equation 129

4.1.4 Distributed Computation of Product Densities 131

4.1.5 Proposal Distribution ... 133

4.1.6 Computational complexity. 136

4.2 Modified Fusion Filter 138

4.3 Simulation Results .. 141

ix

4.3.1 Scenario 1 .

4.3.2 Scenario 2 .

4.3.3 Scenario 3 .

4.4 Summary

144

146

148

150

5 Posterior Cramer-Rao Lower Bound for Distributed Architectures (dPCRLB) 151

5.1 PCRLB for Centralized Architecture

5.1.1 PCRLB for Centralized Architecture

5.2 dPCRLB for Full-order Distributed Estimation

5.2.1 Full-order dPCRLB (FO/dPCRLB) ..

5.2.2 Distributed Computation of the Full-order dPCRLB

5.2.3 Particle Filter Realization for full-order dPCRLB .

5.3 Conditional Full-order dPCRLB

5.3.l Centralized Conditional PCRLB

5.3.2 Distributed Conditional dPCRLB

5.3.3 Practical Application of the Conditional dPCRLB

5.4 Simulation Results .

5.4.l Non-Conditional dPCRLB Computational Algorithms

5.4.2 Conditional dPCRLB Computational Algorithms

5. 5 Summary ·

6 Sensor Selection in Distributed Networks

6.1 System Description

6.1.1 Distributed Sensor Selection Model .

6.2 Sensor Selection Objective Function

x

154

155

159

159

165

167

169

170

171

174

176

176

181

184

186

189

189

191

6.3 dPCRLB based Sensor Selection ..

6.3.1 Initial Sensor Selection Step .

6.3.2 Subsequent Sensor Selection Step .

6.4 Conditional dPCRLB based Sensor Selection

6.5 Conditional PCRLB for Quantized Distributed Particle Filters

6.5.l Distributed Estimation with Quantized Observations .

6.5.2 Modified Conditional dPCRLB for Raw Observations

6.5.3 CQ/ dPCRLB with Quantized Observations

6.5.4 Computation of The Conditional dPCRLB

6.5.5 Communication Savings with CQ/dPCRLB

6.6 Simulation Results

6.6.1 Non-Conditional dPCRLB-based Sensor Selection

6.6.2 Conditional dPCRLB based Sensor Selection ...

6.6.3 Conditional dPCRLB for Quantized Distributed AN/SN Systems .

6. 7 Sumn1ary .

7 Contributions and Future Research Directions

7.1 Summary of Contributions .

7.2 Future Research Directions

7.3 Applications of Distributed Particle Filter Implementations

A Proof of the Results Reported in Chapter 3

A.l Proof of Lemma 1

A.2 Proof of Lemma 2

A.3 Proof of Theorem 2 .

xi

195

198

199

200

203

204

205

208

210

212

212

214

215

218

220

222

222

225

229

232

232

232

233

A.4 Proof of Theorem 3.

A.5 Proof of Theorem 4.

B Proof of the Results Reported in Chapter 4

B.1 Proof of Theorem 5 (127}

B.2 Proof of Theorem 6

B.3 Computational Complexity of The CF/DPF and UCD/DPF.

C Proof of the Results Reported in Chapter 5

C.1 Proof of Proposit'ion 2

C.2 Proof of Theorem 7.

C.3 Proof of Corollary 1

C.4 Proof of Lemma 9 .

C.5 Proof of Theorem 8 .

D Proof of the Results Reported in Chapter 6

D.l Local Conditional FIM .

D.2 Proof of Result 1

D.3 Proof of Result 2

E Reduced order Distributed Particle Filter

E.0.1 Local Particle Filters (Observation Fusion)

E.0.2 Reduced-order State Fusion

E.0.3 Computing Forcing Terms .

E.0.4 Computational Complexity

E. l PCRLB for Reduced-order Distributed Estimation

xii

234

236

237

237

238

238

242

242

242

245

246

247

249

249

250

253

258

259

261

262

262

263

E.1.1 Reduced-order Computation of RO/ dPCRLB . . .

E.1.2 Computing the RO/dPCRLB from localized FIM .

E.1.3 Particle Filter Realization for reduced-order dPCRLB

xiii

266

269

270

List of Tables

3.1 Comparison of different full-order DPF irnplerne11tations. 84

4.1 Comparison of different full-order DPF implementations. 126

B. l Comparison of the Computational Complexity. 238

xiv

List of Figures

1.1 Centralized architecture. 2

1.2 Estimation architectures. (a) Centralized; (b) Hierarchical. In a centralized architecture,

1.3

1.4

all nodes forward their observations to the fusion centre, which estimates the overall state

of the system. In a hierarchical architecture, observations are first forwarded to the local

processing nodes. Local processing nodes then, transfer partial or fully processed data

either to the fusion centre or to another local processing node in a lower level.

Distributed estimation architecture.

Taxonomy of estimation algorithms in networked systems.

2.1 Illustrative Example 1: A distributed target tracking application with 8 nodes. The

target is an aeroplane with state vector x(k) = [X(k),Y(k),Z(k),..1X"(k),Y(k),Z(kW,

i.e., the plane's 3D location {X(k), Y(k), Z(k)} and its speed {X(k), Y(k), Z(k)}. The

local observation zCL) (k) = [z~l) (k), z~l) (k)]T at node l, for (1 $ l $ 8), consists of the

bearing measurement zi1)(k) and the range measurement Z~1)(k). The communication

graph corresponding to the processing nodes is included on the bottom left of the figure

which shows the communication links between neighbouring nodes.

xv

5

6

8

29

2.2 Illustrative Example 2: A distributed camera network with five local nodes (cameras)

with partially overlapped field of view where each node estimates the 2-D locations of all

five persons over time. Each person's track over time is depicted with a different color.

The field of view of each camera is also shown with triangles. A communication link

(communication link is symmetric) between two neighbouring cameras is shown with the

dotted blue line. . . .

2.3 Illustrative Example: Spatial decomposition of a nonlinear system with five states

into three subsystems S1 , S2 and S3.

2.4 The bipartite graph representing the illustrative system. Notation gU) corresponds to the

neighbourhood of Subsystem 81 while 9n corresponds to a set of subsystems which include

state X n (-) in their local state vector.

2.5 The SIR filter for estimating the posterior conditional probability (represented by blue

bars)

2.6 A pictorial description of the particle filter [44].

2. 7 An example of average consensus algorithm with 20 sensor nodes.

2.8 The configuration and bearing measurements. (a) Initial sensor locations and one real­

ization of the target's trajectory. (b) Bearing measurements at four randomly selected

nodes.

3.1 Scenario 1: Realization of the sensor placement along with the target's trajectory. The

30

33

34

46

47

59

74

number of iterations required for achieving consensus in this network is Nc(U) = 5. 107

3.2 Scenario 1: Comparison between the centralized particle filter, the CSS/DPF, the

CSS/DPF, distributed UKF [7], Gu et al. [23], and the PCRLB: (a) High SNR, and;

(b) Low SNR. 109

xvi

3.3 Scenario 2: Comparison between the centralized particle filter and the CSS/DUPF with

different number of consensus iteration: (a) Based on the network shown in Fig. 3.1, and;

(b) Based on another network where the number of iterations required for achieving the

consensus is twice.

3.4 Scenario 3: Comparison of the centralized particle filter and the CSS/DUPF for joint

bearing/range tracking problem.

3.5 Scenario 4: (a) Realization of the sensor placement along with the target's trajectory

for N = 10. (b) Realization of the sensor placement along with the target's trajectory for

N = 40. (c) RMS tracking performance at iteration k = 20 for varying network sizes and

for the centralized filter, the CSS/DUPF with two consensus runs and the CSS/DUPF

with three consensus runs.

3.6 Comparison between the centralized particle filter, the UCD/DPF, and Gu et al. [23]: (a)

111

112

113

Constant SNR, and; (b) High SNR but varying from a node to another. 120

4.1 (a) Situations where CSS/DPF and UCD/DPF are applicable, i.e., consensus converges

within the duration f},,T of two consecutive observations. (b) A scenario where the con­

sensus convergence Tc is greater than f},,T. The lag between the global estimates and the

local estimates grows exponentially. . . .

4.2 (a) Centralized implementation where all nodes communicate their local estimates to the

fusion center. (b) Distributed implementation using channel filters where a separate filter

is required for each communication link. (c) The proposed CF /DPF implementation where

sensor nodes connect through their fusion filters (one fusion filter per node). In terms of

123

the number of extra filters, the CF /DPF falls between the centralized and channel filters. 125

xvii

4.3 Multi-rate implementation of the local and fusion filters. (a) The ideal scenario

where the fusion filter's consensus step converges before the new iteration of the

local filter. (b) The convergence rate of the fusion filter varies according to the

network connectivity. (c) The lag between the fusion filter and the local filter

grows exponentially. . 138

4.4 Scenario 1: (a) Target's tracks obtained from the centralized, CF /DPF and stand-alone

algorithms (the consensus is allowed to converge). (b) CDFs for the X-coordinate of the

target from the centralized and CF /DPF approaches for k = 5, 22. 142

4.5 Scenario 1: Comparison of the RMS errors resulting from the centralized versus distributed

implementations. 145

4.6 Scenario 2: (a) Actual target's track alongside the estimated tracks obtained from the

centralized and modified fusion filter. Here, the consensus algorithm converges after every

two iterations of the local particle filters. (b) Comparison of the RMS errors resulting

from the centralized, original fusion filter and modified fusion filter. 147

4. 7 (a) Robot trajectories estimated from the CF /DPF, centralized, and distributed UKF

implementations. (b) RMS error plots for the three implementations. 149

5.1 (a) Target's track alongside the location of the local observation nodes. (b) Trace of the

local PCRLBs computed at Nodes 1-4 based on Eq. (5.38)-(5.41). All nodes shown in

Fig. 5.l(a) are used in the dPCRLB algorithm

5.2 Scenario 1 in Full-order System: Comparison between the centralized, proposed and ap-

proximated [15] dPCRLBs at: (a) High SNR (average 20dB), and; (b) Low SNR (average

6dB). The exact full-order dPCRLB from Theorem 1 computed using Eq. (36) is shown

in red solid line, the centralized PCRLB from Proposition 1 in green dotted line, and the

177

approximated dPCRLB from Eq. (39) in blue dotted line with circles. 180

xviii

5.3 Scenario 2 in Full-order System: Same as Fig. 5.2 except particles set {Xi(k), Wi(k)} is

used to compute expectations in Eqs. (5.38)-(5.41).

5.4 (a) Case 1: Comparison of the proposed conditional dPCRLB, centralized conditional

PCRLB and an approximate conditional dPCRLB (similar to [15]). (b) Same as (a)

except for Case 2 (local fusion without consensus): PCRLB comparison between two

182

randomly selected nodes and from Case 1. 183

6.1 (a) A sample distributed scenario [15] consisting of 9 local processing nodes and 150

observation nodes (sensors). (b) Fusion-to-fusion communication constraints.

6.2 Iteration (k + 1) of the proposed dPCRLB based distributed target tracker with the

observation node selection feature.

6.3 (a) The dPCRLB, and; (b) RMS error for target's position averaged over all processing

nodes for the three approaches.

6.4 (a) Target's position alongside with the sensor nodes and observation nodes positions. (b)

RMSE for target's position averaged over all fusion nodes.

6.5 (a) A sample decentralized bearing only tracking setup. (b) Comparison of the conditional

dPCRLBs [55] using raw observations with the CQ/clPCRLBs using 8-bit quantized ob­

servations. (c) Effect of quantization on the CQ/dPCRLB for different (4, 5, 6, 7, and 8

188

196

213

216

bit) quantization levels. 219

7.1 Time-scales of sensing (dynamic estimation) and communication (consensus iterations).

Consensus+ innovation Kalman filtering where the consensus time (communication time)

and the sensing/filtering time are the same. 227

xix

Abbreviations

Abbreviation

ACT

AN

AVS

BOT

CA

CCT

CDF

CF/DPF

CRLB

CV

CSS/DPF

csw

dPCRLB

DCN

DKF

DOA

Description

Anti-clockwise coordinated turn model

Agent network

Acoustic vector sensor

Bearings-only tracking

Constant acceleration model

Clockwise coordinated turn model

Cumulative distribution function

Consensus/fusion distributed implementation of the particle filter

Cramer-Rao Lower Bound

Constant velocity model

Constrained sufficient statistic based

distributed implementation of the particle filter

Cumulative sum of weights

Distributed computation of the Posterior Cramer-Rao Lower Bound

Distributed camera network

Distributed Kalman filter

Direction of arrival

xx

DPF

EKF

FC

FIM

FR/DPF

GMM

GPS

GSS

IID

GMM

LPN

LSS

MC

MMSE

MSE

PCRLB

PDF

PDN

PMU

RHS

RMS

SIS

SIR

Distributed particle filter

Extended K~lman filter

Fusion centre

Fisher information matrix

Fusion based, reduced order, distributed

implementation of the particle filter

Gaussian mixture model

Global positioning system

Global sufficient statistics

Independent and identically distributed

Gaussian Mixture Model

Local Processing node

Local sufficieut statistics

Monte Carlo

Minimum mean square error

Mean square error

Posterior Cramer-Rao Lower Bound

Probability density function

Power distribution system

Phaser measurement unit

Right hand side

Root mean square error

Sequential importance sampling

Sampling importance resampling

xxi

SMC

SN

SNR

SVM

UAV

UCD/DPF

UKF

UPF

WSN

Sequential Monte Carlo

Sensor Network

Signal to noise ratio

Support Vector Machines

Unmanned aerial vehicles

The unscented, consensus-based, distributed

implementation of the particle filter

Unscented Kalman filter

Unscented particle filter

Wireless sensor network

xxii

Symbols

Symbols

N

k

x(k)

(l) (
Nfusc k)

I· I

z(k)

N~l~~s(k)

Description (section of first occurrence)

Number of processing nodes/agents with processing and

observation functionalities (2.1)

Time/iteration index (2.1)

Index T is used as superscript to denote matrix

transposition (2.1).

State vector at iteration k (2.1)

Number of state variables (2.1)

Index l is used as superscript to refer to one of

the N nodes/agents (2.1)

The set of neighboring nodes for node l (2.1)

The cardinality operator (2.1)

Number of neighboring nodes for node l (2.1)

Observations made at node l at iteration k (2.1)

Global observation vector at iteration k (2.1)

Set of sensors connected to node l (2.1)

Global uncertainties in the process model (2.1)

Global uncertainties in the observation model (2.1)

xxiii

!(-)

g(-)

g(l)(·)

IE{-}

diag(·)

R(1)(k)

R(k)

Rii(k)

g

v

£

L

~Q

P (x(k)Jz(l: k))

P(x(k)lx(k - 1))

P(z(k)lx(k))

P(z(L) (k) Jx(k))

P (x(k)Jz(l: k-1))

P (x(k)lz(l)(l: k))

P (x(k)Jz(l)(l:k-1))

5(l)

x(l>(k)

f(ll(·)

Global state function (2.1)

Global observation function (2.1)

local observation function (2.1)

Expectation operator (2.1)

A block diagonal matrix of its element (2.1)

Error covariance matrix of the observations made at node l (2.1)

Global observation error covariance matrix (2.1)

Covariance matrix between the observation noises

of node i and .i (2.1)

The agent/sensor network's communication graph (2.1)

The node set of the communication graph (2.1)

The edge set of the communication graph (2.1)

Laplacian matrix for graph g (2.1)

Maximum degree for graph g (2.1)

Global filtering distribution (2.1.1)

State transition model (2.1.1)

Global observation likelihood (2.1.1)

Local observation likelihood (2 .1.1)

Global prediction distribution (2.1.1)

Local filtering distribution (2.1.1)

Local prediction distribution (2.1.1)

Local sub-system l in reduced-order configuration (2.1.2.2)

Local state vector in reduced-order configuration (2.1.2.2)

Local state function in reduced-order configuration (2.1.2.2)

xxiv

d(l)(k)

T<1>(k)

T(l,i)(k)

x(k)

)c(l)(k)

P(k)

fa(l)(k)

[·]+

p(l,j)(k)

N(µ, E)

(N(k)

e<;}(k)

F(k)

G(l)(k)

x(klk - 1)

P(klk - 1)

x(klk)

P(klk)

x(k)

Number of states in the local state vector x(l)(k) (2.1.2.2)

The coupling state vector (2.1.2.2)

The nodal transformation matrix (2.1.2.2)

Shared state transformation matrix (2.1.2.2)

The global state estimate at iteration k (2.1.2.2)

The local state estimate at node l (2.1.2.2)

The global covariance matrix (2.1.2.2)

The local covariance matrix at node l (2.1.2.2)

Moore-Penrose generalized inverse

(or the right pseudo inverse) (2.1.2.2)

The covariance block corresponding for the shared states between

subsystem 3(i) and s(j) (2.1.2.2)

Normal distribution with mean {land covariance E (2.2.1)

White Gaussian state forcing terms (2.2.1)

White Gaussian observation noise at node l (2.2.1)

Linear state model (2.2.1)

Linear local observation model at node l (2.2.1)

The conditional mean of the state variables at iteration k given

observations up to time k - 1 (2.2.1)

The covariance associated with the estimate x(klk - 1) (2.2.1)

The conditional mean of the state variables at iteration k given

observations up to time k (2.2.1)

The covariance associated with the estimate x(klk) (2.2.1)

The same as x(klk) (2.2.1)

xxv

P(k)

JC(k)

Q(k)

y(klk)

Y(klk)

i(k)

I(k)

i(l) (k)

J(l)(k)

Wi, Xi(k)

Xi(klk - 1)

Zi(klk - 1)

z(klk - 1)

Pzz(klk - 1)

P1:z(klk - 1)

6(-)

q(x(O: k)lz(l: k))

Ndr

y(fuscd,l) (k)

y(fuscd,l)(k)

The same as P(klk) (2.2.1)

Kalman gain matrix at iteration k (2.2.1)

Covariance matrix of Gauss-Markov linear state model (2.2.1)

Information vector (2.2.1)

Information matrix (2.2.1)

Observation information vector (2.2.1)

0 bservation information matrix (2. 2 .1)

Local observation information vector at node l (2.2.1)

Local observation information matrix at node l (2.2.1)

Scaling parameter in the unscented Kalman filter (2.2.1.1)

Sigma points in the unscented Kalman filter (2.2.1.1)

Predicted sigma points (2.2.1.1)

Predicted observation sigma points (2.2.1.1)

Predicted observation estimate (2.2.1.1)

The autocovariance of predicted observations (2.2.1.1)

The cross-covariance between predicted observation and

predicted· state estimates (2. 2 .1.1)

Particle and its associated weight at iteration k (2.2.2)

Number of particles in the centralized architecture (2.2.2)

The Dirac delta function (2.2.2)

Proposal distribution (2.2.2)

Effective sample size (2.2.2)

Fused local information vector at node l (2.3.2)

Fused local information matrix at node l (2.3.2)

xxvi

y(inj) (kjk)

i(fusc<l,l)(k)

J(fuscd,l)(k)

j;(fused,l)(kjk)

p(fuscd,l) (kjk)

xil) (-)

u

II · 112

p(.)

'rasym(U)

Ai(U)

x(1)(k)

f'(l)(k)

S(-)

y(l)(-)

G(-)

z~L)(x(k))

z~1) (k)

The information matrix of the channel filter

between node i and j (2.3.2)

The information vector of the channel filter

between node i and j (2.3.2)

FUsed local observation information vector at node l (2.3.2)

FUsed local observation information matrix at node l (2.3.2)

FUsed state estimate at node l (2.3.2)

Covariance of the fused state estimate at node l (2.3.2)

Consensus iteration index (2.4.1)

Consensus variable at node l (2.4.1)

Consensus matrix (2.4. l)

Euclidean L 2 distance (2.4.1)

Spectral radius of a matrix (2.4. l)

Asymptotic convergence rate of an average consensus

algorithm (2.4. l)

Eigenvalues of the consensus matrix (2.4.1)

Local state estimate computed from the particle set (2.5.1)

Local state estimate computed from the particle set (2.5.1)

Global sufficient statistics (GSS) can be computed as a function

SC) of the local sufficient statistics (LSS) (3.1.1)

Loc;a.J sufficient statistic; (LSS) at node l (3.1.1)

Global sufficient statistic (GSS) (3.1.1)

True bearing observation made at node l (3.1.2.1)

Noisy observation made at node l (3.1.2.1)

xxvii

Go,*(k)

)\(ll(k)

z~\x(k))

z~1)(k)

G¢,*(k)

z~l (x(k))

z~)(k)

GR,*(k)

y(ll. (k)
</i,t

y~~*(k)

y(l).(k)
</i,t

ncss

(l) (
XUKF klk - 1)

P,(l,Fuscd) (k)
UKF

A (I.Fused) (k)
XUKF

x~l,LF) (k) x~l,LF)
t , t

µ(ll(k) and p(ll(k)

GSS corresponding to the bearing observations (3.1.2.1)

Coordinates of observation node l (3.1.2.1)

True azimuth observation made at node l (3.1.2.2)

Noisy azimuth observation made at node l (3.1.2.2)

GSS corresponding to the azimuth observations (3.1.2.2)

True range observation made at node l (3.1.2.2)

Noisy range observation ma.de at node l (3.1.2.2)

GSS corresponding to the range observations (3.1.2.3)

LSS corresponding to the bearing observation function (3.1.2.3)

LSS corresponding to the range observation function (3.1.2.3)

LSS corresponding to the azimuth observation function (3.1.2.3)

Number of global sufficient statistics (3.1.2.5)

Total number of consensus iterations required for

convergence (3.1.2.5)

The local predicted state estimate in the CSS/DUPF (3.2)

Covariance matrix of the proposal distribution

in the CSS/DUPF (3.2)

Mean value of the proposal distribution in the CSS/DUPF (3.2)

Particles and associated weights at node l used in the

local filter (4.1.1)

Particles and associated weights at node l used in the

fusion filter (4.1.2)

Number of particles used in the fusion filter (4.1.2)

Mean and covariance of local particles at node l

xxviii

(l) (l)
xcl (-) and xc2 (·)

~T

J(x(O:k))

J(x(k))

J(x(O: k+ljk))

J(x(k+ljk))

\1 and ~

D**(k)

J~16(x(O: k))

J~i(x(k))

J~16(x(O: k+llk))

J~16(x(k+ ljk))

j~l6(x(k))

J~i (x(k+ ljk))

C**(k)

[D**(k)]C1)

JAux(x(O:k))

JAux(x(k))

during the filtering step of iteration k (4.1.2)

Mean and covariance of local particles at node l

during the prediction step (4.1.2)

Consensus variables in the CF /DPF algorithm (4.1.2)

observations arrive at constant time intervals of ~T (4.2)

Update cycle of the fusion filter (4.2)

Particles and associated weights at node l used in the

modified fusion filter (4.2)

Accumulated FIM associated with the estimate x(O: k) (5.1.1)

Instantaneous FIM associated with the estimate x(k) (5.1.1)

Accumulated predictive FIM (5.1.1)

Instantaneous predictive FIM (5 .1.1)

The operators for the first and second order partial derivatives (5.1.1)

Matrices for recursive computation of the centralized FIM (5.1.1)

Accumulated local FIM associated with the estimate :X(1)(Q: k) (5.2.1)

Instantaneous local FIM associated with the estimate :X(l)(k) (5.2.1)

Accumulated predictive local FIM (5.2.1)

Instantaneous local FIM predictive local FIM (5.2.1)

Alternative form of the instantaneous local FIM (5.2.1)

Alternative form of the instantaneous predictive local FIM (5.2.1)

Matrices for recursive computation of the distributed FIM (5.2.1)

Local matrices for recursive computation of J~i(x(k)) (5.2.2)

Accumulated auxiliary FIM (5.3.1)

Instantaneous auxiliary FIM (5. 3 .1)

xx ix

I(x(O:k))

L(x(k))

I(O: k + llk)

L(x(k+llk))

Pc(k)

Nmax(k)

(l) Nmax(k)

z(t,m)(k)

({l,m)(·)

Accumulated conditional FIM (5.3.1)

Instantaneous conditional FIM (5.3.1)

Accumulated conditional predictive FIM (5.3.1)

Instantaneous predictive conditional FIM (5.3.1)

Conditional posterior distribution (5.3.1)

Number of local processing nodes (6.1.1)

Sensors connected to processing node l (6.1.1)

The total number of active observation nodes (6.1.1)

Maximum number of sensors activated by processing node l (6.1.1)

Local observation at sensor node m connected to node l (6.1.1)

Local observation model at sensor node m connected to node l (6.1.1)

Local uncertainty at sensor node m connected to fusion node l (6.1.1)

xxx

1 Thesis Overview

1.1 Introduction

Agent networks (AN) (1], commonly referred to as sensor networks (SN), are collections of indi­

vidual processing nodes that observe a common phenomenon locally and combine the sensor data

to derive some globally meaningful information. A possible configuration for AN /SNs is shown in

Fig. 1.1, which uses the centralized topology. The blocks labeled 1 to Nin Fig. 1.1 represent the

sensing devices, referred in the following discussion as local nodes or simply nodes, and z(l), for

(1 ~ l ~ N), denote the sensor observations transmitted to the fusion centre. Depending on the

functionality of the AN /SN, the problem of combining information at the fusion center can be

posed either as a detection problem (2], i.e., determining the current state from a finite number

of known states, or an estimation problem (3], i.e., estimating the value of some quantity related

to the observations. Because of the low cost of sensors and the robustness against network fail­

ure due to inherent redundancy in such systems, AN /SNs have attracted considerable attention

in recent years. Although originally proposed mainly for military tracking and control devices,

agent networks now span a wide array of applications in the scientific, industrial, health-care,

agriculture and domestic domains. Owing to the commercial availability of low cost sensors with

broadcasting capabilities, AN /SNs have moved over from the research arena into real world. Ex­

amples of the AN /SN systems are underwater sensor networks (4], networks of unmanned aerial

1

... (l)
.;.

I St I

Node1

L---

''

(___ Ph_e_n_ome_n_o_n_b_e_in_g_o_b_se_rv_ed __)

---- ----,
I
I
I
I
I

..,(:?)I
,,;.,

1 Nodel
L ___ ._ __ _

Transmission Channel

Fusion
Centre

--------,

NodeN

I
I
I
I
I

..,(.\)I
,,;.,

L--- ._ __ _

Figure 1.1: Centralized architecture.

vehicles (UAV) [5], robotic networks [6, 7], and camera networks [8]. Some common applications

of the AN/SNs are listed below.

• Target tracking [9]: A standard application of the AN/SNs is in surveillance applications

where a noncooperative target, such as a vehicle, aircraft, person, or animal, is tracked

within the range of the AN /SN system. In the case of passive tracking, the target itself

emits a signal that is sensed by the local observation nodes (sensors), and the AN/SN

estimates (tracks) time-varying properties of the target such as its position and velocity.

The converse case is active tracking, where the probing signal is emitted by the sensor array

and its reflection (backscatter) is used for estimating the target properties.

2

• Industrial control and monitoring [2]: AN /SNs are used to monitor physical and environ­

mental conditions like temperature, pressure, sound, humidity, motion, or pollution. In

control applications, the system being monitored shuts off as soon as one of the environ­

mental controls exceeds a pre-determined threshold.

• Home surveillance and consumer electronics [8]: AN/SNs are also used in home surveillance

to form a virtual perimeter around a property in order to monitor the progression of intruders

by passing information from one node to another.

• Assess tracking and supply chain management [10]: AN/SNs are utilized by warehouses to

track the distribution of provisions to different retailers.

• Intelligent agriculture and environmental sensing [11]: AN/SNs are deployed in agricultural

farms to control, for example, the supply of water, pesticides, and fertilizers by monitoring

the status of the crops.

• Health-care monitoring [12]: AN/SNs are used in health monitoring applications like track­

ing the posture or movements of a patient. By attaching sensors to the bodies of the patient,

their movements can be observed.

Other possible applications of the AN /SN systems are pollution source localization [13] and chem­

ical plume tracking (14].

Traditional multisensor systems, where local sensors do not perform any preliminary processing

of data and a central processor performs the specified operation completely on its own, are referred

to as centralized AN/SNs. In Figure 1.1, each local node in the centralized multi-sensor network

transfers its raw observation to the fusion node without any processing. A major hurdle faced while

designing such centralized AN /SNs is the constraint in the communication bandwidth needed

to transmit the observation from a local sensor to the fusion centre. One way of overcoming

3

this hurdle is to perform some preliminary processing [2] of the data at each sensor and then

transmit the compressed information to the fusion centre. Alternatively, the fusion centre can be

completely eliminated provided that the local nodes cooperate with each other to reach a global

solution. Referred to as the distributed or decentralized AN /SNs [1], such networks are said to

have intelligence at each node and are the focus of our discussion in this thesis. In the application

context considered in the thesis, the local nodes cooperatively estimate certain parameters (or

states) of the surrounding environment based on local observations (measurements). They need

to cooperate because their local observations are individually insufficient for obtaining reliable

estimates. This is where distributed estimation algorithms proposed in the thesis come into play.

1.1.1 AN/SN Estimation Architectures

As shown in Fig. 1.2 and Fig. 1.3, an AN/SN system can be configured into three main architec­

tures.

i.· Centralized Estimation Architecture: Traditional state estimation approaches in AN/SNs

are centralized (Fig l.2(a)) where the participating nodes/agents communicate their raw observa­

tions (either directly or indirectly via a multi-hop relay) to a central processing unit, referred to

as the fusion centre (FC), which is responsible for performing a predefined task. The centralized

architecture is simple to implement but is generally unsealable to adding more sensor nodes to the

system. It is also susceptible to failure in case the FC breaks down. Another issue is the short life

expectation of the sensor nodes. In multi-hop relay communication networks, for example, nodes

far away from the FC typically communicate their data to nodes closer to the FC till the FC re­

ceives their data. Nodes in the immediate neighbourhood of the FC relay more data which means

more massage transfers compared to the nodes far from the FC. Energy consumption (energ:y re­

quired for transferring a massage times the number of massages) is unbalanced in the centralized

4

S:
LPN:
FC:

Sensor Node
Local Processing Node
Global Fusion Node

(a)

-.......... . ,--
',, ~""'

\ I ,,
I \

., ' ,, ' __________ _________ _

(b)

....
'

_ ,,."

' \
I Level 1

, ,,
I

I

Final Level

Figure 1.2: Estimation architectures. (a) Centralized; (b) Hierarchical. In a centralized architecture, all

nodes forward their observations to the fusion centre, which estimates the overall state of the system. In a

hierarchical architecture, observations are first forwarded to the local processing nodes. Local processing

nodes then, transfer partial or fully processed data either to the fusion centre or to another local processing

node in a lower level.

5

Node(N-2) Node(N-1)

Figure 1.3: Distributed estimation architecture.

network, and mostly concentrated near the FC. Over time, such a mechanism depletes the nodes

closer to the FC leading to a system failure. An additional complexity in centralized estimation

arises with a change in the network topology requiring the routing tables to be redesigned adding

to the complexity of the centralized architecture.

2. Hierarchica~ Estimation Architecture : In the hierarchical architecture (Fig l.2(b)), a

subset of sensor nodes is associated with a local processing node (local fusion centre) to which

local observations from the associated sensor nodes are transferred. Instead of sending raw obser-

vations, local processing nodes first process the local observations and then communicate partial

or fully processed local data to the FC. In other words, communication from the observation

nodes to the FC takes place via the processing nodes. The overall performance of the system

still depends on the FC to combine the local processed data into a global state estimate. Though

6

the computation burden in the hierarchical estimation is shared by the FC and local processing

nodes, the hierarchical architecture still faces several of the issues discussed for the centralized

estimation including a single point of failure and scalability problems.

3. Distributed Estimation Architecture: Recently, there has been a growing interest in

distributed estimation algorithms. Fig 1.3 shows an example of a distributed estimation archi­

tecture [15] which entail a scenario with two different type of local nodes: (i) Observation nodes

(sensors) with limited power which only record data, and; (ii) Local processing nodes with higher

power resources. Each local processing node computes its local track based only on the observa­

tions limited to the active sensors connected to it and then cooperates distributively with other

local processing nodes in its neighbourhood to compute the global state estimate. Note that in

such a distributed architecture there is no global FC, therefore, the sensors and the local process­

ing nodes do not require global knowledge of the network topology. Further, each local processing

node collects data from the sensors within its communication range and exchanges data only with

other local processing nodes in its local neighbourhood. Such a distributed architecture offers

three advantages over the centralized topology.

1. Fusion occurs locally and the successful operation of the network is not dependent on the

global FC.

2. Global knowledge of the network topology is not needed locally. Instead, each node only

establishes connections with its neighboring nodes.

3. Communication occurs on a node-to-node basis within local neighbourhoods.

The thesis focuses on developing distributed estimation/tracking algorithms for AN /SN based

on the architecture presented in Fig. 1.3. Initially, I consider the limiting case where all nodes

within a neighbourhood serve the dual task of sensing locally and processing the local collection

7

Massage Passing
(Sequential) Diffusive Schemes

Consensus-Based DPF

Communication of Fuoolion~ of the
Local Observations.

Figure 1.4: Taxonomy of estimation algorithms in networked systems.

of observations. Such a setup is used to develop the distributed estimation approaches and

establishing the performance bounds. Subsequently, I extend these results to the more specialized

setup proposed in Fig. 1.3.

1.1.2 Classification of Distributed Estimation Algorithms in AN/SN

Fig. 1.4 presents a taxonomy of estimation algorithms in AN /SN s, namely centralized, hierarchical,

and distributed, based on the network architecture. Distributed estimation approaches can be

further classified into the following two categories based on the type of communication used in

the underlying AN /SN.

1. Message Passing Schemes [16, 17): where the information flows in a sequential, pre-

defined manner from a node to one of its neighboring nodes via a cyclic path till the entire

network is traversed.

8

2. Diffusive Schemes [18-30]: where each node communicates its local information by in­

teracting only with its immediate neighbours. In dynamical environments where frequent

changes in the underlying network are a common practice, diffusive approaches significantly

improve the robustness of the system.

A promising member of the diffusive algorithms are the consensus approaches [31-35], which

are simple distributed methods with minimal computation, communication and synchronization

requirement used to fuse local quantities that are scattered across the network. Type of infor­

mation (local quantities) communicated across the network varies from raw data such as local

observations or some elementary function of the local observations [18-22] to processed data such

as local likelihoods and state posterior/filtering estimates evaluated at individual nodes [23-27].

As described below, a further classification of the distributed estimation algorithms is based on

the portion of the overall state vector estimated at each local node.

1. Full-order algorithms: where the entire state variables are estimated at each node. A

drawback of such algorithms is that each node needs to maintain an estimate for all of the

state variables.

2. Reduced-order Algorithms: where a subset of state variables in the global state-vector

is estimated at each node based on the local measurements and the information transmitted

from the neighboring nodes. Reduced-order algorithms are suitable for large-scale dynamical

systems [37-40], where the dimension of the state vector is large and the observations are

sparse with only a few state variables being measured at the local nodes. A drawback of

such algorithms is that the estimate of the entire state vector is not available locally.

9

1.1.3 Distributed Particle Filters

Estimation and tracking techniques are usually based on probabilistic methods (Bayesian frame­

work), a standard approach for distributed estimation and data fusion problems. For linear

systems with Gaussian excitation and observation noise, the Kalman filter [41, 42] provides the

optimal approach. In general no analytic solution can be determined for systems with non-linear

dynamics and non-Gaussian forcing terms. Consequently, the direct Kalman filter cannot be used

and one has to rely on numerical approaches. In such cases, the sequential Monte Carlo (SMC)

approaches (43], also known as the bootstrap filtering, condensation algorithm, and particle filters,

are used as approximates to the Bayesian estimators. The particle filters are the SMC (on-line)

analogue of the extended/unscented Kalman filters [44] with the added advantage that they ap­

proach the optimal Bayesian estimators if sufficient samples of the posterior distribution are

available. Since the seminal work by Gordon et al. (45], the particle filters have been widely used

in the centralized configuration. Developing hierarchical [46-48] and distributed implementation

of the particle filter is computationally demanding and requires large bandwidth for information

transfers between the local nodes. Although distributed estimation have been widely explored for

estimation/tracking problems in linear systems, distributing particle filters implementations for

non-linear systems are still in their infancy. Recent developments in the hardware and advances in

communication, however, have paved the way for the development of distributed implementations

of the particle filter.

My thesis focus on consensus-based distributed implementations of the particle filters for

AN /SN systems with non-linear dynamics and non-Gaussian forcing terms. Next, I briefly review

the major contributions [49-69] of the thesis.

10

1.2 Thesis Contributions

I focus on the following research problems in the thesis.

1. Consensus-Based Distributed Implementation of the Particle Filter [49,50,57-61]:

I propose three consensus-based, distributed implementations of the particle filter.

• The CSS/DPF and the CSS/DUPF [49, 57]: I propose a constrained sufficient

statistic based distributed implementation of the particle filter (CSS /D PF) for bearing­

only tracking (BOT) and joint bearing/range tracking problems encountered in a

number of applications including radar target tracking and robot localization. The

CSS/DPF runs localized particle filters at each node to compute the global sufficient

statistics of the overall likelihood as a function (summation) of the local sufficient

statistics.

Pros and cons: Existing distributed consensus-based particle filter implementations

proposed in the literature [20, 22] require a large number of parallel consensus runs at

each iteration of the particle filter which adds considerable consensus overhead to the

distributed estimator. The CSS /DPF is proposed with the goal of developing a dis­

tributed particle filter that has reduced consensus overhead and affordable complexity.

In the CSS/DPF, the number of parallel consensus runs is reduced to 6 for 2-D BOT,

16 for 3-D BOT, and 12 for joint bearing/range tracking. The proposed CSS/DPF

still depends on the convergence of each of the consensus runs which itself requires a

large number of consensus iterations. To further reduce the consensus overhead, the

CSS/DPF is extended to a distributed implementation of the unscented particle filter,

referred to as the CSS /DUPF, which require limited number of consensus iterations.

Although computationally efficient, the CSS/DPF and CSS/DUPF are highly special-

11

ized and restricted to applications where the global sufficient statistics (GSS) can be

expressed as a linear combination (summation) of the local sufficient statistics (LSS).

The CSS/DPF and CSS/DUPF can not be generalized to any system.

•The UCD/DPF [50,59]: The unscented, consensus-based, distributed implementa­

tion of the particle filter (UCD /DPF) [59] couples the unscented Kalman filter (UKF)

with the particle filter such that the UKF estimates the Gaussian approximation of the

proposal distribution which is used to generate new particles for the next iteration of

the particle filter.

Pros and cons: In terms of contributions, the UCD/DPF makes two important im­

provements to the existing distributed particle filter framework: (i) Unlike existing dis­

tributed implementations [24, 27] of the particle filter, the UCD /DPF uses all available

global observations including the most recent ones in deriving the proposal distribu­

tion based on the distributed UKF, and; (ii) Computation of the global estimates from

local estimates during the consensus step is based on an optimal fusion rule. Improve­

ment (ii) replaces the commonly used local averaging approach and, along with (i),

enhances the performance of the UCD/DPF. Further, the UCD/DPF paves the way

for incorporating future developments in consensus-based distributed Kalman filters to

the distributed particle filtering framework. However, the UCD /DPF approximates the

global posterior with a Gaussian distribution. A second limitation of the UCD /DPF

is the requirement on each node to wait until consensus is reached before running the

next iteration of the particle filter. This is possible only in networks where communi­

cation is relatively inexpensive as compared to sensing, i.e., in rendezvous control or

coordination of mobile sensors. I propose the CF /DPF framework, presented next, to

address these issues.

12

2. The CF /DPF Framework [51, 52, 62, 63]: A major problem in distributed estimation

networks is unreliable communication (especially in large and multi-hop networks), which

results in communication delays and information loss. Referred to as intermittent network

connectivity, this issue has been investigated broadly in the context of the Kalman filter.

Such methods are, however, limited to linear systems and have not yet been extended to non­

linear systems. The thesis addresses this gap. I propose a multi-rate consensus/fusion based

framework for distributed implementation of the particle filter referred to as the CF /DPF.

The CF /DPF framework is based on running localized particle filters to estimate the overall

state vector at each observation node. Separate fusion filters are designed to consistently

assimilate the local filtering distributions into the global posterior by compensating for the

common past information between neighbouring nodes. The CF /DPF offers two distinct

advantages over its counterparts. First, the CF /DPF framework is suitable for scenarios

where network connectivity is intermittent and consensus can not be reached between two

consecutive observations. Second, the CF /DPF is not limited to the Gaussian approximation

for the global posterior density.

3. Distributed Computation of the PCRLB [53-55, 64]: In order to evaluate the perfor­

mance of the proposed distributed, non-linear framework, I derive the posterior Cramer-Rao

lower bounds (PCRLB), (also referred in literature as the Bayesian CRLB). The current

PCRLB approaches assume a centralized or hierarchical architecture. The exact expression

for distributed computation of the PCRLB is not yet available and only an approximate

expression [15] has recently been derived. The thesis derives the exact expression, referred

to as the dPCRLB, for computing the PCRLB for a AN /SN configured in a distributed

fashion.

• Conditional dPCRLB: Motivated by the distributed adaptive resource management

13

problems, the thesis derives recursive expressions for online computation of the con­

ditional dPCRLB [55]. Compared to the non-conditional PCRLB, the conditional

PCRLB is a function of the past history of observations made and, therefore, a more

accurate representation of the estimator's performance and, consequently, a better cri­

teria for sensor selection. Previous algorithms to compute the conditional PCRLB are

limited to centralized architectures, which involve a FC, thus making them unsuitable

for distributed topologies. The thesis also addresses this gap.

4. Distributed Sensor Selection [56, 65-67]: I consider the problem of sensor resource

management for distributed, nonlinear estimation applications with the objective of dy­

namically activating a time-variant subset of observation nodes to optimize the network's

performance [67]. The PCRLB is a predictive benchmark of the tracker's achievable perfor­

mance and has recently been proposed as a criteria for sensor selection. Existing PCRLB­

based selection techniques are, however, primarily limited to centralized and hierarchical

architectures, and when extended to distributed topologies use approximate expressions for

computing the PCRLB. I propose a dPCRLB-based observation node selection procedure for

distributed sensor networks. A combination of minimum and average consensus algorithms

are used to select a subset of observation nodes.

1.3 Organization of the Thesis

Chapter 1 provided an overview and a summary of important contributions made in the thesis.

The rest of the thesis is organized as follows.

• Chapter 2 presents an introduction to the problem of distributed state estimation. A clas­

sification of the existing distributed estimation algorithms is provided including their appli-

14

cations to some practical estimation problems.

• Chapter 3 considers the problem of consensus-based distributed implementation of the par­

ticle filter. Different consensus-based distributed implementations of the particle filter are

proposed.

• Chapter 4 introduces the proposed CF /DPF framework. In the CF /DPF, the fusion filters

can run at a rate different from that of the local filters. I further investigate this multi-rate

nature of the proposed framework, recognize three different scenarios, and describe how the

CF /DPF handles each of them. For the worse-case scenario with the fusion filters lagging

the local filters exponentially, I derive a modified-fusion filter algorithm that limits the lag

to an affordable delay.

• In Chapter 5, I derive distributed expressions for computing the PCRLB for an AN /SN

configured in a distributed topology referred to as the dPCRLB. I consider both full-order

and reduced-order distributed estimation problems and derive algorithms for computing the

dPCRLB for each case.

• In Chapter 6, I consider distributed sensor selection problem where I propose dPCRLB­

based algorithms for dynamically selecting a subset of sensors.

• Chapter 7 concludes the thesis and provides some directions for future work.

To maintain consistency in the thesis, each chapter includes numerical simulations related to the

results presented in that chapter.

1.4 Publications

The following are the publications published or under revision from this dissertation research.

15

Chapter 3: Consensus-based Distributed Implementation of the Particle Filter

1 A. Mohammadi and A. Asif, "Application of Constraint Sufficient Statistics to Distributed

Particle Filters: Bearing/Range Tracking," manuscript of 30 pages submitted to IEEE

Transactions on Signal Processing, 2013.

2 X. Zhong, A. Mohammadi, A. B. Premkumar and A. Asif, "A Distributed Unscented

Particle Filtering Approach for Multiple Acoustic Source Tracking Using an Acoustic Vector

Sensor Network," manuscript of 30 pages submitted to Elsevier Signal Processing, 2013.

3 A. Mohammadi and A. Asif, "Consensus-based Particle Filter Implementations for Dis­

tributed Non-linear Systems", chapter 9 in Nonlinear Est. f3 Applications to Industrial

System Control, Editor G. Rigatos, 2011.

4 A. Mohammadi and A. Asif, "A Constraint Sufficient Statistics based Distributed Particle

Filter for Bearing Only Tracking", in Proceedings of IEEE International Conference on

Communication (ICC), pp. 3670-3675, 2012.

5 A. Mohammadi and A. Asif, "Consensus-Based Distributed Unscented Particle Filter," in

Proceedings of IEEE Statistical Signal Processing Workshop {SSP), pp. 237-240, 2011.

6 X. Zhong, A. Mohammadi, Wenwu Wang, A.B. Premkumar, and A. Asif, "Acoustic Source

Tracking in a Reverberant Environment Using a Pairwise Synchronous Microphone Net­

work," in Proceedings of IEEE International Conference on Information Fusion, 2013.

7 A. Mohammadi and A. Asif, "A Distributed Consensus Plus Innovation Particle Filter for

Networks with Communication Constraints", manuscript of 4 pages submitted to IEEE

International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2014.

16

Chapter 4: Distributed Particle Filter with Intermittent /Irregular Consensus Con-

vergence

8 A. Mohammadi and A. Asif, "Distributed Particle Filter Implementation with Intermit­

tent/Irregular Consensus Convergence," IEEE Transactions on Signal Processing, vol. 61,

no. 10, pp. 2572-2587, May 15, 2013.

9 A. Mohammadi and A. Asif, "Full Order Nonlinear Distributed Estimation in Intermit­

tently Connected Networks," in Proceedings of IEEE International Conference on Acoustics,

Speech, and Signal Processing {ICASSP), 2013.

10 A. Mohammadi and A. Asif, "Full order distributed particle filters for intermittent connec­

tions: Feedback from fusion filters to local filters improves performance," in Proceedings of

IEEE Statistical Signal Processing Workshop (SSP), pp. 524-527, Aug. 2012.

11 A. Mohammadi and A. Asif, "A Consensus/Fusion based Distributed Implementation of

the Particle Filter," in Proceedings of IEEE International Workshop on Computational

Advances in Multi-Sensor Adaptive Processing (CAMSAP), pp. 285-288, Dec. 2011.

Chapter 5: Computation of the PCRLB for Distributed Architectures (dPCRLB)

12 A. Mohammadi and A. Asif, "Posterior Cramer-Rao Bounds for Full and Reduced-order

Distributed Bayesian Estimation", manuscript of 39 pages accepted with minor revision in

IEEE Transactions on Aerospace & Electronic Systems, 2013.

13 A. Mohammadi and A. Asif, "Decentralized Conditional Posterior Cramer-Rao Lower

Bound for Nonlinear Distributed Estimation," IEEE Signal Processing Letters, vol. 20,

no. 2, pp. 165-168, 2013.

17

14 A. Mohammadi and A. Asif, "Theoretical Performance Bounds for Reduced-order Linear

and Nonlinear Distributed Estimation," in Proceedings of IEEE Global Communiactions

Conference (GLOBECOM}, pp. 3905-3911, Dec. 2012.

15 A. Mohammadi and A. Asif, "Distributed Posterior Cramer-Rao Lower Bound for Nonlinear

Sequential Bayesian Estimation," in Proceedings of IEEE Sensor Array and Multichannel

Signal Processing Workshop (SAM), pp. 509-512, June 2012

Chapter 6: Sensor Selection in Distributed Networks

16 A. Mohammadi, A. Asif, X. Zhong, and A. B. Premkumar, "Distributed Computation of the

Conditional PCRLB for Quantized Decentralized Particle Filters", manuscript of 4 pages

submitted to IEEE International Conference on Acoustics, Speech, and Signal Processing

(ICASSP), available online at: ar Xiv: 1307. 5435, 2014.

17 A. Mohammadi and A. Asif, "Decentralized Computation of the Conditional Posterior

Cramer-Rao Lower Bound: Application to Adaptive Sensor Selection", in Proceedings of

IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP },

2013.

18 A. Mohammadi and A. Asif, "Decentralized Sensor Selection based on the Distributed

Posterior Cramer-Rao Lower Bound," in Proceedings of IEEE International Conference on

Information Fusion, pp.1668-1675, July 2012.

19 A. Mohammacli, A. Asif, X. Zhong, and A.B. Premkumar, "Decentralized Bayesian Esti­

mation with Quantized Observations: Theoretical Performance Bounds," in Proceedings

of IEEE International Conference on Distributed Computing in Sensor Systems (DCOSS),

pp.149-156, May 2013.

18

Reduced-order Distributed Estimation

20 A. Mohammadi, A. Asif, and S. Saxena, "Reduced Order Distributed Particle Filter Es­

timation in Nonlinear Electric Power Grid," manuscript of 29 pages submitted to IEEE

Journal of Selected Topics in Signal Processing, Special Issue on Signal Processing in Smart

Electric Power Grid, 2013.

21 A. Mohammadi and A. Asif, "Distributed State Estimation for Large-scale Nonlinear Sys­

tems:A Reduced Order Particle Filter Implementation," in Proceedings of IEEE Statistical

Signal Processing Workshop (SSP), pp. 249-252, Aug. 2012.

22 A. Mohammadi and A. Asif, "Distributed particle filtering for large scale dynamical sys­

tems," in Proceedings of IEEE International Multitopic Conference, pp.1-5, 2009.

23 A. Mohammadi and A. Asif, "Reduced Order Distributed Particle Filter for Electric Power

Grids", manuscript of 4 pages submitted to IEEE International Conference on Acoustics,

Speech, and Signal Processing (ICASSP), 2014.

19

2 Literature Review of Distributed Estimation

Statistical estimation theory deals with situations where the values of unknown parameters need

to be evaluated from observations made under a state of uncertainty. The goal is to provide a

rational framework for dealing with such situations. The Bayesian approach, the main theme of

this chapter, is a well known framework of formulating and dealing with such statistical estimation

problems. The literature on Bayesian estimation is vast, therefore, in this chapter, I restrict myself

to common approaches such as the Kalman filter [41], extended/unscented Kalman filter [44], or

sequential Monte Carlo methods (the particle filter) [43). Thaditionally, these Bayesian approaches

were developed for a centralized architecture with a fusion centre responsible for collecting obser­

vations from across the agent/sensor network (AN/SN) to compute the overall state estimates. In

the mid 90's, research on distributed estimation [3, 70-74] was initiated for systems with linear dy­

namics for which the Kalman filter is the optimal estimator. References [75-81] proposed several

distributed implementations of the Kalman filter without requiring a fusion centre. Although dis­

tributed estimation has been widely explored for estimation/tracking problems in linear systems,

distributed particle filter implementations for non-linear systems are somewhat limited because of

their high computational complexity and considerable bandwidth overhead due to a large number

of information transfers between neighbouring nodes. In the early 2000, one such attempt for

hierarchical architectures [46, 47) was considered for systems with non-linear dynamics using the

particle filters. For distributed architectures, work on the implementations of the particle filter is

20

still in its infancy. Recent developments in hardware and advances in communication have paved

the way for practical distributed implementations of the particle filter for an arbitrary deployed

nonlinear AN /SN.

In this chapter, I review the fundamentals of the centralized and distributed Bayesian filtering

in Section 2.1. The Kalman filter and particle filter are introduced in Section 2.2. The state

of the art distributed implementations of the Kalman filter and particle filter are presented in

Sections 2.3 and 2.5, respectively, with Section 2.4 reviewing the consensus approaches used for

fusing localized state estimates into the global estimate. Section 2.6 introduces several potential

applications for the distributed particle filters proposed in the thesis.

2.1 Background

Consider an AN /SN comprising of N nodes1 observing a set of nx state variables

(2.1)

where k ~ 0 is the time/iteration index, nx is the number of state variables, and T denotes matrix

transposition. The set of neighboring nodes for node l for, (1 ~ l ~ N), is denoted by 'N}~se(k). In

the case that node l, for example, is connected to all other nodes, 'N}~se(k) = N-1. Node l makes

measurements at discrete time instants k, (1 ~ k) as follows

(2.2)

1 The term node here refers to a processing node or an agent with processing and observation functionalities.

21

where N~l~s (k) is the set of sensors connected to node l and I · I is the cardinality operator. The

overall state-space representation of the system is given by

State Model:

Observation Model:

x(k)

z< 1>(k)

z(N)(k)

~
z(k)

f(x(k -1),e(k)) (2.3)

g(l>(x(k)) (<1>(k)

+ (2.4)

g(N)(x(k)) ((N)(k)

~
g(x(k)) C(k)

where eo and ((-) are, respectively, the global uncertainties in the process and observation

models. In the Bayesian estimation framework, the objective is to determine the optimal value

of the state vector x(k) given observations z(k), state dynamics /(·), and statistics for the state

and 0 bservation uncertainties { e (k)' ((k)}.

In this theses, the state and observation functions f (·) and g(·) can possibly be non-linear,

and vectors e(-) and ((·) are not necessarily restricted to white Gaussian noise. Examples of the

state and observation models for several practical applications are provided later in Section 2.6.

The agents/nodes of the network are modeled as vertices of the communication graph g = (v, £),

namely as elements of the node set v = {1, ... , N}. The edge set e ~ v x v represents the

network's communication constraints, i.e., if node l can send information to node m then (l, m) E

e. For graph 9, the maximum degree l:l.g = maxl I Ni~se (k) I, where I Ni~se (k) I is the number of

neighboring nodes for node l, and I · I denotes the cardinality operator. Also relevant is the

Laplacian matrix L for graph 9, defined in terms of its elements {Lij} with Lu = INi~se(k)I,

Ltm = -1 if (l, m) E £,and Ltm = 0 otherwise.

Unless otherwise stated, the measurement noise at two different nodes is assumed to be un-

correlated, i.e.,

(2.5)

22

where lE{-} is the expectation operator and R(ij) (k) is the covariance matrix between the obser-

vation noise of node i and j. Eq. (2.5) results in a block diagonal noise covariance matrix R(k)

for the overall system as

(2.6)

where diag[·] represents a block diagonal matrix with the specified elements arranged along the

diagonal, and R(l) (k) is the error covariance matrix for observations made at node l. When sensors

are deployed densely and close to each other, such an assumption may not hold anymore. In such

scenarios, one can group the nearby sensors on the basis of a specified characteristic function

to form sub-systems or cliques with the cliques assumed uncorrelated [17]. Sensors within each

subsystem communicate their observations to the processing node associated with that clique. In

such a case, R(k) will be block diagonal with each constituent block R(l)(k), for (1 ::; l::; N), a

full matrix.

2.1.1 Centralized Bayesian Estimation

In the following explanation for sequential Bayesian estimation, the evolution of the state variables

is modeled as a first-order Markov process2 . Because of the Markovian property, the value of the

state x(k) in a first order Markov process depends only on the value of the immediately proceeding

state x(k - 1) and is independent of both the observations and states proceeding (k - 1), i.e.,

P(x(k)lx(O:k -1), z(l: k -1)) = P(x(k)lx(k -1)). (2.7)

2 Although the discussion in this section considers a first-order Markov process for the state dynamics (a standard
approach in the target tracking problems), the results presented here are generalizable to higher-order Markov
processes.

23

Assuming conditional independence such that given the current state values x(k), the observation

vector z(k) is conditionally independent of the prior states variables, i.e.,

P(z(k)lx(O:k)) = P(z(k)lx(k)), (2.8)

the joint probability distribution of the state variables and the observations up to iteration k is

given by

k

P(x(O:k),z(l:k)) = P(x(O)) IT P(z(j)lx(j))P(x(j)lx(j-1)). (2.9)
j=l

In the probabilistic form, the estimation problem in the Bayesian framework is equivalent to

determining the conditional filtering density P(x(k)Jz(l : k), x(O)), i.e., the probability of the

state variables for all time instances k > 0 given the recorded observations and the knowledge of

the initial state x(O). For simplicity, the initial condition is being omitted from the representation

of the filtering density which results in the notation P(x(k)lz(l : k)). Using the Bayes' rule the

filtering density can be expressed in terms of the sensor model and the predicted probability

density function as follows

Likelihood Predicted Density
~--~~---~~--

P((k)I (. k)) = P(z(k)Jx(k)) P(x(k)Jz(l: k - 1))
x z 1. P(z(k)lz(l : k - 1)) ·

(2.10)

Normalization

The denominator P(z(k)Jz(l : k - 1)) in Eq. (2.10) is independent of the state variables and can

be set as the normalizing constant, i.e., P(z(k)Jz(l : k - 1)) =a. The second term P(x(k)lz(l :

k - 1)) in the numerator of Eq. (2 .10) can be expanded in terms of the state transition model

P(x(k)Jx(k - 1)) and the filtering density P(x(k - l)Jz(k - 1)) as follows

P(x(k)Jz(l: k - 1)) = J P(x(k), x(k - l)Jz(l: k - l))dx(k - 1)

= J P(x(k)Jx(k - 1), z(l: k - l))P(x(k - l)lz(l :k - l))dx(k - 1). (2.11)

24

Using the Markovian property (Eq. (2. 7)), the above equation reduces to

P(x(k)lz(l: k - 1)) = f P(x(k)lx(k - 1)) x P(x(k - l)lz(l: k - l))dx(k - 1). (2.12)

Finally, the normalization term P(z(k)lz(l : k - 1)) in Eq. (2.10) can be expanded using the

Chapman-Kolomogrov formula [41) as follows

P(z(k)lz(l: k - 1)) = f P(z(k)lx(k))P(x(k)lz(l: k - l))dx(k). (2.13)

Eq. (2.10) is referred to as the observation update step, and Eq. (2.11) is referred to as the

prediction update step. In the Bayesian framework, Eqs. (2.10)-(2.13) define a recursive solution

to compute the filtering density based on the following steps:

Step 1. Prediction Update: Given P(x(k-l)lz(l:k-1)) compute P(x(k)lz(l:k-1)).

Step 2. Normalization Update Compute the normalization factor P(z(k)lz(l : k - 1)).

Step 3. Observation Update: Using the sensor model P(z(k)lx(k)) compute P(x(k)lz(l: k)).

One method, referred to as the maximum a posteriori (MAP) estimation, obtains the state es-

timate x(k) by determining the value of x(k) that maximizes P(x(k)lz(l: k)). In multisensor

Bayesian estimation, several nodes make their own observations z(l)(k) based on model (2.4).

The conditional probability P(z(l)(k)lx(k)) then serves the role of a sensor model and can be uti-

lized in the distributed implementation of the Bayesian estimation algorithms. The multisensor

form of Bayes' rule requires conditional independence (Eq. (2.5)), which results in the following

global likelihood function

N

P(z(k)lx(k)) = P(z(1)(k), ... ,z(N)(k)lx(k)) = IJ P(z(l)(k)lx(k)). (2.14)
l=l

From Eq. (2.10), we have

N

P(x(k)lz(l)(k), ... , z(N)(k)) = aP(x(k)lz(l: k-1)) IJ P(z(l)(k)lx(k)), (2.15)
l=l

25

where a~ P(z(k)Jz(l:k-1)) is the normalizing constant. Eq. (2.15) is known as the independent

likelihood pool [41]. This indicates that the filtering density of state variables x(k) based on

the observation of individual nodes is proportional to the multiplication of the prior density

P(x(k)Jz(l:k-1)) with product of the individual likelihood functions P(z(l)(k)Jx(k)) for each

sensor node.

2.1.2 Distributed Bayesian Estimation

In centralized estimation, the local observations are directly forwarded to the fusion centre for

updating the state estimates. An alternative to the centralized approach is hierarchical estima­

tion where instead of forwarding raw observations to the fusion centre, partially processed data

are communicated by the local nodes to the fusion centre. In the hierarchical estimation, the

computation burden at the fusion centre is, therefore, reduced. In the literature, the hierarchical

estimation is sometimes referred to as decentralized estimation. Finally, distributed estimation is

defined as the setup where all nodes perform local computations to derive local estimates. There

is no central processing unit available and a fusion step is instead utilized to derive the global

estimate from the local estimates. The distributed estimation approaches do not require prior

global knowledge of the network topology. Instead, each local node has local network knowledge

confined to its immediate neighborhood within which it establishes a direct communication link.

The main challenge here is to guarantee that all nodes reach a common reliable estimate of the

state variables. In the distributed estimation framework, the global estimate could potentially be

sub-optimal due to the localized nature of fusion process. In addition, communication overhead

is increased due to the introduction of the fusion step.

The distributed implementations can themselves be classified into two main categories: (i) Full­

order estimation, which replicate an nx-order filter at each node estimating all nx states of the

26

system, and; (ii) Reduced-order estimation [84-87], which decomposes the large-scale system into

smaller subsystems with only a subset of nx state variables estimated within each subsystem. For a

large-scale dynamical system [37-40], the reduced-order methods are generally more efficient than

the full-order implementations both in terms of the computational complexity and the number of

transmissions (information transfers) between neighbouring nodes. Next, I review the full-order

and reduced-order configurations in the context of the sequential Bayesian estimation.

2.1.2.1 Distributed Full-Order Configuration

In full-order distributed estimation, the distributed full-order estimation model at node l, (1 ::;

l ::; N), is given by

x(k)

and z(l)(k)

f(x(k -1),e(k))

g(l) (x(k), ((l) (k)),

(2.16)

(2.17)

where the entire state vector x(k) is estimated at node l based only on its local observations. After

computing the state estimates locally, the local state estimates are fused through interactions

between local neighbourhoods in a distributed fashion to form the global estimate. In this thesis,

I assume that the global observation model is observable though the local observation model at

each node may become unobservable for certain iterations.

An example of a full-order distributed estimator is the estimation of the 2-D or 3-D spatial

location of a moving object over time, e.g., to track an animal in wildlife monitoring, to track an

aeroplane or missile in defence applications or to track an object in video surveillance sequences.

Figs. 2.1 and 2.2 provide two illustrative examples. Fig 2.1 shows a distributed full-order target

tracking application of an aeroplane with eight processing nodes. The state vector x(k) comprises

of the 3D coordinates { X (k), Y (k), Z (k)} of the plane and its speed { X (k), Y (k), Z (k)} along the

27

three coordinates, i.e., x(k) = [X(k), Y(k), Z(k), X(k), Y(k), Z(k)]T. Node l, for (1 ::; l ::; 8),

makes two measurements [zil) (k), z~l) (k)] at time k: (i) The bearing/angle zil) (k) between the

node's platform and plane, and; (ii) The range z~l)(k) between the node and plane. Fig. 2.1

depicts the neighbourhood of each node on the sub-graph included on the bottom left of the

figure which shows a direct communication link between each pair of neighbouring nodes.

A second illustrative example considered in Fig. 2.2 is the video tracking application, where

a distributed camera network with five local nodes (cameras) estimates the 2-D coordinates

{xi (k)' Yi (k)} and speed {xi (k)' Yi (k)} of all five persons over time with the overall state vector

xi(k) = [Xi(k), Yi(k), Xi(k), }i(k)]T, for 1 ::; i ::; 5. As is shown, each camera has a limited field

of view and at each time instant k may not be able to observe all five persons. By cooperating

with its neighbouring nodes, however, each camera can obtain a reliable estimate of all targets

over time assuming that the overall system is observable, i.e., each person is observed by at least

one camera at all times.

Generally, two different scenarios are considered for the distributed full-order estimation:

1. Scenario 1. (Estimation based only on local measurements): Node l, 1 ::; l ::; N, updates its

local estimates based on its individual measurement zCl) (1: k). Local filtering distributions

P(x(k) lz(l) (1: k)) are then fused into the global posterior P(x(O: k)lz(l: k)) in a distributed

fashion using, for example, a gossip type algorithm.

2. Scenario 2. (Estimation based on local measurements and previous global estimate): Same

as Scenario 1 except local estimates are based on both the local measurements as well as the

previous global state estimates (which themselves are based on the collective observations

made previously across the network). This leads to local P(x(k)lz(l:k-1),z<O(k)) being

computed at node l. As in Scenario 1, the local filtering estimates P(x(k)lz(l: k-1), z(l)(k))

are then fused into the global posterior P(x(O: k)lz(l: k)) distributively.

28

Target trajectory

Z 1(1J (k) Bearing measurements at node I

Z~ 1
> (k) Range measurements at node I

~ x(O)

Communication Network Graph

m
ITl. :

m

Figure 2.1: Illustrative Example 1: A distributed target tracking application with 8 nodes. The target is

an aeroplane with state vector x(k) = [X(k), Y(k), Z(k), X(k), Y(k), Z(k)]T, i.e., the plane's 3D location

{X(k), Y(k), Z(k)} and its speed {X(k), Y(k), Z(k)}. The local observation z<t>(k) = [zil)(k), z~l)(k)]T

at node l, for (1 ~ l ~ 8), consists of the bearing measurement zil)(k) and the range measurement z~l)(k).

The communication graph corresponding to the processing nodes is included on the bottom left of the

figure which shows the communication links between neighbouring nodes.

Scenario 1 is useful for networks with intermittent connectivity where consensus3 on the local state

estimates may not be reached between two consecutive observations. In such cases, two filters

are implemented for state estimation. The local filter updates the local states while the global

filter derives the overall state estimate from its local counterparts. The local filters continue to

assimilate local observations independent of the global filter. Once the global filter has converged,

3 Consensus in distributed estimation is the process of establishing a consistent value for some statistics of the
state vector across the network by interchanging relevant information between the connected neighboring nodes.

29

Figure 2.2: Illustrative Example 2: A distributed camera network with five local nodes (cameras) with

partially overlapped field of view where each node estimates the 2-D locations of all five persons over

time. Each person's track over time is depicted with a different color. The field of view of each camera

is also shown with triangles. A communication link (communication link is symmetric) between two

neighbouring cameras is shown with the dotted blue line.

it incorporates the recent local states estimates to form the global state estimate. Scenario 2

is useful in applications where communication is relatively inexpensive as compared to sensing,

e.g., in rendezvous control or coordination of mobile sensors. Consensus on the state estimates is

reached between two consecutive observations. With the availability of the global state estimate,

local state estimates are discarded and the next iteration is continued based on the global esti-

mates. Unlike Scenario 1, where the local state estimates at iteration k is computed using the

local estimates at iteration k-1, Scenario 2 updates the local state estimates at iteration k from

the global state estimate at iteration k-1.

30

2.1.2.2 Distributed Reduced-Order Configuration

In large-scale physical systems arising, for example, in meteorology, physical oceanography, or

resulting from discretization of partial differential equations, the discretized dynamical models

are sparse and localized. The observation z (l) (k) made at node l, for 1 ::; l ::; N, is also localized

such that a subset of state variables x<O (k) c x(k) (referred to as the local state vector) is observed

at each node [84]. For such reduced-order systems S(l), the observation model (Eq. (2.4)) for node

l reduces to

3(l) : (2.18)

The local state vectors in the above equation may have shared states, i.e., Jx<l)(k) n x(j)(k)I ~ 0,

for 1::; l,j::; N, where I· I is cardinality of a set. The reduced-order state-space model is obtained

by spatially decomposing the overall system based on the observable states at each node. Other

states, if present, are treated as forcing terms. The reduced-order state model at node l (derived

from Eq. (2.3) by partitioning) is then given by

(2.19)

where d(l)(k) is the coupling state vector. When the overall system is partitioned into subsys­

tems, the dynamical model for a subsystem may contain states that are directly observed by the

subsystem and additional states that are not observed but are part of the global state model. The

coupling state vector d(l)(k) includes such states which are not directly observed but are part of

the subsystem's model. Let nx<t) denote the number of states in the local state vector x(l)(k).

The relationship between the local state vector x(l)(k) and global vector x(k) can be expressed as

(2.20)

31

with T(l)(k) denoting the (nx<l) xnx) nodal transformation matrix [87]. The local process functions

are constructed using a similar nodal transformation, i.e., f<O(x<O(k),d(l)(k)) = T(l)(k)f(x(k)).

The local state estimate at node l has the same relation to the global state estimate, i.e., x.<O(k) =

T(l)(k)x(k). Further, the relationship between the global covariance P(k) and local covariance

matrix p(l)(k) is

(2.21)

To arrange node l's information p<O(k) in the global state-space, we use the covariance transfor-

ma ti on

(2.22)

where [T< l) (k)] + refers to the Moore-Penrose generalized inverse (or the right pseudo inverse) of

T T -1 · T(l)(k), i.e., [TCO(k)]+ = T(l) (k)[T<O(k)T(l) (k)] . Subsystems s<O and S(J) may have shared

states. The shared state transformation matrix T(l,j)(k) is a (nix<t)ux(j)lxnJ matrix where lx(l) U

x(j) I is the number of shared states between subsystems s<l) and s(j). Each row of T(l,j) (k) has

only one non-zero entry at the location of the shared states. The shared state transformation

matrix T(l,j)(k) is used to extract the covariance block

p(l,j) (k)= [T(l,j) (k)T(l) (k) T]p(l) (k)[T(l,j) (k)T(l) (k) T] T (2.23)

corresponding to the shared states. To arrange the covariance block p(l,j) (k) corresponding for the

shared states in the global state space P2'j)(k), the following covariance transformation (similar

to (2.22)) is used

(2.24)

To recap, the process model (2.19) and observation model (2.18) collectively provide the nonlinear,

localized reduced-order representation for the dynamical system.

32

Figure 2.3: Illustrative Example: Spatial decomposition of a nonlinear system with five states

into three subsystems Si, S2 and S3.

Illustrative Example:

I illustrate the spatial partitioning procedure with an illustrative example based on a system

shown in Fig. 2.3 with five state variables Xi, X2, X3, X4, and X5 which are partially observed

by three distributed nodes N = 3. The ranges of the three observation nodes are shown using

dotted circles. The overall state model is given by

X1(k) fi(X1 (k-1), X2(k-l)) 6(k)

X2(k) f2(X1(k-l), X2(k-l), X4(k-l)) 6(k)

X3(k) f3(X1(k - l),X3(k - 1)) + 6(k) (2.25)

X4(k) f4(X3(k - 1),Xs(k - 1)) e4(k)

X5(k) f5(X4(k - 1),Xs(k - 1)) e5(k)

where Ji(·), for (1 ::; i ::; 5), are nonlinear functions. The observation z(l)(k) at node l, for

(1::; l::; 3), is sparse such that only a subset of state variables x(l)(k) c x(k) (referred to as local

state vector) is observed at each sensor node. The local state vectors x<l)(k) may have shared

states i.e., jx<i)(k) n x<j)(k)I 2:: 0, for (1 ::; i,j ::; N), where I· I denotes the cardinality of a set.

33

Neighbourhood Neighbourhood
Subs)'.:stems States for States for Subs)'.:stems

x, 91 = {S1}

s, Xi 92 = {Si,S2}
g(l) = {S2}

S2 X3 Q3 ={Si, S2} g<2) = {Si, S3}

S3
X4 Q4 = {S2, S3} g<3) = {S2}

Xs 9s = {S3}

Figure 2.4: The bipartite graph representing the illustrative system. Notation g(l) corresponds to the

neighbourhood of Subsystem St while gn corresponds to a set of subsystems which include state Xn (·) in

their local state vector.

An example of the localized observation model illustrated in Fig. 2.3 is given by

81: z(l)(k) g<1)(X1(k),X2(k),X3(k)) + (<1)(k) (2.26)

x< 1> (k)=[X1 (k)X2(k)X3(k)JT

82: z<2) (k) g<2)(X2(k),X3(k),X4(k)) + (<2)(k) (2.27)

x(2) (k)=[X2 (k)X3 (k)X4(k)]T

83: z<3)(k) g(3) (X4(k), Xs(k)) + ((3) (k). (2.28)
~

x< 3 > (k)=[X4(k)Xs (k)]T

The localized states {x<1)(k),x<2)(k),x<3)(k)} defined as subscripts in Eqs. (2.26)-(2.28) extracted

from the overall state vector x(k) overlap. In our example, (x<l) n x<2)) = {X2(k), X3 (k)}. It is

also possible that no shared state exists between distant subsystems, for example, { x< 1) n x<3)} =

{}. The aforementioned decomposition is achieved by implementing a subsystem around each

observation node. Thus, the total number of subsystems in our example is equal to the number

of observation nodes. Alternatively, a combination of observation nodes may be coupled to limit

the total number of subsystems, if desired.

In the reduced-order configuration, the state model is also partitioned. The reduced order

34

state model for each subsystem is obtained by decomposing the overall dynamics (Eq. 2.25) based

on the observable states within each subsystem. Other states, if present, in the reduced order

process models are treated as forcing terms. In our illustrative example, the reduced-order process

models for the three Subsystems Si, S2, and S3 are given by

S1: x(l)(k)=/(l) (x(l)(k-1),dC1\k-1)) + eC1>(k)

S2: xC2)(k)=/C2) (xC2)(k- l),d<2)(k-1)) +e<2)(k)

83: xC3)(k)=/(3) (x<3)(k-1),d(3)(k-1)) +e<3)(k)

(2.29)

(2.30)

(2.31)

where d(1)(k) = {X4 (k)}, d(2)(k) = {X1(k), Xs(k)}, and d(3)(k) = {X3(k)} are the forcing terms.

Finally, I note that a state variable may be estimated in more than one subsystem. For example,

X2 and X3 in Fig. 2.3 are both shared between 81 and 82 with different local estimates. For each

state variable Xn, (1 ~ n ~ nx), I define a different state-based neighbourhood 9n which includes

subsystems having Xn in their local state vector. If 9n contains more than one subsystem, there

are multiple estimates of Xn available. Fig. 2.4 lists state neighbourhood 9n and subsystem

neighbourhood g<l) for system shown in Fig. 2.3. Next, I briefly review key state-of-the-art

centralized and distributed estimation approaches.

2. 2 Centralized Estimation

The Kalman filter [41] and particle filter [43] are implementations of the general Bayesian filtering

equations. While the Kalman filter is generally used for estimation in linear systems with additive

Gaussian forcing terms, the particle filter is more general encompassing nonlinear systems with

colored forcing terms.

35

2.2.1 The Kalman Filter

In the Kalman filter framework, the state and observation functions /(-) and g(·) (Eqs. (2.3)

and (2.4)) are linear as follows

State Model:

Observation Model at Node l:

F(k)x(k - 1) + f.N(k)

G(l)(k)x(k) + Cf)(k),

(2.32)

(2.33)

where vectors eJ} (·),for (1 ::; l ::; N), and (N(-) are restricted to white Gaussian noise. Compared

to Eqs. (2.16) and (2.17), /(x(k-1)) = F(k)x(k-1) and g(l)(x(k)) = c<l)(k)x(k) in the above

model. The Kalman filter is a minimum mean square error (MMSE) estimator with the following

notation used for the conditional mean of the state variables during the prediction step

x(klk- l) ~ IE{x(k)iz(l:k-1)}, (2.34)

at iteration k given observations up to time k - 1. The conditional covariance matrix of x(k)

given the observations z(l : k - 1), i.e., the covariance associated with the estimate x(klk - 1), is

defined as follows

P(kJk - 1) ~IE{ (x(k) - x(kik - 1)) (x(k) - x(kJk - l)f Jz(l: k - 1) }. (2.35)

Conventional Kalman Filter: For a single sensor scenario (N = 1), one can drop index l in

Eq. (2.33), and the Kalman filter equations are

Prediction Step:

P(kJk -1)

x(klk - 1)

S(kJk - 1)

K(k)

F(k)P(k - llk - l)[F(k)]T + Q(k)

F(k)x(k - lJk - 1)

[G(k)]T P(kJk - l)G(k) + R(k)

P(kJk - l)G(k)S(kJk - 1)-1

36

(2.36)

(2.37)

(2.38)

(2.39)

Observation Update Step:

x(klk) x(klk - 1) + K(k)(z(k) - [G(k)]r x(klk - 1)) (2.40)

P(klk) P(klk - 1) - P(klk - l)G(k)S(klk - l)-1[G(k)]T P(klk - 1)

[I - K(k)[G(k)]T]P(klk - 1). (2.41)

Matrix R(k) denotes the error covariance matrix for the global observation (N(k) and Q(k)

denotes the covariance matrix associated with the forcing terms eN(k) in the state model. As for

the prediction step, the following notation is associated with the conditional mean and covariance

of the estimated state variables

x(klk) ~ lE{x(k)lz(l: k)} (2.42)

and P(kjk) ~ lE{(x(k) - x(kjk))(x(k) - x(kjk))T}, (2.43)

Information Filter: In the centralized implementation, all observations are forwarded to the

fusion centre where Eq. (2.36)-(2.41) are used to compute the state estimates. To reduce the

computational complexity of the Kalman filter, an implementation of the Kalman filter called the

information filter (41] is derived using the matrix inversion lemma (41]. The following definitions

are used in developing the information filter implementation. The information state is defined

as y(klk) ~ P(klk)- 1x(klk), and the information matrix is defined as Y(klk) = P(klk)- 1. The

update equations (Eqs. (2.40) and (2.41)) for the information filter are given by

y(klk) = y(kjk - 1) + [G(k)]T R(k)- 1z(k)

i(k)

Y(kjk) = Y(klk - 1) + G(k)R-1(k)[G(k)]r,

I(k)

(2.44)

(2.45)

where the prediction equations (Eq. (2.36)-(2.39)) are expressed in terms of y(klk-l) and Y(klk-

37

1) as follows

y(klk - 1) (I - f!(k))F-T(k)y(k - llk -1) (2.46)

Y(klk -1) M(k) - f!(k)E(k)[f!(k)]T, (2.47)

with I being the identity matrix of appropriate dimensions,

M(k) (2.48)

E(k) M(k) + Q-1
, (2.49)

and f!(k) M (k) [E (k)]-1
. (2.50)

The derivation of the information filter is given in [41]. The main advantage of the information fil-

ter over the Kalman filter is the relative simplicity of its update stage for centralized architectures.

However, the simple observation update step of the information filter comes at the price of more

complicated predication equations for computing y(klk - 1) and Y(klk - 1). The information

filter is also suitable for networks with hierarchical architecture. For an N-sensor network, the

centralized information vector i (k) and its associated information matrix I (k) can be expressed

in terms of their localized counterparts as i(k) ~ Ef'::1 i(l)(k) and I(k) ~ Ef'::1 J(l)(k). Then

Eqs. (2.44)-(2.45) are reduced to

N

y(klk) = y(klk - 1) + L [G<l)(k)]T R(l)-
1
(k)z(l)(k), (2.51)

l=l i(l)(k)

N

and Y(klk) = Y(klk-1) + L c<l)(k)R(l)-l (k)[G(l)(k)]T. (2.52)
l=l J(l)(k)

For a hierarchical AN/SN, I(k) and i(k) are obtained from their local counterparts, i.e., I(k) ~

Ef'::1 J(l)(k) and i(k) ~ Ef'::1 i(l)(k). These terms are computed locally and forwarded to the

fusion centre.

Combination of the Kalman and the Information Filters: A third form of the Kalman

38

filter is derived below which is a combination of the conventional Kalman filter and the information

filter with simple update and prediction steps. By rearranging Eq. (2.45), I have

I - P(klk)G(k)R- 1(k)[G(k)V = P(klk)P- 1(klk - 1), (2.53)

where I is an identity matrix with appropriate dimension. Eq. (2.53) results in the following

Kalman filter equations

Prediction Step:

P(klk-l)

x(klk-1)

Observation Update Step:

F(k)P(k-llk-l)[F(k)]T + Q(k)

F(k)x(k-llk-l)

(2.54)

(2.55)

P(klk)- 1

x(klk)

P(klk-1)- 1 + G(k)R-1(k)[G(k)]T (2.56)

x(klk-l) + P(klk)G(k)R- 1(k) (z(k)-G(k)x(klk-l))

x(klk-1) + P(klk) (i(k)-I(k)x(klk-l)). (2.57)

Finally, I note that for a linear dynamical system with normally distributed forcing terms and

observation noise, the Kalman filter is optimal. In many practical applications, however, the

state-space model is non-linear and the forcing terms are non-Gaussian.

2.2.1.1 Kalman Filter for Nonlinear Systems

A well known approximation of the Kalman filter for non-Gaussian, nonlinear Bayesian estimation

is the extended Kalman filter (EKF) [43]. The EKF filter is based on the principle of linearizing

the state and observation models using Taylor series expansions for the observation update step

(Eqs. (2.40)-(2.41)). The series approximations in the EKF algorithm can, however, lead to poor

39

representations of the nonlinear functions and probability distributions of interest. As a as result,

the EKF filter can diverge from the optimal solution. Another form of the Kalman filter for

nonlinear systems is referred to as the unscented Kalman filter (UKF) (44]. The UKF is based

on the intuition that it is easier to approximate a Gaussian distribution than it is to approximate

nonlinear functions. Generally, the UKF leads to more accurate results than the EKF for nonlinear

systems. Below I review the UKF which is incorporated later in the Thesis to develop distributed

nonlinear estimation implementations of the particle filter.

Unscented Kalman Filter: In the UKF, the statistics (estimate x(klk) and error covariance

matrix P(klk)) of the state variables are updated using the unscented4 transform. In principle,

the UKF uses the true nonlinear state and observation models and, instead, approximates the

distribution of the state variable with a Gaussian distribution. In other words, the filtering

density P(x(k - l)lz(l: k - 1)) in the UKF is represented with a Gaussian distribution which

is specified using a set of deterministically selected sample points, referred to as sigma points.

These sigma points completely capture the mean and covariance of the filtering density at time

k - 1. When propagated through the nonlinear functions, the sigma points capture the posterior

mean and covariance of the filtering density P(x(k)iz(l: k)) at time k. Given the state estimate

x(k - llk - 1) and its error covariance matrix P(k - llk - 1), the UKF involves the following

steps for iteration (k).

1. A set of (2nx + 1) deterministic samples (referred to as the sigma points) {Wi, Xi(k-1)};,:0

are calculated based on the following equation

Xi(k-1) = x(k-llk-1) ± { J(nx + K)P(k-llk-1) }i' for 1 ~ i ~ 2nx, (2.58)

where term { J(nx + K)P(k-llk-l)}i corresponds to the ith column of the square root of

4Unscented transform is a method for evaluating the statistics of a random variable after a non-linear transfor­
mation as is described in the context of the UPF in this section [44].

40

matrix (nx + K)P(k-llk-1) and the initial condition is given by xo(k) = x(k-llk-1). The

corresponding weights for the Sigma points { wi} ;:1 are given by wi = 1 I (2 (nx + K))' where

K is a scaling parameter and the initial condition for the sigma points is W0 = K/(nx + K).

2. The sigma points computed in Step 1 are propagated through the state equation (Eq. (2.3))

to generate the predicted sigma points

Xi(klk-l) = f(Xi(k-l)), for i = 0, ... , 2nx. (2.59)

3. The predicted sigma points Xi(klk-1) are then propagated through the observation equation

(Eq. (2.4)) to generate the predicted observation sigma points

Zi(klk-l) = g(xi(klk-l)), for i = 0, ... , 2nx. (2.60)

4. The predicted state estimate x(klk -1), its error covariance matrix P(klk -1), and the

predicted observation estimate z(klk-1) are computed from the following expressions

2nx

x(klk-1) = L wixi(klk-l), (2.61)

P(klk-1)

z(klk-1)

i=O
2nx T

Lwi(xi(klk-1) -x(klk-1)) (xi(kJk-1) - x(klk-1)) , (2.62)
i=O
2nx

L WiZi(klk-l). (2.63)
i=O

5. The autocovariance Pzz(kJk-1) of predicted observations, the cross-covariance Pxz(klk-1)

between predicted observation and predicted state estimates are computed as follows

2nx T

Pzz(klk-l) = L:::wi(zi(klk-l)-z(klk-1))(zi(klk-l)-z(klk-1)) , (2.64)
i=O
~ T

Lwi(Xi(klk-l) - x(kJk-1)) (zi(kJk-1)- z(kJk-1)) . (2.65) Pxz(kJk-l)
i=O

41

6. The final step is to compute the updated statistics as follows

x(klk)

P(klk)

x(klk-1) + JC(k) (z(k) - z(klk-1))

P(klk-l) -1C(k)Pzz(klk-l)1CT(k),

where the Kalman gain is given by JC(k) = Pxz(klk-l)Pzz(klk-1)- 1 .

(2.66)

(2.67)

Note that in the UKF algorithm, Steps 1-5 can be performed off-line and the new measurements

are only involved in Step 6. The UKF has, however, the limitation that it approximates the

filtering density P(x(k)lz(l: k)) as a Gaussian distribution. The particle filter presented next

does not impose any such restriction.

2.2.2 The Particle Filter

For nonlinear systems with non-Gaussian excitation, in general, no analytic solution can be deter­

mined. Consequently, the direct Kalman filter cannot be used and one has to rely on numerical

Sequential Monte Carlo (SMC) approaches, also known as the bootstrap filtering, condensation

algorithm, and particle filters [45], as approximates to the Bayesian estimators. The particle filter

does not impose any restrictions on the filtering density. The particle filter is based on the prin­

ciple of sequential importance sampling [43], a suboptimal technique for implementing Bayesian

estimator recursively (Eqs. (2.10)-(2.13)) through Monte Carlo simulations. Below, I describe the

principle of sequential importance sampling (SIS) [44], a subcategory of the SMC approach.

2.2.2.1 Importance Sampling

Importance sampling is an approach to evaluate an integral, e.g.,

lEP(xiz){h(x)} = J h(x)P(xlz)dx (2.68)

42

where lE{.} denotes expectation. A numeric way to compute lE{ h(x)} is to draw N8 random

samples Xi, for (1 ::; i ::; N 8), from the probability distribution P(xlz), evaluate the function h(x)

at these samples, and then compute their statistical mean as follows

Ns

lE{h(x)} ~I: h(Xi)P(XiJz). (2.69)
i=l

In practice, however, the distribution P(xlz) is either unavailable, or, it is difficult to obtain

particles from this distribution. Therefore, the particles are instead derived from a proposal

distribution q(xlz). Eq. (2.68) can then be written as a function of the proposal distribution as

follows

IE{h(x}} = J h(x) :(~l:i q(xlz)dx,
~

w

where W is called the weight function. Eq. (2.69), therefore, changes to

Ns

lE{h(x)} ~ L h(Xi)WiP(Xilz)
i=l

with weights Wi = P(Xilz)/q(Xilz), for (1 ::; i::; N 8), associated to the vector particles Xi.

2.2.2.2 Centralized Particle Filter

(2.70)

(2.71)

With relation to the state model, Eq. (2.3), the particle filter iteratively estimates the state vec-

tor x(k), for (k ~ 1), based on the overall observations z(l: k) and the given value of the previous

state x(k - 1). The centralized particle filter uses a set of samples (or 'particles') {Xi(k)}~1 and

associated weights {Wi(k)}~1 to estimate the system state x(k). At the end of iteration k -1 in

steady state, let

(2. 72)

denote an nx-dimensional vector sample (referred to as a vector particle). Based on a statistical

distribution, a combination of N8 vector particles are used to represent the true posterior distri-

43

bution of the state vector x(k - 1). Subscript i, for (1 ~ i ~ N 8), therefore, indicates that N 8

number of nx-dimensional particles are available to represent the state vector x(k - 1) at time

instant k - 1. To represent the time evolution of the particles, I use the notation

Xi(O: k-1) = [X1,i(O: k - l),X2,i(O: k -1), ... ,Xnx,i(O: k -1)], (2.73)

for (1 ~ i ~ N 8). Time index (0: k-1) implies that all nx-dimensional vector particles from time

iteration 0 to k -1 are available. Associated with each vector particle Xi (k -1) is its corresponding

weight Wi(k - 1), for (1 ~ i ~ N 8). The weights are normalized such that '2:~1 Wi(k - 1) = 1

at iteration k - 1. As for the state particles, notation Wi(O : k - 1) represents the evolution of

the weights over time. If required, the overall filtering distribution of the state vector at iteration

k - 1 can be expressed in terms of the particles and their associated weights as

Ns

P(x(k - l)lz(l :k - 1)) ~ L Wi(k -1)8(x(k - 1) - Xi(k -1)), (2.74)
i=l

where 8(·) denotes the Dirac delta function.

Given particles Xi(k - 1), the values of the particles Xi(k) at time instant k are updated

by generating random particles from the proposal distribution q(x(O: k)jz(l: k)). For SIS, the

proposal distribution is chosen such that it satisfies the following factorization

q(x(O:k)lz(l:k)) = q(x(O:k-l)lz(l:k-l))q(x(k)jx(l:k-1),z(l:k)), (2.75)

then one can obtain particles Xi(O: k) ,....., q(x(O: k)jz(l: k)) by augmenting each of the existing

samples Xi(O: k - 1),....., q(x(O: k-l)lz(l: k-1)) with the new particles generated as follows

Prediction Step: Xi(k),....., q(x(k)lx(O: k-1), z(l: k)). (2.76)

The next step is to update the weights as follows

Observation Update Step: () ()
P(z(k)IXi(k))P(Xi(k)IXi(k-1))

W· k ex W· k - 1 -----------
i i q (xi (k) I xi (o : k - 1), z (1 : k)) '

(2.77)

44

where notation ex: stands for the proportional sign, which changes to an equality with the intro­

duction of a constant. The accuracy of this importance sampling approximation depends on how

close the proposal distribution is to the true posterior distribution. The optimal choice [44] for the

proposal distribution that minimizes the variance of importance weights is the filtering density

conditioned upon x(O: k - 1) and z(l: k), i.e.,

q(x(k)lx(O:k-1),z(l:k)) = P(x(k)lx(O:k-1),z(l:k)). (2.78)

Because of the difficulty in sampling Eq. (2. 78), a common choice [44] for the proposal distribution

is the transition density, P(x(k)lx(k - 1)), referred to as the sampling importance resampling

(SIR) filter, where the weights are pointwise evaluation of the likelihood function at the particle

values, i.e.,

(2. 79)

If the weights Wi(k) are all equal from the previous iteration, then Wi(k) ex: P(z(k)l:Xi(k)). The

likelihood function P(z(k)l:Xi(k)) is derived from the observation equation (Eq. (2.4)). Algo­

rithm 1 highlights the main steps in the SIR filter.

Fig. 2.5 shows a graphical representation of the SIR algorithm for iteration k. In the top

plot, the particles :Xi(k) are generated from the transitional density P(x(k)lx(k - 1)) which is a

Gaussian distribution in this example. In the middle plot, the weights are computed from the

likelihood function P(z(k)lx(k)) which results in the weighted particle {:Xi(k), Wi(k)}~1 as shown

in the third plot.

The SIR filter has two drawbacks. First, it does not use the newly acquired observations.

Second, it leads to degeneracy in the particle filter with a few samples having relatively higher

weights, i.e., after a few iterations, most of the vector particles have negligible weights. A measure

of degeneracy is the effective sample size Neff(k) = 1/(2:~1 Wl(k)). A typical approach to

45

P(x(k) I x(k-1))

I I 1111111 I
P(z(k) I x(k))

P(x(k) I z(k)) J._______.__..__ll 11111 __.___ T

Figure 2.5: The SIR filter for estimating the posterior conditional probability (represented by blue bars).

avoid the degeneracy problem is to introduce the re-sampling [30] whenever Neff(k) falls below a

threshold. Algorithm 2 highlights the main steps in the systematic resampling algorithm, where

U(.) stands for uniform distribution. The re-sampling algorithm maps particles Xi(k) and their

weights Wi(k) to resampled particles {Xi*(k)}~1 such that P{Xi*(k) = Xj(k)} = Wj(k). The

resulting sample sequence is independent, identically distributed (IID) and, hence, the new weights

are uniform (same).

Fig. 2.6 depicts the basic concept of the particle filter in the form of a graphical representation.

In this example, a standard particle filter starts at time k- l with a set of uniformly weighted

particles {Xi(k-1), 1/Ns}~1 (the top yellow dots), which yields an approximation of the prediction

density P(x(k-l)Jz(l: k-2)). Each particle Xi(k - 1) is updated to Xi(k) by generating random

samples from the proposal distribution. In the filtering step, the importance weight wi (k) is

46

I'
r 9 y y Predicti0n partides at iteFatian

k - I (k-1)
' ' I
I
I
I
I
I
I
I
I
I
I

/!
I Computing the weights I
I
I
I
I
I

h i ~i
Sampling

k A\ /j~\\ A Prediction particles at iteration
(k)

Ile ration

Figure 2.6: A pictorial description of the particle filter [44].

updated using the observation z(k) made at time k (the top red line). This results in the weighted

particles {Xi(k), Wi(k)}f::1 , which provide an approximation of P(x(k)lz(l: k)) (the top purple

dots). Next, the resampling step selects only the particles with significant weights and resamples

to obtain the new particles with uniformly weighted particles {Xi(k), 1/Ns}f::1 which still is an

approximation of P(x(k)lz(l: k)). This process is executed recursively.

As noted previously, the particle filter implementation presented above is referred to as the

SIR filter. Later in the Thesis, other forms of the particle filters are discussed, e.g., the unscented

particle filter. Having presented a review of the centralized Kalman filter and particle filter, Sec-

tion 2.3 presents distributed Kalman filters which serves as a precursor to distributed estimation

for non-linear systems.

47

Input: (i) {:Xi(k - 1)}~1 - State particles, and; (ii) z(k) - Observation.

Output: (i) {:Xi(k)}~1 - Updated state particles, and; (ii) {Wi(k)}~1 - weights for updated

state particles.

1: for i = 1 : N 8 , do

•Update particles by sampling P(x(k)J:Xi(k - 1)).

• Compute weights based on Wi(k) ex P(z(k)J:Xi(k)).

2: end for

3: Determine the normalization factor s = E~1 wi (k).

4: for i = 1 : N 8 , do

•Normalize Wi(k) = Wi(k)/s.

5: end for

6: Resample based on Algorithm 2.

2.3 Distributed Kalman Filters

The Kalman filter has a simple recursive structure which makes it suitable for distributed esti-

mation problems. Several, distributed Kalman filter approaches [77-81] have been proposed for

both full-order and reduced-order estimations. I describe two general frameworks (estimate-then-

fuse (state estimation fusion) and fuse-then-estimate (observation fusion)) that are common to all

approaches.

2.3.1 State Estimation Fusion (Estimate-Then-Fuse)

In the estimate-then-fuse framework for the Kalman filter [42], the local state estimates are first

computed and then fused together to form the global state estimate. Node l, for (1 ::; l ::;

48

Input: (i) {Xi(k), Wi(k)}~1 - State particles and their associated weights.

Output: (i) {Xj*(k), Wi(k)}f::::1 - Resampled state particles and their associated weights, and;

(ii) { i j} ~ 1 - The index of the parent for each res am pied particle.

1: Initialize the cumulative sum of weights (CSW): C1 = W1(k)

2: for i = 2 : N 8 , do

• Construct CSW: Ci = Ci-1 + Wi(k)

3: end for

4: Start at the bottom of the CSW: i = 1

5: Draw a starting point: U1 rv U[O, Ns- 1]

6: for j = 1: N 8 , do

•Move along the CSW: Uj = u1 + N 8-
1(j - 1)

7: while Uj >Ci do

• i=i+l

8: end while

•Assign weight: Wj(k) = N;1

• Assign parent: ij = i.

9: end for

N), maintains its own estimated version y(O(klk) = [P(l)(klk)]- 1:X(l)(klk) of the information

vector and the corresponding information matrix y(l)(klk) = [P(l)(klk)]- 1 . Since the prediction

equations only depend on the state model (Eq. (2.3)), they can be computed locally without

requiring any cooperation from the neighbouring nodes. The local prediction step at node l is

49

Local Prediction Step:

y(l)(klk - 1)

y(l)(klk - 1)

(I - n,(l)(k))F-T(k)y(l)(k - llk - 1)

M<z)(k) - n,<l)(k):E<z)(k)[n<L)(k)]r,

where I is an identity matrix of proper dimension and

M(l)(k)

:E(l)(k)

and n,(l)(k)

p-T(k)Y(l)(k - llk - l)F- 1 (k),

M(l)(k) + Q-1,

M(l) (k) [:E(l) (k)]-1.

The local observation update equations for node l are then given by

Local Observation Update Step:

y(l)(klk)

y(l)(klk)

y(l)(klk - 1) + G(l)(kf R(l)-
1
(k)z(l)(k)

y(l)(klk-1) + G(l)(k)R(l)-
1
(k)G<W (k),

(2.80)

(2.81)

(2.82)

(2.83)

(2.84)

(2.85)

(2.86)

The global state estimate is then computed at each node by fusing its local state estimates with

the communicated state estimates of its neighbouring nodes. A problem with estimate-then-track

is the correlation between the local state estimates. The local state estimates across the neigh­

bouring nodes are correlated due to the following two reasons: (i) The same forcing/excitation

term is used in the localized state models for the neighbouring nodes, and; (ii) Some past ob­

servations incorporated in the local estimates may also be common between the local nodes [42],

e.g., two nodes may have both received observation from a common third node during a previous

iteration, or, they may have directly communicated to each other and incorporated the other

nodes observation in updating their local estimates.

Next, I will review the channel filter approach [42) which associates an additional filter for

each communication link to track the common information between a pair of neighbouring nodes.

50

Using channel filters, one can implement the optimal distributed Kalman filter for linear systems

observed with An/SN configured using the tree conneCted network topologies.

2.3.1.1 Channel Filters

The channel filter framework was proposed in [42) to ensure consistency of the fused estimate by

removing common information between own local estimate and the received estimate from the

neighbouring node. In the context of distributed Kalman filter for tree connected networks the

channel filter framework associates a channel filter for each communication link connecting a pair

of local nodes. Using the channel filter, the local information vector y< i) (k I k) at node i and the

local information vector y(j)(klk) at node j are combined to form the fused information vector

y (ij) (k I k) as follows

(2.87)

where y(inj)(klk) is the channel filter's information vector as explained below. Similarly, the fused

information matrix is computed as follows

y(ij)(klk) = y(i)(klk) + y(i)(klk) - y(inj)(klk), (2.88)

where y(inj)(klk) is the channel filter's information matrix as explained bellow. Eqs. (2.87)

and (2.88) have a number of important implications: (i) When the common information set is

empty, the joint estimate can be computed by summing local estimates in their information form;

(ii) There is no need for a fusion center to provide the global predictions which simplifies the

computation and reduces the communication, and; (iii) Once the common information is decided,

the rest of distributed estimation is straightforward. The problem, however, is how to determine

such common information. Based on Eqs. (2.44) and (2.45), the channel filter extracts the common

51

information using the following equations

y(inj)(klk) = y(inj)(klk - l)+[y(i)(klk) -y(inj)(klk-1)] + [Y(j)(klk) -y(inj)(klk-1)]

= y(i)(klk) + y(j)(klk) - y(inj)(klk-1), (2.89)

and y(inj)(klk) = y(i)(klk) + y(j)(klk) - y(inj)(klk-1). (2.90)

where the predictive channel filter equations are obtained in a similar fashion as the prediction

step of the the information filter (Eqs. (2.91)-(2.55)), i.e.,

and y(inj)(klk - 1)

where I is an identity matrix of proper dimension,

(2.91)

(2.92)

(2.93)

(2.94)

(2.95)

By using the estimate of the common information (provided by channel filters), node l, for (1 ~

l ~ N), uses the following fusion rules

Y(fused,l)(klk) = y(l\klk -1) + L (y(i)(klk) -y(lni)(klk-1)) (2.96)

iEN~~1~0 (k)

and y(fused,l)(klk) = y(l)(klk-1) + L (y(i)(klk)-Y(lni)(klk-1)), (2.97)

iEN~~~0 (k)

where N~~se (k) is set of the neighbouring nodes for node l. The channel filters only provide the

consistent estimate when the network is tree-connected.

52

2.3.1.2 Distributed Unscented Kalman Filter

Distributed unscented Kalman filter (DUKF) [7, 82, 83] is another example of the Kalman filter

based distributed state estimation fusion algorithms. The centralized UKF was described in

Section 2.2.1.1. Below, the distributed implementation of the UKF based on [7] is presented.

Please refer to [82,83] for alternative DUKF implementations. The DUKF for iteration k is based

on the following two steps:

1. Each node runs a local UKF based on its local observation z(l)(k), the fused global state

estimate X:(fused,l)(k - ljk - 1) and its corresponding error covariance matrix p(fused,l)(k -

ljk -1) from the previous iteration (k -1) of the DUKF. The localized version of the UKF

is based the six steps outlined in Section 2.2.1.1. In Step 1, the global statistics from the

previous iteration (X:(fused,l)(k- ljk-1) and p(fused,l)(k- ljk-1)) are used to calculate the

local sigma points {Wp),x~l)(k-1)};~0 . Steps 2-5 remain the same in nature and compute

localized statistics (superscript (l) is added to different terms computed in Steps 2-5 to show

their localized nature). In Step 6, the local observation z(l)(k) is used instead of the global

observation vector z(k) to compute the following updated local statistics

p(l)(klk)

x<l) (klk-1) + JC(l) (k) (z(l) (k) - z<l) (klk-1))

p(l)(klk-1) - JC(l)(k)P}Q(klk-l)[JC(l)(k)V,

(2.98)

(2.99)

2. The global statistics are then computed distributively based on the following fusion rules [7]

p(fused,l) (kjk) (2.100)
l=l

N

X(fused,l) (kjk) [p<rused,l)(kik)r1 x I: [P<z)(kik)r1:x.:<z)(kik). (2.101)
l=l

53

The two summation terms in Eqs. (2.100) and (2.101) are computed distributively by running

two vector consensus runs (one for the global mean and one for the global covariance matrix).

2.3.2 Likelihood/Observation Fusion (Fuse-Then-Estimate)

As stated in the previous section, care should be taken to compensate for the common information

present in the local state estimates in the estimate-then-fuse framework. An alternative approach

is based on the fuse-then-estimate framework, which leads to the fusion of the weighted observa­

tions and associated covariances. The issue of the common information in the state estimates is,

therefore, automatically resolved. Based on the combined KF /IF implementation (Eqs. (2.54)­

(2.57)), iteration k of the fuse-then-track framework consists of the following four steps:

Step 1. Given the fused local state estimate x(fused,l)(k - Ilk - 1) for iteration k - I and its

corresponding error covariance matrix p(fused,l)(k - Ilk - I), node l, for (I :::; l :::; N), performs

the prediction step as follows

x(l)(kJk - I)

p(l)(klk - 1)

F(k)x(fused,l) (k - IJk - I)

F(k)P(fused,l)(k - Ilk - I)[F(k)]T + Q(k).

(2.102)

(2.103)

Step 2. Node l computes its local information vector i(l)(k) and the local information matrix

J(l) (k)) as follows

[G(l)(k)]T R(l)- 1 (k)z(l)(k),

G(l) (k)R(l)- 1 (k) [G(l) (k)]T,

and communicates them to its immediate neighbouring nodes.

54

(2.104)

(2.105)

Step 3. Once node l has received data from all its neighbouring nodes, it fuses them as follows

i(fused,l)(k) = 2: [G(i) (k)]T R<W
1
(k)z(i) (k) (2.106)

iE N~:.~0 (k)

J(fused,l)(k) = 2: [G(i) (k)]T R(i)-i (k)G(i) (k). (2.107)

iEN~~~0 (k)

Step 4. The observation update state of the Kalman Filter (Eqs. (2.56)-(2.57)) is then performed

locally as

p(fused,l) (klk) (2.108)

X(fused,l) (klk)

(2.109)

In an all-to-all communication network, i.e. when there exists a direct link between node land

all other nodes in the network, Eqs. (2.108) and (2.109) result in the centralized estimates at each

node. In other words, the local estimates at each node are the same as the centralized estimate.

Having an all-to-all communication network is, however, a limiting constraint. Consensus-based5

distributed implementation of the Kalman filter is developed based on this framework to extend

distributed estimation to arbitrary network topologies. Such methods compute the summation

terms in Eq. (2.106) and Eq. (2.107) over the entire network instead of limiting the summation

terms to local neighbourhoods, i.e.,

N

i(fused,l)(k) = L[G(i)(k)]T R(W1 (k)z(i)(k) (2.110)
i=l

N

J(fused,l)(k) = L[G(i)(k)f R(W1 (k)G(i)(k). (2.111)
i=l

Two average consensus algorithms (as explained below in Section 2.4) can be used to compute

Eq. (2.110) and Eq. (2.111) in a distributed fashion.

5 Consensus in distributed filtering is the process of establishing a consistent value for some statistics of the state
vector across the network by interchanging relevant information between the connected neighboring nodes.

55

In the next section, I will present the aforementioned consensus algorithms in more detail.

2.4 Average Consensus Algorithms

Consensus algorithms and their randomized counterparts, the gossip algorithms [88], form the

foundation of distributed computing [89] with a long history in distributed processing and deci­

sion making [90], information processing in sensor networks [32,33], multi-agent collaboration [91],

vehicle formation [92], tracking and data fusion [79, 93], and distributed inference [94]. Consensus

algorithms are generally iterative in nature, where each node begins with a set of local infor­

mation. At each iteration, data is exchanged between a subset of nodes, which assimilates new

information to update the local parameters. A recent review on the average consensus algorithms

can be found in [32] or [33]. These consensus algorithms do not require specialized routing [33]

and perform reasonably well even in imperfect scenarios such as sensor networks with error-prone

communications, node/link failures, and channel noise [95-97]. Further, average consensus algo­

rithms have been extended in many directions, e.g., continuous time average consensus algorithms

as described in [32] and non-linear average consensus algorithms [98, 99]. The design of fast con­

sensus algorithms has been investigated in [100], the concept of consensus likelihood described

in [21] and the concept of Kalman-consensus which considers the problem of consensus seeking

with relative uncertainty in distributed systems presented in [101]. In this chapter, I limit the

discussion to the discrete time linear average consensus algorithms, a sub-class of the classical

average-consensus algorithms.

2.4.1 Discrete Time Linear Consensus Algorithms

Suppose there are N-nodes with inconsistent information denoted by X~l) (t), (1 ~ l ~ N), where

t is the consensus time index that is different from the filtering time index k. With reference to

56

my previous discussion in Section 2.3.2, at iteration k, node l, for (1 ::; l ::; N), initializes its local

consensus state X~l) (0) as follows

(2.112)

The objective of the consensus algorithm is to communicate relevant information amongst the neigh-

bouring nodes to iteratively update the consensus state X~l) (t) at node l such that it eventually

converges to its centralized counterpart i(fused,l)(k) given by Eq. (2.110). Mathematically, the

updated value at node l is

(2.113)

where ~i~se(k) represents the set of neighbouring nodes for node l in graph Q. Eq. (2.113)

represents a distributed algorithm because each node only receives/ communicates information

from/to its neighbouring nodes via communication links permitted by graph Q.

Definition: A distributed algorithm for graph Q can achieve consensus asymptotically if:

1. There exists a time instant Tc such that X~l) (Tc) = a, for (1 ::; l ::; N), i.e.,

(2.114)

2. All nodes reach a common value asymptotically

lim x<l)(t) =a,
t~oo c

(2.115)

where a E ~ is the collective decision of the sensor nodes in the network and is referred to

as the group decision, stationary, converged, or equilibrium value.

Moreover, if this common value is the average of the initial values of the consensus states, i.e.,

a= 1/N'L~1 X~l)(O), then the algorithm is said to achieve average consensus. In other words,

reaching a consensus implies an asymptotic convergence to a one-dimensional agreement space

57

defined as X~1)(t) = X~2)(t) = ... = X~N)(t), for (t 2'.: Tc)· Collecting all X~l)(t)'s in a vector

Xc(t), the agreement space can be expressed as Xc(t) =al, for (t 2'.: Tc), where 1 = [1, 1, ... , l]T

is a unit column vector with 1 as its entries. A further distinction is made based on whether the

consensus is constrained or unconstrained.

1. Unconstrained consensus is simply an alignment problem where the agreement value

is not important and it only suffices that the consensus states of all nodes asymptotically

converge to the same value.

2. Constraint consensus, referred to as the x-consensus in this chapter, requires the con-

sensus state to asymptotically converge to a function x(xc(O)) of initial values.

An average consensus algorithm is ax-consensus algorithm with x(xc(O)) = 1/NE~1 X~l)(O),

which is often used in distributed signal processing applications. The goal of an average consensus

algorithm is to guarantee the convergence of the algorithm to the mean value for any choice of

initial conditions.

An important class of a discrete time, linear average consensus algorithm is given by

x~t>(t + 1) = Uu(t)x~t>(t) + L ulj(t)X~j)(t),
jEN~:1~0 (k)

(2.116)

which can alternatively be expressed as xc(t + 1) = U(t)xc(t) in the matrix-vector format, where

U (t) ~ { Uij} E SR_(N x N) is referred to as the consensus matrix representing the configuration of

graph g. In other words, the sparsity pattern of the consensus matrix models the communication

network over which the neighbouring nodes can communicate. A possible choice for U(t) is

described later. A third form for Eq. (2.116) is given by

x~t>(t + 1) = x~t>(t) + L Utj(t) (x~t>(t) - x~i>(t)),
jEN~~~0 (k)

58

(2.117)

1.5

-§: 1
0
en
~

~0.5
>
ca
:; 0
.5

-0.5

-1'-----'-------'-----'-----'------'-f
0 10 20 30 40 5

Consensus Iterations

Sensor Network with N = 20

Figure 2.7: An example of average consensus algorithm with 20 sensor nodes.

derived by exploiting the stochastic matrix property U(t)l = 1. Note that this property implies

that the sum of the entries of any row of matrix U is always 1, i.e., Uu(t) = 1- L 'EN<'> (k) Utj(t),
J fuse

which when substituted in Eq. (2.116) results in the new expression. Eq. (2.117) provides an

intuitive interpretation for average consensus as a control action to the old consensus value that

corrects for the difference from the consensus state.

Fig. 2. 7 shows an example of an average consensus algorithm in a network with 20 nodes.

Connections between neighbouring nodes are shown with dotted lines in the small block on the

lower right of Fig. 2. 7. Node l, for (1 ~ l ~ 20), initializes its consensus state X~l) (0) with the

value shown in Fig. 2.7 and uses Eq. (2.116) to update its consensus state. After 45 iterations the

. (l) "°'N (l) () consensus converges, i.e., Xe (t) = L...Jl=l Xe 0 = 0.4592, for t > 45.

There are two scenarios that may arise in the context of specific signal processing applications:

(i) Deterministic consensus where the consensus matrix U is given and remains fixed, i.e., U(t) =

U, and; (ii) Randomized consensus, where U(t) is drawn from some distributions on a set of

59

stochastic matrices defined as o/I. For fixed communication, Eq. (2.117) implies that Xe(t)

utxe(O). In addition, from Eq. (2.115) we have

1 N 1
lim Xe(t)= lim utxe(O)=N("°' Xe(O))l=N(lTxe(O))l=(llT/N)xe(O),

t-+oo t-+oo ~
(2.118)

i=l

which is equivalent to the matrix equation limt-+oo ut = 11 T / N. Linear consensus algorithms

(Eq. (2.116) or (2.117)) converges to the average for any initial vector Xe(O) E ~N if and only if

the identity limHoo ut = 11 TIN holds.

Finally, the asymptotic convergence rate of a consensus algorithm is defined as follows

[
II Xe(t) - Xe 112] l/t

rasym(U) = . sup II (O) _ _ II ,
hmt--+oo Xe Xe 2

(2.119)

where II · 112 is the Euclidean L 2 norm, i.e., II Xe II~ vx.rx;.. The following theorem [100] provides

the necessary and sufficient conditions for convergence of a consensus algorithm.

Theorem 1. An average consensus algorithm {e.g., Eq. {2.117)) converges, i.e., limt-+oo ut =

11 T / N holds if and only if

(2.120)

Ul 1 (2.121)

p(U - UT /N) < 1, (2.122)

where p(.) denotes the spectral radius of a matrix, i.e., the largest eigenvalue of a matrix in the

absolute values. Moreover, the asymptotic convergence rate can be expressed as

rasym(U) = p(U - liT /N). (2.123)

The following results are observed from Theorem 1. First, Eq. (2.120) states that 1 is the left

eigenvector of U associated with the eigenvalue of 1. For this case, we have

N N

z=x~i)(t) =IT Xe(t) = lTUxe(t-1) = 1T Xe(t-1) = L:x~i)(t -1). (2.124)
i=l i=l

60

Eq. (2.124) is referred to as the preserving property i.e., the average of the consensus states is

preserved at each iteration of consensus algorithm. Second, Eq. (2.121) illustrates that 1 is also

the right eigenvector of U associated with the unitary eigenvalue. This condition sates that once

consensus is reached, the value of the consensus variables remains unchanged, i.e., 1 is a fixed

point of the linear iteration. Together with the first two conditions, Eq. (2.122) implies that 1 is a

simple eigenvalue of U on the unit disk and its algebraic multiplicity is 1, i.e. it is a simple root of

the characteristic polynomial of U. Eq. (2.122) also implies that all other eigenvalues are strictly

less than one in magnitude, i.e., l..\i(U)I < 1 Vi = {2, ... , N}. For the subclass of consensus

algorithms considered in here, a result from [31] shows that

(2.125)

i.e., the convergence rate of a discrete time linear consensus algorithm (Eq. (2.123)) is dependent

on the second largest eigenvalue of the consensus matrix. To study the convergence rate, one must

develop techniques to bound the eigenvalues of the consensus matrix. Fast linear consensus algo­

rithms [100] are designed by minimizing the second largest eigenvalue of the consensus matrix. For

continuous time consensus algorithm, the graph Laplacian L matrix and its spectral properties [32]

are important graph related parameters which play a crucial role in the convergence analysis [32].

Necessary and sufficient conditions to guarantee convergence of average consensus algorithms in

different scenarios, e.g., in presence of communication time-delays, packet drops, channel noises,

link failures and quantization errors have been studied by many researchers [31-33, 95-97]. For

a more detailed review of the convergence properties of the consensus algorithms, please refer

to [31].

The question of how to assign the weight matrix U in Eq. (2.116) arises naturally at this point.

A common choice is U =I - tL where EE (0, 1
9

] and U satisfies [32] the conditions expressed in

Eqs. (2.120)-(2.122). For other possible forms of the consensus matrix U, please refer to [31-33].

61

For example, the Kalman-consensus method proposed in [101] designs the consensus matrix U by

allocating proper weights to individual nodes with greater certainty in their performed estimation.

Finally, I note that alternative approaches to the consensus algorithms are the gossip algo­

rithms which are generally randomized counterparts of the consensus algorithms. The difference

in consensus and gossip algorithms lie in the selection of the neighbouring nodes to which the

information is shared at each iteration. While consensus algorithms communicate with all neigh­

bouring nodes, gossip algorithms randomly select a subset of neighbouring nodes and communicate

only with that subset. Generally, the subset with which each node communicates varies from one

gossip iteration to another. Another alternative to reach consensus on predefined statistical pa­

rameters is to use spanning trees [36) where the topology is specifically designed and known at

each node.

2.5 Distributed Particle Filters

The distributed particle filter implementations considered in this section use the following state

dynamics and observation model at node l, for (1 :::; l :::; N)

J(x(k - 1)) + e(k)

g(l)(x(k)) + ((l)(k),

(2.126)

(2.127)

with the entire state vector x(k) is estimated by running a localized particle filter at each node. So

the following overview of the existing distributed implementations of the particle filter is mainly

focused on full-order distributed configuration for nonlinear systems.

Since the seminal work by Gordon et al. [45], the particle filters have been widely used for

statistical estimation but mostly in the centralized configuration. Developing distributed imple­

mentations of the particle filter is computationally demanding and places considerable bandwidth

62

overhead for information transfer between the local processing nodes. Following the classification

taxonomy shown in Fig. 1.4, distributed particle filter implementations can be organized into

two main categories: Message passing schemes [16, 17] where information flows in a pre-defined,

sequential manner from a node to one of its neighboring nodes via a cyclic path till the entire

network is traversed, and; Diffusive schemes [18-27, 29, 30] where each node communicates its

local information across the network by interacting with its immediate neighbors. In dynami­

cal environments, where frequent changes in the underlying network topology due to mobility,

node failure, and intermittent connectivity are a common practice, diffusive schemes significantly

improve the robustness at the cost of certain communication overhead.

Consensus-based approaches are a special subcategory of diffusive schemes applicable to arbi­

trary network topologies [32, 33]. The basic idea behind the consensus-based distributed imple­

mentations is to express the fusion problem in a way such that it only involves average quantities.

Although the consensus-based distributed Kalman filter implementations [32, 33, 77, 79-81] have

been widely explored for estimation and tracking problems in linear systems, there is much room

for developing distributed particle filter implementations for nonlinear systems. Further refine­

ment of the consensus-based distributed particle filter implementations is based on the nature of

the information transfers between the processing nodes. Examples of the information communi­

cated within the network include the raw observations, local likelihoods, functions of the local

observations [18-22], local state posterior, and local state estimates [23-27]. Coates et al. [16]

use a parametric model of the partial likelihood function commonly referred to as the DPF via

observation/likelihood fusion. Sheng et al. [17] approximate the partial local posteriors with a

Gaussian mixture model (G MM) and communicate the parameters of the local G MM models be­

tween the neighboring nodes using a message passing setup. Sheng's implementation is commonly

referred to as DPF via state estimation fusion. The DPF approaches based on state estimation

63

fusion and observation/likelihood fusion are considered next.

2.5.1 DPF via State Estimation Fusion (Estimate-then-Fuse)

The state estimation fusion based DPF implementation is explained in terms of the SIR form

of the particle filter (Section 2.2.2, Eqs. (2.76) and (2.77)). It consists of two steps: the local

particle filtering step implemented at each node to evaluate the local particles X~l)(k) and their

corresponding weights w?\ k) and the fusion step to combine local estimates into the global

estimate. Based only on the local observations made at node l, the local observation update and

the following fusion step are described below.

1. Local Particle Filters: At node l, the local particle filter first updates its particles as follows

Local Prediction Step : (2.128)

The weights are pointwise evaluation of the local likelihood function at the particle values

computed as

Local 0 bservation Update Step :

The local particle filter at node l approximates the local filtering density P(x(k)lz(l)(l: k))

as a Dirac mixture with a set of particles and their associated weights {:X~l) (k), w?) (k)} as

Ns

P(x(k)lz(l) (1: k)) ~ L wP) (k)o(x(k) - :x~l\k))' (2.130)
i=l

where o (·) denotes the Dirac delta function.

2. Fusion of Local Particles: The global state estimate is computed by fusing the local filtering

densities P(x(k)lz(l)(l: k)) represented via local particle sets {X~l)(k), w?)(k)} across all

nodes. To highlight the issues involved in the fusion step, the fusion problem between two

64

nodes i and j is first considered. For node i and j, the joint filtering density is given by

P(x(k)lz(i)(l:k) Uz(j)(l:k)) = P(x(k)lz(i)(l:~)) x P(x(~)lz(j)(l:k))
P(x(k)lz(i)(l:k)nz(J)(l:k)) '

(2.131)

where P(x(k)lz(i)(l: k) U z(j)(l: k)) is the fused filtering density based on observations at

node i and j, and P(x(k)lz(i)(l: k) n z(j)(l: k)) is the filtering density corresponding to

the common information between nodes i and j. Computing Eq. (2.131) based on the local

particles is challenging due to the following two main problems: (i) Transferring the whole

particle set requires extensive communication resources, and; (ii) Even if the particles can be

communicated, twoseparatediracmixtures (e.g., {X~l)(k), wp)(k)} and {X~u)(k), Wi(u)(k)})

may not have the same region of support and their multiplication/division could be zero

everywhere. To tackle these issues, a transformation is required on the particle representa-

tions ({X~l) (k), wP) (k)}) prior to communication. Gaussian distributions [24], grid-based

techniques [47], GMMs [17] and Parzen representations [25,27] are different parametric con-

tinuous distributions used in the DPF implementations. Next, I consider the transformation

approach based on Gaussian distribution for the local particles [24].

Instead of communicating the particles for fusion, node l approximates its local filtering density

with a Gaussian distribution whose statistics (mean and covariance) are computed from the local

particles. The statistics of the global filtering density are then calculated across the network from

the local statistics by using average consensus algorithms on the local means and covariances.

More specifically, the global filtering density (Eq. (2.15)) given by

N

P(x(k), lz(l:k)) <X P(x(k)lz(l:k-1)) II P(z<l)(k)lx(k)), (2.132)
i=l

is factorized in terms of geometric mean of the modified local filtering densities as

N

P(x(k)lz(l:k)) <X NII P(x(k)lz(l)(l:k)), (2.133)
l=l

65

where the modified local filtering density at node l, for (1 ::; l ::; N), is given by

P(x(k)lz(l)(l: k)) = P(x(k)lz<O(l:k-1)) x pN (z<O(k)lx(k)). (2.134)

Reference [24] has proposed to approximate .P(x(k)iz<O(l: k)) as a Gaussian distributionN(x(l)(k),

.f>(l) (k)) where its statistics are computed from the local particles as follows

N .•

L wP)(k)x~l)(k), (2.135)
i=l

(2.136)

Since the product of Gaussians is itself a Gaussian, it can be shown [129] that

N

P(x(k)Jz(l: k)) oc N IJ N(x(l)(k), .f>(l)(k))
l=l

zjN(p,(fused)(k), .f>(fused)(k)) = N(p,(fused)(k), N X _p(fused)(k))(2.137)

where

N

[P(fused)(k)]-1 I: [P(i)(k)rl, (2.138)
i=l

N

and p,(fused)(k) = p(fused)(k) L [.f>(i)(k)]-lx(i)(k). (2.139)
i=l

Note that in computing the local weights wP\k), the weight update equation (Eq. (2.77)) changes

as follows

[P(z<l) (k) JX~l) (k)) JN P (x~l) (k) JX~l) (k-1))
w.<l)(k) oc w.<0(k -1) .

i i q (x~ l) (k) Ix~ l) (k -1), z < l) (k), z (1 : k -1)) (2.140)

If the proposal distribution is selected to be equal to the transitional density then Eq. (2.140)

reduces to

(2.141)

The statistics of the global filtering density given by Eq. (2.138)-(2.139) are obtained from the

local statistics using several average consensus algorithms.

66

2.5.2 DPF via Likelihood/Observation Fusion (Fuse-then-Estimate)

The DPF via observation/likelihood fusion differs from the centralized particle filter mainly in the

observation update step, i.e., in computing the weights (Eq. (2.77)). It consists of the following

two steps.

1. Local Prediction is more or less similar to Eq. (2.128). However, algorithms of this category

commonly implement synchronized local particle filters [16], i.e., a set of parallel particle

filters where their random number generators have been initialized at the same point and,

therefore, generate the same set of particles at each iteration. In other words, xi (k) = x~l) (k)

for, (1 ~ l ~ N), i.e., particles at different nodes are the same, therefore, the index l

is dropped for the notation used to denote the particle sets. The particles at node l are

updated as follows

(2.142)

resulting in the same set of local predictive particles at each node.

2. Global Observation Update: Considering the conditional independence of the observations

made at neighbouring nodes (Eq. (2.5)) and using the global likelihood representation form

Eq. (2.14), the weight update equation (Eq. (2.77)) is given by

N

Wi(k) ex wi(k-l)P(z(k)IXi(k)) = wi(k-1) II P(z(l)(k)IXi(k)). (2.143)
l=l

In the centralized implementation, all observations are available at the fusion centre and

Eq. (2.143) could potentially be used to evaluate the global likelihood function and to update

the weights. In the distributed implementation, node l has restricted access limited to its

local observation z(l) (k) and can, therefore, only evaluate its local likelihood P(z(l) (k) I Xi (k))

based on its vector particle Xi(k). The likelihoods P(z(m)(k)IXi(k)), m fl, are not available

67

at node l and need to be communicated for updating the weights. A brute force distributed

approach is to, first, express the weight update equation (Eq. (2.143)) as

N

logWi(k) ex logWi(k-1) + Llog (P(z(l)(k)IXi(k))), (2.144)
l=l

and then run average consensus algorithms across the network to compute the value of the

summation term for each particle Xi (k). A total of N 8 synchronous consensus runs are used

to compute the summation terms for each particle (where N8 is the number of particles).

There are two main issues with the DPF implementations using the likelihood/observation

fusion. First, using synchronized local particle filters is somewhat restrictive. Second, re-

quiring a total of N 8 synchronous consensus algorithms introduces extensive communication

overhead. Next, an alternative algorithm (namely DPF via set membership [20]) is proposed

to address these issues.

2.5.2.1 DPF via Set Membership

The distributed implementation of the particle filter via set membership is a 4-step set-theoretic

approach proposed in [20] to reduce the number of the particles communicated in the fusion step.

In principle, the DPF via set membership reduces the communication overhead by computing

the weight update equation (Eq. (2.144)) only for a small subset of particles selected using a

set-theoretic approach as explained below.

1. Local set selection: Node l, for (1 :::; l :::; N), implements a local particle filter and performs

local set selection as follows

(a) Oversample the particles and weights {Xi(k-1), Wi(k-1)}~1 to extend the number of

particles and obtain {Xi'(k -1), Wi'(k -1)} f, ~ f s where L E N, and N denotes the set

of natural numbers.

68

(b) Sample the transitional density P(x(k)l:Xi'(k -1)) and compute the corresponding

weights based on the local likelihood P(z(l) (k)lx(k)) to obtain {Xi'(k), wi~l) (k)}~~fs.

Assuming local set selection was successful in the previous iteration, all nodes had the

same extended set of particles and associated weights. After sampling of the transi-

tional density, the weights would be different at the local nodes.

(c) Resample N 8 particles from N 8 x L particles to obtain the local set of particles and

weights {:X~l) (k), Wi(l) (k) }~1 . After this step, local nodes would have different particles

which explains why the superscript l reappears. The resampled particles are from local

posterior P(x(k)lx(k-1), z(l)(k)).

(d) Node l, for (1 ~ l ~ N), computes the coordinates of a box £(l)(k) containing its

particles. Term £(l)(k) represents the region where P(x(k)lx(k-1), z(l)(k)) contains

the majority of its mass.

2. Global Set Determination: All nodes cooperatively compute the intersection of their local

boxes, i.e., the global box £(k) which contains samples corresponding to the region with

the highest likelihood. Note that this can be implemented by running a combination of

maximum and minimum consensus algorithms on £(l)(k).

3. Distributed Importance Density Sampling: Once the global box is determined, it is used to

form an approximate of the optimal proposal distribution P (x(k)lx(k-1), z(k)) as follows

U (x(k)lx(k-1),£(k))= od(x(k) E £(k)) + (3I(x(k) ~ £(k)) P(x(k)lx(k-1)), (2.145)
'Y

where 'Y is the normalizing constant to make U(·) a proper density, I(·) is an indicator

function, and (3 «a. Node l generates the predicted particles form the proposal distribution

given by Eq. (2.145). Specifically, each node first draws particle from the transitional density

69

P(x(k)lx(k - 1)). If the sample belongs to the global box £(k), it is accepted with high

probability. Otherwise, the sample is discarded with high probability.

4. Weight Update: For each accepted vector particle, a distributed average consensus algorithm

computes its corresponding weights using Eq. (2.144).

5. Resampling: Finally, resampling is performed to generate N 8 uniformly weighted particles.

The DPF via set membership [20] is an example of algorithms belonging to the fuse-then-estimate

category. Alternative algorithms belonging to this category are [19, 21, 22]. Algorithms proposed

in [21, 22] are applicable when the global likelihood is exponentially distributed. In such scenarios,

References [21, 22] approximate the global likelihood as a function g' (·) of the summation of some

other function g"(-) of the local observations, i.e., P(z(k)Jx(k)) = g'("i:,{: 1 g"(z(l)(k))), which

can be computed distributively using average consensus algorithms. Reference [19] constructs a

distributed auxiliary particle filter algorithm such that every node has a copy of the same filter

(the same weights and particles). To do this, local nodes execute a synchronization routine so that

their random number generators have the same seeds; in this way, they always sample the same

values. The algorithm proposed in [19] is similar in concept to the DPF via set membership [20].

A subset of effective particles are selected first by distributively computing preliminary weights for

all the particles using gossip algorithms (randomized counterpart of consensus algorithms). The

effective particles are the ones with the highest preliminary global weights. Once the effective

particle set is selected, another runs of gossip algorithms are used to computed the updated

weights.

Finally, in the context of distributed implementation of the Kalman filter, communicating

state posteriors (fuse-then-estimate category (Section 2.3.1)) is advantageous over communicating

functions of local observations or local likelihoods (fuse-then-estimate category (Section 2. 3. 2))

70

because the later would result loss of information in case packets are lost. If instead, information

on the state posteriors is communicated, lost information can be recovered since it is implicitly

present in the future state posteriors. In the context of DPF implementations, however in terms

of the accuracy, the algorithms belonging to fuse-then-estimate category (Section 2.5.2) are less

sensitive to the algorithms belonging to estimate-then-fuse category (Section 2.5.1). This is mainly

due to the role of the proposal distribution. The algorithms belonging to the former category

(Section 2.5.2), typically, use a distributively computed proposal distribution while algorithms

belonging to the latter category (Section 2.5.1) usually incorporate a locally designed proposal

distribution. Intuitively speaking, a combination of two categories will be able to both recover lost

information (which is a property of algorithms belonging to estimate-then-fuse category) and at

the same time implement a reasonable proposal distribution and reduce the sensitivity of the DPF

implementation (which is a property of algorithms belonging to fuse-then-estimate category).

In summary, the existing distributed implementations of the particle filter suffer from some of

the following drawbacks:

1. A large number of iterative parallel consensus runs is required to reach consensus on a

selected set of global parameters between two consecutive iterations of the local particle

filters. Algorithms belonging to the fuse-then-estimate category, such as the DPF via set

membership, are more sensitive to this problem because they require a significant number

of consensus runs.

2. Most of the existing distributed particle filter implementations are based on the SIR filter

and use the transitional P(x(k)lx(k-1)) (Eq. (2.78)) as the proposal distribution. Such a

selection is not optimal. Choosing the transitional distribution is a major challenge and a

bottleneck to the performance of the distributed particle filters.

71

3. Some form of the Gaussian approximation is commonly used in the DPF implementations.

For example, the global likelihood is approximated with a Gaussian distribution in [18].

Likewise, the global filtering/posterior distribution is assumed to be Gaussian in (23,24]. The

advantage of the particle filter is lost by approximating the global posterior by a Gaussian

distribution.

4. The consensus step used by the local particle filters is assumed to converge within the time

interval available between two successive observations. The performance of the distributed

approaches degrades substantially if consensus is not reached within two consecutive it­

erations of the local particle filters. A major problem in distributed estimation networks

is unreliable communication (especially in large and multi-hop networks), which results in

communication delays, information loss and, therefore, delays in convergence of the consen­

sus step. Referred to as intermittent network connectivity [123, 124], this issue has not been

investigated in the context of the distributed particle filter implementations.

5. Computation of the global estimates from local estimates during the consensus step is based

on an sub-optimal fusion rules (e.g., local averaging) which ignores the problem of common

information between the local state estimates and results in the degradation of the overall

performance.

In summary, drawback 4 is common to all existing DPF implementations. In addition, the DPF

implementations suffer either from Drawback 1 (extremely high communication overhead (19, 20])

or combination of Drawbacks 2, 3, and 5 (strong approximations and suboptimal fusion (21-24]).

In the subsequent chapter, I develop distributed implementations of the particle filter to address

the aforementioned issues.

72

2.6 Applications

In this section, I review potential applications of the distributed implementation of the particle

filer considered in the thesis.

2.6.1 Bearing Only Tracking

The problem of bearings-only tracking (BOT), also referred to as target motion analysis, arises

in a variety of non-linear signal processing applications including radar surveillance, underwater

submarine tracking in sonar, and robotics (102, 103). In terms of our state model (Eq. (2.3)),

the state vector is given by x(k) = [X(k), Y(k), X(k), Y(k)]T. The trajectory of the target is

described using different state models such as (103): (i) Constant velocity model; (ii) Clockwise

coordinated turn model; (iii) Anticlockwise model; (iv) Constant acceleration model, or; (v) some

combination of (i)-(iv). For example, the clockwise coordinated turn state model is given by

Eq. (2.3) with the state function

1 0 sin(n(k)6T) 1-cos(n(k)6T)
n(k) O(k

0 1 1-cos(n(k)~T) sin{n(k)~T)

O(k) = Am ' f(x(k)) = O(k) n(k)
with

0 0 cos(O(k)~T) - sin(O(k)~T) V(X(k))2 + (Y(k))2

0 0 sin(O(k)~T) cos(O(k)~T)

(2.146)

where ~Tis the sampling time and Am is the manoeuvre acceleration parameter. Measurements

are the target's bearings with respect to the platform of each node referenced (clockwise positive)

to the y-axis, i.e.,

(
X(k) - X(l,m)(k)) (l)

atan Y(k) - y(l,m)(k) + (,m (k), (2.147)

73

100

50

lS,-----,-_-.-----.,.-:---r-----,..-----,-------;::---==I.=ra=~=cts=T=~=·.c=to=ry~
· ,_., .

... -.
10

...

-5 N<ld

•
-10

.. : .. :
.•.. , ..

:!· ·•'.;' -~;
...

. ,,. ~- ,._,..:
"!!''·

"'
:~.:

..
:··~: -

• 1.· ...

.... ,
·._• .. c··· .

,:_ ... ~ ..•...
.- .. ca ..

Node I

10 20 30 40 50
Time step (k)

Node3

(l ~
I

Time step (k)

. ~,.
-:: ...

. ... •··· ...

(a)

Node2

Iii
100 Iii •1

~· ~vP~~ Iii - J.
50 ldJ ,, dai~'~ :

~ l!I l!I I

I

-50

-100
0 10 20 30 40 50

Time step (k)

Node4
100

50

-50

-100 '----'----'----'----'-----'
0 10 20 30 40 50

Time step (k)

(b)

Figure 2.8: The configuration and bearing measurements. (a) Initial sensor locations and one realization

of the target's trajectory. (b) Bearing measurements at four randomly selected nodes.

74

(X(l,m)(k), y(l,m)(k)) are the coordinates of node sensor m connected to processing node l.

The overall observation vector is a combination of the local observations z<t,m)(k) as given by

Eq. (2.147). As shown in Eqs. (2.146) and (2.147), BOT is inherently a non-linear application with

its non-linearity incorporated in the state dynamics and/or in the measurement model depending

on the choice of the coordinate system used to formulate the problem. Fig. 2.8(a) plots the tar­

get's track as modeled by Eq. (2.146) along with the locations of the processing nodes. Fig. 2.8(b)

shows the bearing measurements (in degree) obtained from four randomly selected nodes. The

objective is to design a practical filter capable of estimating the kinematics (position [X, Y] and

velocity [X, Y]) of the target from the bearing angle measurements and prior knowledge of the

target's motion.

Since each node has a limited communication range, local nodes configured using the central­

ized architecture have to send their local observations indirectly via multihop relay to the fusion

centre. The fusion centre in the centralized particle filter needs to wait for all observations and

then perform the estimation update which results in significant latency in computing the state

estimates. In dynamic networks where the network size and connections can change due to node

failure and/or communication link failure, observations may not reach the fusion centre at times.

Further, any lost observation not reaching the fusion centre can not be recovered since estimation

is limited to the fusion centre. Last but not the least, nodes in the immediate neighbourhood of

the fusion centre relay more data which means that the energy consumption (energy required for

transferring a massage times the number of massages) is unbalanced in the centralized architec­

ture, and mostly concentrated near the fusion centre. Distributed estimation, on the other hand,

overcomes these issues by maintaining local state estimates across the network and limiting the

communication to local neighbourhoods. Most significantly, the latency issue can be resolved in

the distributed estimation approaches with appropriate control of the consensus overhead.

75

2.6.2 Range Only Tracking

As the second application, I consider a distributed unicycle mobile robot localization problem

using range only measurements [6, 7]. This is a good benchmark since the underlying dynamics is

non-linear with non-additive forcing terms resulting in a non-Gaussian transitional state model.

The state vector of the unicycle robot is defined by x(k) = [X(k), Y(k), B(k)]T, where (X(k), Y(k))

is the 2D coordinate of the robot and B(k) is its orientation. The velocity and angular velocity are

denoted by V(k) and W(k), respectively. The following discrete-time non-linear unicycle model [6]

represents the state dynamics of the robot

X(k)

Y(k)

and B(k)

X(k-l) + ~(k-l) (sin (o(k-1) + W(k-l)~T) - sin (B(k-1))), (2.148)
W(k-l)

Y(k-1) + ~(k-l) (cos (e(k-1) + W(k-l)~T) - cos (B(k-1))), (2.149)
W(k-l)

B(k-1) + W(k-l)~T + ee~T, (2.150)

where ~Tis the sampling time and ee is the orientation noise term. The observations are range-

only measurements given by

z(l,m)(k) = J (X(k) - X(l,m)(k)) 2 + (Y(k) - y(t,m)(k)) 2 + ((l,m)(k), (2.151)

where (X(l,m)(k), y(l,m)(k)) are the coordinates of node sensor m connected to processing node l.

Since the state is locally unobservable, the sensors have to cooperate with each other to estimate

the robot's location. Distributed localization via range-only measurements is another application

of distributed estimation algorithms where the state model is non-linear and is locally unobservable

at individual sensor nodes.

76

2.6.3 Acoustic Source Localization

Another application of distributed particle filter approaches is in acoustic source localisation

using an acoustic vector sensor (AVS) network. The AVS [105] employs a co-located sensor

structure capable of providing 2-D (azimuth and elevation) direction of arrival (DOA) informa-

tion. Recently, advances in distributed AN/SN systems have motivated the deployment of AVS

networks for acoustic source localization. To track NT acoustic sources located at xm(k) =

[Xm(k),Ym(k),Zm(k)JT E IR3 x 1, for (1::::;; m::::;; NT), at time instant k, assume N AVS nodes at

fixed locations x(l) = [X(l), y(t), z(l)jT E IR3 x 1 , for (1 ::::;; l ::::;; N), are arbitrarily deployed. The

DOA of the acoustic signal associated with the mth source at the lth AVS node is given by

(t) _ _ 1 (Xm(k) - X(l)) .
cPm (k) - tan Ym(k) _ y(l) ,

(t) k -1 (Zm(k) - z(t))

'l/Jm () =tan J(Xm(k) - X(l))2 + (Ym(k) - y(l))2 ' (2.152)

where c/>~(k) E [-7r, 7r] and 'l/J~(k) E [-7r/2, 7r/2] represent the azimuth angle and the elevation

angle respectively, and superscript T denotes the transpose. Let

u~(k) = [cos 'l/J~(k) cos c/>~(k), cos'lj;~(k) sin c/>~(k), sin 'l/J~(k)r (2.153)

be the unit direction vector pointing out from the lth AVS sensor towards the mth source. · As-

suming that at time step k, To number of snapshots are considered, the collection of acoustic

source signals sm(k), (1 ::::;; m::::;; NT), is given by

(2.154)

The received signal model for the lth AVS node is as follows

(2.155)

where X(k) = [xf(k), ... , x~T(k)jT is the source state, g(l)(X(k)) = [a~(k), ... , a;{T(k)] with

a~(k) = [1,u~(k)JT is the steering vector, and E(l)(k) E c4 xTo represent the channel noise in-

77

eluding the pressure and velocity noise terms. Note that the particle velocity terms are normalized

by multiplying by a constant term -p0c0 , where p0 and c0 represent the ambient density and the

propagation speed of the acoustic wave in the medium respectively. The noise process e(l)(k)

is a sequence of complex-valued Independent and identically distributed (IID) circular Gaussian

random variables with zero mean and covariance matrix r.

Since dynamic sources are considered, the source state Xm (k) is constructed by cascading the

original position component x~ (k) with a velocity component x~ (k). Constant velocity model is

employed here to model the source dynamics as follows

X(k) = F X(k -1) + G(v(k)), (2.156)

where v(k) is the global uncertainties in the state process. The coefficient matrix F and G are

defined respectively as

(2.157)

where Iq denotes the qth order identity matrix, D..T represents the time period in seconds between

the previous and current time step, and © denotes the Kronecker product. Eqs. (2.155) and

(2.156) present the state-space model for the AVS network based tracking problem.

2.6.4 State Estimation in Power Grids

State estimation [106-109] in electrical power grids is used to monitor the state of the grid, enable

energy management, optimize power flows, and perform reliability /security assessment. State

forecasts are also used to analyze contingencies and determine necessary corrective actions against

possible failures in the power systems. In the electric power distribution networks, the underlying

state and observation models are highly nonlinear. The observations are geographically distributed

78

across the entire distribution grid. The large dimensionality of the estimation problem precludes

the direct application of the centralized particle filter primarily due to its high computational

complexity. In other words, although the centralized approach is optimal, it is neither robust nor

scalable to such large-scale dynamical systems with geographical distributed observation nodes

primarily because of two reasons. First, extensive computations are required at the fusion node

due to the high dimensionality of the dynamical systems. Second, the centralized implementation

requires a large number of information transfers to the fusion center thus adding considerable

latency (a major drawback for real-time applications) to the estimation mechanism.

The state estimation approaches in complex electric power distribution networks, typically

consider the overall system as a union of several low-dimensional subsystems. Each subsystem

is a combination of multiple, geographically distributed nodes representing a variety of power

devices such as generating stations, compensators, or loads. Within each subsystem, the voltage

and power supplied to a feeder at the substation are usually the only real time measurements

available to the system operator at the distribution control centre. More extensive real time

monitoring and control are required for effective operation of the system and for good quality

of service to the customer coupled with the need to prevent wide-spread power blackouts. As

outlined below, there are at lease three major aspects in the power grids that directly impact state

estimation approaches and motivate development of distributed estimation implementations.

1. Monitoring the power grid over large geographical areas calls for distributed control, and

hence, distributed state estimation to facilitate coordinated monitoring.

2. More advanced measurement technologies like phasor measurement units (PMUs) have of­

fered hope for near real-time monitoring of the power grid. However, the latency introduced

by the centralized estimation architecture is a major barrier toward achieving this goal.

79

3. To facilitate smart grid features such as demand response and two-way power flow, timely

and accurate models and estimation approaches are required which calls for distributed

on-line state estimation at the distribution level.

2.6.5 State Estimation in Distributed Camera Networks

Over the past decade, large-scale camera networks (110] have become increasingly popular in

a wide range of applications, including: (i) Sports analysis; (ii) Security and surveillance; (iii)

disaster response, and; (iv) Environmental modeling, where the objective is to follow the trajectory

of a key target, e.g., a star player in a soccer game or a suspect in a surveillance environment.

In many applications, bandwidth constraints, security concerns, and difficulty in storing and

analyzing large amounts of image data centrally at a single location necessitate the development

of distributed camera network (DCN) architectures [111]. In distributed tracking via camera

network each camera acts as a local agent and estimates certain parameters of the target using

a signal processing algorithm based upon its own set of video sequences. The local estimates are

then shared with the neighboring cameras in an iterative, decentralized, gossip-type fashion, and

a final estimate is computed across the network using consensus algorithms.

Most of the recent focus on distributed tracking algorithms for DCN is devoted to developing

distributed implementation of the Kalman filters [111]. Although particle filters are popular for

visual tracking [112, 113] in a centralized architecture, their distributed implementations are less

explored for tracking in DCNs. Distributed particle filter approaches proposed in the Thesis can

be applied (with proper modifications) for tracking problems in DCN.

80

2.7 Summary

In this Chapter, the Bayesian estimation approaches were reviewed as background material. The

centralized and distributed Bayesian estimation framework were introduced in Section 2.1. Start­

ing with linear systems, three implementations of the Kalman filter were presented in the Sec­

tion 2.2.1. In many signal processing applications, the underlying processes are non-Gaussian and

the state-space models are nonlinear. Direct implementation of the Kalman filter is, therefore,

not practical. The particle filter was described in Section 2.2.2 as an alternative estimation ap­

proach for nonlinear systems. After presenting an overview of centralized estimation approaches,

common distributed implementations of the Kalman filter were discussed in Section 2.3 for linear

systems. Distributed implementation of the particle filter (DPF) were considered in Section 2.5

as an alternative to distributed Kalman filters for systems with nonlinear dynamics. The DPF

were classified into 2 main categories: (i) Estimate-then-Fuse where local state estimates are first

computed and then fused to compute the global estimate, and; (ii) Fuse-then-Estimate where

the observation/likelihood information is communicated within local neighbourhoods in order to

construct distributed implementation of the particle filter.

In summary, the following issues were identified with the existing distributed particle filter

implementations: (i) A large number of parallel consensus runs is required by the local particle

filters adding considerable overhead to the system; (ii) Selection of the proposal distribution

is not optimal; (iii) Some form of the Gaussian approximation of the global posterior density

and/or global likelihood is used in the DPF implementations, which affects the overall accuracy

of the estimation mechanism; (iv) Requiring the consensus step to converge within the duration

between two successive observations is a strict condition that may not be satisfied in networks

with intermittent connectivity, and; (v) A sub-optimal fusion rule is used to derive the global

estimate.

81

3 Consensus-based Distributed Implementation of the

Particle Filter

Chapter 2 provided an overview of some of the existing distributed particle filter implementations

developed for systems with nonlinear dynamics and non-Gaussian forcing and observation noise

terms. A number of issues such as large communication overhead for the consensus step, sub­

optimal selection of the proposal distribution, and requirement for the consensus step to converge

between two consecutive observations were identified. Chapter 3 proposes three consensus-based

distributed implementation of the particle filter to address some of these issues. The first ap­

proach is referred to as the constrained sufficient statistic based distributed implementation of

the particle filter (CSS/DPF). The CSS/DPF belongs to the DPF via likelihood/observation fu­

sion category (Section 2.5.2) and is proposed for distributed bearing-only tracking (BOT) and

joint bearing/range tracking applications. The CSS/DPF runs localized particle filters at each

sensor node and computes the global sufficient statistics of the overall system as a constraint

function (summation) of the local sufficient statistics. The CSS/DPF is, therefore, a two stage

procedure: (i) First, the average of the local sufficient statistics are computed distributively by

running average consensus algorithms to derive the global sufficient statistics, and; (ii) Each node

then updates its localized particle filter using the global sufficient statistics. The number of

parallel average consensus runs in the CSS/DPF is lower in comparison to the state-of-the-art

82

distributed particle filter implementations, thereby, reducing the communication complexity and

bandwidth requirement. The second approach presented in this chapter is referred to as the CSS

based unscented distributed particle filter (CSS/DUPF) which is a combination of the CSS/DPF

and UCD/DPF for BOT and joint bearing/range tracking applications. The CSS/DUPF im­

proves upon the CSS/DPF by introducing the UKF as the proposal distribution which is a better

approximation of the optimal proposal distribution as compared to the transitional density.

The third proposed DPF approach is referred to as the unscented, consensus-based, distributed

implementation of the particle filter (UCD/DPF). The UCD/DPF couples the unscented Kalman

filter (UKF) with the localized particle filter at each node such that the UKF estimates a Gaussian

approximation of the posterior distribution, which is then used as the proposal distribution in

the particle filter. The UCD /DPF belongs to the DPF via state estimation fusion category

(Section 2.5.1). Compared to the existing distributed implementations of the particle filter, the

UCD /DPF offers two advantages. First, it uses all available local observations including the most

recent ones in deriving the proposal distribution. Second, computation of the global estimate

from local estimates during the consensus step is based on an optimal fusion rule.

Table 3.1 compares the proposed full-order distributed particle filter implementations. A range

of characteristics for each implementation are compared in the table. Characteristics 1 and 2 define

the type of fusion used in the distributed implementation. Characteristics 3 to 9 define important

properties useful in selecting the implementation appropriate for the application at hand. Going

from left to right, the CSS/DPF has the lowest computation and communication complexity but

has a specialized implementation structure limited to specific applications. The CSS/DUPF is

relatively more accurate than the CSS/DPF but has a higher computational complexity and still

specifically designed for BOT and joint bearing/range tracking applications. The UCD/DPF has

less communication complexity than the CSS /DUPF and generalizable to most applications.

83

Table 3.1: Comparison of different full-order DPF implementations.

Characteristics CSS/DPF CSS/DUPF UCD/DPF

1. Likelihood/Observation fusion x x

2. State estimation fusion x x

3. Gaussian approximation for
x x

the global likelihood

4. Gaussian approximation for
x

the global posterior

5. Requires consensus convergence x x x

6. Application specific x x

7. Restrict the proposal to
x

the transitional distribution

8. Recovery from loss of information x x

9. Communication complexity low high medium

The organization of the chapter is as follows. The proposed CSS /DPF is presented in Sec­

tion 3.1 followed by the CSS/DUPF in Section 3.2. The UCD/DPF implementation is presented

in Section 3.4. Section 3.3 illustrates the effectiveness of the proposed framework in tracking

applications through Monte Carlo simulations. Finally Section 3.5 concludes the chapter.

3.1 The CSS/DPF Implementation

In distributed Kalman filters, it is well known [32, 114] that the mean of the observations recorded

across the sensor network provides sufficient statistics to reconstruct the optimal estimate. Ex­

tending this sufficient statistics approach to nonlinear systems, the section proposes a constraint

84

sufficient statistics-based distributed implementation of the particle filter (CSS/DPF) for bearing­

only [102-104] and joint bearing/range [115] tracking problems. Following [116], I show that if

the global likelihood satisfies certain constraints then it can be expressed as a function S(-) of

the known local statistics. In the CSS/DPF, I impose another constraint and restrict S(-) to

the summation operation so that the global statistics can be computed efficiently using average

consensus.

3.1.1 Sufficient Statistic-Based Framework

In this section, the sufficient statistic based framework for distributed implementation of the

particle filter is developed in terms of the local observations z(l) (k) and the global observation

z(k) = {z(l)(k)}~ 1 with N denoting the total number of nodes in the network. The global likeli­

hood P(z(k)jx(k)) and predicted density P(x(k)lz(l k - 1)) provide a complete characterization

of the estimation problem as previously shown in Eq. (2.10). Let S(z(k)) be the sufficient statis­

tic corresponding to the global likelihood function P(z(k)lx(k)). Based on the Fisher-Neyman

factorization theorem [117], the global likelihood is factorized as

(3.1)

where 'Ti(·) and 72(·) are functions of enclosed variables. 7i(z(k)) is independent of the state x(k)

and can be considered as the normalization constant. In other words, when node l, (1 ::; l ::; N),

knows the sufficient statistic S(z(k)) it can evaluate the global likelihood P(z(k)jx(k)) locally for

any given value of the state vector x(k) or its vector particle representation X~l)(k). Below, I

define the local and global sufficient statistics.

Definition 1. Any sufficient statistic that pertains to the overall observation z(k) used to describe

the global likelihood P(z(k)jx(k)) is called the global sufficient statistic (GSS) G(k).

85

Definition 2. Any sufficient statistic that pertains to the local observation (z(l) (k), for 1 ~ l ~ N)

used to describe the global sufficient statistics is referred to as the local sufficient statistic (LSS)

The following lemma provides the conditions for the existence of LSS and GSS, and relates

the GSS of the global likelihood function to the LSSs at node l, (1 ~ l ~ N).

Lemma 1. If the global likelihood P(z(k) Ix(k)) at iteration k satisfies the factorization defined in

Eq. (2.14) and the local likelihood P(z(l)(k)lx(k)) possesses a sufficient statistic y(l)(k), (1 ~ l ~

N), then {Y(1)(k) , ... ,y(N)(k)} are jointly sufficient for estimating x(k) in terms of the global

likelihood function.

The proof of Lemma 1 is included in Appendix A.l. With some additional constraints on the

nature of the factorization admitted by P(z(k)lx(k)), there exists a function S(-) such that the

GSS G(k) equals S(Y(1)(k), ... ,y(N)(k)) as summarized in the following lemma.

Lemma 2. Assuming the local observation are independent given the state variable which results

in the following factorization of the global likelihood function

N

P(z(k)lx(k)) = IJ P(z(l)(k)lx(k)),
l=l

and let the global likelihood P(z(k)lx(k)) (similarly the local likelihood P(z(l)(k)lx(k)) at node l)

be factorizable, i.e.,

P(z(k)lx(k)) = hi(z(k))h2(z(k),x(k))h3(x(k)) (3.2)

with the conditions:

(i) h1 (z(k)) > 0, and;

(ii) for nodes i f:- j

h~i)(z(k),x(k))h~1)(z(k),x(k)) = h2 (¢(z(i)(k),z(j)(k)),x(k)) h4 (z(i)(k),z(j)(k)), (3.3)

86

then there exist LSSs {Y(l) (k), ... , y<N) (k)} and a function S(·) such that the GSS is given by

G(k) = S(y(l)(k), ... ,y(N)(k)). (3.4)

Note that hi(·), h2(·), h3(·), h4(·), as well as their localized counterparts hi*\), h~i)(·), h1i)(·),

h~i) (·), and ¢(·) denote functions of the enclosed variables.

The proof of Lemma 2 is provided in Appendix A.2. Lemmas 1 and 2 show that the GSS

can be represented as a function of the LSSs under the constraints specified in Eqs. (3.2)-(3.3).

Several standard distributions satisfy these constraints including the Gaussian distribution for

the observation noise ((l)(k) at node l (a standard model used in the bearing and range tracking

problems [103]). To provide more insight into the nature of the LSSs and GSSs, I consider the

following simplified case of a distributed network with identical sensor nodes and Gaussian noise,

i.e., all sensor nodes follow the same observation model

z<l)(k) = g(x(k)) + c<l)(k), (3.5)

for (1 ~ l ~ N), where (<l)(k) rvN(o,a<0
2
(k)). Expressing the global likelihood (Eq. (2.14)) as

It is noted that node l, (1 ~ l ~ N), has three LSSs, i.e., Y?)(k) = z(l)
2
(k)/2a<l)

2
(k), y~l)(k) =

l/2a<0
2
(k), and y~l)(k) = z(l)(k)/a<l)

2
(k). The three LSSs will result in three GSSs as follows

G1(k)
N z(l)2(k) N (l)
~ 2a<z)2(k) = ~Y1 (k) (3.7)

N N
G2(k) I: i I: (l) (3.8) 2a<l)2(k) = Y2 (k)

l=l l=l

G3(k) t z<O(k) t (l)
l=l a(lF(k) = l=l Y3 (k).

(3.9)

87

The GSS can be computed by running average consensus algorithms on the GSS across the

network. Note that the result of the average consensus algorithm needs to be multiplied by the

number of nodes N to be used in Eq. (3.6). The number of nodes in the proposed CSS/DPF

are assumed known. If not, one additional consensus run with all nodes set to 0 except for the

originating node that is set to 1 can be used to determine the number of active nodes in the

network.

In the CSS/DPF, I impose another constraint and restrict SO defined in Lemma 2 to a

summation such that a GSS can be computed efficiently using an average consensus algorithm. In

other words, I design the LSSs and GSSs in the CSS/DPF such that SO is given by the following

summation

N

G(k) = S(Y(1)(k), ... , y(N)(k)) = Ly(l)(k). (3.10)
l=l

Below, the bearing-only tracking (BOT) in two and three dimensions is considered, which is then

extended to joint range/bearing tracking [102-104].

3.1.2 CSS/DPF for Bearing and Range Tracking

In applications with locally dependent observation models, g(l)(x(k)) is not only a function of

the state variables x(k) but may also depend on additional local variables, say)..(l)(k). The BOT

problem belongs to this category where the local observation model at node l, (1 ~ l ~ N), is a

function of the state variables and the coordinates {X(l)(k), y(l)(k)} of node l. In such scenarios,

the observation model needs to be factorizable as follows

(3.11)

for which the LSSs and GSSs are computable. Next, the CSS/DPF is developed for the 2D bearing

only tracking problems.

88

3.1.2.1 2D Bearing-only Tracking

Recall that bearing-only tracking (BOT) estimates the kinematics of the target (position and

velocity). In the 2D tracking scenario, the state representing the target is defined as x(k) =

[X(k) X(k) Y(k) Y(k)]T, where T denotes transposition, [X, Y] the position, and [X, Y] the

velocity of the target. Sensor node l records the bearing between the sensor-target line of sight

with respect to the platform of the sensor nodes referenced (clockwise positive) to the y-axis

(azimuth) as

(l) _1 (X(k) - X(l)(k))
Ze (x(k))=tan Y(k)-Y<O(k) ' (3.12)

where)..(l)(k) = (X(l)(k), y(l)(k)) are the known coordinates of node l. The scalar observation

z~l)(k) made at node l is the true bearing z~l)(x(k)) plus additive noise as follows

(3.13)

The participating nodes can be either static or mobile. For mobile nodes, a cooperative self local-

ization algorithm, based on the global positioning system (GPS) or using some other anchor-based

algorithm [121) is required to ascertain the locations of the observation nodes. The CSS/DPF

uses the following result to factorize the global likelihood for the 2D-BOT problem.

Theorem 2. In an agent network comprising N local nodes with local bearing observations z~O(k),

{1 ~ l ~ N), and under conditions specified in Lemmas 1 and 2, the global likelihood function for

the 2D BOT can be expressed as follows

P(zo(k)lx(k)) = Co~k) exp { - ~ [co,1(k) + X 2
(k)Go,2(k)

+ Y 2(k)G9 ,3 (k) - 2X(k)Y(k)G9,,(k) + 2X(k)Go,s(k) - 2Y(k)Go,6(k)]} (3.14)

89

where

N [z~l)(k)]2
Go,1(k) = L R(l)(k) '

l=l 0
'---v---"

Y~'.i(k)
N . 2 ((l) (k))

()
- ~sm Z0

Go,3 k - ~ (l) ,
l=l Ro (k)

'----v-----'

Y~'.~(k)
N (l) ((l))

()
~ Z 0 (k) cos Z 0 (k)

Go,5 k = ~ (l) ,
l=l Ro (k)

N 2((l)())
()

- ~cos Z0 k
Go,2 k - ~ (l) ,

l=l Ro (k)
~

Y~'.~(k)
N ((l) ()) . ((l))

()
~cos Z 0 k sm Z 0 (k)

Go,4 k = ~ (l) ,
l=l Ro (k) (3.15)

Y~'.~(k)

and
N z<t) (k) · (z<t) (k))

G (k)-~ o sm o
o,6 - {=: R~l)(k)

Y~'.~(k)

Parameter R~l) (k) is the variance of observation noise at node l, Co(k) = (27r)N/2 TI{:,1 (R~l) (k))112 ,

and

(3.16)

with (X(l)(k),Y(l)(k)) the coordinate of node lat time k.

The proof of Theorem 2 is included in Appendix A.3. Terms G*(k) are the GSSs expressed as

functions of the LSSs Yil)(k), (1 :::; l :::; N). Theorem 2 shows that a total number of six global

sufficient statistics (GSS) and an additional term Co(k) are needed at each local particle filter to

be able to evaluate the global likelihood locally. Because the LSSs are only functions of local quan-

tities, the six GSSs can be computed using six parallel average consensus algorithms. If needed,

term Co(k) can also be computed distributively using another average consensus algorithm. After

the consensus step, the global likelihood can be evaluated locally from the consensus values of

the GSS G1 (k) to G6 (k) and Co(k). Based on Theorem 2, the CSS/DPF is explained in terms of

Algorithm 3.

90

Algorithm 3 CSS/DPF IMPLEMENTATION FOR 2D BOT PROBLEM.

Local node l, (1 ~ l ~ N), performs the following steps to update its particle set for iteration k.

1: Compute LSSs: Node l, (1 ~ l ~ N), computes the LSSs (Y?)(k) -Y~l\k)) from its local

observation Z~l)(k) based on Eq. (3.23).

2: Compute GSSs (Consensus Step): A total of 6 parallel average consensus algorithms are

performed to compute the GSSs (G1(k) - G6 (k)) as defined in Eq. (3.23).

3: Particle Generation Step: For each particle X~l)(k-1), for (1 ~ i ~ N~l)), a new predicted

particle x~l)(k) is sampled form the transitional density P(x(k)lx(k-l))lx(k-l)=X~k)(k-1) (the

proposal distribution).

4: Weight Update: The weights associated with the predicted particles x}l)(k) (computed in

Step 2) are calculated based on the global likelihood (Eq. (3.14)) using the values of the GSSs

computed in Step 3 as follows

5: Compute State Estimates: An approximation of the global MMSE state estimate y.:(l)(k)

at node l is computed from {X}l), wp)(k)}~1 and its corresponding error covariance p(l)(k)

as follows

(3.17)
i=l

N(t)

pCl)(k) = N~I) t, (xll) (k)-x(l)(k)) (xll) (k)-jiJI) (k)) T (3.18)

6: Resampling: To avoid degeneracy, the updated particles x}z) (k) are resampled using Algo-

rithm 2.

91

3.1.2.2 3D Bearing-Only Tracking

In this section, I extend the CSS/DPF to the 3D BOT problem with state vector x(k)

[X(k), X(k), Y(k), Y(k), Z(k), Z(k)]T. Compared to 2D BOT, the Z-coordinate Z(k) and its

velocity component Z(k) are included in the state vector. For 3D BOT, measurements often in-

volve a pairwise combination between azimuth bearing, conical bearing, or elevation bearing [102].

Without loss of generality, I consider the pair of azimuth and elevation bearings with the azimuth

bearing given by Eq. (3.12). The elevation bearing is defined as

(3.19)

with the overall observation model

[

z~l)(k) l = [tan-
1 (~~~~=;;'.'.IZ?) l + [,~l)(k) l

z(l) (k) tan-1 (Z(k)-Z (k)) (ll) (k)
</> z~> (x(k)) '+'

(3.20)

at node l. Term z~) (x(k)) is the true range between the sensor node and the target as follows

z~)(x(k)) = V (X(k)-X(l)(k))
2 + (Y(k)-Y(l)(k))

2
(3.21)

and (X(l)(k), y(l)(k), zCl)(k)) is the 3D coordinate of the sensor node l.

Theorem 3. In an agent network comprising of N sensor nodes with elevation bearing obser-

vations z~l)(k) and under conditions specified in Lemmas 1 and 2, the global likelihood function

for the 3D BOT problem can be expressed collectively in terms of Eqs. (3.14) and the following

equation

P(z¢(k)lx(k)) C¢~k) exp { ~l (G¢,1(k) - 2Z(k)G¢,2(k) + 2X(k)G¢,3(k)

+ 2Y(k)G¢,4(k) + Z 2 (k)G¢,5(k) + X 2 (k)G¢,6(k) + Y 2 (k)G¢,1(k)

2X(k)Z(k)G¢,s(k) - 2Y(k)Z(k)G¢,9 (k) + 2X(k)Y(k)G<1>,10(k))} (3.22)

92

where

G<P,s(k)

y~l.)6(k)

f, sin2 (Z~I) (k)) sin2 (z~l) (k))

l=l R~)(k) '

G<P,s(k)

(3.23)

93

with
N

C¢(k) = (27r)N/2 II (R~)(k))l/2, (3.24)
i=l

the elevation bearing noise variance (119 j given by

(3.25)

and parameter

z~l) (k) = z~l) (k) cos(z~l) (k))-x<l) (k) sin(z~l) (k)) sin(Z~l) (k))-Y(l) (k) sin(z~l) (k)) cos(z~l) (k)).

(3.26)

The proof of Theorem 3 is included in Appendix A.4. The CSS/DPF algorithm for 3D BOT

tracking is similar to the 2D BOT scenario except for Steps 1 and 2, where LSSs {Y~l,~(k)} and

associated GSSs for elevation {G~!i(k)}, (1:::; i:::; 10), are needed in addition to the LSSs {Y~~~(k)}

and GSSs {G~l,~(k)}, (1:::; i:::; 6), for azimuth. The number of consensus runs is 16 in this case.

3.1.2.3 2D Joint Bearing and Range Tracking

In 2D joint bearing and range tracking, the range measurements (as defined below) are available

in addition to the bearing measurements (Eq. (3.12)) at all local nodes. The overall observation

model is given by

where the range observation noise (~) (·) is assumed to be independent of bearing observation

noise dl)(k). The global likelihood for the range observations is expressed in terms of the LSSs

and GSSs in the following theorem.

94

Theorem 4. In an agent network comprising of N local nodes with range and bearing observations

{Z~)(k), z~l)(k)}, {1 ~ l ~ NJ, and under conditions specified in Lemmas 1 and 2, the global

likelihood function can be expressed as Eqs. (3.14) and (3.28) given by

P(zR(k)lx(k)) = c:(k) exp { -H GR,1(k) + X 2(k)GR,2(k)

+Y2(k)G R,3(k) + 2X(k)Y(k)G R,4(k) - 2X(k)G R,5(k) - 2Y(k)G R,6(k) l} (3.28)

where

N sin 2 (Z ~ l) (k))
GR,2(k)= L (l) '

l=l RR (k)
'---v--'

Yh1.~(k)
N (z<l) (k)) · (z<l) (k))

GR
4

(k) = _""""' cos e sm e ,
, 8 RW(k)

Y~.~(k)
N z~)(k) cos (z~O(k))

GR,6(k)=L: (l) '
l=l RR (k)

Yi:.~(k)

(3.29)

where CR (k) is the normalization factor independent of the state variables, R~) (k) is the variance

of node l's range observation noise, and

(3.30)

The proof of Theorem 4 is included in Appendix A.5. Algorithm 3 can again be applied to

estimate the states except for Steps 1 and 2, where LSSs {Y~:i(k)} and associated GSSs for

range {G~~i(k)}, (1 ~ i ~ 6), are needed in addition to the LSSs {Y~~~(k)} and GSSs {G~l,~(k)},

(1 ~ i ~ 6), for azimuth. The number of consensus runs is 12 in this case.

95

3.1.2.4 Adaptation of the CSS/DPF to Dynamic Networks

In this section, we investigate the application of sufficient statistics-based cooperative target lo­

calization approach (CSS/DPF) to dynamic networks, where nodes join and leave the cooperation

at any time. In this context, two situations are observed which are describe next. Note that in the

CSS/DPF, the LSSs are being communicated between the neighbouring nodes. Next we assume,

without loss of generality, that tnode m joins/rejoins the network at iteration k of the CSS/DPF.

1. A Brand New Node Joins the Cooperation: The new node has no previous state

estimates available and needs to go through an initialization stage. One of the neighbouring

nodes transfers the global filtering density P(x(k-l)Jz(l: k-1)) to the new node. Since this

is an one time initialization, therefore, the initialization overhead is bearable and a good

aproximation of P(x(k-l)Jz(l: k-1)) (such as the Gaussian Mixture Model (GMM) [17)

and Parzen representation [27)) of the noeighbouring node can be transfered to the new

node, which now joins the network. At iteration k, the new node makes an observation

z(m)(k) and calculates the LSSs which are based on only its local observation. It now starts

contributing to the consensus step of the CSS/DPF. Once the consensus step converges, all

nodes including the new node has access to the GSSs. Given P(x(k-l)Jz(l: k-1)) and the

GSS, the new node can form its own global state estimates and is now a full member of the

network.

2. A previously cooperating node that had left the network rejoins the cooperation:

In this scenario, we assume that the node was making its own observations prior to rejoining

and has its own local estimates as well as the local filtering density P(x(k-l)Jz(m) (1: k-1)).

Node m has two options. It can either treat itself as a new node joining the network and

follow the peocedure outlined for Case 1. Allternatively, it can combine/fuse its local filtering

96

density P(x(k-l)lz(m)(l: k-1)) with the global filtering density P(x(k-l)iz(l: k-1)) obtained

from one of the neighbouring nodes and rejoin the network as a full member cooperating

in the consensus step for computing the GSSs. However, there is an issue with combining

P(x(k-l)lz(m)(l: k-1)) with P(x(k-l)iz(l: k-1)). Due to existing correlations, direct

fusion is not feasable as it results in double counting of common information and degrades the

overall performance. A conservative approach, e.g., covariance intersection can be applied.

3.1.2.5 Communication Complexity

The overall communication complexity of the CSS/DPF for the angle-only target localization

problem at each node (i.e., the number of messages transferred at each iteration of the distributed

particle filter) is of O((ncss + l)~gNc(U)) where Nc(U) is the total number of consensus itera­

tions required for convergence. Recall that the consensus matrix U is a function of the connectivity

of the network. It can be shown [120] that Nc(U) = -1/ max2<i<N log(l-\i(U) I), where Ai(U) are

the eigenvalues of the consensus matrix U. The communication complexity of the CSS/DPF is,

therefore, related to the properties of the communication network. For [23,24,59], the communica­

tion complexity is of O(n;~gNc(U)), which implies an improvement by a factor of n;/(ncss + 1)

in favor of the CSS/DPF. The computational complexity of the CSS/DPF is difficult to compute

due to presence of the non-linear terms. Note, however, that the computational burden in the

CSS /DPF is distributed evenly across the nodes, while the fusion center performs most of the

computations in the centralized particle filter. In general, the number of computations at each

node in the distributed implementation is significantly lower than these of the fusion centre in its

centralized counterpart. This places an additional power energy constraint on the fusion center

causing the system to fail if the power of the fusion center drains out.

In conclusion, the CSS/DPF is a distributed implementation of the SIR filter and belongs to

97

the DPF via likelihood/observation fusion category (Section 2.5). The CSS/DPF implementation

significantly reduces the number of required consensus runs for bearing-only and joint bearing­

range tracking applications. The CSS /DPF requires the global likelihood function to satisfy

conditions of Lemma 1 and 2. Though fairly straightforward and simple to implement, the

CSS/DPF has the following drawbacks.

1. The CSS /DPF is designed specifically for bearing-only and joint bearing and range tracking

applications. Extending the CSS /DPF to other applications is generally not straightforward.

2. Choosing the transitional distribution P(x(k)lx(k-1)) as the proposal distribution is not

optimal.

3. In the CSS/DPF, some function of the local observations are transferred to neighbouring

nodes. Communicating state posteriors is advantageous over communicating functions of

local observations or local likelihoods because the later would result loss of information in

case packets are lost. If instead, information on the state posteriors is communicated, lost

information can be recovered since it is implicitly present in the future state posterior.

4. The CSS /DPF is limited to the Gaussian likelihoods.

5. As is the case for the existing consensus-based distributed particle filter implementations (18,

20, 23, 24], the CSS/DPF assumes that the consensus algorithm converges within the time

interval available between two successive observations. Such an assumption in large networks

is non-realistic and the consensus step loses synchronization with localized filters.

Next, I extend the proposed framework (CSS/DPF) to distributed implementation of the un­

scented particle filter, referred to as the CSS/DUPF which addresses drawbacks 2 and 3 of the

CSS /DPF as follows:

98

1. Instead of choosing the transitional distribution P(x(k) Ix(k-l)) as the proposal distribution,

the CSS/DUPF uses an approximation of the optimal proposal distribution and therefore

uses all available global observation including the most recent ones in deriving the proposed

distribution.

2. Unlike the CSS/DPF where only local observations were transferred between the neighbour­

ing nodes, in the CSS/DUPF local state estimates are also communicated between neigh­

bouring nodes. Therefore, in the CSS/DUPF, lost information (e.g., due to link and/or

node failure) can be recovered since it is implicitly present in the future state estimates.

3.2 The CSS/DUPF Implementation

The CSS/DUPF couples a distributed unscented Kalman filter (D/UKF) with the CSS/DPF such

that the optimal proposal distribution function (Eq. (2. 78)) is approximated with a Gaussian

distribution whose statistics (mean and error covariance matrix) are computed using the D /UKF

estimates. The CSS/UDPF is assumed to be in steady state and at iteration k - 1, i.e., all nodes

have computed the global state estimates (x<l) (k - 1) and f'(l) (k - l)) at time instant k - l (based

on Step 5 of Algorithm 3). A new measurement z(l)(k) is now available at the local nodes.

Step 1. Similar to CSS/DPF, node l, for (1 ~ l ~ N), computes its LSSs and fuse them distribu­

tively to form the GSSs. Based on the computed GSSs, node l, can locally. evaluate the global

likelihood P(z(k)lx(k)) for any given particles.

Step 2. Node l generates a set of (2nx + 1) deterministic samples (referred to as the sigma points)

S = {Wfl), x;l)(k)};~0 based on the following selection procedure

xlll (k - 1) = x(ll(k - 1) ± { Jcnx + t<)POl(k - 1)},, (3.31)

99

where term { J(nx + "")P(l)(k - l)h corresponds to the ith column of the square root of matrix

(nx + "")f'(l)(k -1) and the initial condition is given by xg)(k) = x_(l)(k -1). The corresponding

weights for the Sigma points {Wi};~1 are given by wJZ) = 1/(2(nx + "")), where "" is a scaling

parameter and the initial condition for the sigma points is w6l) = K,/(nx + /'l,).

Step 3. Node l, (1 :::; l :::; N), computes an estimate of its local posterior as follows.

Step 3.1 The sigma points computed in Step 1 are propagated through the state model (Eq. (2.3))

to generate the predicted sigma points

x~l)(klk - 1) = f(x~l)(k -1)), for i = 0, ... '2nx. (3.32)

Step 3.2 The predicted sigma points x~l)(klk - 1) are then propagated through the observation

model (Eq. (3.12) and/or Eq. (3.21)) to generate the predicted observation sigma points

z~l)(klk - 1) = g(x~l)(klk - 1)), for i = 0, ... '2nx. (3.33)

Step 3.3 The predic;:ted state estimate x~kp(klk - 1), its error covariance matrix PS~F(klk - 1),

and the predicted observation estimate zgkp(klk - 1) are computed as follows

2n.,

xgkp(klk - 1)= L w?)x~l) (klk - 1), (3.34)
i=O

2~ T
PS~p(klk - 1)= L wP) (x}z) (klk - 1) - xgkp(klk - 1)) (x~l) (klk - 1)-xgkF(klk - 1)) (3.35)

i=O
2n.,

zgkp(klk - 1)= L wP) z~z) (klk - 1). (3.36)
i=O

Step 3. 4 The au to covariance Pzz (k I k-1) of predicted observations, the cross-covariance Pxz (k I k-

100

1) between predicted observation and predicted state estimates are computed as

2nx T

P;;)(klk - 1) =I: w?) (z~l) (klk - 1) - z<l) (k + 11k)) (z~l) (klk - 1) - z(l) (klk - 1)) , (3.37)
i=O

~ T
P~Q(klk - 1) = L w?) c~~l)(klk - 1) - xgkF(klk - 1)) (z~l)(klk - 1) - zgkF(klk - 1))(3.38)

i=O

Step 3. 5 The final step is to estimate the statistics of the proposal distribution as follows

p,(l) (k)
UKF

xgkF(kjk - 1) + JC(l) (k) (z(l)(k) - zgkF(kjk - 1))

PSkF(klk - 1) - K:(l)(k)P;;)(klk - l)[K:(l)(k)]T,

where the Kalman gain is given by

(3.39)

(3.40)

(3.41)

Step 4. The next step in the CSS/DUPF is to cooperatively compute statistics of the proposal

distribution. Based on the Chong-Mori-Chang track-fusion theorem [127], the CSS/DUPF algo-

rithm uses the following fusion to fuse local statistics {xgkp(k), PSkF(k)}~ 1 into a common set

of global statistics denoted by xg~sed) (k) and PS{;sed) (k)

N

[PSi{;sed)(k)r
1 = [PSkF(klk - 1)r

1 + L:rPi/Jp(k)r
1

- [Pi/Jp(klk - 1)r
1

(3.42)

A (l.Fused) (k)
XUKF

j=l

Pc(oo)

[PSi<~sed)(k)]- 1
[[PSkF(klk-1)r

1
xgkF(klk- l)

N

+ I: [P{/Jp(k)r
1
xg{<F(k) - [P{/Jp(klk - l)r1

xgkF(klk -1)], (3.43)
j=l

Xc(oo)

In Eqs. (3.42) and (3.43), {xc(oo), Pc(oo)} are obtained by iterating the following average con-

sensus equations where t E (0, 1/ ~g) [32].

(3.44)
jEN(L)

P?>(t + 1) = P?>(t) + t L (P~j)(t) - P?>(t)), (3.45)
jEN(L)

101

till converge to {xc(oo), Pc(oo)}. The initial conditions are

[Pi/JF(k)t 1
- [Pi/JF(klk - l)t1 (3.46)

[Pi/JF(k)t 1xgkF(k) - [Pi/JF(klk - l)t 1xgkF(klk - 1). (3.47)

In other words, Eq. (2.116) is used to reach consensus with x~l)(t) used instead of X~l)(t) for the

first consensus run and P?)(t) used instead of X~l\t) for the second run.

Step 5. Node l, for (1:::; l:::; N), generates Ns random particles X~l)(k) from the following proposal

distribution

and computes their associated weights wp) (k) based on the following weight update equation

(3.49)

where the global likelihood function P(z(k)lx(k)) is computed based on the GSSs. The imple-

mentation of the CSS /DUPF is outlined in Algorithm 4.

Similar to the CSS /DPF, the CSS /DUPF is applicable specifically to bearing-only and joint

bearing/range tracking applications. Extending the CSS/DUPF to other applications is generally

not straightforward. Besides, the CSS /DUPF restricts the global likelihood a Gaussian distri-

bution. Next, I propose the UCD /DPF implementation of the particle filter which is applicable

to more general problems and addresses does not require the global likelihood to be a Gaussian

distribution.

3.3 Simulation Results for the CSS/DPF and CSS/DUPF

In this section, the performances of the proposed CSS/DPF, CSS/DUPF, and UCD/DPF are

evaluated through Monte Carlo simulations. All simulations were performed using a commer-

102

Algorithm 4 CSS/DUPF IMPLEMENTATION

N(t)

Input: {X~l)(k - 1), Wi(l)(k - l)h:1 , x<l)(k-1), P(l>(k-1), and z<l)(k).

N(t)

Output: {X~l)(k), wp>(k)}i:I, x(l>(k) and p<l)(k).

Local node l performs the following steps to update its particle set for iteration (k).

1: Compute LSSs: Same as Step 1 of Algorithm 1.

2: Compute Statistics of the Proposal Distribution:

3A: Compute GSSs (Consensus Step): Same as Step 2 of Algorithm 1.

•Local UKF Step: A local state estimate x(k) is computed via local UKF based on (i) The

previous global statistics (x<l)(k-1) and p(l)(k-1)), and; (ii) Local observation z(l)(k).

• Fusion of Local UKFs (Consensus Step): Local state estimates and their corresponding

error covariance matrix are combined to compute the statistics of the proposal distribution

(xg~sed) (k) and PSf;sed) (k)) using the fusion rules given by Eqs. (3.42) and (3.43).

3B: Particle Generation Step: For each particle X~l)(k-1), for (1::; i::; N~l)), a new predicted

particle x~l)(k) is sampled form the following proposal distribution

where its statistics are available from Step 3A.

4: Weight Update: The weights associated with the predicted particles X~l)(k) (computed in

Step 2) are calculated from the global likelihood Eq. (3.14) and the proposal distribution

computed in Step 3 as follows

and then normalized.

5: Compute State Estimates: Same as Step 5 of Algorithm 1.

6: Resampling: Same as Step 6 of Algorithm 1.

103

cial software package (MATLAB R2012a, The MathWorks, Inc., Natick, Massachusetts, United

States). Simulations were performed on a computer with Intel Core i5 CPU 2.27 GHz with 4 GB

of RAM.

First, a distributed 2D BOT application (102) is used to quantify the performance of the

proposed CSS/DPF and CSS/DUPF implementations. As stated in Section 2.6.1, the objective

is to design a practical filter capable of estimating the kinematics (position [X, Y] and velocity

[X, Y]) of the target from the bearing measurements and prior knowledge of the target's motion.

The state vector is, therefore, given by x(k) = [X(k), Y(k), X(k), Y(k)]. BOT is inherently

a non-linear application with its non-linearity incorporated either in the state dynamics or in

the measurement model depending on the choice of the coordinate system used to formulate the

problem. The nonlinear state model is given by x(k+l) = f(x(k))x(k)+e(k+l) where the target's

motion f(x(k)) is described using different models such as: (i) Constant velocity (CV) model; (ii)

Clockwise coordinated turn (CCT) model; (iii) Anticlockwise coordinated turn (ACT) model; (iv)

Constant acceleration (CA) model, or; (v) some combination of (i)-(iv). In this section, f(x(k))

is considered to be the non-linear CCT kinematic motion model given by

1 0 sin(O(k~D.T) 1-cos(O(k)D.T~
O(k) O(k

0 1 1-cos(O(k~D.T) sin{O(k)D.T~

f(x(k)) =
O(k) O(k)

(3.50)
0 0 cos(O(k)~T) - sin(O(k)~T)

0 0 sin(O(k)~T) cos(O(k)~T)

with the mode-conditioned turning rate O(k) given by

O(k) = Am

V(X(k))2 + (Y(k))2
(3.51)

The typical manoeuvre acceleration parameter for the filters was set to am = 1.08x 10-5m/s2 [103).

In the following simulations, an AN/SN is considered comprising of N = 20 observation nodes

where sensors are distributed randomly in a (15 x 15) m2 square region, unless stated otherwise.

104

Within the area under surveillance, each sensor communicates only within a connectivity radius

of J21og(N)/N meters as previously used by [24]. In addition, the network is assumed to be

connected with each node linked to at least one other node in the network. The measurements

z(l)(k) available at node l are the target's bearings with respect its platform referenced (clockwise

positive) to the y-axis, i.e.,

(l) _ (X(k) - X(l)) (l)
Z (k) - atan Y(k) _ y(l) + ((k), (3.52)

where { x<l), y(l)} are the coordinates of node l. Both state and observation noises are assumed to

be normally distributed, i.e., e(k) '""'N(O, Q) and ((k) '""'N(O, R). Further, the observation noise

model is assumed to be state dependent such that the bearing noise variance a~(t) (k) at node l

depends on the distance r<l)(k) between the observer and target. Based on [166], the variance of

the observation noise at node l is given by

(3.53)

where different values for parameter Bm are used to test various signal to noise ratios (SNR).

In other words, R(k) = diag[a~<l) (k)]. In each run, the target starts its track from coordinates

{10, 10}, with the initial course set at -110° with the standard deviation of the process noise

ae(k) = 1.6 x 10-2 meter. Matrix Q depends on ae(k) as defined in [103]. Eqs. (3.50)-(3.53) define

the state-space model completely (Eqs. (2.3) and (2.4)). The performance metric used to evaluate

different implementation is the root mean square position error (RMS) [103] given by

(3.54)

where nMc is the number of Monte Carlo simulations. In the following simulations, 100 Monte

Carlo runs are implemented. Both the centralized and distributed BOT tracking algorithms

require an initialization step which is described next.

105

3.3.1 BOT Initialization:

To derive the initial values for the state vector

x(l) (0) = [X(l) (0), y(l) (0), X(l) (0), y(t) (O)]T

at node l, the initialization procedure proceeds as follows. Given the first bearing measurement

z(l)(l) at node l, the relative position components {X(O), Y(O)} of the target state vector are

computed based on the procedure described in [103], i.e.,

and IY(O) - y(l)I = f(l) cos(z(l)(l)),

where { X(l) and y(l)} are coordinates of node l assumed known. The range r(l) of the target

from node l is initialized at random from other normal distributions, i.e., r<l) ,....., N(r(l), a;).

The velocity components are initialized using a similar procedure by selecting from a random

distribution, i.e., s ,....., N(s, a;) and c ,....., N(c, a~), respectively. The velocity components of the

target state vector is then initialized as X(O) = ssin(c) and Y(O) = s cos(c). The means r<l), s,

and c along with their corresponding variances a;, a;, and a~ are assumed known. The initial

error covariance matrix associated with x(O) is modeled as follows

(J2 2 0 0 x (Jxy

2 (J2 0 0
P(O) =

(Jyx y
(3.55)

0 0 a? x
a?.

xy

0 0 2 (J~ aiJx y

where the constituent elements in P(O) are derived based on [103].

In the distributed implementations, the initialization step is performed at each node individ-

ually with the initial observation noise variance of ao = 2.5°. Below four different scenarios are

considered to evaluate the performance of the proposed distributed estimation framework.

106

15

10

5

s:::
0

·~
0 e 0
:a
I

>-
-5

-10

-15
-15

•.-
:-. ;· ...
':-t''

~ T . . l , ' , 1 · ~ • \ • -

• I\

\

. .-····· >~

\ \ "\
•.\1

... , .. \ ··:,.
'• \ < .• \., I' I .~.~ ;• >+:.·<·

... :···:.-
.;,·. •·

"·. \1 ~· • ."'\ I' I Ll.-• ..• ~ ..

.. ~if = ~f ~'?:r--------~
·· ,._._ · ... :::.- -+-Targets Trajectory

• Localnodes

-10 -5 0 5 10
X - dimension

(a)

15

Figure 3.1: Scenario 1: Realization of the sensor placement along with the target's trajectory. The

number of iterations required for achieving consensus in this network is Nc(U) = 5.

3.3.2 Scenario 1

To quantify the tracking performance of the proposed CSS/DPF and CSS/DUPF, five different

estimation algorithms are considered: (i) Centralized scenario where one node has access to the

observations of all other nodes. (ii) Distributed scenario using the CSS/DPF, (iii) Distributed see-

nario using the CSS/DUPF, (iv) Distributed unscented Kalman filter proposed in [7], referred to

as distributed UKF, and; (v) Distributed particle filter proposed in [23], referred to as Gu et al.

For comparison, we also plot the posterior Cramer Rao lower bound (PCRLB)-a lower bound

on the performance of the optimal distributed estimators The PCRLB is computed based on a

centralized recursive algorithm presented in [148]. The theory of the PCRLB is introduced in

Chapter 5 where we present novel distributed algorithms to compute the PCRLB. The initializa-

107

tion parameters for the simulation run is obtained by following the filter initialization procedure

described above with the standard deviations for the measurement and velocity models given by

Ur= .7, Uc= 7r/VT2, and <78 = .7, and the mean values given by c = -110° ands= 0.4 meter.

The mean value r<l) of range is the noise corrupted true range between node l and the moving

target. Resampling in the particle filtering was carried out if Neff(k) < N 8 /3. The number N 8

of vector particles used at the fusion center in the centralized implementation is 10, 000, while

the number of particles (NccF or NuPF) used at each node in the distributed implementations is

1000. Fig. 3.1 shows one realization of the sensor placement along with the target trajectory.

Due to state-dependent noise variance, the signal to noise ratio (SNR) is time-varying and dif­

fers from one node to the other depending on the location of the target. Two different SNR cases

(averaged across all nodes and time) are considered: (i) High SNR, where the SNRs at different

nodes varies form 16dB to 29dB (Fig. 3.2(a)), (ii) Low SNR, where the SNRs ranges from 5dB to

17dB across the network (Fig. 3.2(b)). In Figs. 3.2(a) and (b) the RMS error computed based on

Eq. (3.54) corresponding to the CSS/DPF and CSS/DUPF (schemes (ii) to (iii)) are compared

versus that of the centralized particle filter (scheme (i)), schemes (iv) to (v), and the dPCRLB

lower bound [51]. In Figs. 3.2(a) and (b) the consensus step is allowed to converge between two it­

eration of the localized filters. Each node initializes its local filter separately, therefore, the initial

state estimates :X(l) (0) are potentially different. In the centralized particle filter implementation,

only one node (fusion centre) runs the particle filter based on the initial state estimate of that

node. It is observed from Figs. 3.2(a) and (b) that the performance of the CSS/DPF and the

CSS/DUPF are fairly close to each other and that of the centralized particle filter and approaches

the PCRLB. Both CSS/DPF and CSS/DUPF outperform the distributed particle filter imple­

mentation proposed by Gu et al. (scheme (v)). The distributed UKF implementation (scheme

(iv)) totally loses the track and eventually diverges.

108

0.9

' 0.8 'l
0.7 ... \\.

0.2

0.1

5 10

.c
......... ·!ii.

.... 't'J.:

15
Iteration (k)

(a)

--e- Centralized Particle Filter
- e - The CSS/DPF
· -A- · The CSS/DUPF
- 9 -Gu etal.
· · ·D · · The Distributed UKF
--PCRLB

20 25

--+-- Centralized Particle Filter
0.9 D. g, D. - • - The CSS/DPF

O.B . '~ ':....... _a'.'.. : a ·-A-· The CSS/DUPF
- 9 -Gu et al.

~ .o·
o.7 ... \ .. . Q.e ·e· :e·.e ·: }l~ ... _··_·a_·_· ~~eR~~tributed UKF

~ 0.6

I . "O._ .6J
····\·· ·············~~·····················

i:l
0

:~ 0.5
0
ti.

~ 0.4

0.3

0.2

0.1

11\ .Ll· : 'o.
.... · ''·\ .rf · 6

\ll. . . "E) "0-0-0-0..o...
~\~:~f~ Q.~~

... _.\·. ~·.. : : ·s : ·a-·e·
A. : '.. e "E>-0-o...cY
.:~ ... ~ ... ~~...

. ~ : ..6. . ..1:,,;,

5 10 15
Iteration (k)

(b)

20 25

3(

3(

Figure 3.2: Scenario 1: Comparison between the centralized particle filter, the CSS/DPF, the

CSS/DPF, distributed UKF [7], Gu et al. [23], and the PCRLB: (a) High SNR, and; (b) Low SNR.

109

3.3.3 Scenario 2

In the second scenario, the performance of the proposed CSS/DUPF using a limited number of

consensus iterations is compared with that of the centralized particle filter. The purpose of this

set of simulations is to determine the impact of a limited number of consensus iterations on the

proposed CSS/DUPF. The consensus algorithms are stopped abruptly after a fixed number of

iterations without allowing them to converge. The three remaining distributed implementations

diverge if the consensus algorithm is not allowed to converge and are not plotted here since

their RMS errors go out of scale. The results are shown in Fig. 3.3 where Fig. 3.3(a) shows the

RMS error plots for the CSS/DUPF implemented in the network shown in Fig. 3.1 where the

number of consensus iterations kept at 2 and 3. It is observed that the CSS /DUPF with only 2

consensus runs catches up with the centralized particle filter. Fig. 3.3(b) depicts the RMS plots for

another network topology and target track where the number of iterations required for achieving

the consensus in this network is twice that of the network shown in Fig. 3.1. The implemented

CSS/DUPF runs a reduced number of consensus iterations. Results for 1, 2, and 3 consensus

iterations are shown. The results confirms that the RMS error from the CSS /DUPF remains

bounded and approaches that of the centralized particle filter.

3.3.4 Scenario 3

Fig. 3.4 shows the RMS error plots for joint bearing/range tracking problem. The bearing mea­

surements are generated based on the description given in Scenario 1. The range measurements

are corrupted by Gaussian noise with standard deviation 0.14m. The CSS/DUPF with one to

three consensus iterations is compared with the centralized particle filter. It is observed that the

CSS/DUPF with even one consensus iteration provides reasonable results. The performance of

the CSS /DUPF with two and three consensus iterations are converging to the centralized plot.

110

0.9
-e- Centralized Particle Filter

.... · · ·0 · · The CSS/DUPF with 2 Consensus Runs
· -tt- · The CSS/DUPF with 3 Consensus Runs

0.8 - B - The CSS/DUPF with Infinite Consensus Runs

g
µJ

c::

:~
0

Q..

ti)

~

0.7

0.6

0.5

0.4

0.3

0.2

0.1

5

0 9 .•......... ~.
. l

t.
0.8 .. \:.

f:_
0.7

g
µJ 0.6
§

10 15
Iteration (k)

(a)

20

-e- Centralized Particle Filter

25

· · ·0 · · The CSS/DUPF with 2 Consensus Runs
· -•- · The CSS/DUPF with 3 Consensus Runs
- B - The CSS/DUPF with Infinite Consensus Runs

:~ 0.5 · · ·
0

Q..

~ 0.4

0.3

0.2

0.1

o ..
.... ·o. . . . ' ...

Q
···········o. ··································.··

5 10 15
Iteration (k)

(b)

20 25

3(

30

Figure 3.3: Scenario 2: Comparison between the centralized particle filter and the CSS/DUPF with

different number of consensus iteration: (a) Based on the network shown in Fig. 3.1, and; (b) Based on

another network where the number of iterations required for achieving the consensus is twice.

111

0.9 .

• 0.8 .. ~

~
0.7 ... i.

.. ~
0 J:j 0.6 · · .r. · · · · · · ·' ·

§ ~
] 0.5 .. l .. ··
(/)

~ 0.4

0.3

0.2

0.1

5 10

--Centralized Particle Filter

· · ·0 · · The CSS/DUPF with 1 Consensus Runs

· -A- · The CSS/DUPF with 2 Consensus Runs

· -•- · The CSS/DUPF with 3 Consensus Runs

15
Iteration (k)

20 25 30

Figure 3.4: Scenario 3: Comparison of the centralized particle filter and the CSS/DUPF for joint

bearing/range tracking problem.

3.3.5 Scenario 4

The purpose of this scenario is to evaluate the performance of the CSS/DUPF as a function of

the number of active nodes in the network. In this scenario, an AN /SN is considered comprising

of (10 ~ N ~ 50) observation nodes where sensors are distributed randomly in a (60 x 60)

m2 square region. Other parameters for this simulation are the same as in Scenario 1. Two

examples of the sensor placements are shown in Fig. 3.5(a) and (b) where Fig. 3.5(a) shows

the realization of the sensor placement along with the target's trajectory for N = 10. Most of

the time the target is outside the surveillance region of the local nodes. Because of the state-

dependent nature of the observation noises, large errors are expected in this scenario even for

the centralized implementation. In other words, N = 10 observation nodes are not enough to

track the target in this scenario. Fig. 3.5(b) shows the realization of the sensor placement along

112

·I
,g
I

>-
-10

-20

-5 10 15
X- dimension

(a)

20

30 ·• ·• .,,;,,:,.:·,. ,,· .. : .. ~_,,:
:.·,::I.

.... ,; ·
20 ... ~. ; ,, ~

-20 ...
-30

-40'--~~---'-~~~-'-~~~-'-~~--'~~~-L~~__J

20 30 -30

30
Network aizc

(c)

-20

40

-10 10
X- dimension

(b)

50

Figure 3.5: Scenario 4: (a) Realization of the sensor placement along with the target's trajectory for

N = 10. (b) Realization of the sensor placement along with the target's trajectory for N = 40. (c)

RMS tracking performance at iteration k = 20 for varying network sizes and for the centralized filter, the

CSS/DUPF with two consensus runs and the CSS/DUPF with three consensus runs.

113

with the target's trajectory for N = 40. It is observed that in contrary to Fig. 3.5(a), the sensor

nodes collectively have a better coverage in this case. Fig. 3.5(c) shows the RMS error plots for

different numbers of nodes (10 :::; N :::; 50) at iteration k = 20 for the centralized particle filter

and the CSS/DUPF with only two iteration for each consensus run. It is observed that when

the number of nodes is N = 20 and higher, the performance of the CSS /DUPF with a limited

number of consensus iterations catches up with its centralized counterpart. Compared to the

previous scenarios (Scenario 1 and 2), the surveillance region considered here is relatively larger

which makes the tracking more challenging and increases the corresponding error.

3.4 The UCD /DPF Implementation

The unscented, consensus-based, distributed implementation of the particle filter (UCD /DPF)

couples the unscented Kalman filter (UKF) [44] with the particle filter such that the UKF esti­

mates the Gaussian approximation of the proposal distribution which is then used to generate

local particles. The UCD /DPF involves the following four steps:

1. Individual sensor nodes run localized, unscented particle filters to approximate their local

posterior distributions.

2. A pre-specified set of local statistics of the state variables are computed at each node from

the local posterior distributions.

3. At each node, a consensus algorithm fuses local statistics computed in Step 2 into global

statistics.

4. Once the global statistics are available, an unscented Kalman filter (UKF) propagates the

global statistics into the proposal distributions to be used during the next iteration of the

UCD/DPF.

114

In terms of contributions, the UCD/DPF makes two important improvements to the existing DPF

framework

1. Unlike existing distributed implementations [24, 27] of the particle filter, the UCD/DPF

uses all available global observations including the most recent ones in deriving the proposal

distribution based on the distributed UKF. In other words, the UCD/DPF computes the

local proposal density based on both the global statistics as well as the local observations.

2. Computation of the global estimates from local estimates during the consensus step is based

on an optimal fusion rule which compensates for the problem of common information be­

tween the local state estimates.

Improvement 2 replaces the commonly used local averaging approach and, along with improve­

ment 1, enhances the performance of the UCD/DPF. Further, the UCD/DPF paves the way for

incorporating future developments in consensus-based distributed Kalman filters to the distributed

particle filtering framework. Below, the main steps followed at node l, for (1 ~ l ~ N), of the

UCD/DPF are outlined. The filter is assumed to be in steady state and at iteration k-1, when all

nodes are assumed to have reached a consensus with values :X(l,Fused)(k-1) and p(l,Fused)(k-1).

A new measurement z<l)(k) is now available at each local node.

Step 1. This step is similar to Step 2 of the CSS/DUPF with one difference, i.e., node l, for

(1 ~ l ~ N), generates the Sigma points {X~l) (k-1)};:0 based on Eq. (3.31) using X:(l,Fused)(k-1)

and p(l,Fused)(k - 1) instead of x_(l)(k - 1) and p(l)(k - 1).

Step 2. This step is similar to Step 3 of the CSS/DUPF where node l, for (1 ~ l ~ N), computes

the statistics of its local proposal distribution (x~kF(k), P8kF(k)) using Eqs. (3.39)-(3.40).

115

Step 3. For (1 ~ l ~ N), node l generates N 8 random particles X~l)(k) from its proposal distribu-

tion defined as follows

x~l) (k) rv N(x<l) (k) p,<O (k))
i UKF ' UKF · (3.56)

Step 4. Node l, for (1 ~ l ~ N), computes the corespondent weight wp)(k) of its particles as

follows

(3.57)

After this step, node l has a set of particles and their associated weights that approximate the

local filtering distribution P(x(k)lz(l)(l:k),z(l: k-1)).

Step 5. Based on Eqs. (3.17)-(3.18), node l computes the MMSE estimate x_(l)(k) and its corre-

sponding error covariance p(l) (k) (local statistics) of the state variables.

Step 6. The final step of the UCD/DPF algorithm is the consensus step used to compute a

consistent set of values for the global statistics :X:(l,Fused)(k) and p(l,Fused)(k) at time k. The

UCD/DPF uses the following fusion rules (instead of Eqs. (3.42)-(3.43) used in the CSS/DUPF)

N

[P<z,Fused)(k)r
1

= [PSkF(klk - 1)r
1 +I: [P(j)(k)r

1
- [P~JF(klk - 1)r

1
(3.58)

j=l

Pc(oo)

x<t,Fused)(k) [p(l,Fused)(k)r1 [[PSkF(klk - 1)r1xtkF(klk - 1)

N

+ I: [P(j>(k)r
1
x.(j)(k) - [P~JF(klk - l)r 1x~kF(klk - 1)], (3.59)

j=l

Xc(oo)

where {xc(oo) and Pc(oo)} are obtained using Eqs. (3.44)-(3.47).

In conclusion, the UCD /DPF implementation of the particle filter belongs to the DPF via state

estimation fusion category (Section 2.5) and addresses the first four drawbacks of the CSS/DPF

116

listed right before Section 3.4. Though the UCD /DPF is more generally applicable than the

CSS/DPF, it has the following drawbacks:

1. The UCD /DPF approximates the global posterior density with a Gaussian distribution and

computes its statistics via consensus algorithms based on a set of optimal nonlinear fusion

rules.

2. Similar to the CSS/DPF, the UCD/DPF assumes that the consensus is reached between

two successive observations. Such an assumption is only reasonable in applications where

communication is relatively inexpensive as compared to sensing, e.g., in rendezvous control

or coordination of mobile sensors.

In Chapter 4, I develop the CF /DPF framework which does not restrict the global posterior

density to a Gaussian distribution and removes the time constraint on the consensus convergence.

Finally, I note that the three proposed DPF implementations in this chapter suffer from one

common drawback, i.e., they require the consensus to be reached between two successive ob­

servations. The performance of these methods degrades if consensus is not reached within two

consecutive iterations of the local particle filters. Chapter 3 extends the distributed estimation

framework to unreliable networks with intermittent connectivity. Intermittent network connec­

tivity results in information loss, significant delays in the convergence of the consensus algorithm,

and loss in synchronization between the localized filters. In the next chapter, I study a generic

framework for distributed estimation in intermittently connected networks from the consensus­

convergence perspective where the fundamental question is: How can loss of synchronization

between the localized filters and the fusion step can be adequately resolved to compensate for delays

in the convergence of the consensus algorithms?

117

3.4.1 Simulation Results for the UCD/DPF

As stated in Section 3.4, the UCD /DPF can be considered as a generalized version of the

CSS /DUPF for applications other than BOT and joint bearing/range tracking where the CSS /DPF

and CSS/DUPF are not applicable. Although the UCD/DPF is more general than the CSS/DUPF,

but due to the absence of a sufficient statistic based step for computing the global likelihood in

the UCD/DPF, we expect the performance of the CSS/DUPF to be superior in BOT and joint

bearing/range tracking scenarios. Therefore, the UCD /DPF is evaluated separately for a tracking

scenario where the CSS /DUPF is not applicable.

In this section, the range-only tracking application is considered to quantify the performance

of the proposed UCD/UPF. Similar to the previous simulations, a single CCT model (Eq. (3.50))

with known statistics of the process noise e(k) is considered. An AN/SN with N = 20 nodes

with random geometric graph model is considered where sensors are distributed randomly in a

(15 x 15) m2 square region. The observations are now range-only measurements given by

z<L)(k) = V (X(k) - X(l)(k)) 2 + (Y(k) - y(l)(k)) 2 + ((l)(k), (3.60)

where {X(l)(k), y(l)(k)} are the coordinates of node l. Two scenario are considered in this section

to evaluate performance of the UCD /DPF. The first scenario considers a constant value for the

variance of the observation noise across the network while in the second scenario the variance of

the observation noise at node l is state dependent as follows

(3.61)

The target starts its track from coordinates {10, 10} meters. The initial course is set at -110° with

the standard deviation of the process noise ae(k) = 1.6 x 10-2
. The initialization is performed

at each node by selecting an initial location :X:(l)(O), for 1 ::;; l ::;; N, from the following initial

118

Gaussian distribution N(x(O) + 0.5, cri(k)). Other parameters are the same as the ones used in

Scenario 1 above.

To quantify the tracking performance of the UCD/DPF three schemes are considered: (i)

Centralized scenario where each node has access to the local observations of all other nodes. The

performance of the centralized UPF is considered as the base performance; (ii) The proposed

UCD/DPF implementation, and; (iii) Distributed particle filter proposed in [23], referred to as

Gu et al. Fig. 3.6 shows the RMS error plots corresponding to schemes (i)-(iii) for a range-only

tracking application. Fig. 3.6(a) shows the result for the constant high SNR scenario. Fig. 3.6(b)

shows the RMS error plots for the variable high SNR scenario. It is observed that the performance

of the proposed UCD/DPF remains close to its centralized counterpart in both scenarios. However,

while the centralized and UCD/DPF implementations show low RMS errors, the other distributed

implementation shows a significant increase in error.

3.5 Summary

In this chapter, I proposed three consensus-based, distributed implementations of the particle fil­

ters. First, a constraint sufficient statistic based distributed implementation of the particle filter

(CSS/DPF) is proposed for bearing-only and joint bearing/range tracking applications where I

exploit the property that the global sufficient statistics (GSS) attributed to the global likelihood

function can be expressed as a summation of the local sufficient statistics (LSS) under certain

constrains. I further derived explicit expressions for LSSs and their corresponding GSSs for 2D

and 3D bearing-only tracking and 2D joint bearing and range tracking. The CSS/DPF imple­

mentation is a two stage algorithm based on first computing the GSS from the means of the LSS

via consensus algorithms, and then updating the local particle filters using the modified GSS.

The communication overhead of the CSS/DPF is reduced significantly in comparison with the

119

0.9

0.8

0.7

..
0

J:3 0.6
§
:~ 0.5
0 a.

CZl

~ 0.4

0.3

0.2

0.1

0.9

0.8

0.7

g
IJ.l

0.6
s:::
0

:~ 0.5
0 a.

CZl

~ 0.4

0.3

0.2

0.1

0

5

.,.
I

I

0 5

10

b

15
Iteration (k)

(a)

20

~Centralized PF
- e -Gu et al.
. -m-. The UCD/DPF

25

:\ · · ..
~Centralized PF
- e -Gu et al.

:\
. \ :.q

............ - ... \ ..
Cl>

\
............ · , ..

G)

.... \ ..
\
Cl>

....... , ·:· .

... ~ ..
:\

G)

. -m- . The UCD/DPF

......... : ... ~

10

6l

... -~a.· .: "'ir.'!
eee-E>

15
Iteration (k)

(b)

20 25

30

30

Figure 3.6: Comparison between the centralized particle filter, the UCD/DPF, and Gu et al. [23): (a)

Constant SNR, and; (b) High SNR but varying from a node to another.

120

other state-of-the-art distributed implementation of the particle filter. Second, the CSS/DUPF

is proposed which improves the CSS/DPF by introducing a proposal distribution other than the

transitional density which incorporates the global observations and therefore a is closer approxi­

mation of the optimal proposal distribution. Finally, consensus-based distributed implementation

of the unscented particle filter (CD/UPF) is introduced which extends consensus-based distributed

Kalman filtering framework to nonlinear systems. The CSS /DPF has the lowest computational

complexity in comparison with other distributed implementations of the particle filter. Numeri­

cal simulations illustrate the superiority of the CSS/DUPF over other sufficient statistics based

distributed particle filters. The performance of the CSS/DUPF catches up with that of the cen­

tralized particle filter even with a limited number of iterations per consensus run.

121

4 Distributed Particle Filter with Intermittent/Irregular

Consensus Convergence

In Chapter 3, I proposed three full-order consensus-based distributed implementations of the

particle filter: the CSS/DPF (Section 3.1), the CSS/DUPF (Section 3.2), and the UCD/DPF

(Section 3.4). All of these proposed approaches have one common limitation, i.e., the requirement

for each node to wait until consensus is reached before running the next iteration of the local­

ized particle filters. To incorporate observations without delay, the consensus algorithm should

converge between two consecutive observations. Such an assumption is reasonable in applications

where communication as compared to sensing is relatively fast to allow for consensus convergence,

e.g., in rendezvous control or coordination of mobile sensors. Fig. 4.1 considers an alternative sce­

nario where the consensus convergence takes twice as long as the duration between two successive

observations (b.T). In such cases, the consensus algorithm continues to lag behind localized fil­

ters incorporating the local observations such that the global estimate for current particle filter

implementation is delayed. Referred to as intermittent network connectivity (123, 124], this issue

has been investigated broadly in the context of linear systems based on Kalman filter (123, 124]

and have not yet been explored for non-linear systems.

In this chapter, I propose a multi-rate consensus/fusion based framework for distributed im-

122

T,
T, r-1 ~I

1) '·; z

t: 1/
1

P·
.... ····4T

T, T, T,

r-1 r-1 r----j
') 3 k·1 k . .,,. t .. I•' L·/
3 4 k·l k

(a]

; I J

·········,·····.·.·.·.·.·.· :::::::.: ~····················-·················· ~·····················-·····················
········ . I ··········-···········r·········

5 6

(b)

L..}

a:'
k+t

J

Distributed particle filter iteration
I

Observation time instnn\ (k)

Distributed particle filter iteration
I

Observation time instant (k)
I

Figure 4.1: (a) Situations where CSS/DPF and UCD/DPF are applicable, i.e., consensus converges

within the duration LlT of two consecutive observations. (b) A scenario where the consensus convergence

Tc is greater than ~T. The lag between the global estimates and the local estimates grows exponentially.

plementation of the particle filter (CF /DPF)6 for nonlinear systems. The CF /DPF offers two

distinct advantages over its counterparts. First, the CF /DPF framework is suitable for nonlinear

systems with intermittent network connectivity and consensus can not be reached between two

consecutive observations. Second, the CF /DPF is not limited to the Gaussian approximation for

the global posterior density. Below, I summarize the key contributions of the chapter.

1. Fusion filter: In addition to the localized particle filters, referred to as the local filters, the

CF /DPF introduces separate consensus-based filters, referred to as the fusion filters, to derive the

global posterior distribution by consistently fusing local filtering densities in a distributed fashion.

The localized implementation of the particle filter and the fusion filter used to achieve consensus

are run in parallel, possibly at different rates. Achieving consensus between two successive itera-

tions of the local filters is, therefore, no longer a requirement. The CF /DPF compensates for the

common past information between local estimates based on an optimal non-linear Bayesian fusion

rule (127]. The fusion concept used in the CF /DPF is similar to (27] and (42], where separate

6 The conventional particle filter has been chosen in developing the CF /DPF as a proof of concept. The proposed
framework can be generalized to other variants of the particle filter such as the marginalized particle filter [125],
the approximate condition mean particle filter [126] and the unscented particle filter [44] with some modifications.

123

channel filters (one for each communication link) are deployed to consistently fuse local estimates.

In the CF /DPF, the number of fusion filters are limited to one per processing node, a considerable

saving over (27] and (42].

Fig. 4.2 compares the proposed CF /DPF framework with the channel filter framework and

centralized estimation. In the centralized estimation (Fig. 4.2(a)), all the nodes forward their

raw observations (either directly or via help of other nodes) to the FC where the state vector is

estimated. In the channel filter framework (Fig. 4.2(b)), one channel filter is associated with each

communication link to fuse the local estimates of two neighbouring nodes and finally compute the

global estimate. These filters are in addition to the localized filters run at the nodes. Note that,

the channel filter approach can only be implemented for a tree-connect network topology (27] as

shown in Fig. 4.2(b) and can not be extended to any arbitrary network, for example the one shown

in Fig. 4.2(a). In the CF/DPF (Fig. 4.2(c)) each node only implements one additional fusion filter

per node irrespective of the neighbouring connections thus reducing the number of fusion filters

compared to (27] and [42]. Further, the CF /DPF is applicable to any network configuration.

2. Modified Fusion filters: In the CF /DPF, the fusion filters can run at a rate different form

that of the local filters. I further investigate this multi-rate nature of the proposed framework,

recognize three different scenarios, and describe how the CF /DPF handles each of them. For

the worse-case scenario with the fusion filters lagging the local filters exponentially, I derive a

modified-fusion filter algorithm that limits the lag to an affordable delay.

Table 4.1 provides a comparison of the CF /DPF with the approaches discussed in Chapter 3.

The CF /DPF belongs to the state estimation fusion category and offers two advantages over its

counterparts. The CF /DPF does not impose any restriction on the form of the global likelihood

or global posterior distribution and it is resilient to the intermittence in the connectivity of the

network.

124

Random Sensor Network

-------![~~~~------

(b) Channel Filter Distributed Implementation

CH: Channel Filter
LF: Local Filter
FF: Fusion Filter

Figure 4.2: (a) Centralized implementation where all nodes communicate their local estimates to the

fusion center. (b) Distributed implementation using channel filters where a separate filter is required for

each communication link. (c) The proposed CF /D PF implementation where sensor nodes connect through

their fusion filters (one fusion filter per node). In terms of the number of extra filters, the CF /DPF falls

between the centralized and channel filters.

125

Table 4.1: Comparison of different full-order DPF implementations.

Characteristics CSS/DPF UCD/DPF CSS/DUPF CF/DPF

1. Likelihood/Observation fusion x x

2. State estimation fusion x x x

3. Gaussian approximation for
x x

the global likelihood

4. Gaussian approximation for
x

the global posterior

5. Requires consensus convergence x x x

6. Application specific x x

7. Restrict the proposal to
x

the transitional distribution

8. No restriction on the
x

form of likelihood/posterior

9. Resilience to intermittent
x

connectivity

10. Recovery from loss of
x x x

information

11. Communication complexity low midi um high high

The chapter is organized as follows. The proposed CF /DPF algorithm and the fusion filter

are described in Section 4.1. The modified fusion filter is presented in Section 4.2. Section 4.3

illustrates the effectiveness of the proposed framework in tracking applications through Monte

Carlo simulations. Finally, Section 4.4 concludes the chapter.

126

4.1 The CF /DPF Implementation

As shown in Fig. 4.2(c), the CF/DPF implementation runs two localized particle filters at each

sensor node. The first filter, referred to as the local filter, comes from the distributed implemen­

tation of the particle filter described in Section 4.1.1 and is based only on the local observations

z(l) (1: k). The CF /DPF introduces a second particle filter at each node, referred to as the fusion

filter, which estimates the global posterior distribution P(x(O:k)iz(l:k)) from the local filtering

distributions P(x(k) lz(l) (1: k)) and local prediction distributions P(x(k) lz(l) (1: k-1)) as described

in Section 4.1.2.

4.1.1 Distributed Configuration and Local Filters

Recall that the distributed estimation framework as presented in Section 2.5 (Eqs. (2.126)-(2.127))

is given by

f(x(k - 1)) + e(k)

g<t)(x(k)) + ((l)(k),

(4.1)

(4.2)

for sensor nodes (1 ::; l ::; N). In the CF /DPF, the entire state vector x(k) is estimated by

running localized particle filters at each node. These filters, referred to as the local filters, come

from the distributed implementation of the particle filter and are based only on local observations

z(l)(l : k). In addition to updating the particles and their associated weights, the local filter

at node l provides estimates of the local prediction distribution P(x(k)lz(l)(l : k - 1)) from the

particles as explained below.

Computation and Sampling of the Prediction Distribution: From the Chapman-Kolmogorov

equation (Eq. (2.13)), a sample based approximation of the prediction density P(x(k)lz(l)(l :

127

k - 1)) is expressed as

Ns

P (x(k)lz(l\1: k-1)) = :LwP·LF)(k- l)P (x(k)IX~l,LF)(k-1)), (4.3)
i=l

which is a continuous mixture. To generate random particles from such a mixture density, a

new sample X~l,LF)(klk - 1) is generated from its corresponding mixture P(x(k)IX~l,LF\k - 1))

in Eq. (4.3). Its weight Wi(l,LF) (k - 1) is the same as the corresponding weight for X~l,LF) (k - 1).

The prediction density is given by

Ns

p (x(k)lz<O(l : k - 1)) = L wP·LF)(k - 1)8 (x(k) - x;l,LF)(klk - 1)) .
i=l

Once the random samples are generated, the mean square error estimates (MSE) of the parameters

can be computed.

4.1.2 Fusion Filter

The CF /DPF introduces a second particle filter at each node, referred to as the fusion filter, which

computes an estimate of the global posterior distribution P(x(O: k) lz(l: k)). Being a particle filter

itself, implementation of the fusion filter requires the proposal distribution and the weight update

equation. Theorem 5 expresses the global posterior distribution in terms of the local filtering

densities, which is used for updating the weights of the fusion filter. The selection of the proposal

distribution will be explained later in Section 4.1.5. Each node, for (1 ~ l ~ N), propagates

forward in time two sets of particles: {X~l,LF) (k), wP·LF) (k)}f::1 associated with the local filters

and {X~ l ,FF) (k), wp ,FF) (k)} [:;{ associated with the fusion filter.

Theorem 5. Assuming that the observations conditioned on the state variables and made at

node l are independent of those made at node j, (j =/= l), the global posterior distribution for an

128

N -sensor network is

IJ::1 P(x(k)iz<l)(l: k))
P(x(O:k)lz(l:kJ) oc () xP(x(O:k)lz(l:k-1)), (4.4) IJ::1 P x(k)iz(l)(l:k-1)

where the last term may be factorized as follows

P(x(O: k)iz(l: k-1)) = P(x(k)ix(k-1))P(x(O: k-l)iz(l: k-1)). (4.5)

The proof of Theorem 5 is included in Appendix B.1. Note that the optimal distributed

protocol defined in Eq. (4.4) consists of three terms: (i) Product of the local filtering distribution

IJf:,1 P(x(k)iz<l)(l : k)) which depends on local observations; (ii) Product of local prediction

densities IJf:,1 P(x(k)iz(l)(l : k-1)), which is again only based on the local observations and

represent the common information between neighboring nodes, and; (iii) Global prediction density

P (x(O: k)lz(l: k-1)) based on Eq. (4.5). The fusion rule, therefore, requires consensus algorithms

to be run for terms (i) and (ii). The proposed CF /DPF computes the two terms separately (as

described later) by running two consensus algorithms at each iteration of the fusion filter. An

alternative is to compute the ratio of two terms at each node and run one consensus algorithm for

computing the ratio term. In the CF /DPF, I propose to estimate the numerator and denominator

of Eq. (4.4) separately because maintaining the local filtering and prediction distributions is

advantageous in networks with intermittent connectivity as it allows the CF /DPF to recover from

loss of information due to delays in convergence.

4.1.3 Weight Update Equation

Assume that the local filters have reached steady state at iteration k, i.e., the local filter's com-

putation is completed up to and including time iteration k where a particle filter based estimate

of the local filtering distribution is available. The weight update equation for the fusion filter is

129

given by

P (x~l,FF) (k) Jz(l: k))
W.(l,FF) (k) = .

i q (x~l,FF)(k)Jz(l:k))
(4.6)

Given particles x~l,FF)(k-1), the values of the particles x~l,FF)(k) at time instant k are updated by

generating random particles from the proposal distribution q(x(O: k)Jz(l: k)). As stated previously

in Section 2.2.2, the proposal distribution is chosen such that it satisfies the following factorization

q(x(O:k)Jz(l:k)) = q(x(O:k-l)Jz(l:k-l))q(x(k)Jx(l:k-1),z(l:k)), (4.7)

then one can obtain particles X~l,FF) (0: k) ,...., q(x(O: k)Jz(l: k)) by augmenting each of the existing

samples X~l,FF)(O: k - l) rv q(x(O: k-l)Jz(l: k-1)) with the new particles generated as follows

Prediction Step: X~l,FF)(k) rv q(x(k)Jx(O: k-l), z(l: k)). (4.8)

A filtered estimate of the state variables P(x(k) Jz(l: k)) at each iteration is of interest, therefore,

following [43] I approximate q(x(k)Jx(l: k-1),z(l: k)) = q(x(k)Jx(k-l),z(k)). The proposal

density is then dependent only on x(k) and z(k). In such a scenario, one can discard the history

of the particles x~l,FF) (0: k-2) at previous iterations [43]. Substituting Eq. (4.5) in Eq. (4.4) and

using the result together with Eq. (4.7) in Eq. (4.6), the weight update equation is given by

TI~1 P (x~l,FF)(k)Jz<l)(l :k)) P (x~l,FF)(k)JX~l,FF)(k-1))
w.<l,FF)(k) ex: w.<l,FF)(k-l)----------....,.-

1, 1, Tii:1 p (x~l,FF)(k)jz(l)(l:k-1)) q (x~l,FF)(k)JX~l,FF)(k-l),z(k))'

(4.9)

where
P (x~l,FF)(k-l)Jz(l:k-1))

W.(l,FF)(k-l) = .
i q (x~z,FF)(k- l)Jz(l:k-1))

(4.10)

Given the weights w?·FF)(k- l) from the previous iteration, Eq. (4.9) requires all nodes to

participate in the computation of the following two terms

N

IT P (x~l,FF)(k)Jz(l)(l:k)) and
N

IlP(xY·FF)(k)Jz(l)(l:k-1)). (4.11)
l=l l=l

130

The numerator of the second fraction in Eq. (4.9) requires the transitional distribution P(x(k) lx(k-

1)), which is known from the state model. Its denominator requires the proposal distribution

q(x(k)lx(k-1), z(k)). Below, I show how two terms (Eq. (4.11)) and the proposal distribution are

determined.

4.1.4 Distributed Computation of Product Densities

The two terms in (4.11) are not determined by transferring the whole particle vectors and their

associated weights between the neighboring nodes due to an impractically large number of in­

formation transfers. A second issue lies due to representing the localized posteriors as a Dirac

mixture in the particle filter. Two separate Dirac mixtures may not have the same support and

their multiplication could possibly be zero. In order to tackle these problems, a transformation is

required on the Dirac function particle representations by converting them to continuous distri­

butions prior to communication and fusion. Gaussian distributions [4, 5, 7, 23, 24, 59], grid-based

techniques [47], Gaussian Mixture Model (GMM) [17] and Parzen representations [27] are dif­

ferent parametric continuous distributions used in the context of the distributed particle filter

implementations. The channel filter framework [27] fuses only two local distributions, therefore,

the local probability density functions can be modeled [27] with such complex distributions. In­

corporating these distributions in the CF /DPF framework is, however, not a trivial task because

the CF /DPF computes the product of N local distributions. The use of a complex distribution

like GMM is, therefore, computationally prohibitive.

In order to tackle this problem, I approximate the product terms in Eq. (4.9) with Gaussian

distribution which results in local filtering and prediction densities to be normally distributed as

P (x(k)iz(l)(l:k)) ocN (µ<l)(k),p(l)(k)) and P (x(k)iz(l)(l:k-1)) ocN (v<l)(k),R(l)(k)),

(4.12)

131

where µ(l)(k) and p(l)(k) are, respectively, the mean and covariance of local particles at node l

during the filtering step of iteration k. Similarly, v(l)(k) and R(l)(k) are, respectively, the mean

and covariance of local particles at node l during the prediction step. It should be noted that I

only approximate the product density for updating the weights with a Gaussian distribution and

the global posterior distribution is not restricted to be Gaussian. The local statistics at node l

are computed as

i=l

NB T
and p(l)(k) = z=wp,LF)(k) (xY,LF)(k)-µ<O(k)) (x~l,LF)(k)-µ<O(k)) . (4.13)

i=l

Reference [129] shows that the product of N multivariate normal distributions is also normal, i.e.,

N N

flP(x(k)lz<O(l:k)) ~ flN(µ<O(k),P(l)(k)) = ~ xN(µ(k),P(k)), (4.14)
l=l l=l

where C is a normalization term (Reference [129] includes the proof). Parameters µ(k) and P(k)

are given by

N -1

P(k) = (2= (p<l)(k)) rl
l= 1 '-----v-----"

x~? (o)

N 1

and µ(k) = P(k) x L (p(l)(k))- µ<O(k). (4.15)
l=l'--~~--~~--

x~~(O)

Similarly, the product of local prediction densities (Term (4.11)) is modeled with a Gaussian

density

N(x(k); v(k), R(k)), where the parameters v(k) and R(k) are computed as follows

N -1

R(k)=(L:(R(l)(k)))-
1

l = 1 '-----v-----"
X~~(O)

N 1

and v(k)=R(k)xL(R(l)(k))- v<l)(k).
l=l--~~--~~--

x~~ (0)

(4.16)

The parameters of the product distributions only involves average quantities and can be provided

using average consensus algorithms as follows:

(i) Node l, (1 ~ l ~ N), initializes its consensus states to X~L](o) = (P(l)(k))- 1 , x~~(O) =

(P(l)(k))- 1µ<0(k), X~~(O) = (R(l)(k))- 1 , andx~2(o) = (R<l)(k))- 1v<l)(k), thenEq. (2.116)

132

is used to reach consensus with x~?(t) used instead of X~l)(t) in Eq. (2.116) for the first

consensus run. Similarly, x~~ (t) is used instead of X~l) (t) for the second run and so on.

(ii) Once consensus is reached, parameters µCl)(k) and p(l)(k) are computed as follows

P(k)

R(k)

1/N x ,Ii,~ { (x~![(t) r'}
1 IN x ,Ii,~ { (x~ (t) r'}

and µ(k) =,Ii,~ { (x~? (t) r' xx~~ (t)} (4.17)

and v(k) =,Ii,~ { (x~%l r' x x~2(tJ}. (4.18)

Based on aforementioned approximation, the weight update equation of the fusion filter (Eq. (4.9))

is given by

N(X~l,FF) (k)· µ(k) P(k))P(X~l,FF) (k)IX~l,FF) (k-1))
w.(l,FF)(k)cxw.Cl,FF)(k-l) i ' ' i i • (4.19)

i i N(X~l,FF) (k); v(k), R(k))q(X~l,FF) (k)IX~l,FF) (k-1), z(k))

Eq. (4.19) requires the proposal distribution q(x(k)lx(k-1),z(k)) which is introduced next.

4.1.5 Proposal Distribution

In this section, I describe three different proposal distributions which can be used in the CF /DPF.

4.1.5.1 SIR Fusion Filter

The most common strategy is to sample from the probabilistic model of the state evolution, i.e.,

to use transitional density P(x(k)lx(k+l)) as proposal distribution. The simplified weight update

equation for the SIR fusion filter is obtained from Eq. (4.19) as follows

w.(l,FF) (k) ex w.(l,FF) (k-1) N(XY'FF) (k); µ(k), P(k)).
i i N(x~l,FF) (k); v(k), R(k))

(4.20)

This SIR fusion filter fails if a new measurement appears in the tail of the transitional distribution

or when the likelihood is too peaked in comparison with the transitional density.

133

4.1.5.2 Product Density as Proposal Distribution

We are free to choose any proposal distribution that appropriately considers the effect of new

observations and is close to the global posterior distribution. The product of local filtering densities

is a reasonable approximation of the global posterior density as such a good candidate for the

proposal distribution, i.e.,

N

q(x(k)lx(k-1),z(l:k)) £ IJ P (x(k)lz(l)(l:k)), (4.21)
l=l

which implies that the fusion filter particles {X~l,FF)(k)}~1 are generated from N(µ(k), P(k)).

In such a scenario, the weight update equation (Eq. (4.19)) simplifies to

(
(l,FF) (l,FF) ())

w.(l,FF)(k)cxw.<L,FF)(k-l)P xi (k)IXi k-1 .
i i N(X~l,FF)(k);v(k),R(k))

(4.22)

Next I justify that the product term is a good and reasonable choice for a proposal distribution

that incorporates all the new observations available across the network. Assume at iteration k,

node l, for (1 ~ l ~ N) computes an unbiased local estimate x(l)(k) of the state variables x(k)

from its particle-based representation of the filtering distribution with the corresponding error

and error covariance denoted by ~~)(k) = x(k)- x(l)(k) and f>(l)(k). When the estimation error

~1i)(k) and ~<j)(k), for (1 ~ i,j ~ N) and i -I j are uncorrelated, the optimal fusion of N

unbiased local estimates x<l)(k) in linear minimum variance scene is shown [76] to be given by

N N
and x(k) = (L (p(l)(k))-

1
)-

1 x L (P(l)(k))-
1
x<t)(k).

l=l l=l

(4.23)

where x(k) is the overall estimate obtained from P(x(k)lz(l : k)) with error covariance P(k).

Eq. (4.23) is the same as Eq. (4.15), which describes the statistics of the product of N normally

distributed densities. The optimal proposal distribution is also a filtering density [43], therefore,

the proposal distribution defined in Eq. (4.21) is a good choice that simplifies the update equation

134

of the fusion filter. Further, Eq. (4.21) is a reasonable approximation of the optimal proposal

distribution. From the framework of unscented Kalman filter and unscented particle filter, it is

well known [44) that approximating distributions will be advantageous over approximating non-

linear functions. The drawback with this proposal density is the impractical assumption that the

local estimates are uncorrelated. I improve the performance of the fusion filter using a better

approximation of the optimal proposal distribution, which is described next.

4.1.5.3 Gaussian Approximation of The Optimal Proposal Distribution

I consider the optimal solution to the fusion protocol (Eq. (4.4)) when local filtering densities are

normally distributed. In such a case, P(x(O: k) lz(l: k - 1)) is also normally distributed [127) with

mean x(l,global)(k) and covariance p(l,global)(k)

-l N N
_p(l,global)-\k) = (R(l) (k)) + L p(j)-1 (k) - L R(j)-1 (k) (4.24)

j=l j=l
'-----v----' '-----v----'

x~L[(oo) X~~(oo)

x(l,global) (k) pCl,global)- 1 (k) [(R(l) (k))-
1

vCl) (k)

N N _
1

+ Lp(j)-
1
(k)µU)(k)- L(R(j)(k)) vCj)(k)]. (4.25)

j=l j=l

The four terms x~? (oo), x~~ (oo), X~~ (oo), and x~2 (oo) are already computed and available at

local nodes as part of computing the product terms. Fusion rules in Eqs. (4.24) and (4.25) are

obtained based on the track fusion without feedback [127). In such a scenario, particles X~l,FF)(k)

are drawn from N(x(l,global)(k), p(l,global)(k)) and the weight update equation (Eq. (4.22)) is

given by

N(X~l,FF) (k)· µ(k) P(k)) P(X~l,FF) (k)IX~l,FF) (k-1))
w(l,FF)(k) w(l,FF)(k-1) i ' ' i i (4 26)

i ex i N(X~l,F'F) (k); v(k), R(k))N(X~l,FF) (k); x~~)1obal), Pc~)global)) · ·

135

Algorithm 5 FUSION FILTER({X~l,FF)(k -1), Wi(l,FF)(k- l)}~[)

Input: {X~l,FF)(k -1), wP·FF)(k - l)}~iF - Fusion filter's particles and associated weights.

Output: {X~l,FF\k), w?·FF)(k)}[::1 Fusion filter's updated particles and associated weights.

1: for l = 1 : N, do

2: end for

3: DoFusion({µ(l) (k), p(l) (k)}~1) computes {µ(l,FF)(k), p(l,FF) (k)} for numerator of Eq. (4.4).

4: DoFusion({v(l)(k),R(l)(k)}~ 1) computes {v(l,FF)(k),R(l,FF)(k)} for denominator of (4.4).

5: for i = 1 : N, do

• Generate particles { x~l,FF) (k)} :;F by sampling proposal distribution defined in Sec­

tion 4.1.5 .

• Compute weights w<L,FF)(k) using Eq. (4.22).

6: end for

7: Resampling: ({X~l,FF) (k), w?·FF)(k)}~{) = Resample({X~l,FF)(k), w?·FF)(k)}~{).

The various steps of the fusion filter are outlined in Algorithm 5. The filtering step of the CD /DPF

is based on running the localized filters at each node followed by the fusion filter, which computes

the global posterior density by running consensus algorithm across the network. At the completion

of the consensus step, all nodes have the same global posterior available.

4.1.6 Computational complexity

In this section, I provide a rough comparison of the computational complexity of the CF /DPF

versus that of the centralized implementation. Because of the non-linear dynamics of the particle

filter, it is somewhat difficult to derive a generalized expression for its computational complexity.

136

There are steps that can not be easily evaluated in the complexity computation of the particle filter

such as the cost of evaluating a non-linear function (as is the case for the state and observation

models) (131]. In order to provide a rough comparison, we consider below a simplified linear state

model with Gaussian excitation and uncorrelated Gaussian observations. Following the approach

proposed in (131], the computational complexity of two implementations of the particle filter is

expressed in terms of flops, where a flop is defined as addition, subtraction, multiplication or

division of two floating point numbers .. The computational complexity of the centralized particle

filter for N-node network with N8 particles is of 0 ((n; + N)Ns). The CF /DPF runs the local

filter at each observation node which is similar in complexity to the centralized particle filter

except that the observation (target's bearing at each node) is a scalar. Setting N = 1, the

computational complexity of the local filter is of 0 (n;NLF) per node, where NLF is the number

of particles used by the local filter. There are two additional components in the CF /DPF: (i)

The fusion filter which has a complexity of O(n;NFF) per node where NFF is the number of

particles used by the fusion filter, and; (ii) The CF /DPF introduces an additional consensus

step which has a computational complexity of O(n;.6.gNc(U)). The associated convergence time

Nc(U) = 1/ log(l/rasym(U)) provides the asymptotic number of consensus iterations required for

the error to decrease by the factor of 1/e and is expressed in terms of the asymptotic convergence

rate Tasym(U). Based on (31], Nc(U) = -1/ max2:::;i:::;N log(l>.i(U)I), where Ai(U) is the eigenvalue

of the consensus matrix U. The overall computational complexity of the CF /DPF is, therefore,

given by max {O(Nn;(NLF+NFF)), O(n;.6.gNc(U))} compared to the computational complexity

0 ((n; + N)N8) of the centralized implementation.

137

.. +

Fusion riltcr_cr_·r_) _ _._ __ _.._.,.___._..,.____..._ ________ ..._ _.._--t_-'-------_.• I T. AT·T, I I Tr AT-T,I
i--.. r--··--1 f' . , . ·4 T T
I 3 I 4 K·t I IL I K+l Iteration
I I I I
I AT I I I ,----, l

Kf 1 2 ~ 4: K·l ~
(a)

+ + + + +
I T,(2) I T.{JJ I T,[4) I I r------·-···r--· 1:-e--J r=1 I

1' T
I l 3 I 4 K·1 I k I K+1
I I I I I
I d'r I I I I +-·+ l l

Ktl
1

2 3 I ~ K·l ~
(b)

Modified Fusion 1'. + Tc +
Filtcr(MFF.;...) ________ :j,._' _____ •~i----~Ji------""J-------+•

/1 /1 Is /7 ltcration

Tc I i T. I i / I

-~··t .J·~ 1 J ··! -······················:, !
fusion Filter (fofo) •

·" I ··· \ I ·-········ \
// \ · \ -· ... -······"'\ ___ .. \

Local Filter l_L_F)_1 ___ ..,~9-·-A_:r_.,.1
1

-···-···-····-· _..!..,··-····-···-···_·\o.t:~~-··-···-···-···-···· .. 1---'_.~.._-___.8..._ _ __.\!---------+
l ltemtion

ltcr.ition

(c)

Figure 4.3: Multi-rate implementation of the local and fusion filters. (a) The ideal scenario where

the fusion filter's consensus step converges before the new iteration of the local filter. (b) The

convergence rate of the fusion filter varies according to the network connectivity. (c) The lag

between the fusion filter and the local filter grows exponentially.

4.2 Modified Fusion Filter

In the CF /DPF, the local filters and the fusion filters can run out of synchronization due to

intermittent network connectivity. The local filters are confined to their sensor node and unaffected

by loss of connectivity. The fusion filters, on the other hand, run consensus algorithms. The

convergence of these consensus algorithms is delayed in cases where connectivity is temporarily

lost or the communication bandwidth is reduced. In this section I develop ways of dealing with

such intermittent connectivity issues. First, let me introduce the notation. I assume that the

138

observations arrive at constant time intervals of fl.T. Each iteration of the local filters is performed

within this interval, which I will refer to as the local filter's estimation interval. The duration (the

fusion filters's estimation interval) of the update cycle of the fusion filter is denoted by Tc. Fig. 4.3

illustrates three scenarios dealing with different fusion filter's estimation intervals. Fig. 4.3(a) is

the ideal scenario where Tc :::; fl.T and the fusion filter's consensus step converges before the

new iteration of the local filter. In such a scenario, the local and fusion filters stay synchronized.

Fig. 4.3(b) shows the second scenario when the convergence rate of the fusion filter varies according

to the network connectivity. Under regular connectivity Tc < fl.T and with limited connectivity

losses, the fusion filters manages to catch up with the localized filters in due time. Fig. 4.3(c)

considers a more problematic scenario when Tc > fl.T. Even with ideal connectivity, the fusion

filter will continue to lag the localized filters with no hope of its catching up. The bottom two

timing diagrams in Fig. 4.3(c) refer to this scenario with Tc = 2fl.T. As illustrated, the lag

between the fusion filter and the localized filters grows exponentially with time in this scenario.

An improvement to the fusion filter is suggested in the top timing diagram of Fig. 4.3(c), where

the fusion filter uses the most recent local filtering density of the localized filters. This allows

the fusion filter to catch up with the localized filter even for cases Tc > fl.T. Such a modified

fusion implementation requires an updated fusion rule for the global posterior density, which is

considered next.

At iteration k + m, I assume that node l, for (1 :::; l :::; N), has a particle-based approximation

of the local filtering distributions P(x(k + m)lz(l)(l: k + m)), while its fusion filter has a particle­

based approximation of the global posterior distribution P(x(O: k) lz(l: k)) for iteration k. In other

words, the fusion filters are lagging the localized filters by m iterations. In the conventional fusion

filter the statistics of P(x(k+l)lz(l)(l:k+ 1)), for (1:::; l:::; N) are used in the next consensus

step of the fusion filter which then computes the global posterior P(x(O: k + l)lz(l: k + 1))

139

based on Theorem 5. The modified fusion filter uses the most recent local filtering distributions

P(x(k + m)Jz(l)(l: k + m)) according to Theorem 6.

Theorem 6. Conditioned on the state variables, assume that the observations made at node l are

independent of the observations made at node j, (j i= l). The global posterior distribution for a

N-sensor network at iteration k+m is then given by

P(x(O:k+m)Jz(l:k+m)) oc

N Ilk+m P(x(k')Jz<l)(l·k')) k+m
II k~;;;k+l

1
l . ·, II P (x(k')Jx(k' -1)) x P (x(O: k)Jz(l: k)) .(4.27)

l=1 Ilk'=k+i P (x(k)Jz< >(l.k -1)) k'=k+l

The proof of Theorem 6 is included in Appendix B.2. In the consensus step of the modified

fusion filter, two average consensus algorithms are used to compute TI{:1 TI~t~+l P(x(k')Jz(l)(l:

N k+m N

II II P (x(k')lz(l)(l:k')) oc IIN(µ<l)(k+l:k+m),P(l)(k+l:k+m)) (4.28)
l=l k'=k+l l=l

N k+m N

and II II P(x(k')Jz<l)(l:k'-1)) cxIIN(v(l)(k+l:k+m),R(l)(k+l:k+m)), (4.29)
l=l k'=k+l l=l

instead of computing TI{:1 P(x(k)Jz<l)(l: k)) and TI{:1 P(x(k)Jz<l)(l: k-1)) as was the case for

the conventional fusion filter. The modified fusion filter starts with a set of particles :X~MFF ,l) (k),

wi(MFF,l)(k) approximating P(x(O: k)Jz(l : k)) and generates updated particles :x~MFF,l)(k+

m), Wi(MFF,l) (k+m) for P(x(O: k+m)Jz(l: k+m)) using the following weight update equation

n~:-~
1

p (x~l,MFF) (k') ix~l,MFF) (k' - l))
W?'MFF)(k+m)cxWi(l,MFF)(k)x - + , (4.30)

N(X~l,MFF)(k+m); v(k+l :k+m), R(k+l :k+m))

which is obtained directly from Eq. (4.27). Note that the normal approximation in Eqs. (4.28)-

(4.30) are similar to the ones used in the conventional fusion filter. Furthermore, I note that the

modification requires prediction of the particles from iteration k all the way to k+m in order to

evaluate the second term on the right hand side of Eq. (4.30). Algorithm 6 outlines this step and

summarizes the modified fusion filter.

140

Algorithm 6 MODIFIED FUSION FILTER

Input: {X~l,MFF)(k), w?·MFF)(k)}~rFF - Fusion filter's particles and associated weights.

Output: {X~l,MFF)(k+m), w?·MFF)(k+m)}~1 updated particles and associated weights.

1: fork'= k+l: k + m, do

N (µ (l) (k'), p<l) (k')) = SaveGaussian ({X~l) (k'), wp) (k')} ~1)

N(v<l)(k'),R<l)(k')) = SaveGaussian({x}t)(k'+llk'), w?)(k')}~1)

2: end for

3: N(µ<L)(k+l: k+m), p(t)(k+l: k+m)) = SaveGaussian(TIZ/=~1 N(µ<t)(k'), p(t)(k'))).

4: N(v<l)(k+l: k+m), R(l)(k+l: k+m)) = SaveGaussian(I1Zt~1 N(v<l)(k'), R(l)(k'))).

5: {µ{l,MFF)(k+l: k+m), p(l,MFF)(k+l: k+m)} =DoFusion({µ{l)(k+l: k+m), p(l)(k+l: k+m)}~l).

6: { v<l,MFF) (k+ 1: k+m), R(l,MFF) (k+ 1: k+m)} = DoFusion({ v<l) (k+ 1: k+m), R(l) (k+ 1: k+m) }~1).

7: for i = 1 : Npp, do

8: fork'= k+l: k+m-1, do

x~t,MFF) (k') ,...., P(x(k')IX~t,MFF) (k' -1)).

9: end for

x~l,MFF)(k+m) f'V N(µ(l,MFF)(k+l: k+m), p(l,MFF)(k+l: k+m)).

Compute weights wP·MFF)(k+m) using Eq. (4.30).

10: end for

4.3 Simulation Results

In this section, different scenarios with non-linear target kinematics and non-Gaussian observation

model are considered to investigate the properties of the proposed CF /DPF implementation. As

stated previously, the CF /DPF and the UCD /DPF are not application specific and are applicable

to any nonlinear dynamical system. Appendix B.3 provides a rough comparison of the computa-

141

6

4

2
= 0

·~
cu e 0
;a
I
>

-2

-4

-6

Distributed vs Centralized PF

__._Targets Trajectory

- - - Centralized PF
· -+- · CF/DPF with Optimal Proposal

· -•- · Single Node Scenario

.'~.<;.

·' ,. ·"
.. ~ - ,,.... --

• - ,,,. .•• ;: :: ~>·-

.,- :·

.... ~·~·

·, I

••

---:::·
_.:::··

-8'--------'-----'-------'------'----"'L--'-----'-----'----__J
-8 -6 -4 -2 0 2 4 6

X - dimension

(a)

Empirical CDF at iteration k = 5

0.9 0.9

0.8 0.8

0.7 0.7

0.6 0.6

0.5 0.5

0.4 0.4

0.3 ············· 0.3

0.2 0.2

0.1
-- F Centralized

0.1

0
1.8 1.9 2 2.1 2.2 2.3 °

(b)

Empirical CDF at iteration k = 22

;
i

···············••/

' .. i
;

. .i
;
' ~ . .i :;

:I :; .

i"
······I~-----~

f : ' - ' - ' F CF/DPF

-- F Centralized .

0.94 0.96 0.98

8

Figure 4.4: Scenario 1: (a) Target's tracks obtained from the centralized, CF /DPF and stand-alone

algorithms (the consensus is allowed to converge). (b) CDFs for the X-coordinate of the target from the

centralized and CF /DPF approaches for k = 5, 22.

142

tional complexity of the UCD /DPF and CF /DPF versus that of the centralized implementation.

A sensor network of N = 20 nodes with random geometric graph model in a square region of

dimension (16 x 16) m2 is considered. Each sensor communicates only with its neighboring nodes

within a connectivity radius of J2 log(N) / N units. In addition, the network is assumed to be

connected with each node linked to at least one other node in the network. Measurements are the

target's bearings with respect to the platform of each node referenced (clockwise positive) to the

y-axis as defined in Eq. (3.52). The observations are assumed to be corrupted by the non-Gaussian

target glint noise [165] modeled as a mixture model of two zero-mean Gaussians [165], one with a

high probability of occurrence and small variance and the other with relatively a small probability

of occurrence and high variance. The likelihood model at node l, for (1 :::; l :::; N), is described as

P(z(l) lx(k)) = (1 - E) x N(x; 0, a~<l) (k)) +Ex N(x; 0, 104a~(t) (k)), (4.31)

where E = 0.09 in the simulations. Furthermore, the observation noise is assumed to be state

dependent such that the bearing noise variance a~<l)(k) at node l depends on the distance r(l)(k)

between the observer and target. Based on [166], the variance of the observation noise at node l

is, therefore, given by

a~<t) (k) = 0.08r<0
2

(k) + 0.115or<O(k) + 0.7405. (4.32)

Due to state-dependent noise variance, the signal to noise ratio (SNR) is time-varying and differs

(within a range of - lOdB to 20dB) from one sensor node to the other depending on the location

of the target. Averaged across all nodes and time, the mean SNR is 5.5dB. In the simulations, I

chose to incorporate observations made at all nodes in the estimation, however, sensor selection

based on the proposed distributed PCRLB can be used, instead, which will be considered later

in Section 6. Both centralized and distributed filters are initialized based on the procedure de­

scribed in Section 3.3.1.

143

The target starts from coordinates (3, 6) units The position of target the target ([X, Y]) in

first three iterations are (2.6904, 5.6209), (2.3932, 5.2321), and (2.1098, 4.8318). The initial course

is set at -140° with the standard deviation of the process noise av= 1.6x10-3 unit. The number

N 8 of vector particles for centralized implementation is N 8 = 10, 000. The number NLF and NFF

of vector particles used in each local filter and fusion filter is 500. The number of particles for the

CF /DPF are selected to keep its computational complexity the same as that of the centralized

implementation. To quantify the tracking performance of the proposed methods three scenarios

are considered. In Scenario 1 and 2, the nonlinear CCT state model (Eq. (3.50)) presented in

Section 3.3 is used. Scenario 3 considers distributed unicycle mobile robot localization problem

as introduced in Section 2.6.4 where the state model is given by Eqs. (4.33)-(4.34).

4.3.1 Scenario 1

Scenario 1 accomplishes two goals. First, the performance of the proposed CF /DPF is compared

versus the centralized implementation. The fusion filters used in the CF /DPF are allowed to

converge between two consecutive iterations of the localized particle filters (i.e., following the

timing subplot (a) of Fig. 4.3). Second, the impact of the three proposal distributions listed in

Section 4.1.5 on the CF /DPF are compared. The performance of the CF /DPF is computed for

each of these proposal distributions using Monte Carlo simulations.

Fig. 4.4(a) plots one realization of the target track and the estimated tracks obtained from:

(i) The CF /DPF; (ii) the centralized implementation, and; (iii) a single node estimation (stand

alone case). In the CF /DPF, the Gaussian approximation of the optimal proposal distribution is

used as the proposal distribution (Case 3 in Section 4.1.5). The two estimates from the CF /DPF

and the centralized implementation are fairly close to the true trajectory of the target so much so

as that they overlap. The stand alone scenario based on running a particle filter at a single node

144

0.7

0.6

0.5

g
f.Q 0.4

1::1
0

:~
0

g,,
0.3 CZl

~
0.2

0.1

0
0 5 10 15

Time (k)

(a)

- • - Centralized Particle Filter
·-•-·Optimal Fusion Filter
• · · + • · Product Fusion Filter
- - - SIR Fusion Filter
__._ Distrributed PCRLB

20 25 30

Figure 4.5: Scenario 1: Comparison of the RMS errors resulting from the centralized versus distributed

implementations.

145

(shown as the red circle in Fig. 4.4(a)) fails to track the target. Fig. 4.4(b) plots the cumulative

distribution function (CDF) for the X-coordinate of the target estimated using the centralized

and CF /DPF implementations for iterations k = 5 and 22. We note that the two CDFs are close

to each other. Fig. 4.4 illustrates the near-optimal nature of the CF /D PF.

Fig. 4.5 compares the RMS error curves for the target's position. Based on a Monte-Carlo

simulation of 100 runs, Fig. 4.5 plots the RMS error curves for the estimated target's position via

three CF /DPF implementations obtained using different proposals distributions. It is observed

that the SIR fusion filter performs the worst in this highly non-linear environment with non­

Gaussian observation noise, while the outputs of the centralized and the other two distributed

implementations are fairly close to each other and approach the PCRLB. Since the product

fusion filter requires less computations, the simulations in Scenario 2 are based on the CF /DPF

implementation using the product fusion filter.

4.3.2 Scenario 2

The second scenario models the timing subplot (c) of Fig. 4.3. The convergence of the fusion filter

takes up to two iterations of the localized filters. The original fusion filter (Algorithm 5) is unable

to converge within two consecutive iterations of the localized particle filters. Therefore, the lag

between fusion filters and the localized filters in the CF /DPF continues to increase exponentially.

The modified fusion filter described in Algorithm 6 is implemented to limit the lag to two localized

filter iterations. The target's track are shown in Fig. 4.6(a) for the centralized implementation,

original and modified fusion filter. Fig. 4.6(b) shows the RMS error curves for the target's position

including the RMS error resulting from Algorithm 5 and the extended PCRLB (Appendix E).

Since consensus is not reached, therefore, the fusion estimate from Algorithm 5 is different from

one node to another. Result from one randomly selected node is included. The node performs

146

i::
0
-~
Q)

.§
'"O
I

>-

6

4

2

0

-2

-4

----Targets Trajectory
· -•- · Centralized PF
- + - Modified Fusion Filter

•

•
-6

~·
-8
-8 -6 -4

1.2

~ 0.8 ... ~
0 '

·.c \ ·;;;

~ 0.6 . -·

~ \
0.4 'l ... _ ... ·

-2 0
X - dimension

(a)

"•
2 4

· · · • · · Centralized Particle Filter
· -+- · Modified Fusion Filter
- - - Original Fusion Filter
--PCRLB

Predictive PCRLB

\
t~.~-·-·--·--, - - - : . - -~-0.2 -~· .. '.,, •..... : ~ !lilt-.. - - - - -----·-·-· : ~, : :

....... - ~!_······· : : ~~~.:..~ ···"*·'*"*:*'-·. ol_~~~...L.~~~_L.....:..._~~~~~~~~lli.J!l.:.l'l~~~~..:...~

6

0 5 10 15 20 25 30
Iteration (k)

(b)

Figure 4.6: Scenario 2: (a) Actual target's track alongside the estimated tracks obtained from the

centralized and modified fusion filter. Here, the consensus algorithm converges after every two iterations

of the local particle filters. (b) Comparison of the RMS errors resulting from the centralized, original

fusion filter and modified fusion filter.

147

poorly due to consensus not reached. The performance of the modified fusion filter remains close

to its centralized counterpart, therefore, it seems capable of handling intermittent consensus steps.

In Fig. 4.6(b), the extended PCRLB overlaps with its centralized counterpart.

4.3.3 Scenario 3

In the third scenario, a distributed mobile robot localization problem [6, 7] is considered based

on angle-only measurements. This is a good benchmark since the underlying dynamics is non-

linear with non-additive forcing terms resulting in a non-Gaussian transitional state model. This

scenario is introduced to check if the CF /DPF can handle non-Gaussian state models, therefore,

the consensus is assumed to converge between two consecutive observations. As stated previously

in Section 2.6.4, the state vector of the unicycle robot is defined by x = [X, Y, 8]I', where (X, Y)

is the 2D coordinate of the robot and e is its orientation. The velocity and angular velocity are

denoted by V(k) and W(k), respectively. The following discrete-time non-linear unicycle model [6]

represents the state dynamics of the robot

X(k+l)

Y(k+l)

and B(k+l)

X(k)+ ~(k) (sin(B(k)+W(k)~T)-sin(B(k)))
W(k)

V(k) -
Y(k)+ W(k) (cos(O(k)+W(k)~T)-cos(O(k)))

e(k) + W(k)~T + ~e~T,

(4.33)

(4.34)

(4.35)

where ~Tis the sampling time and ~e is the orientation noise term. The design parameters are:

fj.T = 1, a mean velocity of 30 cm/s with a standard deviation of 5 cm/s, and a mean angular

velocity of 0.08 rad/s with a standard deviation of 0.01 rad. The observation model is similar

to the one described for Scenario 1 with non-Gaussian and state-dependent observation noise.

The robot starts at coordinates (3, 5). Fig. 4.7(a) shows one realization of the sensor placement

along with the robot's trajectories estimated from the proposed CF /DPF, centralized particle

148

8r::::====r:::=====:r:::::====:r:::====,---~~,-~~.,-~~-.-~--,

6

0.9

0.8

0.7

0.6
§

J,il
0.5 i::

:~
0

Q.. 0.4
ti)

~
0.3

0.2

0.1

0
0

--Targets Trajectory
·-~·Centralized PF

- + - Distributed UKF ·

- - - CF/DPF with Optimal Proposal

5

-4 -2 0 2 4 6
X - dimension

(a)

--Centralized Particle Filter
• -x- • The CF/DPF

- + - Distributed UKF

··-···························-······~ _...,..
/I' .

-~· .

1r'
............ :.,"1..

.

. ·:· >,.;.
• ,.., .. : ,.

: ..,..,
·;..;.;A""······

10 15
Iteration (k)

(b)

20 25

8

30

Figure 4.7: (a) Robot trajectories estimated from the CF/DPF, centralized, and distributed UKF im-

plementations. (b) RMS error plots for the three implementations.

149

filter and distributed unscented Kalman filter (UKF) [7) implementations. We observe that both

centralized particle filter and CF /DPF closely follow the robot trajectory, while the distributed

UKF deviates after some initial iterations. Fig. 4. 7(b) plots the RMS error plots obtained from

Monte-Carlo simulation of 100 runs, which corroborate our earlier observation that the CF /DPF

and the centralized particle filter provide better estimates that are close to each other, while the

UKF produces a different result with the highest RMS error.

4.4 Summary

In this chapter, I propose a multi-rate consensus/fusion based framework, referred to as the

CF /DPF, for distributed implementation of the particle filter. In the proposed framework, two

particle filters run at each sensor node. The first filter, referred to as the local filter, recursively

runs the particle filter based only on the local observations. I introduce a second particle filter

at each node, referred to as the fusion filter, which consistently assimilate local estimates into a

global estimate by extracting new information. The proposed CF /DPF implementation allows the

fusion filter to run at a rate different from that of the local filters. Achieving consensus between

two successive iterations of the localized particle filter is no longer a requirement. The fusion

filter and its consensus-step are now separated from the local filters, which enables the consensus

step to converge without any time limitations. Numerical simulations verify the near-optimal

performance of the CF /DPF. The CF /DPF estimates follow the centralized particle filter closely

approaching the PCRLB at the SNRs that we tested.

150

5 Posterior Cramer-Rao Lower Bound for Distributed

Architectures (dPCRLB)

The Cramer-Rao lower bound (CRLB) is widely used for assessing the performance of an estima­

tion algorithm. In the simplest form, the CRLB provides a lower limit on the error variance of an

unbiased estimator of a deterministic parameter. An unbiased estimator that achieves the CRLB

is considered to be efficient. In dealing with stochastic dynamical models, the state variables

are often random necessitating the need for a Bayesian estimator with the bound on the error

variance taken with respect to a posterior density function. In cases where statistics related to

a random variable are being estimated, a lower bound (132] that is analogous to the CRLB is

referred to as the posterior Cramer-Rao lower bound (PCRLB) (at times also referred to as the

Bayesian CRLB or the Van Trees version of the CRLB). A common form of the PCRLB is the

conventional (non-conditional) PCRLB determined primarily from the state model, observation

model, and prior knowledge of the initial state of the system. Most PCRLB formulations does not

allow for a recursive implementation and suffer from computational complexity as the dimension

of the state vector grows in time.

The chapter derives recursive distributed algorithms for online computation of the optimal

PCRLB for distributed sensor/agent networks (AN/SN). The motivation for this work comes from

sensor selection decisions (133-141] especially in geographically dispersed networks deploying an

151

unrestrictedly large number of sensor nodes. Limitations in power, frequency, and bandwidth

restrict the maximum number of active sensors that can simultaneously participate in the decen­

tralized estimation process. The problem of sensor selection is to determine the optimal way of

dynamically selecting a subset of sensors over time that provides the best estimation performance.

Among other criteria proposed for sensor resource management, the PCRLB [15, 142-147] pro­

vides a predictive measure of the achievable optimal performance. More importantly, this PCRLB

is independent of the estimation mechanism. In the past, sensor management algorithms based

on the PCRLB have only been presented for the centralized networks with a fusion centre. No

such work has been pursued for distributed estimation networks primarily because of the diffi­

culty in computing the PCRLB distributively. The chapter addresses this gap and as a first step

derives optimal recursive PCRLB expressions, referred to as the distributed PCRLB (dPCRLB),

for sensor networks configured using distributed architectures. I reiterate that the centralized com­

putation of the PCRLB cannot be realized f 15} for dynamic resource allocation in decentralized

networks due to the absence of the fusion centre and the only alternative is real-time, recursive

computation of the dPCRLB in a distributed fashion especially for sensor selection.

The seminal work of Tichavsky et al. (148] provides a recursive formula to update the Fisher in­

formation matrix (FIM), i.e., the inverse of the PCRLB, iteratively for a general multidimensional,

discrete time, nonlinear, estimation problem in the centralized architecture while keeping the di­

mensions of the FIM constant. Based on [148], there has been a surge of interest in extending the

PCRLB to more practical scenarios, e.g., to include measurement origin uncertainty [149, 150],

to consider issues related to the quantization of sensor data, to compute approximated online

PCRLB (151], and to derive online conditional PCRLB [152]. Subsequently, the PCRLB theory

has been extended to several applications, e.g., for adaptive resource management (146], dynamic

sensor selection [145], bearing-only tracking [154] and multiple target tracking [155]. As stated

152

earlier, previous derivations of the PCRLB are limited to the centralized [146, 149, 152] and hi­

erarchical estimation architectures [145] and only recently a suboptimal PCRLB expression [15]

has been derived for the distributed architectures. In this chapter, optimal dPCRLB algorithms

are derived for full-order distributed approaches, where the entire state vector is estimated lo­

cally at each observation node without resorting to a fusion centre. In the full-order dPCRLB

computation, average consensus algorithms are used to distributively compute the summation

terms involving local statistics such as the local FIMs. In the discussions that follow, a connected

network with at least one path traversing the complete network is assumed. Also, observability

over the entire network is assumed though local observability is not required. Some of the results

presented in this chapter have been appeared previously in [53-55, 64]

To summarize, the chapter makes the following important contributions.

1. Exact expressions for computing the non-conditional (conventional) dPCRLB for full-order

distributed architectures are derived. A Riccati-type recursion that sequentially determines

the optimal distributed FIM from localized FIMs of the distributed estimators is derived,

which is used to compute the full order dPCRLB (FO/dPCRLB).

2. As an alternative to the non-conditional (conventional) dPCRLB (Item 1), the conditional

dPCRLB is proposed for full-order distributed estimation in AN /SN systems. The con­

ventional PCRLB considers observations and state variables as random, therefore, the ex­

pectations are taken with respect to the joint probability distribution of the states and

observations. As mentioned previously, the conventional PCRLB is determined primarily

from the state model, observation model, and prior knowledge of the initial state of the

system leading to an offtine bound' with actual observations averaged out over time. An

alternative is to express the PCRLB as a function of the past history of observations, which

inherently contains information of the current realization of the system state. The resulting

153

PCRLB is referred to as the conditional PCRLB [I52], which is an online bound leading

to a more accurate representation of the systems's performance and a better criteria for

sensor-selection. Current conditional PCRLB expressions [152] are limited to centralized

architectures utilizing a FC, which make them inappropriate for distributed topologies.

The rest of the chapter is organized as follows. Section 5.I revisits old notation as well as introduces

new ones and reviews the centralized PCRLB. Section 5.2 derives an expression for computing

the non-conditional dPCRLB for a full-order distributed architecture. Section 5.3 extends the

result to the conditional dPCRLB for a full-order distributed architecture. Section 5.4 illustrates

the effectiveness of the proposed bounds through Monte Carlo simulations. Finally, Section 5.5

concludes the chapter.

5.1 PCRLB for Centralized Architecture

As previously stated in Chapter 2, k > I, x(k) is defined to be the estimate (i.e., the expected

value) of the state vector x(k) at time step k based on observations taken up to k, and P(k) is

defined to be the mean squared error (covariance) associated with estimate x(k), i.e.,

x(k) A IE{x(k)lz(I: k)}

and P(k) A IE{(x(k) - x(k))(x(k) - x(k))T},

(5.I)

(5.2)

where IE{-} is the expectation operator and z(I : k) are the accumulative observations upto k.

Similarly, the predicted value of the state vector and its associated error covariance are

x(k +Ilk) A IE{x(k + I)lz(I: k)} (5.3)

and P(k +Ilk) ~ IE{(x(k +I) - x(k +Ilk)) (x(k +I) - x(k + Ijk))T}. (5.4)

I54

In a distributed estimation setup, each node establishes its local estimates based on its own

observations. Such a local estimate at node l, (1 :::; l :::; N), is defined as

x_(l)(k) ~ IE{x(l)(k)lz(l)(l: k)} (5.5)

and p(l)(k) ~ IE{(x<l)(k) - x_(l)(k)) (x(l)(k) - x_(l)(k))T}. (5.6)

Likewise, the locally predicted state estimate at node l is

(5.7)

5.1.1 PCRLB for Centralized Architecture

The PCRLB inequality [148] states that the mean square error (MSE) associated with the estimate

x(O: k) of the state vector x(O: k) is lower bounded by

IE{(x(O:k)-x(O:k))(x(O:k)-x(O:k)f} 2:: [J(x(O:k))i- 1
.

Matrix J(x(O: k)) is referred to as the Fisher information matrix (FIM) [148), i.e., the inverse of

the PCRLB, derived from the joint probability density P(x(O: k), z(l: k)). Let V7 and ~ denote,

respectively, the operators for the first and second order partial derivatives as follows

and ~x(k)
x(k-1)

A common form [148] of the FIM is defined as

{} {} T

[8X1(k)' ... ' 8XnJk)]

J(x(O: k)) =IE{ - ~:~~;~~ logP(x(O: k),z(l: k))}, (5.9)

where the expectation is with respect to the joint distribution of the states and observations. An

alternative expression for the FIM is derived by expressing

P(x(O: k),z(l: k)) = P(x(O: k)lz(l: k))P(z(l: k)). (5.10)

155

Since P(z(l: k)) is assumed independent of the state, Eq. (5.10) leads to the following definition

for the FIM.

Definition 3. The Fisher information matrix for the state vector x(O: k) from time 0 to k is

given by

J(x(O: k)) IE{ - ~:~~~~~log P(x(O: k)lz(l : k))}

- j ~:~~~~~logP(x(O:k)lz(l:k))P(x(O:k),z(l:k))dx, (5.11)

where the expectation is taken with respect to P(x(O: k), z(l: k)) and the integration is multidi-

mensional depending on the state dimensions.

The global FIM J(x(O: k)) is factorized as follows [148]

[

A(k)
J(x(O: k)) ~

JIB(k)T :: : ;] = [:f ~-:~l~)~~ll-~;:-~i~i}f-~i t:;~l~~~o;;:~rJ]
(5.12)

where Pc(k) = P(x(O: k)lz(l: k)). The FIM J(x(k)) associated with the estimate x(k) is obtained

by taking the inverse of (nx x nx) right-lower square block of [J(x(O: k))]- 1 using the following

Lemma [152].

Lemma 3. Matrix inversion Lemma:

(5.13)

where subblocks {A, B, C} have conformable dimensions, n = A - Bc-1 BT, and cl> = C -

Based on Lemma 3, the FIM J(x(k)) is given by

J(x(k)) = C(k) - IIB(k)T A(k)- 1IIB(k), (5.14)

156

Proposition I (derived in [I48]) presents the centralized sequential formulation of the FIM J(x(k))

that requires a central fusion centre but without the need of computing the inverse of J(x(O: k))

or inverse of other large matrices, e.g., A(k).

Proposition 1. The centralized F IM { J (x(k))} associated with the filtered estimate x(k) recurses

as

J(x(k +I)) = D 22 (k) - D 21 (k)(J(x(k)) + D 11 (k))-
1
D 12 (k), (5.15)

where

1E{ - ~:~~~ logP(x(k + I)lx(k)) },

[D21 (k)f = 1E{ - ~:~~t1) logP(x(k + I)lx(k)) },

(5.I6)

(5.I 7)

D 22 (k) = 1E{ - ~:~~!g log P(x(k + I)lx(k))} + 1E{ - ~:~~!g log P(z(k + I)lx(k +I))}.

J(z(k+l))

(5.I8)

The initial condition is J(x(O)) =1E{-~:~~~ logP(x(O))}.

In the following discussion, I derive a bound similar to J(x(k + I)) except for the state

prediction estimate x(k + I I k) as defined below.

Definition 4. Term J(x(O: k +Ilk)) denotes the FIM corresponding to the predicted estimate of

x(O: k +I) derived from the prediction density P(x(O: k + I)lz(I: k)).

As for J(x(k)), the FIM J(x(k +Ilk)) associated with the predicted estimate x(k +Ilk) can

be computed by taking the inverse of the (nx x nx) right-lower block of [J(x(O: k + Ijk))J- 1 . This

procedure is computationally intense. Instead, Proposition 2 derives an alternative expression for

computing J(x(k + llk)) from J(x(k)).

I57

Proposition 2. The centralized FIM {J(x(k+llk))} for the predicted estimate x(k+llk) recurses

as

J(x(k+llk)) = B 22 (k) - D 21 (k)(J(x(k)) + D 11 (k))-
1
D 12 (k), (5.19)

where J(x(k)) is derived from Proposition 1. Terms D 11 (k), D 12 (k), and D 21 (k) are given by

Eqs. (5.16)-(5.17) and the additional term

B 22 (k) = JE{ - ~~~~!g log P(x(k + l)lx(k)) }. (5.20)

The proof of Proposition 2 is included in Appendix C.l. In centralized estimation, where all raw

observations are forwarded to the central processing unit (fusion centre) for processing, Propo­

sition 1 provides a recursive procedure for updating J(x(k)) without the need for computing

J(x(O: k)). The predicted FIM J(x(k + llk)), when needed, can be obtained from J(x(k)) using

Proposition 2. A second configuration that uses a centralized fusion centre is the hierarchical ar­

chitecture where each node communicates its local estimates or other statistics based on its local

observations to the fusion centre. The latter forms the global estimate and updates the global

posterior density P(x(O: k)lz(l: k)). Reference [145] shows that the PCRLB equations for the

centralized architecture are also valid for the hierarchical architecture. Therefore, Propositions 1

and 2 can be used for both centralized and hierarchical architectures.

The focus of this chapter is on distributed estimation, where a fusion centre is not implemented

and all processing is performed locally at the nodes constituting the network. The primary moti­

vation for this work is development of distributed PCRLB based resource management techniques

to dynamically select a subset of candidate sensor nodes participating in distributed state esti­

mation. Due to the absence of the fusion centre, such sensor selection approaches necessitate the

PCRLB to be computed online in a distributed fashion as is discussed next.

158

5.2 dPCRLB for Full-order Distributed Estimation

The problem I want to solve is to compute the theoretical lower bound, i.e., PCRLB, on the error

in the global state estimate. Below, I explain the proposed dPCRLB computation algorithm for

the full-order state estimation. In Appendix E, I show that the equations used to compute the

global FIM as a function of the local FIMs are similar in nature to those for reduced-order state

estimation with some modifications.

5.2.1 Full-order dPCRLB (FO/dPCRLB)

This section derives the recursive expression for computing the full-order dPCRLB, i.e., expresses

the global information sub-matrix, denoted by JFo(x(k+l)), as a function of its value JFo(x(k))

for the previous iteration, local FIMs J~i (x(k + 1)), and local prediction FIMs J~lb (x(k + 1 I k)),

1 ::; l ::; N.

Definition 5. Term J~b(x(O: k)), for 1 ::; l ::; N, denotes the local FIM corresponding to the

local estimate :X(l) (0: k) of x(O: k) derived from the local posterior density P(x(O: k) iz(l) (1: k)) for

a full order local estimator defined as

J~b(x(O: k)) = lEP(x(O:k),z<L)(l:k)) { - ~:~~~~~log P(x(O: k) iz(l) (1: k))}. (5.21)

Definition 6. Term J~b(x(O: k+llk)) denotes the local FIM corresponding to the local prediction

estimate :X(l)(O: k+llk) ofx(O: k+l) derived from the local prediction density P(x(O: k+l)iz<l)(l:

k)) for a full-order local estimator defined as

(l)((. I))- { Ax(O:k+l)l ((·k)I (l)(.))} J FO X 0. k + 1 k - lEP(x(O:k+l),z(L)(l:k)) - ux(O:k+l) og P x 0. + 1 z 1. k . (5.22)

Note that the inverse of the local filtering FIM, i.e., [J~lb(x(k))J- 1 , is equal to the (nx x nx)

right-lower block of [J~lb(x(O: k))]- 1 as explained previously for J(x(k)) based on Lemma 1.

159

The expressions for recursively computing J~l6(x(k)) are similar in nature to Eqs. (5.15)-(5.18)

except that the likelihood function P(z(k + l)jx(k + 1)) originally used in J(z(k + 1)) = lE{ -

~:~~!~~ logP(z(k + l)jx(k + 1))} (defined in Eq. (5.18)) is replaced by its corresponding local

likelihood P(z(l)(k + l)lx(k + 1)), i.e., J(z(l)(k + 1)) = lE{-~~~~!g logP(z(l)(k + l)jx(k + 1)) }.

Similarly, computation of J~i(x(k + ljk)) is also based on Proposition 7 except J(x(k)) gets

replaced by J~i(x(k)).

In deriving the optimal recursive expressions for computing the dPCRLB, another form of

the local FIM (denoted by J~l6 (x(k))) associated with the local state estimate is encountered as

defined below, which is derived from the local filtering distribution P(x(k) jz(l) (1 : k)), i.e.,

(5.23)

Similarly, the prediction FIM J~l6(x(k + ljk)) associated with the local prediction estimate is

given by

Difference between J~l6(x(k)) and J~l6(x(k)): The localized FIM J~l6(x(k)) is obtained by

inverting the (nx x nx) right lower square block of [J~i(x(O: k))J- 1 using Eqs. (5.12)-(5.14)

directly or its recursive implementation using Eq. (5.15). On the other hand, its counterpart

j~l6(x(k)) is derived directly from Eq. (5.23) by taking the expectation and Laplacian of the

local conditional posterior. A way of obtaining term J~l6(x(k)) is by re-initializing (renew­

ing) the system prior probability density function (PDF) at time k with the posterior PDF,

i.e., P0 (x(k)) = P(x(k)lz(l)(k)). While J~l6(x(k)) can be computed recursively, determining

J~l6(x(k)) is not generally straightforward [146]. For linear systems with Gaussian excitation, it

has been shown [152] that the two FIMs are the same. For nonlinear systems, the two FIMs are

generally different. A comparison of J~i(x(k)) and J}l6(x(k)) is difficult due to complex integral

160

terms. Further explanation on the differences between J~lb(x(k)) and J~lb(x(k)) is presented

in [146, 152). A similar difference exists between the localized predictive FIMs J~lb(x(k+ llk))

derived from J~i(x(O: k)) using Eq. (5.19) and J~i(x(k+ llk)) obtained from Eq. (5.24).

Scenario 1 (Estimation based only on local measurements): Theorem 7 presented below provides

the optimal recursive formula for computing the distributed FIM corresponding to the global

estimation from the local FIMs J~i(x(k)) and local prediction FIMs J~lb(x(k+llk)) for Scenario 1

(Section 2.1.2.1).

Theorem 7. The sequence { J FO (x(k))} of information sub-matrices for the global estimates

fallows the recursion

Jpo(x(k + 1)) = ci2a(k) - cp0 (k)(Jpo(x(k)) + c}b(k))- 1c}2a(k) (5.25)

where terms C}1cJ(k), ci1cJ(k), C}2a(k) and ci2a(k) are given by

C}1cJ(k) IE{ - ~:~Z~ log P(x(k + l)lx(k))}, (5.26)

c}2cJ(k) [c;b(k)f = lE{ - ~:iZt1) logP(x(k+l)lx(k)) }, (5.27)

N N

and c;2a(k) L J~b(x(k+l)) - L J~b(x(k+llk)) + lE{-~:~Z!~~ log P(x(k + l)lx(k)) }.
l=l l=l

(5.28)

In order to approximately compute the dPCRLB and specifically to compute C~b(k), I propose

to replace J~i(x(k)) with J~lb(x(k)) (and similarly J~lb(x(k + llk)) with J~lb(x(k + llk))) in

Eq. (5.28)), i.e.,

N N

C~b(k) ~ L J~i(x(k + 1)) - L J~z6(x(k+llk)) +IE{ - ~:~Z!g logP(x(k + l)lx(k)) }.(5.29)
l=l l=l

Note that Eq. (5.29) is an approximation given that J~i(x(k)) may be different from J~i(x(k)) for

nonlinear systems. In our simulations for a nonlinear /Gaussian system, I illustrate through Monte

161

Carlo simulations that Eq. (5.29) provides reasonably accurate results. The proof of Theorem 7

for Scenario 1 is included in Appendix C.2.

Scenario 2 (Estimation based on local measurements and previous global estimate): I extend

Theorem 7 to compute the global FIM as a function of the local FIMs for Scenario 2 (Sec-

tion 2.1.2.1) where the local estimator at node l, for 1 :::; l :::; N, is still restricted to local

observations but additionally uses the previous estimated global state.

Corollary 1. Theorem 7 provides the optimal expression for Scenario 2 except for (5.28) involving

C}2a(k), which changes to

N

C}2a(k) = LlE{-~:~~~logP(x(k+l)lz(l:k),z(l)(k+l))}
l=l
N

L J~b(x(k+llk)) + lE{ ~:~~!~~ logP(x(k+l)lx(k))} (5.30)
l=l

where the first term on the right hand side {RHS) of Eq. (5.30) associated with the local state

estimate is derived from the local filtering distribution P(x(k)lz(l: k), z(l)(k + 1)).

The proof of Corollary 1 is included in Appendix C.3. Eq. (5.30) can be further approximated as

N

cn(k) ~ L J~i(x(k + 1)) - N Jpo(x(k + llk)) + lE{ - ~:~~!g log P(x(k + l)lx(k)) }, (5.31)
l=l

where I use the local FIM J~lb(x(k + 1)) instead of the first term on the RHS of (5.30).

The following observations are made from Theorem 7.

For updating Jpo(x(k+l)), reference [15] derives the following approximate expression

N

JFo(x(k+l)) = L(J~i(x(k+l))-J~lb(x(k+llk))) + lE{-~:~~!~~ logP(x(k + l)lx(k))}
l=l

C~b(k) (J~zb (x(k)) +C~b(k))- 1 c~~(k). (5.32)

There is one notable difference between Eq. (5.32) and Theorem 7. The third term on the

RHS of (5.32) is based on the previous local FIM J~lb(x(k)) at node l thus making it

162

node-dependent. The corresponding term in (Eq. (5.25)) is based on the overall FIM from

the previous iteration. When the PCRLB is computed in a distributed manner, Eq. (5.32)

differs from one node to another. Theorem 7 is, therefore, an exact result.

Theorem 7 is optimal but computationally more intense that the approximated Eq. (5.32),

which is the price paid for increased accuracy.

In additive Gaussian state-space models, the forcing term e(k) and observation noise (<l)(k)

in Eqs. (2.16)-(2.17) are assumed to be uncorrelated and normally distributed with zero

mean and covariance matrices Q(k) and R(l)(k), respectively. Eqs. (5.26)-(5.29) are then

reduced to

c~b(k) IE{ [V x(k)fT (x(k))] Q- 1 (k)(V x(k) /T (x(k)) J T} (5.33)

c~t(k) (C~b(k))T =-iE{ [Vx(k)/T(x(k))]Q- 1 (k)} (5.34)

N

and c~t(k) L (J~lb(x(k+l)) - J~i(x(k+llk))) + Q- 1 (k). (5.35)
l=l

x~i>(o)

Theorem 7 provides a recursive framework for computing the FO / dPCRLB. Knowing the

state transition model P(x(k+l)lx(k)), Terms cn(k+l) and C~b(k+l) can be computed

locally at each node. In Section 5.2.2, I describe how C~b(k) is computed distributively.

Theorem 7 computes the FO/dPCRLB with communication occurring at every observa-

tion time step. Below, I present an extension of Theorem 7 to cases where the global

FO / dPCRLB is computed after every m > 1 iterations. This typically happens in networks

with intermittent communications. The local FIM includes no communication and can be

computed as soon as the local observation is made. The global FIM needs to fuse local

FIMs, which in this case will be possible only when communication is restored. Assume

that the global FIM Jpo (x(j)) is available for iteration j = (k+ 1-m) and the next fusion

163

occurs at iteration k + 1. For such a scenario, Theorem 7 is extended as

(5.36)

where C~b(k) and cn(k) = [cib(k)]T are given by Eqs. (5.26) and (5.27), and

N

cn(k) = L [J~i(x(k+l)) - J~i(x(k+llj))] + lE{ - li~~Z!~~ log P(x(k+l)lx(k)) H5.37)
l=l

Term Jpo(x(klj)) is the global m-step-ahead predictive FIM. Similarly, J~lb(x(k+llj)) is

the local predictive FIM. For more details on predictive FIMs, please refer to [156].

A lack of invertibility of the local FIM J~lb(x(k)) indicates that the states are locally un­

observable. This happens if the condition number K(J~i(x(k))), i.e., the common loga-

rithm of the ratio of its largest eigenvalue >.~~x to its smallest eigenvalue >.~{n, given by

K(J~lb(x(k))) = log10 (>.~~x/>.~n), is a large number. When the local FIM at node l is

singular, the local node can not track the target on the basis of only its local observations.

Therefore, it can not update its local FIM. In cases when the local FIM at node l is not

invertible, the dPCRLB algorithm drops node l from the consensus step. Consensus is

achieved using the remaining nodes. The local FIM J~lb(x(k)) at node l is then updated

using the global FIM obtained from the consensus step.

Finally, I investigate the communication overhead for the FO /dPCRLB. When average

consensus is used to distributively compute the summation terms in Eq. (5.25), the com-

munication overhead is of O(n;l~(l)INc) at each node, where nx is number of states, l~(l)I

the number of nodes in the neighbourhood of node l, and Ne is the number of consensus

iterations. The communication overhead for the approximate expression (Eq. (5.32)) is

the same.

164

5.2.2 Distributed Computation of the Full-order dPCRLB

Assume submatrices J~i(x(k)), J~i(x(k+llk)), and Jpo(x(k)) are available from iteration k of

the dPCRLB update (or via initialization). Below, I explain iteration (k + 1) for updating the

dPCRLB.

Step 1: Node l, for 1 ::; l ::; N, computes terms Cbb(k), Cffe.b(k), and Cbb(k) using Eqs. (5.26)-

(5.27). Since these terms are based on the global state mode (Eq. (2.16)), they can be computed

locally at each node without requiring any communication with the neighbouring nodes.

Step 2: Compute term Cffe,'b(k) using (5.29). This involves the local FIMs J~lb(x(k + 1)) and

J~i(x(k + llk)) representing the bound on the local estimator at node l. Term J~lb(x(k + 1)),

for example, is computed by extending Proposition 1 to the distributed estimation model as

where

and

[D~b(k)] (l)

[D~b(k)](l)

lE{ - Li:~~~ log P(x(k + l)lx(k))} (5.39)

(5.40)

[nit(k)] (l) lE{-Li:~~!~~ log P(x(k + l)lx(k))} + lE{-Li:~~!~~ log P(z(l)(k+l)lx(k+l)) }.

(5.41)

Scenario 2 replaces Eq. (5.38) with

with the local FIM at iteration k on the RHS of Eq. (5.38) replaced by the global FIM at

iteration k. Note that Eqs. (5.38)-(5.41) only require information available locally at each node.

165

The expression for computing J~lb(x(k+llk)) is based on Proposition 2 expanded as follows

[Bib(k)]<l) - [D~b(k)]<l) (J~lb(x(k)) + [Dib(k)](l))-
1
[Dib(k)]<t) (5.43)

where [B~b(k)]<l) IE{ -~:~Z!g log P(x(k + I)lx(k)) }. (5.44)

Across the network, J~lb(x(k+l)) and J~lcS(x(k+llk)) will have different values. Having computed

J~lb(x(k+l)) and J~i(x(k+llk)), term X~Lj(O) in Eq. (5.35) (summation terms EJ~i(x(k+l))

and EJ~i(x(k+llk))) can be computed using an average consensus algorithm [32] in a distributed

fashion as explained next7. Node l, for 1 ~ l ~ N, initializes its consensus state as

(5.45)

and continues to iterate

x~Lj (t + 1) = x~Lj (t) + E L (x~{) (t) - x~z{ (t)) (5.46)
jEN(L)

till convergence to

(5.47)

is achieved. In Eq. (5.46), E is a small value satisfying E E (0, D.
1a] and ~g1 = maxz n<l) is the

maximum degree for fusion graph g I and n<l) is the number of neighboring nodes for fusion

node l. Once the consensus converges, each fusion node substitutes the result of Eq. (5.47) in

Eq. (5.29) to compute C~b(k). Note that the consensus approach in Eq. (5.46) is a distributed

algorithm where each node communicates only with its neighboring nodes. The final expectation

term in (5.29) depends only on the state model and can be derived locally.

Step 3: Theorem 7 is now used to compute the dPCRLB, which is the same at all nodes.

7The derivation of a summation term using average consensus algorithm requires information on the total
number N of active nodes. Since the prime motivation for computing the dPCRLB is sensor selection, therefore,
the number of active nodes should be known beforehand. I note that when N is unknown, an additional average
consensus step with the value of one node set to 1 and others to 0 can instead be used to determine the number
of nodes in the network. Average consensus will converge to 1/N and its reciprocal will provide the value of N.

166

Note that only Step 2 requires cooperation among the neighbouring nodes achieved using a

consensus algorithm across the network, while Steps 1 and 3 can be computed locally at each

processing node. Finally, I note that when the dPCRLB is computed using average consensus

algorithms with (i) the network being connected; (ii) fast connectivity allowing for consensus

to be achieved between two consecutive observations, the proposed dPCRLB coincides with its

centralized value. This is in fact exploited by the dPCRLB algorithm. I note that, assumptions (i)

and (ii) are commonly used in the consensus-based literature related to distributed implementation

of the particle filter and the Kalman filter [1,32]. Such assumptions are reasonable in applications

where compared to sensing communication is relatively inexpensive, e.g., in rendezvous control or

coordination of mobile sensors.

5.2.3 Particle Filter Realization for full-order dPCRLB

In nonlinear dynamical systems, direct computation of { C~1a(k), C~'b(k), Cffe.1a(k), Cffe'b(k)} as

well as localized terms {[D~1a(k)](l), [D~b{k)](l), [D~b(k)](l), [D~t{k)](l)} is difficult due to the

involvement of nonlinear terms within the expectation operator [157]. Sequential Monte Carlo

methods (such as the particle filter [158, 159]) are usually used to compute these terms. For

completeness, the following section explains how the expectation terms in the FO / dPCRLB are

computed using particle filters specifically in terms of the CF /DPF proposed in Chapter 4. In

the CF /DPF, an additional higher order particle filter (referred to as the global/fusion/consensus

filter) is introduced that assimilates the local statistics from these local filters into global statis­

tics8. In the sequel, {X~l,FF\k), w?·FF)} refers to the global particle set computed at node l, for

8 0ther distributed implementations of the particle filter [7, 19, 20, 24] do not maintain separate local and global
particle sets. Only one set of particles is maintained. Information or statistics from local particle sets is then fused
in a distributed way to update the particle set to better represent the global posterior. The proposed distributed
computation of dPCRLB is also applicable in such cases as long as the global particle sets are available at each
node.

167

1 ::; l ::; N 8 , using the higher order global filter. In a general case, the global particle set and

associated weights can be used to implement Steps 1-3 of the full order dPCRLB computational

algorithm described in Section 5.2.2. For the sake of completeness, I summarize Eqs. (5.26)-(5.28)

in terms of the global particle set {X~l,FF\k), wP,FF)} of the distributed particle filter followed

by their equivalent representation for the case where the forcing terms are additive Gaussian.

Representing (5.26) in terms of the global particle filter set, I get

Np

C~b(k) ~ - z:=wp,FF)(k)(~~~Zj1ogP(x(k+l)lx(k))l)I (!FF> . (5.48)
i=l x(k)=Xi ' (k)

For the additive Gaussian forcing terms, Eq. (5.48) simplifies to

NP

C~b(k) ""8 w,(l,FF) (k) (l\7 x(k)/T (x(k))] q-1
(k)[V' x(k)/T (x(k))f) L(k)~xi•,FF)(k). (5.49)

Similarly, Eq. (5.27) in terms of the global particle set is

which for the additive Gaussian forcing terms simplifies to

Term C~'b(k) in Eq. (5.29) requires participation of all the local fusion nodes to compute the

submatrices J~l6(x(k + 1)) and J~l6(x(k +Ilk)) of the local FIM. Submatrix J~l6(x(k + 1)) is

computed based on Eq. (5.38) with terms [DFo 11 (k)] (l), [DFo12 (k)] (l), and [DFo 22 (k)] (l) having

particle filter representations similar to the ones expressed for Eqs. (5.26)-(5.27). Below, I write

these terms for the Gaussian case

[.Bib(k)] (l)
Np

~ L wi(l,LF) (k) ([\7 x(k)fT(x(k))] Q- 1(k)[\7 x(k)/T(x(k))f) I (! LF) (5.52)
i=l x(k)=Xi ' (k)

[n~t(k)] (l)
T Np

[[Dib(k)] (l)] ~ ~ WP'LF) (k) ([\7 x(k)!T (x(k))] Q-1(k)) lx(k)=X:~l,LF)(k~q.53)
i=l •

168

and

Nv

[.Di~(k)](l) ~ Q-1 (k) + DvP·LF)(k)([\7x(k+l)Y(l)(k+l)JR- 1(k+l)[\7x(k+l)Y(l)(k+l)JT)l(k) =

i=l

(5.54)

where particles X~l,LF)(k+ljk) are computed by propagating particles xY·LF)(k) through the

transitional density P(x(k+l)jx(k)) obtained from the state equation (Eq. (2.16)). Note that the

required terms in Eqs. (5.52)-(5.54) are computed based on the available particles for iteration k.

Eqs. (5.43)-(5.44) are then used to compute J~i(x(k+llk)).

The aforementioned procedure using particles and weights associated to the distributed particle

filter can readily be extended to non-Gaussian forcing terms.

5.3 Conditional Full-order dPCRLB

In the previous section (Section 5.2), I derived expressions for computing the non-conditional

dPCRLB distributively for full-order state estimation. In this section, I extend my non-conditional

dPCRLB framework to conditional dPCRLB for full-order estimation. Compared to the non-

conditional PCRLB, the conditional PCRLB is a function of the past history of observations made

and, therefore, a more accurate representation of the estimator's performance and, consequently,

a better criteria for sensor selection. Previous algorithms to compute the conditional PCRLB are

limited to centralized architectures, which involve a fusion centre, thus making them unsuitable for

decentralized topologies. The section addresses this gap. Extending the non-conditional dPCRLB

to conditional dPCRLB is challenging due to the following issues:

1. The underlying expectations in the conditional dPCRLB are with respect to the condi-

tional posterior, hence, the Chong-Mori-Chang theorem can not be used directly. A new

factorization expression for the conditional posterior is required.

169

2. The recursive expressions for the conditional Fisher information matrix (FIM), i.e., inverse

of the PCRLB, utilize an auxiliary FIM corresponding to the previous iteration (instead of

its own previous value), therefore, distributed expressions for computing the auxiliary FIM

are now needed.

3. In addition, recursive expressions for computing the predictive conditional PCRLB from the

auxiliary FIM are required.

I start by introducing the centralized conditional PCRLB in the next sub-section.

5.3.1 Centralized Conditional PCRLB

Before introducing the conditional PCRLB, I define first the auxiliary FIM which is constructed by

performing the expectation in Eq. (5.9) with respect to the posterior distribution P(x(O: k)lz(l: k))

leading to the following definition

JAux(x(O:k)) ~ lEP(x(O:k)lz(l:k)){ - ~:~~~Z~ logP(x(O:k)lz(l:k))}. (5.55)

Reference (152] has derived recursive expressions for computing JAux(x(k)) (the inverse of (nx x

nx) right-lower square block of the inverse of JAux(x(O: k))). Similar to JAux(x(O: k)) (and

JAux(x(k))) the predictive auxiliary FIM JAux(x(O:klk-1)) is defined as

JAux(x(O:klk-1)) ~ lEP(x(o:k)lz(l:k-1)){ - ~:~~~Z~ logP(x(O:k)lz(l:k-1))}, (5.56)

My scheme extends (152] to distributed topologies.

The conditional PCRLB provides a bound on the performance of estimating x(O: k) given that

the past observations z(l: k-1) are known [152]. The conditional MSE in the estimate x(O : k)

of the state vector x(O: k) is lower bounded by

I(x(O:k)) ~ lEP(x(O:k),z(k)lz(l:k-1)){ - ~~~~~~~ logP(x(O: k),z(k)lz(l: k-1))},

170

(5.57)

where Pc(k) ~ P(x(O: k), z(k)iz(l : k - 1)). The conditional FIM L(k) is defined the inverse of

the (nx x nx) right-lower block of [I(x(O:k))]-1. A centralized recursive expression for updating

L(x(k)) is derived in Reference [152]. For deriving the conditional dPCRLB, I need recursive

expressions for computing the predictive conditional PCRLB defined as

I(O : k + llk) ~ IEP(x(O:k+i)lz(l:k)) { - Li:~~~z!g log P(x(O: k+ 1) iz(l: k))}. (5.58)

Term L(x(k+llk)) is defined as the inverse of the (nx x nx) right-lower block of [I(x(O: k+llk))]-1.

Using the factorization

P(x(O: k + l)iz(l: k)) = P(x(k + l)jx(k))P(x(l: k)lz(l: k)),

The following Lemma 4 recursively computes L(x(k+llk)) from JAux(x(k)).

Lemma 4. The predicted conditional FIM {L(x(k+llk))} recurses as follows

where

and

B 11 (k)

B12(k)

n;2 (k)

IE{ - Li:~~~ logP(x(k + l)lx(k)) },

[B21 (k)jI' =IE{ - Li:~Z~ 1) logP(x(k + l)lx(k)) },

IEPv(k+l){ - Li:~Z!~~ logP(x(k + l)lx(k)) }.

Next, I compute the conditional dPCRLB distributively.

5.3.2 Distributed Conditional dPCRLB

(5.60)

(5.61)

(5.62)

The section computes the global conditional FIM from the local conditional FIMs, which are

defined below.

171

Definition 7. The local conditional FIM I~b(o: k+ 1) corresponding to the local estimate :X(l) (0:

k + 1), for {1 ::; l ::; N), is defined as follows

I~b(x(O: k+l)) ~ IEP(x(O:k+l),zCL)(k+l)lz(l)(l:k)){-Li=~~;~!g logP(x(O:k+l),z(l)(k+l)lz(l)(l:k))},

(5.63)

The local bound L~b(k+l) on x<O(k+llk+l), is given by the inverse of the (nx x nx) right-lower

block of [4lb(x(O:k+l))J- 1.

Definition 8. The local predictive conditional FIM I~b(x(O: k+llk)) is defined as follows

I~b(x(O: k + llk)) ~ IEP(x(O:k+l)lz<t>(l:k)){ - Li=~~;~!g logP(x(O:k + l)lz(l)(l:k))}, (5.64)

The local bound L~b(x(k+llk)) on x(l)(k+llk) is given by the inverse of the (nx xnx)

right-lower block of [I~b(x(O: k+llk))J- 1
. Note that centralized bound [152] can be used to

compute both L~b(k+ 1) and L~b(k+ llk) with relevant local distributions replacing the global

ones. The local auxiliary FIMs [JFo,Aux(x(k))J(l) and [JFo,Aux(x(kik-l))]<l) are derived from

[JFo,Aux(x(O:k))]<l) and [ho,Aux(x(O:klk-1))]<0, which have definitions similar to Eqs. (5.55)

and (5.56) except that the local distributions are used. Another format for the local FIMs is

i~b(k + 1)

i~b(k + llk)

IE{ - Li=~~!g log P(x(k + 1), z<l)(k + l)lz(l)(l: k))}

IE{ - Li=~~~ logP(x(k + l)lz(l)(l: k)) }.

(5.65)

(5.66)

where the expectations are with respect to P(x(k+l),z(l)(k+l)lz(l)(l: k)). It can be shown

that in Gaussian linear systems, i~b(x(k+l)) and L~b(x(k+l)) (similarly i~b(x(k+llk)) and

L~b(x(k+llk))) are equivalent.

Now that I have defined the local conditional FIMs, Theorem 8 provides the optimal recursive

formula for computing the overall conditional FIM as a function of these local terms.

172

Theorem 8. The sequence {LFo(x(k+l))(x(k))} of the global information sub-matrices follows

the recursion

LFo(x(k+l))

C}b(k)

C}2a(k)

and

c;2a(k)-c;b(k) (J Fo,Aux(x(k)) + c}b(k))-c}2a(k)

IEPc(k+l){ - Li:~~~ logP(x(k + l)lx(k)) },

IEPc(k+l){- Li:~~t) logP(x(k + l)lx(k))},

N N

(5.67)

(5.68)

(5.69)

ci2a(k)= L l~b(x(k+l))-L l~b(x(k+llk)) + lEpc(k+l) {-Li:~~!~~ log P(x(k + l)_lx(k)) }.
l=l l=l

(5.70)

Theorem 8 proposed for computing the conditional dPCRLB is similar in structure to the

recursive expression for computing the conventional dPCRLB derived in Section 5.2. with two

differences: (i) The local conditional FIMs (L~b(x(k+l)) and L~b(x(k+llk))) are used instead

of their non-conditional counterparts, and; (ii) The global FIM for previous time JFo(x(k)) is

replaced by the global auxiliary FIM JFo,Aux(x(k)).

In order to compute the conditional dPCRLB, term l~b(k+ 1) is replaced with L~b(k+ 1)

and similarly l~b(k+llk) is replaced with L~b(k+llk). Later, I derive distributed recursive

expression for computing JFo,Aux(x(k)). Theorem 8 is proved by extending Chong-Mori-Chang

track-fusion theorem [127) to conditional posterior as follows.

Lemma 5. Assuming that the observations conditioned on the state variables are independent,

the global posterior for a N -sensor network is factorized as follows

) ()I ())
TI~1P(x(k+l),z(l)(k+l)lz(l)(l:k))TI~ 1P(x(k)lz(l)(l:k)) P(x(O: k + 1 z k+ 1 z 1 : k ex -----=.--==-=-'------------=-=--'--__.:....._....;;;.._...;__ ___ _..:....

' TI~ 1P(x(k+l)jz(l)(l:k)) TI~ 1P(x(k)jz(l)(l:k-1))
x P(x(k+l)lx(k))P(x(k)lx(k-1))P(x(O: k-l)lz(l: k-1)). (5.71)

173

The proof of Lemma 9 is provided in Appendix C.4 followed by proof of Theorem 8 in Ap-

pendix C.5.

In general, there is no recursive method to calculate JFo,Aux(x(k)). An approximated centralized

recursive expression is proposed in [152]. Next, Proposition 3 presents a decentralized recursive

expression for computing JFo,Aux(x(k)) using the approximation stated in [152].

Proposition 3. The global sequence { J FO,A ux(x(k))} of information sub-matrices follows the

approximated recursion, i.e.,

Jpo,Aux(x(k)) ~ MJ,2a(k-1) -MJ,b(k-l)(JFo,Aux(k-l)+M}b(k-l))-M}2a(k-l) (5.72)

where

M}b(k-1) = lEpa(k){- ~:~z::::g logP(x(k)ix(k-1))},

M}2a(k-1) JEPa(k){- ~:~Z~i) logP(x(k)ix(k-1))},
N N

MJ,2a(k-l) L[JAux(x(k))](l) - L[JAux(x(klk-l))](l)
l=l l=l

+ JEPa(k) {-~:~Z~ log P(x(k)ix(k-1)) }.

The proof of Proposition 3 is similar to that for the non-conditional dPCRLB.

5.3.3 Practical Application of the Conditional dPCRLB

(5.73)

(5.74)

(5.75)

Recent advances in sensor technology allow deployment of a large number of sensor nodes. Limi-

tations in power, frequency, and bandwidth restrict the maximum number of active sensors with

only an active subset participating in the estimation process at each iteration. For such activation

decisions, the PCRLB has been utilized as an effective criteria [15, 67, 146, 152], since it can be

computed predictively and is independent of the estimation mechanism. The conditional dPCRLB

expressions proposed in the thesis are derived in this context. Two different types of nodes are

174

considered [15]: (i) Sensor nodes: with limited power used only to record measurements, and;

(ii) Processing nodes: responsible for sensor-selection within their neighbourhoods and for per­

forming decentralized estimation. Below, I consider two different dPCRLB-based sensor-selection

scenarios. Case 1 [67] is near-optimal but requires high communication overhead. By comput­

ing the dPCRLB within local neighbourhoods, Case 2 [15] does not require consensus and has a

reduced overhead.

Case 1: The conditional dPCRLB (Theorem 1) is computed over the entire network and used

for sensor-selection. The global submatrix JFo,Aux(k) and local submatrices [JAux(x(k))](l) are

assumed available from iteration k at node l. Iteration (k+l) for computing conditional dPCRLB

is as follows.

Step 1: Compute terms C~b(k), cn(k), and C~'b(k) using (5.68) and (5.69), and terms MJb(k),

M~b(k), and MJb(k) using (5.73) and (5.74). Although these terms are global, they are based

on the state model and computed locally.

Step 2: Compute the local FIMs J~i(k+l) and J~i(k+llk) and local auxiliary FIMs [ho,Aux(k+

l)](l) and [JFo,Aux(k+llk)]<l) as explained in Section 5.3.2.

Step 3: Compute cib(k) using (5.70). Term L:t: 1 {J~l~(x(k+l)) - J~i(x(k+llk))} is com­

puted distributively across the network using consensus. Similarly, M~b(k) in (5.75) includes a

summation term that is also requires consensus.

Step 4: Theorem 8 computes the conditional dPCRLB. Likewise, for next iteration, Proposition 3

computes JFo,Aux(k+l).

Under Case 1, Step 3 involves communication overhead. If average consensus is used to

distributively compute the summation terms, the communication overhead at each processing node

is of O(n;IN(l)INc), where nx is number of states, IN(l)I the number of nodes in the neighbourhood

of node l, and Ne is the number of consensus iterations. In decentralized sensor-selection, this

175

overhead is restricted to the processing nodes.

Case 2: fuses local conditional PCRLBs within local neighbourhoods [15] for sensor-selection.

Consensus is not needed that reduces overhead. Steps 1 and 2 are the same as in Case 1.

Step 3: Processing node l computes l:N<l){J~lb(x(k+l))-J~lb(x(k+llk))} over local neighbour­

hoods N(l).

Step 4: Theorem 8 is used at processing node l to compute the conditional dPCRLB within local

neighbourhoods N(l). Proposition 3 computes JFo,AUX (k+ 1) but within local neighbourhoods.

In Case 2, the communication overhead at each processing node is of O(n;IN(l) I), an improve­

ment of a factor of Ne over Case 1. Instead of computing the dPCRLB over the entire network

that leads to a high overhead, Case 2 only fuses dPCRLB within local neighbourhoods of the

processing nodes.

5.4 Simulation Results

In this section, Monte Carlo simulations are performed to determine the accuracy of the proposed

dPCRLB expressions for full-order (Theorem 7, Section 5.2.2 and Theorem 8, Section 5.3.2)

systems by comparing them with the results obtained using the centralized PCRLB (Proposition 1)

as well as from the approximated bound proposed in [15].

5.4.1 Non-Conditional dPCRLB Computational Algorithms

A distributed bearing-only target tracking (BOT) application [102] as explained in Section 3.3

is used to demonstrate the accuracy of the proposed full-order dPCRLB. The dPCRLB com­

parison includes results from three : (i) The centralized PCRLB (Proposition 1); (ii) Proposed

FO /dPCRLB approach (Sections 5.2.2); (iii) Approximated expression for dPCRLB given in [15]

(Eq. (5.32)). Two different scenarios are considered, which described next.

176

i::

·~
i::
QJ

E
:a
I

>-

6

4

2

0

-2

-4

-6

• • ··•··
..... ·············:·
........ :~.I Node3 1.

•• • .. ; .•
I Node4 I •

•:

......... :

. .. J ~o~e·l· .1 .

•

.. , .

•1 Node2 j

0 2 4 6 8
X - dimension

(a)

3.5

• • • • • • • Local PCRLB Node I
- • - Local PCRLB Node 2
... Local PCRLB Node 3
· -0- Local PCRLB Node 4

3
'a._. :

• :)\..
. .

'
:\

• b
: .. ····~ \ ..

~
\

~
~ ~ 1.5 : .. II, , ..

• q

0.5

....
'•,

• •• ! •• '

~ \ ············· ~1!~.:>~·~·~ .
"':'--n.

o~~~~~~~~~~~~~~~~~~~~~~~~~~~

0 5 10 15
Iteration (k)

(b)

20 25 30

Figure 5.1: (a) Target's track alongside the location of the local observation nodes. (b) Trace of the local

PCRLBs computed at Nodes 1-4 based on Eq. (5.38)-(5.41). All nodes shown in Fig. 5.l(a) are used in

the dPCRLB algorithm.
177

5.4.1.1 Scenario 1

The first simulation [103) is based on a fixed target trajectory (i.e., the same track is used in each

Monte Carlo run) and the true values of the state variables is used to compute different bounds.

The proposed algorithm for full-order systems outlined in Section 5.2.2 is then used to compute

the dPCRLB. In Step 3, Theorem 7 (Eqs. (5.33)-(5.35)) is used. This is a test case included to

evaluate the correctness of the proposed dPCRLB and to see how close the proposed dPCRLB

can potentially be to the centralized PCRLB. In reality, the exact state values are not known.

Scenario 2 covers a more realistic case. Fig. 5.l(a) shows one realization of the sensor placement

along with the target's track. Fig. 5.l(b) depicts the trace of the local PCRLBs computed using

Eqs. (5.38)-(5.41) at four randomly selected nodes highlighted as Nodes 1-4 in Fig. 5.l(a). The

local performance of nodes varies due to state dependent nature of the problem. The dPCRLB is

then computed from all the local PCRLBs based on Theorem 7. Fig. 5.2 compares the proposed

full-order dPCRLB, the centralized PCRLB based on a fusion centre (included here as the ground

truth), and the suboptimal dPCRLB based on [15) over 200 Monte Carlo runs with the same sensor

network configuration. Due to the state-dependent observation noise variance, we note that the

SNR is time-varying and differs from one sensor node to the other depending on the location

of the target. Two different SNR cases (averaged across all nodes and time) are considered:

(i) High SNR, where the SNRs at different nodes varies form 17dB to 24dB with a mean value of

20dB, (ii) Low SNR, where the SNRs ranges from OdB to lldB across the network with a mean

value of 6dB. Fig. 5.2(a) plots the PCLRBs for the high SNR case, while Fig. 5.2(b) plots the

bounds for the low SNR scenario. As illustrated in Figs. 5.2(a) and 5.2(b), the centralized and

distributed PCRLBs virtually overlap. The proposed bound predicts the estimator's performance

more accurately than the approximated approach [15). Finally, we note that for low SNR scenarios,

the approximated full-order dPCRLB (Eq. (5.32)) degrades significantly from the true bound due

178

to the localized nature of the previous FIM (third term on the RHS of Eq. (5.32)). As illustrated

in the first bullet after Lemma 2, the approximated expression uses J~lb(x(k)) instead of the

global FIM Jpo(x(k)) which results in additional inaccuracies and as well as variations in the

dPCRLB from one node to another.

5.4.1.2 Scenario 2

Scenario 2 uses the BOT model specified in Scenario 1 with the following differences: (i) The target

track is not fixed (i.e., unlike Scenario 1 with fixed track, the track varies from one iteration to

another in the Monte Carlo simulation); (ii) The dPCRLB is based on the estimated state values

obtained from the particle filter [158] (as opposed to the true state values utilized in Scenario 1)

in both centralized and distributed computation of the PCRLBs; (iii) In each Monte Carlo run

(Monte Carlo simulation of 200 runs is performed), a different sensor network configuration is

considered, with N = 20 nodes randomly scattered in a square region of dimension (16 x 16) m2 •

Because of these differences, the baseline (centralized PCRLB) and the comparison results are

different between Figs. 5.2 and 5.3.

The full-order dPCRLB algorithm explained in Section 5.2 is used to compute the dPCRLB

with Step 3 (incorporating Theorem 7) based on Eqs. (5.51)-(5.54), which includes expectations.

We use consensus/fusion based distributed implementation of the particle filter (CF /DPF) [50] to

compute the expectation terms over possible realizations of the state and observation sequences.

For the BOT problem, the computation of the Jacobian terms Y'x(k)!T(k) and Y'x(k+l)Y(l)r (k +

1) used in Eqs. (5.51)-(5.54) and the initialization step are further described in [103]. Matrix

[Dib(k)] (l) in Eq. (5.54) is derived based on the particle based approximation given in [141].

We note that both the centralized PCRLB and dPCRLB use state estimates from the par­

ticle filters. The centralized PCRLB uses state estimates computed by the centralized particle

179

0.35

0.3

0.25

--:=::--
~ 0.2
~
-o
It..
I-") ...__...

~ 0.15

~

0.1

2 5

1.8

1.6

1.4

1.2

0.8

0.6

0.4

0.2

5

10

10

15
Iteration (k)

(a)

15
Iteration (k)

(b)

20 25 30

--dPCRLB
· - · - • Centralized PCRLB
· · ·0 ···Approximated dPCRLB

20 25 30

Figure 5.2: Scenario 1 in Full-order System: Comparison between the centralized, proposed and approx-

imated [15] dPCRLBs at: (a) High SNR (average 20dB), and; (b) Low SNR (average 6dB). The exact

full-order dPCRLB from Theorem 1 computed using Eq. (36) is shown in red solid line, the centralized

PCRLB from Proposition 1 in green dotted line, and the approximated dPCRLB from Eq. (39) in blue

dotted line with circles.

180

filter, while the distributed PCRLB uses estimates from the distributed particle filter such as the

CF /DPF (25]. Consequently, any drop in the accuracy of the state estimates (due to for exam­

ple a reduction in the SNR) affects both bounds. As long as the distributed particle filter is an

optimal implementation of the centralized particle filter, the centralized PCRLB and dPCRLB

should result in similar bounds.

Fig. 5.3(a) is for the high SNR case, while Fig. 5.3(b) plots the bounds for the low SNR scenario.

In both cases, the centralized PCRLB and proposed dPCRLB are close (almost overlapping), while

the approximated dPCRLB [15] fluctuates from the true value. In Figs. 5.3(a) and 5.3(b), the

PCRLBs are higher than Figs. 5.2(a) and 5.2(b) because estimated values for states are used

instead of the actual values and the target track varies between different runs of the Monte Carlo

simulation.

5.4.2 Conditional dPCRLB Computational Algorithms

In this section, the proposed recursive algorithm (Eqs. (5.67)-(5. 70)) for computing the online

conditional dPCRLB is evaluated as an alternative to the offline non-conditional dPCRLB . Pre­

vious conditional PCRLB algorithms are limited to centralized architectures using a fusion centre

which makes them inappropriate for decentralized sensor management. The proposed conditional

dPCRLB is an accurate representation of its centralized counterpart. Since it is a function of

the past observations made, the conditional PCRLB is a more reliable criteria for decentralized

sensor-selection applications.

Another distributed BOT application (67] based on a sensor network of N = 30 nodes com­

pares the proposed conditional dPCRLB with the centralized conditional PCRLB. A nonlinear

clockwise coordinate turn (CCT) motion model (Eq. (3.50)) is considered for the target. Node l's

observation is the target's bearings as outlined in Section 5.4 where both process and observation

181

0.35~~--~---~~---~---~--------~

0.3

,...--....

Si 0.2
~
-o
Ii:..
'""> ...__...

~ 0.15

~

0.1

0.05

0
2

0..
. 'o.

... '.l:>

5

··o
··o.:
····-~o- ···-· -·········

: ·
0

·
0

·0 ·Q·GG·O·O·O·O·O·O·O·C!>·G·O·O·O

10 15
Iteration (k)

(a)

20 25

2!1lir----r------,----,-------;:c:::======::c:======~
--dPCRLB

.Q .. · · ·0· •·Approximated dPCRLB
· - • - · Centralized PCRLB

1.8

1.6
. :

1.4 . ·'\·:························ : : ·

1.2 ··'\

: .b
.

~ .
0.8 . '.0-.

··o.:
...... ·····~~ .··············'.··············'·····

' ·~ .. ~.'Q: 0 · O·O··o·. ·o· ·.(!) -.o .. O• (i)o •O ·O· O· G ·O 'o.

0.6

0.4

0.2

o.___. ___ _._ ___ _,_ ____ _.__ ___ _._ ____ .___ ___ ~
2 5 10 15

Iteration (k)

(b)

20 25 30

30

Figure 5.3: Scenario 2 in Full-order System: Same as Fig. 5.2 except particles set {Xi(k), Wi(k)} is used

to compute expectations in Eqs. (5.38)-(5.41).

182

1.2

...--..
~
E o.a
i

...::..,.
~
~ 0.6

~

0.4

0.2

1.2

~
~ 0.6

--:>

0.4

2

,
..... /.

I

I ,

5

0.2

2 5

.,..~--.. .;.·:··
' : ",~

--Conditional dPCRLB

· - x- · Centralized Conditional PCRLB

- « - Approximated conditional dPCRLE

·······················~·····

10

10

.....
~ ... -..... •

15
Iterations (k)

(a)

20 25

• - .. • Local Condtional dPCRLB at Node 1

__,.__ Local Condtional dPCRLB at Node 2

- e - Conditional dPCRLB

15
Iterations (k)

(b)

20 25

30

30

Figure 5.4: (a) Case 1: Comparison of the proposed conditional dPCRLB, centralized conditional PCRLB

and an approximate conditional dPCRLB (similar to [15)). (b) Same as (a) except for Case 2 (local fusion

without consensus): PCRLB comparison between two randomly selected nodes and from Case 1.

183

noises are normally distributed with the observation noise model assumed to be state dependent

such that the bearing noise variance at node l depends on the distance between the observer and

target. Simulations consider the two Cases described in Section 5.3.3. For Case 1, Fig. 5.4(a)

compares the proposed conditional dPCRLB (obtained from Theorem 8), the centralized condi­

tional PCRLB (using the centralized bound [152]), and the approximated conditional dPCRLB

based only on the first two terms on the RHS of Eq. (5.70) (similar to [15)). It is observed

that the proposed conditional dPCRLB and the centralized bound overlap across various itera­

tions. The approximated PCRLB fluctuates widely over time. Having justified that the proposed

dPCRLB is an accurate representation of its centralized counterpart, Fig. 5.4(b) plots the condi­

tional dPCRLB results for Case 2 (local fusion with no consensus). Results from two randomly

selected nodes are plotted in Fig. 5.4(b). Due to localized fusion in Case 2, some variation in the

conditional dPCRLBs is observed at the two nodes but the proposed bound is still superior to

the approximated bound as plotted in Fig. 5.4(a). Fig. 5.4(b) also suggests that some nodes are

self-confined where global fusion is not needed. On the basis of local information, some nodes

are, however, unable to reach the true bound and extra communication may be needed if higher

accuracy is desired. Still, Case 2 is sufficient for sensor selection decisions in the current form.

5.5 Summary

The chapter derives the dPCRLB for distributed full-order and reduced order estimation archi­

tecture in distributed AN /SN systems without the need of a central processing unit. The cen­

tralized PCRLB can not be computed for these networks. The chapter proposes the distributed

PCRLB (dPCRLB) algorithms for full-order (FO /dPCRLB) expressed in terms of Theorem 1.

Theorem 1 is applicable when the estimates of the entire state vector is available locally at each

node. In reduced-order estimation, a different subset of the state vector is estimated at the lo-

184

cal nodes. The dPCRLB for reduced-order estimation is derived in Appendix E. Motivated by

resource management decisions in sensor networks, optimal and near-optimal expressions for re­

cursively computing the FO / dPCRLB are derived. The proposed dPCRLBs and their practical

implementations are compared for a variety of full-order systems using Monte Carlo simulations.

Our results indicate that the proposed dPCRLB algorithms provide an exact bound and overlap

the PCRLB plot derived from the centralized architecture.

185

6 Sensor Selection in Distributed Networks

Recent developments in sensor hardware and advances in communication have paved the way for

deploying an unrestrictively large number of sensor nodes for long periods of time. Limitations

in power, frequency, and bandwidth, however, restrict the maximum number of sensors that

can be simultaneously active. Algorithms dealing with the activation of the sensor nodes (or

alternatively, the scheduling of the sensing activities) are referred to as sensor selection algorithms,

since they select which nodes participate in the sensing task. Adaptive sensor selection refers to

the dynamical activation of the sensor nodes within a sensing task. In other words, the active

sensors may change from one iteration of the algorithm to another, adaptive sensor selection

is, therefore, introduced as an essential task in geographically distributed networks. Adaptive

sensor selection [133-137) is a stochastic problem that involves optimization of a pre-defined

cost function, e.g., the volume of the uncertainty ellipsoid [138), the estimated states' mean

square error (MSE) [139) or information driven methods [140). Adaptive sensor selection arises in

several applications, e.g., cellular networks [161), distributed tracking in wireless Ad hoc sensor

networks [162), robotic localization and underwater networks [7).

My previous work [49-52, 59, 61-63) and likewise, a large majority of the existing state-of­

art distributed, non-linear estimation algorithms for agent/sensor networks (AN /SN) (18-21, 23,

24, 27, 29) incorporate observations locally in a distributed fashion from all observation nodes.

The chapter focuses on a more challenging distributed estimation problem that optimizes an

186

additional constraint of limiting the number of active nodes and selecting a subset of observation

nodes (sensors) at each iteration. For such an adaptive sensor selection problem, the PCRLB [141,

147, 160] has been proposed as an effective criteria because it provides a near-optimal bound of the

achievable tracker's performance and can be calculated predictively. Further, it is independent

and not constrained by the estimation methodology employed. I propose a distributed diffusive

PCRLB-based sensor selection procedure for distributed AN/SN systems where the performance of

each local estimator is characterized by its local FIM. Local FIMs can be used as a criteria for local

sensor selection decisions. Such decisions are limited to local observations and the global sensor

information is not incorporated. A fusion rule is, therefore, needed to combine local FIMs into

the global FIM for taking globally optimal sensor subset selection decisions. The non-conditional

dPCRLB computational algorithm, presented in Chapter 5, is proposed as the objective function

for distributed adaptive sensor selection. A combination of minimum and average consensus

algorithms are then used to select a subset of observation nodes.

The chapter extends the non-conditional dPCRLB framework to conditional dPCRLB for full­

order adaptive sensor selection problems. As stated previously, the conventional (non-conditional)

PCRLB considers observations and state variables as random, consequently, it is determined

primarily from the state model, observation model, and prior knowledge of the initial state of

the system leading to an offiine bound with actual observations averaged out over time. The

conditional PCRLB, on the other hand, is a function of the past history of observations which,

therefore, leads to a more accurate representation of the system's performance and a better criteria

for adaptive sensor-selection.

Finally, the chapter addresses another critical restriction in large, geographically distributed

AN /SN systems imposed by limitations in power budget, system bandwidth, and communication

capabilities, i.e., only quantized observations are exchanged between the sensors and process-

187

• ScnsorNodc

• Local processing node ...
. : . ·. ... · . ii

700 •. · .. • •· . ~ .·
·. ·.

..•. . . ·• ••
·.

325 •

• . "
325 700

X(m)

(a) (b)

Figure 6.1: (a) A sample distributed scenario [15] consisting of 9 local processing nodes and 150 obser-

vation nodes (sensors). (b) Fusion-to-fusion communication constraints.

ing nodes. Within its observation neighbourhood, a local processing node, therefore, activates

a small subset of sensors to receive the quantized version of their observations. The chapter

derives distributed computational techniques for determining the conditional dPCRLB for quan-

tized, distributed AN/SN systems, referred to as CQ/dPCRLB. Analytical expressions for the

CQ/dPCRLB are derived, which are particularly useful for particle filter-based estimators.

The rest of chapter is organized as follows. Section 6.1 provides necessary background on the

sensor selection model. Section 6.3 presents the non-conditional dPCRLB based sensor selector.

Section 6.4 extends the sensor selection framework based on conditional dPCRLB. Section 6.5

extends the dPCRLB algorithm to quantized local observations. Section 6.6.1 illustrates the

effectiveness of the proposed framework in tracking applications through Monte Carlo simulations.

Finally, Section 6. 7 concludes the chapter.

188

6.1 System Description

Unlike Chapter 2 to 5, where no distinction is made between the observation and processing

nodes, the chapter considers a distributed AN/SN topology (as shown in Fig. 6.l(a)) with two

different types of nodes [15]: (i) Observation nodes (sensors): with limited power used to record

measurements, and; (ii) Local processing nodes: responsible for selecting sensors within their

neighbourhoods, process the data locally, and cooperate distributively with other connected pro­

cessing nodes to reach a consensual tracking estimate for the target. Such a configuration has the

added advantage of not requiring global knowledge of the network topology at the local processing

nodes and is suitable for any Ad hoc AN/SN. Within its neighbourhood, each local processing

node activates a small subset of sensors. These sensors forward their observations to the as­

sociated local processing node. After processing the local observations, local processing nodes

communicate some statistics related to the localized state estimates within themselves, typically

using a gossip type algorithm [1), to form the global state estimate. Fig. 6.l(b) illustrates the

fusion-fusion neighbourhood. To prevent data incest [137] (i.e., to avoid observation redundancy

and correlation between locally estimated tracks), I impose a commonly used assumption [15]

that a sensor node once selected for information processing by a local processing node does not

forward its observations to a second processing node during the same iteration.

6.1.1 Distributed Sensor Selection Model

An AN/SN is considered comprising of N1 local processing nodes (e.g., in Fig. 6.l(a) N1 = 9). The

distributed sensor selection entails a scenario where each local processing node can communicate

only with sensors and other local processing nodes within its surveillance region (immediate

neighbourhood). Local processing node l, (1 :s; l :s; N1), is associated with a set of N~~) sensors

within its local neighbourhood. The total number of observation nodes in the network is, therefore,

189

given by

N1

N - "°'N(l)
SS - L....J SS• (6.1)

l=I

For example in Fig. 6.l(a) Nss = 150. Due to physical limitations, only a subset N~l~8 (k) of N~;)

sensors connected to processing node l, for (1 :::; l :::; N1), is active at iteration k. Further, only a

maximum number N~~x(k) of sensors can be activated by node l, i.e, IN~l~8 (k)I :::; N~~x(k) where

l·I denotes cardinality operator. The total number Nmax(k) of observation nodes simultaneously

active in the network is also restricted, i.e.,

N1

L N~~~ax(k) :::; Nmax(k) :::; Nss· (6.2)
l=l

The observation subset N~l~8 (k) at local processing node l can only be changed after Nchange

iterations.

Each sensor in the network observes a set of nx state variables x = [Xi, X2 , ... , Xn.,V· The

observation model (Eq. (2.3)) corresponding to sensor m in the fusion neighbourhood of the

processing node l is given by

z(l,m)(k) = g(l,m)(x(k)) + '(l,m)(k), (6.3)

where g(l,m) (·) and ((l,m) (·) are, respectively, the local observation model and uncertainty at sensor

node m connected to processing node l. For sensor selection problem, term z(N~~s) (k) denotes the

local observation vector z(l)(k) in Eq. (2.2). The collection of all observations associated with the

processing node l at time instant k is given by

(6.4)

The full-order state-space model (Eqs. (2.127) and (2.126)) for the distributed sensor selection

190

problem is modified as follows

x(k) f(x(k - 1)) + e(k) (6.5)

((l)) ((!))
g Nobs (x(k)) + (Nobs (k), (6.6)

for local processing nodes (1 :::; l :::; N1). The entire state x(k) is estimated by running localized

filter at each local processing node, while observations are restricted to z(N~~s) (k) obtained from the

observation nodes in the fusion neighbourhood N~l~8 (k) selected by fusion node l. Since N~l~8 (k)

varies with time, the dimensions of the observation vector is not fixed. I also define a fusion-

to-fusion neighbourhood N}~se that includes the set of processing nodes connected to the local

processing node l. Fig. 6.l(b) shows an example of the fusion-to-fusion neighbourhood N}~se·

6.2 Sensor Selection Objective Function

Sensor selection is a stochastic problem that involves optimization of a pre-defined objective func-

tion, e.g., the estimated states' mean square error (MSE) [139) or an entropy-based information

measure such as the expected maximum likelihood [135, 140). Recently the PCRLB [136, 137,

141, 145-147, 152, 160) has been proposed as an effective cost function for centralized sensor se-

lection because it provides a near-optimal bound of the achievable tracker's performance and can

be calculated predictively [15). Further, it is independent and not constrained by the estimation

methodology employed.

In this chapter the dPCRLB from Section 5.2 is used as the objective function for sensor

selection. The subscript FO is omitted from dPCRLB expressions to keep the notion simple. As

stated previously, the MSE of the estimate x(0: k) of the state variables x(0: k) is lower bounded

by the PCRLB as follows

1E{(x(O: k) - x(O: k))(x(O: k) - x(O: k))T} ~ [J(x(O: k))t 1 (6.7)

191

where IE denotes expectation. Matrix J(x(O: k)) is derived from the joint probability density

function P(x(O: k), z(l: k)) and is referred to as the Fisher information matrix (FIM). Different

forms of the FIM J(x(O:k)) are introduced in Section 5.2.1. Term J(l)(x(O:k)) denotes the local

FIM at processing node l, for (1 ::; l ::; N f) corresponding to the local estimate xCl) (0 : k) based

on the local posterior density P(x(O: k)lzN~
1

~s(l: k)). Similarly, J(l,mt)(x(O: k)) denotes the local

single-observation FIM at processing node l based on observation made at the observation node

ml only.

The global FIM at the processing nodes is computed in a distributed configuration using the

dPCRLB expressions stated under Theorem 7. Below, iteration (k+ 1) for updating the dPCRLB

is explained in terms of Steps 1-3. Submatrices J(l,mi)(x(k)), J(l,mt)(x(k+ llk)), and J(x(k)) are

available from iteration k of the dPCRLB update. Besides, each processing node runs the CF /DPF

distributed implementation of the particle filter introduced in Chapter 4 and has available two

particle sets: The first set results from the local filter and is denoted by {X~l,LF), w?·LF)}. The

second set results from the fusion filter and is denoted by {X~l,FF), w?·FF)}. At the end of

a CF /DPF iteration, the fusion filter has achieved consensus such that its particles (though

different at the processing nodes) represent the same global posterior distribution. Since iteration

k of the CF /DPF is also complete, therefore, the local particles {X~l,LF)(k), w?·LF)(k)} and fusion

particles {X~ l ,FF) (k), wp ,FF) (k)} are also available.

Step 1: Based on particles {X~l,FF) (k), w?·FF)} of the fusion filter, processing node l com­

putes terms C 11 (k), C 21 (k), and C 12 (k) using Eqs. (5.26)-(5.27). Since the fusion particles

represent the same global posterior distribution, the resulting values are similar at all pro­

cessing nodes.

Step 2: Processing node l computes term C 22 (k) using (5.28). This involves the local

FIMs J(l,mt)(x(k+ 1)) and J(l,mt)(x(k+ llk)), which are computed based on the framework

192

presented in Section 5.2. Since these are local entities, these are based on the particles

{X~l,LF)(k), wP·LF)(k)} of the local filters at the fusion nodes. Consequently, J(l,md(x(k +

1)) and J(l,mt)(x(k + llk)) will have different values at the processing nodes. Based on the

sensor selection model introduced in Section 6.1.1, term J(l,mi)(x(k + 1)), for example, is

computed as follows

where

[Du(k)](l)

[D12(k)] (l)

[D22(k)](l,mt)

lE{ - ~~~~~ logP(x(k + l)lx(k))} (6.9)

([D21 (k)] (l)) T = lE{- ~~~~~l) log P(x(k + l)lx(k))} (6.10)

lE{-~~~~!~~ log P(x(k + 1) lx(k))}

+ lE{-~~~~!~~ log P(z(l,mt) (k+ l)lx(k+l)) }. (6.11)

Step 3: Theorem 7 is now used to compute the dPCRLB, which is the same at all processing

nodes.

As a special case and without loss of generality, I develop the distributed particle filter tracker

and the dPCRLB-based sensor selector for 2D bearing-only tracking (BOT) applications. As

stated previously, the objective in BOT is to estimate the kinematics (position [X, Y] and velocity

[X, Y]) of the target from the bearing angle measurements (referenced clockwise positive to the

y-axis), i.e.,

z(l,mt)(k) = atan - + ((l,mt)(k)
(

X(k) x<l,m1))
Y(k) - y(l,mt) '

(6.12)

where (X(l,mt), y(l,mt)) are the coordinates of sensor node l.

Gaussian forcing terms: A common BOT model [103] assumes that the forcing term e(k) and ob-

servation noise ((l,mt)(k) in Eqs. (6.5) and (6.3) to be uncorrelated and normally distributed with

193

zero mean and covariance matrices Q(k) and R(l,mt)(k), respectively. In such cases, Eqs. (5.33)-

(5.35) are used instead of Eq. (5.26)-(5.28). For the sensor selection model used in this chapter,

Eqs. (5.33) and (5.34) remain the same and Eq. (5.35) changes as follows

N1

c 22 (k) =I: I: (J(l,mt)(x(k+1)) - J(l,mt)(x(k+11k))) + Q-1(k) (6.13)

l=l m1EN~~s x~l(n1)(0)

Eqs. (5.33) and (5.34) can be expressed in terms of the fusion filter's particles as follows

Np

Cll(k) ~ ~wp,FF)(k) x ([\7x(k)!T(k)]Q-1(k)[\7x(k)!T(k)])L(k)=X~1,FF)(k)' (6.14)
~1 •

Term C 22 (k) requires participation of all local processing nodes to computeL:z L:mx~limi)(O),

which depends on the submatrices J(l,md(x(k + 1)) and J(l,md(x(k + ljk)) of the local FIM.

Submatrix J(l,mi) (x(k + 1)) is computed using Eq. (6.8) with terms [D11 (k)] (l), [D12 (k)] (l), and

[D22(k)](l,mt) approximated as

[.iJ12(k)] (l)

[.iJ22(k)] (l,mt) ~ Q-l(k) + 1 ~ W.(l,LF)(k)
R(l,md(k) {:t i

H(l,m1)(k) H(l,m1)(k) 0 0
(1,1) (1,2)

H(l,m1)(k) H(l,m1)(k) 0 0
(2,1) (2,2)

x

0 0 0 0

0 0 0 0

194

x(Jo.t-1)=

1\~l,LF) (kf-llk)

(6.18)

with

H(l,mt) (k)
(1,1)

H(l,m1) (k) _ H(l,mi) (k)
(1,2) - (2,1)

H(l,mi)(k)
(2,2)

(Y(k+l) - y(l,mi))2
[(X(k+l) - X(l,md)2 + (Y(k+l) _ y(l,mi))2]2

-(X(k+l) - X(l,mi))(Y(k+l) - y(l,mi))

[(X(k+l) - X(l,mi))2 + (Y(k+l) - y(l,mi))2]2

(X(k+l) - X(l,md)2

[(X(k+l) - X(l,md)2 + (Y(k+l) _ y(L,mi))2]2 ·

(6.19)

(6.20)

(6.21)

Approximations (6.16)-(6.18) use local filter particles instead of particles from the fusion filters

from the CF /DPF. Prediction particles X~l,LF) (k +Ilk) in (6.18) are computed by propagating

x~l,LF)(k) through the transitional density P(x(k + l)lx(k)) obtained from the state equation

(Eq. (6.5)). Note that all required terms in Eqs. (6.16)-(6.21) are computed based on the avail­

able particles for iteration k. Having computed J(l,mi)(x(k + 1)) and J(l,mi)(x(k + llk)), term

Ll Lm x~lim'\O) in Eq. (6.13) is obtained using an average consensus algorithm in a distributed

fashion as discussed in Section 5.2.

This completes the review of the computation and fusion of local FIMs J(l,md(x(k + 1)). Fi-

nally, note that the approach for computing J(l,md(x(k+llk)) is similar, please refer to Section 5.2

for more details. Next the dPCRLB-based sensor selection algorithm is presented.

6.3 dPCRLB based Sensor Selection

In this section, I present the dPCRLB based distributed sensor selection algorithm for full-order

distributed estimation problems. The dPCRLB from Section 6.2 is used as the objective func-

tion for sensor selection. The dPCRLB based sensor selection is illustrated in Fig. 6.2 where

iteration k has just been completed. At each node, the CF /DPF has its local particle set

{X~l,LF) (k) W.(l,LF) (k)}f'!s and fusion particle set {X~l,FF) (k) W.(l,FF) (k)}f'!FF available based on
i ' i i=l i ' i i=l

the active network configuration determined by the sensor selection algorithm. From the previ-

ous iteration at time index k of the sensor selection, the following quantities are available: local

195

Observation Clusters

{N~~!(k)}, Jffii"(x(k)) Jmin(x(k))
_;__;_;_;_---:~~_.__--+-~~~~~....;___;_....;,,,;_i

Fisher Information Matrices
{J(ll(:i:(k)l(k-1)}
p(ll(:i:(k))}

To iteration (k+2)

{X~l,CF), wp 1cF) (k+ l)}

{X~l,LF), wP·LF) (k+l)}

{N~~(k+l)}, Jmin(x(k+l))
'----~~~~~----;~~--

!p<1l(:i:(k+l)lk)}

1P<'>(:i:(k+l))}
' ' l

Figure 6.2: Iteration (k + 1) of the proposed dPCRLB based distributed target tracker with the obser-

vation node selection feature.

PCRLBs J(l,mi)(x(k)), for (1 :::; l:::; N) and (mz E N~~8), the global dPCRLB J(x(k)) optimized

for N~l~s at k. Iteration k + 1 uses the overall dPCRLB to compute the local and global PCRLBs

as explained in Section 6.2.

After computing the local and overall FIMs for the dPCRLB (the "dPCRLB computation"

block in Fig. 6.2), the next stage constitutes the observation node selector for the processing

nodes. As shown in Fig. 6.2, the selector requires the following inputs:

PCRLB Parameters (from dPCRLB computation block):

J(x(k+l)), J(l)(x(k+l)), J(l)(x(k+llk)), D 11 (k), D 12(k)

Selector Parameter (from the previous selector iteration:)

Jmin(x(k)), i.e., the overall dPCRLB optimized for N~l~s at k.

I illustrate the proposed sensor selection approach in terms of the BOT problem. The overall

cost function C(k + 1) used by the BOT selectors is based on the dPCRLBs related to the (x, y)

196

coordinates of the target, i.e.,

C(k + 1) = [J(x(k+l))J;l + [J(x(k+l))J;J. (6.22)

where [J(x(k + 1))];} is the dPCLRB corresponding to the x-coordinate at iteration k + 1.

Similarly, [J(x(k + l))Jy-J is the dPCLRB corresponding to they-coordinate at iteration k + 1.

In general, sensor selection is an NP-hard combinatorial optimization problem [163]. Finding

the optimal solution in real time is difficult especially when the number of possible combinations

is impractically large, hence, a near-optimal procedure is generally used. The observation node

selection is carried out in several iterations t 2:: 1. To select the best observation node at each

local processing node, the following local cost function (expressed in terms of processing-node-

observation-node (l, mz) combination) is used

() ((1)) ((1)) .
C l,m1 (t) = [J Nobs (t)];} + [J Nobs (t)]yJ. (6.23)

where [J(N~~~s) (t)];} and [J(N~~s)(t)Jy-J are the dPCLRB corresponding to the x and y-coordinates in

(6.24)

with

Note that Eqs. (6.24) and (6.25) are representations of Eqs. (5.25) and (5.28) for a single processing­

node-observation-node (l, ml) combination. Notation J(N~
1

~s)(t) correspond to the FIM for esti-

mates obtained from the iterating neighbourhood N~~8 (t) as it is being optimized. Once opti­

mized, N~l~s(k + 1) = N~l~8 (t). Parameters C 21 (k) = [C12 (k)JT and C 11 (k) are available from the

dPCRLB computation block and are fixed for various iterations of the senor selector. Parameter

J(min)(x(k)) corresponds to the dPCRLB from the previously optimized neighbourhood in the

197

last k iteration. Parameter [C22 (t)J(l,mt) is local for the (l, ml) processing-node-observation-node

combination and is obtained from Eq. (6.25). Parameter J(l,mt)(x(k+l)) and J(l,mt)(x(k+llk))

are the dPCRLBs corresponding to the filtering and prediction estimates obtained at process-

ing node l from a single observation at observation node ml. Finally, Jk:~lk(t) and Jk:~lk+i (t)
are the FIMs corresponding to the filtered and predicted estimates obtained from the iterating

neighbourhood N~l~8 (t). Having defined the cost function, I describe the iterative consensus-based

sensor selection approach expressed in terms of the following two steps.

6.3.1 Initial Sensor Selection Step

The initial step of the distributed sensor selection has the following sub-steps.

1.1. At local processing node l, for (1:::; l:::; Ni), the local FIMs J(l,mi)(x(k+l)) and the cost

function C(l,mi)(l) corresponding to the processing-node-observation-node (l, ml) combina-

tion are computed based on Eqs. (6.23)-(6.25).

1.2. From all (l, ml) combinations, node l selects one observation node for which C(l,mi) (1) is

minimum. In other words, a single observation node is selected by each local processing

node that provides the optimal performance at that node when at the most one observation

is used.

1.3. At this stage, a complete enumeration encompassing all processing nodes (1 :::; l :::; N1) is

performed. One processing-node-observation-node combination (q = l, mq = ml) is selected

with the minimum cost function associated to it across the network. A minimum consensus

algorithm accomplishes Step 1.3.

1.4. Matrices

and

198

J(q,mq) (x(k+ llk)) ~ J(min) (1)
- k+llk+l

corresponding to the FIMs for the combination (q, mq) are communicated across the network.

The neighbourhood structure is given by N(l) = {N~l~8 (1)}N1. After the initial selection, all

N~l~8 (1) = {} (i.e., empty sets) except for l = q where N~~s = {mq}· Note that I have added

time index t = 1 to each neighbourhood to indicate the iteration number for the selection

stage. The FIMs J(l,mi)(x(k+l)) computed in Step 1.1 are limited to the observation nodes

within the communication range of node l.

6.3.2 Subsequent Sensor Selection Step

Each local processing node l, (1 ::::; l ::::; N1), selects an observation node in its immediate neigh­

bourhood and for it computes the cost function taking into account the previously selected neigh­

bourhood (N~l~8 (t)) and the associated FIMs J~~~lk(t) and J~~~lk+i (t). The subsequent selection

is based on the following sub-steps.

2.1. Local processing node l computes [C22 (t)]<l,mi), for (mt fj. N~l~8 (t)), using Eq. (6.25). The

predicted dPCRLB J(N~~J (t) is based on Eq. (6.24).

2.2. Given J(N~~~s) (t), Eq. (6.23) is used to compute the local cost function C(l,mi) (t).

2.3. Select the local processing node .C and observation node m.c combination corresponding to

the minimum overall cost function using a minimum consensus algorithm.

2.4. Append the neighbourhood structure to include the new combination N~~s (t+ 1) = { N~~s (t)}

appended with the new combination. The overall FIM corresponding to the appended

neighbourhood combination is denoted by J(.C,mc.)(x(k + 1)).

2.5. Matrix J(min)(x(k + 1)) now equals to J(.C,mc.)(x(k + 1)), which now corresponds to the

overall FIM corresponding to the selected sensors. The new value of matrix J(min)(x(k+l))

is communicated across the network.

199

The selection is terminated, if Nmax has been reached, otherwise Step 6.3.2 is continued.

In this section a dPCRLB-based sensor selection algorithm is proposed. The next section

extends the non-conditional dPCRLB framework to conditional dPCRLB for full-order adaptive

sensor selection problems. The non-conditional dPCRLB [148] considers observations and state

variables as random, consequently, it is determined primarily from the state model, observation

model, and prior knowledge of the initial state of the system. The conditional dPCRLB, on the

other hand, is a function of the past history of observations and, therefore, leads to a more accurate

representation of the systems's performance and a better criteria for adaptive sensor-selection.

6.4 Conditional dPCRLB based Sensor Selection

As stated previously, the conditional PCRLB provides a bound on the performance of estimating

x(O: k) given that the past observations z(l: k-1) are known [152]. Contrary to its conventional

counterpart, the conditional PCRLB does not assume the observations to be random. Instead the

actual observations are used. The cost function C(k+l) used by the sensor selectors is now based

on the conditional dPCRLBs related to the (x, y) coordinates of the target, i.e.,

C(k + 1) = [L(x(k+l))];I + [L(x(k+l))];y1. (6.26)

where [L(x(k+l))];} is the conditional dPCLRB corresponding to the x-coordinate at iteration

k+ 1. Similarly, [L(x(k + 1)) J;J- is the conditional dPCLRB corresponding to the y-coordinate

at iteration k+ 1. Similar to the previous section, the observation node selection is carried out

in several iterations. During initialization at each iteration, the best observation node for each

processing node is picked. One observation node among N1 selected sensors forms the initial

neighbourhood. The process is repeated till the desired number of observation nodes is included in

the neighbourhood set. To select the best observation node at each processing node, the following

200

local cost function (expressed in terms of processing-node-observation-node (l, mz) combination)

(6.27)

where [L(N~
1

~s)(t)];} and [L(N~~s)(x(k+l))J;i are the conditional dPCLRB corresponding to the

x and y-coordinates in

(6.28)

with

Notation L(N~
1

~s)(t) correspond to the FIM for estimates obtained from the iterating neighbour­

hood N~l~s (t) as it is being optimized. Once optimized, N~l~s (k + 1) = N~l~s (t). Parameters

C 21 (k) = [C12 (k)]T and C 11 (k) are available from the conditional dPCRLB computation block

and are fixed for various iterations of the senor selector. Parameter Ji_~~) (x(k)) corresponds to

the auxiliary PCRLB from the previously optimized neighbourhood in the last k iteration. Pa­

rameter [C22 (t)](l,mi) is local for the (l, mz) processing-node-observation-node combination and

is obtained from Eq. (6.29). Parameter L(l,mt)(x(k + 1)) and L(l,mt)(x(k + ljk)) are the condi­

tional dPCRLBs corresponding to the filtering and prediction estimates obtained at processing

node l from a single observation at observation node mz. Finally, Li:i~~(t) and Li:i~~+l (t) are

the conditional FIMs corresponding to the filtered and predicted estimates obtained from the

iterating neighbourhood N~l~8 (t). Having defined the cost function, the iterative consensus-based

distributed sensor selection approach is described next in terms of the following two steps.

1. Initial Selection: has the following sub-steps: (a) At processing node l, for (1 ~ l ~ N1)

the conditional FIMs L(l,mt)(x(k + 1)) and the cost function C(l,mt)(l) corresponding to

201

the processing-node-observation-node (l, mt) combination are computed based on (6.27)­

(6.29). (b) From all (l, ml) combinations, the processing node l selects one observation

node for which C(l,mt)(l) is minimum. In other words, a single observation node is selected

by each processing node that provides the optimal performance at that node when at the

most one observation is used. (c) At this stage, a complete enumeration encompassing all

processing nodes (1 S l S N1) is performed. We select one processing-node-observation-

node combination (q = l, mq =ml) with the minimum cost function associated to it across

the network. A minimum consensus algorithm accomplishes Step Le. (d) Matrices

and

corresponding to the conditional FIMs for the combination (q, mq) are communicated across

the network. The neighbourhood structure is given by N(l) = {N~l~8 (1)}N1. After the initial

selection, all N~l~8 (1) = {} (i.e., empty sets) except for l = q where N~~s = {mq}· Note that

we have added time index t = 1 to each neighbourhood to indicate the iteration number for

the fusion selection stage. The FIMs L(l,md(x(k+l)) computed in Step La are limited to

the sensors within the neighbourhood of processing node l.

2. Subsequent Selection: is based on the following substeps: Each processing node l, (1 S l S

N1), selects an observation node in its immediate neighbourhood and for it computes the

cost function taking into account the previously selected neighbourhood (N~l~s (t)) and the

associated FIMs Li:i~~(t) and Li:i~~+l (t). (a) Processing node l computes [C22 (t)](l,mt),

for (mt ¢: N~l~8 (t)), using (6.28) and (6.29). (b) Given £(N~
1

~s)(t), Eq. (6.27) is used to com­

pute the local cost function C(l,md(t). (c) Select the processing node £ and observation

202

node m c combination corresponding to the minimum overall cost function using a mini­

mum consensus algorithm. (d) Append the neighbourhood structure to include the new

combination N~~s (t+ 1) = { N~~s (t)}, appended with the new combination. The overall FIM

corresponding to the appended neighbourhood combination is denoted by L(C,m.c)(x(k+l)).

(e) Matrix L(min)(x(k+l)) now equals to L(C,m.c)(x(k+l)), which now corresponds to the

overall conditional FIM corresponding to the selected sensors. The new value of matrix

L(min)(x(k + 1)) is communicated across the network.

3. Termination: Check if Nmax has been reached. Else, go to Step 2.

Although the conditional PCRLB is an effective sensor resource management criteria for large,

geographically distributed sensor networks, the proposed algorithm for distributed computation of

the conditional PCRLB (dPCRLB) is based on raw observations leading to significant communi­

cation overhead to the estimation mechanism. The next section derives distributed computational

techniques for determining the conditional dPCRLB for quantized, distributed AN /SN systems,

referred to as the CQ/dPCRLB. Analytical expressions for the CQ/dPCRLB are derived, which

are particularly useful for particle filter-based estimators.

6.5 Conditional PCRLB for Quantized Distributed Particle Filters

The section extends the conditional dPCRLB framework to quantized observations with emphasis

on particle filter estimators. Additional contributions of the section include: (a) Both computa­

tional and communication complexity of conditional dPCRLB (Section 5.3) are reduced in the

proposed conditional dPCRLB with quantized observations (CQ/dPCRLB). (b) In Section 5.3 and

Section 6.4 the conditional FIM, i.e., the inverse of the conditional dPCRLB, is expressed as a

function of the auxiliary FIM which is updated distributively at each iteration. The CQ/ dPCRLB

203

updates the conditional dPCRLB directly without the need of computing the auxiliary FIM lead-

ing to significant communication savings. Next, I formulate the distributed estimation framework

with quantized observations

6.5.1 Distributed Estimation with Quantized Observations

Similar to the model presented in Section 6.1, processing node l, (1 ::; l ::; N1), is connected to a

set of sensor nodes with only a subset active at each iteration. The active sensors connected to

node l constitute its local observation neighbourhood N~l~s· The total number of active sensors

in the network is Nss = E{':;1 IN~l~sl, where I · I denotes the cardinality operator. Sensor m in

the observation neighbourhood of node l, i.e., m E N~l~s' makes observation z(l,m)(k). Instead of

transferring the raw observation, sensor m communicates its quantized version y(l,m)(k) to the

processing node l based on the following model

y(l,m)(k) = Q(l,m1) (g(l,m)(x(k)) + (<l,m)(k)),

z<t,m)(k)

(6.30)

where Q(l,m)(·) is the local quantization operator at node l, and g(l,m)(.) and ((l,m)(·) are, respec-

tively, the local observation model and uncertainty at sensor m connected to processing node l.

For simplicity and without loss of generality, the quantization operators Q(l,m) (·) are considered

to be the same across the network (i.e., Q(l,m)(·) = Q(·)). Collectively, the overall quantized

observation vector at node l is denoted by

(6.31)

Depending on how many sensors are activated by the processing node l, the dimension of the

observation vector y(l) (k) is different at each processing node. As for the quantized observations

y(l)(k), vector z<O(k) is the collection of all raw observations associated with the processing node

204

l, i.e.,

(6.32)

In other words, y(l)(k) is the quantized version of z(l)(k). An NL-bit quantization scheme is

considered, where node m's quantized observation y(l,m) (k) can take any discrete value between

0 and 2Nf, - 1. The set of quantization threshold is denoted by q = [qo, qi, ... , q2N[, _ 1] where

for brevity Qo = -oo and q2NL = oo. The likelihood that y(l,m)(k) is at level qi is denoted by

P(qi:::; z(l,m)(k):::; qi+ilx(k))

P ([qi-g(l,m)(x(k))] :=;((l,m)(k):::; [qi+1-g(l,m)(x(k))J) (6.33)

Section 5.1 reviews the local conditional dPCRLB for raw observations as presented in Section 5.3

with one proposed modification.

6.5.2 Modified Conditional dPCRLB for Raw Observations

Based on the conditional PCRLB inequality, the mean square error (MSE) associated with the

local estimate :X(l) (0: k + 1) of the state vector at node l is lower bounded as follows

where pJl)(k + 1) £ P(x(O: k),z(l)(k+l)iz<O(l: k)), IE{-} denotes expectation, and e(l>(o: k+

1) £ x(O: k+l) - :X(l)(O: k+l) is the estimation error. The local accumulated conditional FIM

J(l)(x(O: k+l)) corresponds to the state trajectory :X(l)(O: k+l) from iteration 0 to k+l and is

given by

(l)((.)) ~ { Ax(O:k+l) 1 (l)(k)} I x O.k+l - IEp~l)(k+l) - '"""x(O:k+l) ogPc +1 . (6.34)

205

Another local FIM is the local instantaneous conditional FIM £(l)(x(k + 1)) associated with

:X(l)(k+l), which is obtained by taking the inverse of (nx x nx) right-lower block of [J(l)(x(O: k+

l))]- 1 . Please refer to

Below, I further highlight the relationship between the local accumulated conditional FIM

J(l)(x(O: k+l)) and local instantaneous conditional FIM £(l)(x(k+l)). The local instantaneous

conditional FIM £(l)(x(k+l)) is computed using either of the following three approaches: (i)

Directly by inverting large matrix J(l)(x(O: k + 1)); (ii) Recursively as a function of the previous

local instantaneous auxiliary FIM Jfbx(x(k)) (Section 5.3), and; (iii) Recursively as a function

of the previous local instantaneous conditional FIM £(l)(x(k)) presented below in Result 1. In

approach (i), first the local accumulated conditional FIM J(l)(x(O: k+l)) is factorized as follows

(6.35)

Then, the local instantaneous conditional FIM £(l)(x(k+l)) associated with the estimate x(k+l)

is obtained by taking the inverse of the (nx x nx) right-lower square block of [J(l)(x(O: k+l))J- 1 by

applying the matrix inversion Lemma 3. Based on Lemma 3, the local instantaneous conditional

FIM is given by

which requires inversion of large matrix [A11 (k+ l)]<l). Next, I describe approach (iii) in more

details. Node l updates its local conditional FIM £(l)(x(k + 1)) as follows.

Result 1. The instantaneous local FIM £(l)(x(k + 1)) associated with estimate :X(l)(k+l) at node

206

l is computed as fallows

L(l)(x(k + 1))

[B11 (k)] (l)

[B12(k)](l)

and

~ [B22 (k)](l) - [B21 (k)](l)(L(l)(x(k))+[B11 (k)](l))-
1

[B12 (k)](l), (6.37)

lE{-~:~~~ logP(x(k + l)lx(k)) }, (6.38)

lE{-~:~~t) log P(x(k + l)lx(k))} (6.39)

[B 22 (k)] (l) = lE{-~:~~!g log P(x(k + l)lx(k))} + lE{-~:~~!g log P(z(l) (k+l)lx(k+l)) }. (6.40)

The derivation of Result 1 is included in Appendix D.2. In Chapter 5, L(l)(x(k+l)) is computed

recursively from the local instantaneous auxiliary FIM [JAux(x(k))](l) which is the inverse of

(nx x nx) right-lower square block of the accumulated auxiliary FIM (Jfbx(x(O: k))]- 1. The

latter is defined as

(6.41)

with P~l)(k) ~ P(x(O: k)lz(l)(l: k)). The algorithm proposed in Chapter 5, therefore, requires

distributed fusion of both the local FIMs and the local auxiliary FIMs, while Result 1 eliminates

the need for fusing the local instantaneous auxiliary FIMs and, therefore, cuts the communication

overhead by half.

Distributed computation of the conditional PCRLB requires a recursive expression for the

predictive local conditional FIM L(l) (x(k + 1 lk)) which is similar to (6.37) except [B 22 (k)]<l) is

substituted with [B~2 (k)]<l) as

(6.42)

Having computed the local FIMs L(l)(x(k + 1)) and the local prediction FIMs L(l)(x(k + llk)) at

iteration k + 1, the next step in the conditional dPCRLB is to fuse these local FIMs to compute

207

the global instantaneous conditional FIM L(G)(x(k + 1)). In Chapter 5, I derived a fusion rule

for assimilating local conditional FIMs into the global conditional FIM when raw observations are

available at each local node. Section 6.5.3 extends the derivations to quantized observations and

eliminates the need for fusion of local instantaneous auxiliary FIMs.

6.5.3 CQ/ dPCRLB with Quantized Observations

In Result 1, raw observations zCl,m)(k) are replaced with their quantized version y(l,m)(k),

which results in the quantized filtering conditional FIM Lg)(x(k + 1)). Since terms [B11 (k)]<l),

[B12(k)]Cl), [B21 (k)]Cl) are based on the state model, they remain the same. Term [B22 (k)]Cl) in

Eq. (6.40) is now computed using the quantized observation as follows

[B~2 (k)] (l) = lE{-~:~~!~~ log P(x(k + l)lx(k))} + lE{ -~:~~!g log P(y<l) (k+l)lx(k+ 1))}.(6.43)

J(y(l) (k+l))

To compute J(y(l)(k + 1)), the likelihood P(y(l)(k+l)lx(k+l)) along with the second derivative

of its logarithmic function is needed. Because of quantized observations, P(y(l)(k + l)lx(k + 1))

transforms into a probability mass function that is discrete with second derivative replaced by a

double summation as described below. Given the state variables, local observations are assumed

independent such that

J(y<l)(k + 1))

where J(Y(l,m)(k+l))

L J(Y(l,m)(k + 1)),

mEN~1~8 (k)
(6.44)

N1,

L -lE{ <>(ycz,m)(k + 1) - i)~:~z~ log (h~l,m)(k))} (6.45)
i=l

208

and 8(·) is the delta function. We note that IE{8(Y(l,m)(k + 1) - i)}=h~l,m)(k), where h~l,m)(k)

was defined immediately after Eq. (6.33) previously and has the second derivative

82 log(hi1•m)(k)) 82 log(hi1•m)(k))
(8(X1 (k))) 2 ••• 8(X1(k))8(Xn., (k))

~:~~~ log(h~l,m)(k)) = (6.46)

8 2 log(h~l,m)(k)) 8 2 log(h{l,m)(k))
8(Xnx (k))8(X1(k)) · • · (8(Xn., (k))) 2

Under mild regularity conditions, the expected value of (6.46) is equal to the variance of its first

moment, i.e.,

(6.47)

Eqs. (6.44)-(6.47) are used to compute [B~2 (k)]<l). Finally, the local quantized filtering FIM is

given by

Eq. (6.48) is derived by applying the following factorization

P(x(O: k + 1), y<l)(l: k + 1)) = P(x(O: k), y<l)(l: k))P(x(k + l)lx(k))P(y(l)(k+l)lx(k+l)),

(6.49)

to the quantized version of Eq. (6.34) and then taking the inverse of the (nx x nx) right lower

block of [Jg)(x(O:k+l))]- 1 . The similarity between Eqs. (6.37) and (6.48) is intuitively pleasing.

The local predictive FIM Lg)(x(k+llk)) is derived in the similar manner as (6.48) with [B22 (k)]<l)

replaced by (6.42)

Fusing Local FIMs (CQ/dPCRLB): Result 2 provides a fusion rule for assimilating the local

FIMs with quantized observations to compute the global quantized FIM.

209

Result 2. The sequence {L~)(x(k + 1))} corresponding to the global information submatrix

(CQ/ dPCRLB) with quantized local observations follows the following recursion

L~G)(x(k+l)) ~ C~2 (k) - C~1 (k)(L~)(x(k)) + Cb1(k)f
1
Cb2(k) (6.50)

where Cb1(k) lE{ - ~:~~~ logP(x(k + l)lx(k))}, (6.51)

Cb2(k) lE{ - ~:~~t) log P(x(k + l)Jx(k)) }, (6.52)

and

N1 N1

Cb2 (k) ~ L L~(x(k + 1)) - L LW (k + llk) + lE{ - ~:~~!~~log P(x(k_+ l)Jx(k))}. (6.53)
l=l l=l

The proof of Result 2 is included in Appendix D.3.

Gaussian Observation Noise: The analytical expressions are derived for the case when lo-

cal observations z(l,m)(k) are zero-mean Gaussian with variance R(l,m)(k), i.e., z<t,m)(k) ,.....,

N(O, R(l,m)(k)). The likelihood that y(l,m)(k) is at level Qi is

1 1Qif-1-g(L,rn)(x(k)) -t
h~l,m) (k) = exp { }dt

y'27rR(l,m)(k) Qi-g(l,rri)(x(k)) 2R(l,m)(k)

<I> (qi - g(l,m)(x(k))) - <I> (Qi+l - g(l,m)(x(k)))
y'R(l,m)(k) y'R(l,m)(k) ' (6.54)

where <I>(·) is the standard cumulative Gaussian distribution. Based on (6.54), each derivative

term in Eq. (6.47) is represented as

8g(L,rn) (x(k))
8x(k) ((-(qH1-g(l,m)(x(k))) 2

) (-(qi-g(l,m)(x(k))) 2)~
y'27rR(l,m)(k) exp 2R(l,m)(k) -exp 2R(l,m)(k) ~ .(6.55)

6.5.4 Computation of The Conditional dPCRLB

The analytical computation of the expectations in Result 2 is not practical and, therefore, particle

filter-based approaches are proposed. If the state estimator is based on distributed particle fil-

ters (51], then the same particle set can be used in the CQ/dPCRLB algorithm. An active sensor

210

communicates its quantized observation to the associated processing node. The processing nodes

themselves communicate the local conditional FIMs and statistics of local posteriors (i.e., local

state estimates and their corresponding covariance matrices) to the neighbouring processing nodes

which are then fused in a distributed fashion to compute the global state estimate and the global

conditional FIM. I explain the CQ/ dPCRLB algorithm in the context of the CF /DPF implemen­

tation (Chapter 4) being used as the state estimator. Recall that the CF /DPF implements two

particle filters at each node: (i) Local filter which approximates the local posterior at node l with

a set of weighted particles {X~l,LF)(k), Wi(l,LF)}, and; (ii) Fusion filter which combines the local

posteriors to estimate the global posterior with a second set of particles {X~l,FF)(k), w?,FF)}. All

information regarding the observations collected up to time k at node l, are presented in the local

particles X~l,LF) (k), while the information available across the network is provided by the global

particles X~l,FF)(k). The CQ/dPCRLB comprises of the following steps:

I. Local F!Ms:

1. Eqs. (6.38)-(6.39) are computed at node l based on Monte-Carlo integration using local

particles :%:~ l ,LF) (k).

2. For computing Eq. (6.43), first, node l computes the predictive particles X~l,LF)(k+llk)

by propagating xY,LF)(k) through P(x(k+l)lx(k)), and then computes Eq. (6.43) using

X:~l,LF)(k) and X~l,LF)(k+llk).

3. The local FIMs are then computed using Eq. (6.48).

II. Global FIM:

4. The expectations in (6.51)-(6.53) are computed using the global particles X~l,FF)(k) to derive

the FIMs CQ.*(k). Eq. (6.53) includes summation of local FIMs across the network typically

211

computed using the average consensus algorithms [55) in a distributed fashion.

5. Result 2 is used to compute the global FIM based on the local FIMs computed in Step 4.

6.5.5 Communication Savings with CQ/dPCRLB

First, the transfer of quantized observation (instead of raw data) between sensors and associated

processing nodes leads to significant communication savings. Second, the communication overhead

for computing the global auxiliary FIM from the local auxiliary FIMs across the network is

eliminated in the proposed CQ/dPCRLB algorithm. With average consensus [51), the second

savings is of O(nxlN~~selNc) (i.e., the communication complexity reduces by half), where nx is

number of states, IN~~sel the number of processing nodes in the neighbourhood of processing node

l, and Ne the number of consensus iterations. The CQ/dPCRLB can be further extended to

communicate quantized versions of the local state statistics (quantized local tracks [164)) and

local FIMs between neighbouring processing nodes during the fusion filter stage which will be

considered in future work.

6.6 Simulation Results

In this section the proposed distributed sensor selection algorithms are implemented using the

non-conditional dPCRLB in Section 6.6.1 and the conditional dPCRLB in Section 6.6.2, and are

compared in performance with some of the existing sensor selection algorithms. In Section 6.6.3,

the conditional dPCRLB for quantized distributed estimation proposed in Section 6.5 is likewise

evaluated using the Monte Carlo simulations.

A large-scale distributed BOT application [103) based on Fig. 6.1 is simulated to test the pro­

posed consensus-based dynamic sensor selection approaches. An AN /SN consisting of N 88 = 225

sensor nodes and N f = 9 local processing nodes scattered in a square region of dimension

212

- Proposed Sensor Selection Method

- • - Random-Sensor Selection 1.8 . , '·

!:1.6
CQ

\
.. -~ '.

•-•-•Closest-Sensor Selection

~ 1.4 ..
p..
~ :€ 1.2
ti)

0

t 1
0

0
~0.8

~ g.o.6
(/}

0.4

" .·~·. ··:· -~-.· ... ····"·41\
~~\ ... · , .• '-r:~ ! ~fl : - ~.. •. :1l \
\~ : . ,,;,/ \ \: ,,,,
~-~·······~-· , .. .
'·: ...
\ : :.,•. , : · . .' :_

0.2~~~~~~~~~~~~~~~~~~~~~~~~~~~~

0

2

1.8

1.6

!: 1.4

'"" 0

5 10 15

Iteration (k)

(a)

--Proposed Sensor Selection Method
- - - Random-Sensor Selection
·-•-•Closest-Sensor Selection

. \. --dPCRLB

20 25

..... , .. ·····A·

·' \
I \ : \

.. 1 v· .. ,.
:~I \

\ ,. \ ., ' ' ,. '.. , .
\ I . \

30

t::
i;.Ll 1.2
~

\ I ' .. \' .. '............... ·;;.., .,. I l.

\ . , , - . '·' 0

:~
0

11..
(/}

~ 0.8

0.6

0.4

0.2
0

-:'\~·:···· .. ·:··/ ~-

\. ·.I ~-tt. .. • .
~- :''°•' .. .

.... \ :, '. ·)'·. . '. ···"·
: \ '· , -'. .~: ·~
. ~ ~-~ " -~~-.

5 10 15
Iteration (k)

(b)

20 25

'

30

Figure 6.3: (a) The dPCRLB, and; (b) RMS error for target's position averaged over all processing nodes

for the three approaches.

213

(1500 x 1500) m2 is considered. For simplicity, the observation nodes are assumed distributed

uniformly with the processing node at the centre of its rectangular (500 x 500)m neighbourhood.

Each processing node communicates only with selected observation nodes within its rectangular

(500 x 500)m neighbourhood and other processing nodes within a connectivity radius of 550 m.

Each processing node linked to at least one other processing node in the network. The CCT kine-

matic motion model (Eq. 3.50) defines the state model. Measurements are the target's bearings

with respect to the platform of each node referenced (clockwise positive) to the y-axis as follows

z(l,mi)(k) = atan - + (<l,mi)(k) [
X(k) x<t,mi) l
Y(k) - y(l,mt) ' (6.56)

where {X(l,mt), y(l,mt)} represents the coordinates of sensor (l, mz), i.e., sensor mz connected to

processing node l, for (1 ~ l ~ N1). Both state and observation noises are normally distributed

with the observation noise u:<l,mt)(k)) assumed to be state dependent such that the variance of

the observation noise at sensor node (l, mz) given by

(6.57)

depends on the distance r(l,mt)(k) between sensor node (l,mz) and target. Consequently, the SNR

is time-varying and differs from one sensor node to the other depending on the location of the

target.

6.6.1 Non-Conditional dPCRLB-based Sensor Selection

In this section, the sensor selection algorithm based on the non-conditional dPCRLB proposed in

Section 6.3 is evaluated through Monte Carlo simulations. The maximum number of active obser-

vation nodes at each iteration is N max = 32 with the additional constraint that each processing

node can at the most select four sensors. Since the distributed dynamical system is non-linear,

the distributed particle filter implementation (CF /DPF (Chapter 4)) is used to track the tar-

214

gets, compute the local FIMs J(l)(x(k+l)) and J(l)(x(k+llk)), for (1 ~ l ~ N 1), and evaluate

the global FIM J(x(k+l)). The number of vector particles used at each processing nodes is

N 8 = 1000. The dPCRLB sensor selection approach is compared with other distributed sensor

selection approaches [15] as follows.

1. Random-sensor approach: 0 bservation nodes are selected randomly by each processing node

from within its neighbourhood.

2. Closest-sensor approach: If a target is present in the neighbourhood of a processing node,

observation nodes closest to the estimated location of the target are selected. Else, sensors

are selected randomly from the processing node's neighbourhood.

In the experiments, a single target starts its maneuver from coordinates {100, 1400}. The initial

course is set at -140° with the standard deviation of the process noise av= 1.6. Fig. 6.3(a) shows

the position PCRLB for the three sensor selection approaches based on the selected sensors. The

RMS error for the three approaches with the CF /DPF as the estimation algorithm are plotted in

Fig. 6.3(b). In Fig. 6.3(a), the dPCRLB based sensor selection approach provides the minimum

lower error bound as well as the minimum RMSE as shown in Fig. 6.3(b). Next, the conditional

dPCRLB based sensor selection algorithm is evaluated. Fig. 6.3 reinforces our earlier result of

the superiority of the dPCRLB based sensor selection approach.

6.6.2 Conditional dPCRLB based Sensor Selection

In this section, the sensor selection algorithm based on the conditional dPCRLB proposed in

Section 6.4 is evaluated through Monte Carlo simulations. In other words, the sensor selection

procedure is the same as in Section 6.6.1 except for using the conditional PCRLB as the selection

criteria versus non-conditional PCRLB used in Section 6.6.1. As in the previous section, a large-

215

950
g
i::

·~
E
a
;a
I

>-
450

18

16

14

g 12

w
r:: 10
0
+: ·u;
0
a.. 8
en
::E
0:::

6

4

2

0
0

• __._Targets Trajectory

• - • - Conventional dPCRLB •
· -0- • Conditional dPCRLB

Observation nodes

• Local Fusion nodes

:.

•

•

500

•

•

X- dimension (m)

(a)

:.

:.

..

1000

· · · • -+- · Random SS

•

•

: : -+....- -:>· ·:· ·\'-.. Nearest Neighbour SS .

. '* \ --- Conditional dPCRLB
.................... : . . ~:". • -9- •Conventional dPCRLB .

. I \

...... ;j.. :
/· ,. .~.. I

···;,;r••J • \,../'' . '\.,. ;
~ ·1- =t-¥"

5 10 15
Iteration (k)

(b)

20 25 31

Figure 6.4: (a) Target's position alongside with the sensor nodes and observation nodes positions. (b)

RMSE for target's position averaged over all fusion nodes.

216

scale distributed BOT application is simulated based on an AN /SN consisting of N 88 = 225

sensor nodes and N1 = 9 fusion nodes scattered in a square region of dimension (1500 x 1500)

m2 . A single target scenario is considered with the target starts its maneuver from coordinates

(1400, 1400). The initial course is set at -140° with the standard deviation of the process noise

av = 1.6. The maximum number Nmax of active observation nodes at each iteration is different

from the earlier setup and set to 18 with the constraint that each processing node (shown as '•')

can at the most select four sensors. The measurement equation is given by Eq. (6.56) and the

target movies according to a CCT motion model given by Eq. (3.50) with maneuver acceleration

parameter Am set to 1.08 x 10-5km/s2
. Fig. 6.4(a) shows the target tracks together with location

of observation nodes and local processing nodes. The variance of the observation noise at sensor

node (l, mz) is given by Eq. (6.57) which considers a state dependent noise model such that the

bearing noise variance at sensor node (l, mz) depends on the distance r(l,mi)(k) between sensor

node (l, mz) and target. Consequently, the SNR is time-varying and differs from one sensor node

to the other depending on the location of the target. As stated previously the CF /DPF [50] is

used to track the targets and compute the local FIMs. The conditional dPCRLB sensor selection

approach is compared with other distributed approaches [15, 67] as follows:

1. Non-conditional dPCRLB-based sensor selection: where the conventional dPCRLB is the

selection criteria.

2. Random-sensor approach: Observation nodes are selected randomly by each processing

node from within its neighbourhood.

3. Closest-sensor approach: where the observation nodes closest to the estimated location of

the target are selected.

217

Fig. 6.4(b) shows the position RMSE for the four sensor selection approaches. The conditional

dPCRLB based sensor selection approach outperforms the other methods and provides the min­

imum RMSE as shown in Fig. 6.4(b). Next, the conditional dPCRLB for quantized distributed

estimation proposed in Section 6.5 is considered.

6.6.3 Conditional dPCRLB for Quantized Distributed AN /SN Systems

In this section, the performance of the CQ/ dPCRLB algorithm proposed in Section 6.4 is evalu­

ated through Monte Carlo simulations. Similar to the previous section, a large-scale distributed

bearing-only tracker with nonlinear CCT model [51] given by Eq. (3.50) is considered. The ob­

servations are bearing measurements given by Eq. 6.56. Both process and observation noises are

normally distributed with the observation noise (((l,mt)(k)) model assumed to be state dependent

such that the bearing noise variance at sensor (l, ml) depends on the distance between the observer

and target. A agent network (Fig. 6.5(a)) consisting of 225 static sensors and NJ = 9 processing

nodes scattered in a square region of dimension (1500 x 1500)m2 is implemented. Our goal is

to evaluate the performance of the proposed CQ/dPCRLB, therefore, the activated sensors are

selected at random and limited to three sensors per processing node.

The objective of the Monte Carlo simulations in this section is three folds. The first objective is

to validate the effectiveness of the conditional FIM approximation (i.e., to replace the global auxil­

iary FIM with the global conditional FIM) in Result 2. Fig. 6.5(b) plots the conditional dPCRLB

and CQ/dPCRLB with and without the proposed global conditional FIM approximation. In

each case, results for both raw (bottom two plots) and quantized (top two plots) observations

are included. Within each set of plots in Fig. 6.5(b), the bounds virtually overlap verifying the

effectiveness of the global conditional FIM approximation. The second objective is to compare

the CQ/ dPCRLB with quantized observations for accuracy against the conditional dPCRLB com-

218

0

0

----- Conditional dPCRLB [6]
· - · - Conditional dPCRLB w/ approximation
-e- CQ/dPCRLB without approximation
- + - CQ/dPCRLB w/ approximation (Result I)

o~~~~~~~~~~~~~~~~~~~~~~~

10 15
Iteration (k)

20 25 0 500
X - dimension

(a)

1000 1500

(b)

- - - Conditional dPCRLB (No quantization)
,\6. ···A·· CQ/dPCRLB with 4-bit quantizer

It. · · -m- · CQ/dPCRLB with 5-bit quantizer

"\:.t... - t - CQ/dPCRLB with 6-bit quantizer
\- · -+- · CQ/dPCRLB with 7-bit quantizer

~(A.A · · · · · --e-CQ/dPCRLB with 8-bit quantizer

' ·.. JJt...JJt...l!t...A ii\ :
: A·ll: : :6.:A.j.

......... ,.. .. : 'A:.. ·:······ 1~A,11t..:11t..·

: , . : :6..A.11t...11t...JJt...AA :
ra.i.D'g..n-a-a....... : : •t ~ t : ii, .i,;_Er•IHI ,a. •·•·Cl'a'

.. ·+,..tt..:~~H·.t: HH·H~
.. ~.... "" . "++~ ...

10 15
Iteration (k)

(c)

20 25 3C

3C

Figure 6.5: (a) A sample decentralized bearing only tracking setup. (b) Comparison of the conditional

dPCRLBs [55] using raw observations with the CQ/dPCRLBs using 8-bit quantized observations. (c)

Effect of quantization on the CQ/dPCRLB for different (4, 5, 6, 7, and 8 bit) quantization levels.

219

puted from raw observations [55]. Comparing bounds across the two sets of plots in Fig. 6.5(b),

it is observed that the respective plots do not overlap but are fairly close to each other. Despite

using quantized observations, the CQ/dPCRLB is a reasonable approximation of the dPCRLB.

Illustrated in Fig. 6.5(c), the third objective is to quantify the potential CQ/dPCRLB perfor­

mance loss as a function of the number of quantization levels. The CQ/ dPCRLB approaches the

dPCRLB as the number of quantization levels are increased. The relative performance gain with

an increased number of quantization levels decreases beyond an 8-bit quantizer in our setup. The

CQ/dPCRLB from an 8-bit quantizer is a good approximation.

6.7 Summary

The PCRLB has recently been proposed (15] as an effective selection criteria for distributed sensor

resource management in large, geographically distributed sensor networks. Existing PCRLB-based

selection techniques are, however, primarily limited to centralized and hierarchical architectures,

and when extended to distributed topologies use approximate expressions [15] for computing the

PCRLB. The chapter addresses this gap and proposes the distributed PCRLB (dPCRLB) as the

sensor selection criteria for distributed AN /SN systems without any need for central fusion. In

the chapter, dynamic sensor selection for reactive non-linear tracking applications in distributed

AN /SN systems is considered. I proposed a consensus-based sensor selection approach based

on the dPCRLB for a network with two types of nodes: observation nodes with limited power,

no processing ability, which make observations, and; local processing nodes without any power

constraints for processing and communication. Each processing node computes its local track

based only on the observations limited to the selected observation nodes in its neighbourhood. The

processing nodes cooperate distributively with each other to compute the global state estimate.

The cost function for the consensus-based distributed iterative local node selection approach

220

is based on the dPCRLB. A distributed adaptive sensor-selection algorithm is then developed

using the conditional dPCRLB. The conditional PCRLB is a function of the past history of

observations made and, therefore, a more accurate representation of the estimator's performance

and, consequently, a better criteria for distributed adaptive sensor selection. Finally, existing

distributed algorithms for computing the PCRLB are typically based on raw observations resulting

in a significant communication overhead. The chapter further derived the PCRLB for distributed

estimators in an AN /SN system with quantized observations. Our numerical simulations verify

the efficiency of the proposed distributed dPCRLB based sensor selection approaches. Through

Monte Carlo simulations, we showed that the sensor selection algorithm based on the conditional

dPCRLB is superior to the implementation using the conventional (non-conditional) dPCRLB.

Finally, the proposed CQ/ dPCRLB with quantized observations is compared for accuracy with

its centralized counterpart through Monte-Carlo simulations.

221

7 Contributions and Future Research Directions

The chapter concludes the thesis with a list of important contributions made in the dissertation

and some proposed directions for future work.

7.1 Summary of Contributions

A list of the main contributions of the thesis is as follows.

1. Consensus-Based Distributed Implementation of the Particle Filter [49, 50, 59-

61]: I proposed three consensus-based, distributed implementations of the particle filter.

First, a constrained sufficient statistic based distributed implementation of the particle filter

(CSS/DPF) is proposed for bearing-only tracking (BOT) and joint bearing/range tracking

problems encountered in a number of applications including radar target tracking and robot

localization. Existing distributed consensus-based particle filter implementations proposed

in the literature [20, 22] require a large number of parallel consensus runs at each iteration of

the particle filter which adds considerable consensus overhead to the distributed estimator.

The CSS/DPF is· proposed with the goal of developing a distributed particle filter that has

reduced consensus overhead and affordable complexity. In the CSS/DPF, the number of

parallel consensus runs is reduced to 6 for 2-D BOT, 16 for 3-D BOT, and 12 for joint

bearing/range tracking. The proposed CSS/DPF still depends on the convergence of each

222

of the consensus runs which itself requires a large number of consensus iterations. To further

reduce the consensus overhead, the CSS/DPF is extended to distributed implementation of

the unscented particle filter, referred to as the CSS/DUPF which require limited number of

consensus iterations.

Although computationally efficient, the CSS/DPF and CSS/DUPF are dependent on the

dynamics of the system and are applicable to applications where the global sufficient statis­

tics (GSS) can be expressed as a linear combination (summation) of the local sufficient

statistics (LSS). The unscented, consensus-based, distributed implementation of the parti­

cle filter (UCD /DPF) is proposed which is generalizable to systems with any dynamics. The

UCD /DPF couples the unscented Kalman filter (UKF) with the particle filter such that the

UKF estimates the Gaussian approximation of the proposal distribution, which is used to

generate new particles for the next iteration of the particle filter. In terms of contributions,

the UCD/DPF makes two important improvements to the existing distributed particle filter

framework: (i) Unlike existing distributed implementations [24, 27] of the particle filter, the

UCD /DPF uses all available global observations including the most recent ones in deriving

the proposal distribution based on the distributed UKF, and; (ii) Computation of the global

estimates from local estimates during the consensus step is based on an optimal fusion rule.

2. The CF /DPF Framework [51, 52, 62, 63]: A major problem in distributed estimation

networks is unreliable communication (especially in large and multi-hop networks), which

results in communication delays and information loss. Referred to as the intermittent net­

work connectivity, this issue has been investigated broadly in the context of the Kalman

filter. Such methods are, however, limited to linear systems and have not yet been extended

to non-linear systems. The thesis addresses this gap. A multi-rate consensus/fusion based

framework for distributed implementation of the particle filter, referred to as the CF /DPF,

223

is proposed. The CF /DPF framework is based on running localized particle filters to esti­

mate the overall state vector at each observation node. Separate fusion filters are designed to

consistently assimilate the local filtering distributions into the global posterior by compen­

sating for the common past information between neighbouring nodes. The CF /DPF offers

two distinct advantages over its counterparts. First, the CF /DPF framework is suitable

for scenarios where network connectivity is intermittent and consensus can not be reached

between two consecutive observations. Second, the CF /DPF is not limited to the Gaussian

approximation for the global posterior density.

3. Distributed Computation of the PCRLB (53-55, 64]: In order to evaluate the perfor­

mance of the proposed distributed, non-linear framework, the posterior Cramer-Rao lower

bounds (PCRLB) are presented. The current PCRLB approaches assume a centralized or

hierarchical architecture. The exact expression for distributed computation of the PCRLB

is not yet available and only an approximate expression [15] has recently been derived. The

thesis derives the exact expression, referred to as the dPCRLB, for computing the PCRLB

for any AN /SN configured in a distributed fashion.

4. Conditional dPCRLB: Motivated by the distributed adaptive resource management prob­

lems, the thesis derives recursive expressions for the online computation of the conditional

dPCRLB [55]. Compared to the non-conditional PCRLB, the conditional PCRLB is a func­

tion of the past history of observations made and, therefore, a more accurate representation

of the estimator's performance and, consequently, a better criteria for sensor selection. Pre­

vious algorithms to compute the conditional PCRLB are limited to centralized architectures,

which involve a fusion centre, thus making them unsuitable for distributed topologies. The

distributed algorithms for computing the conditional and non-conditional dPCRLBs are

exact with resulting bounds same as those for the centralized PCRLB.

224

5. Distributed Sensor Selection [56, 67): Finally, the thesis considers the problem of sensor

resource management for distributed, nonlinear estimation applications with the objective

of dynamically activating a time-variant subset of observation nodes to optimize the net­

work's performance [67). The PCRLB is a predictive benchmark of the tracker's achievable

performance and has recently been proposed as a criteria for sensor selection. Existing

PCRLB-based sensor selection techniques are, however, primarily limited to centralized and

hierarchical architectures, and when extended to distributed topologies use approximate

expressions for computing the PCRLB. I proposed a near-optimal dPCRLB-based sensor

selection procedure for distributed sensor networks.

The algorithms listed under Items 1-5 are tested and compared with their state-of-art counterparts

using Monte Carlo simulations for different tracking applications. In most cases the proposed

algorithms outperform the existing state-of-art approaches.

7 .2 Future Research Directions

Below, I highlight some directions for future research work.

1. In the thesis, I considered a single state model to represent the system's dynamics which

is a common practice in distributed implementations of the particle filter [16-19, 23, 24,

27). Extending the proposed distributed particle filter implementations to multiple state

models [167) as is the case for source tracking applications where the source can manoeuvre

differently is one direction for future research.

2. In the thesis, the SIR and unscented particle filters have been chosen as proof of concepts

to develop distributed particle filter implementations. The proposed frameworks can be

extended/generalized to other variants of the particle filter such as the marginalized particle

225

filter [125] and the approximate condition mean particle filter [126], with some modifications

which is another direction for future work.

3. Consensus and Innovation based Distributed Particle Filter Implementation:

The consensus-based distributed implementations of the particle filter require the consensus

step to converge between two consecutive observations. In large sensor networks, conver­

gence often requires a large number of consensus iterations which adds considerable con­

sensus overhead to the distributed estimator. The impractically large number of consensus

iterations in distributed consensus-based particle filters motivates future work to either come

up with more efficient consensus algorithms or with distributed particle filter implementa­

tions that can cope with situations where consensus is l~mited to few (one to three) iterations

between two consecutive observations.

The thesis proposed the CSS/DPF which requires a reduced number of consensus runs per

iteration, but still requires the consensus step to converge. To further reduce the consensus

overhead, the CSS/DUPF is then proposed which can be considered as a consensus and

innovation [168] distributed non-linear estimator. In other words, it can be shown that

the CSS/DUPF is the non-linear (particle filter based) counterpart of the linear consensus

and innovation filters [168] where its mean squared error (MSE) remains bounded when

the number of consensus iterations between two consecutive observations is less than the

number of iterations required for the consensus convergence. An interesting future research

direction is to extend the CSS/DUPF to scenarios with communication constraints where

the consensus is limited to one iteration between two consecutive observations (i.e., the

communication time scale and sensing time scale are the same as shown in Fig. 7.1).

4. Incorporating non-Parametric Statistical Models in the CF /DPF: The localized

226

Sensing time-scale

Iteration

Communication time-scale

Figure 7 .1: Time-scales of sensing (dynamic estimation) and communication (consensus iterations).

Consensus + innovation Kalman filtering where the consensus time (communication time) and the sens­

ing/filtering time are the same.

posteriors in CF /DPF are represented as a Dirac mixture in the particle filter. Two separate

Dirac mixtures may not have the same support and their multiplication could possibly be

zero. In order to tackle this problem, a transformation is required on the Dirac function

particle representations by converting them to continuous distributions prior to commu­

nication and fusion. The CF /DPF uses Gaussian approximation of the local filtering and

prediction densities. Alternative parametric distributions which can be used in the CF /DPF

are: grid-based techniques (47], Gaussian Mixture Model (GMM) [17] and Parzen represen­

tations [27]. Another interesting alternative solution is to use non-parametric statistical

models instead of the above parametric models. For example, recently the support vector

machines (SVM) have shown to perform well for density estimation problems where the

PDF of the IID sample set can be learned and the entire sample set can be represented by a

few support vectors and the associated kernel functions [170]. Another direction for future

research is to incorporate SVMs in the CF /DPF implementation which should improve the

estimation performance of the CF /DPF.

5. Distributed Estimation with Measurement Origin Uncertainty: Extending the pro-

227

posed computational algorithms to account for the measurement origin uncertainty [149, 160]

is another direction of research that can be pursued to generalize the distributed particle

filter implementations as well as computing the associated dPCRLBs. For example, Ref­

erence [149] has introduced a general framework for determining the PCRLBs that allows

a marriage of non-linear measurements and uncertain dynamics for the centralized archi­

tecture. The distributed PCRLBs with measurement origin uncertainty has not yet been

considered in the literature. Extending the proposed distributed PCRLB to include the

measurement origin uncertainty is another direction for future research.

6. Consensus-Based Distributed Sensor Selection for Multi-target Tracking: The

proposed distributed sensor selection algorithms is considered for scenarios with a single

target, or fixed and well-separated targets. A natural extension is the problem of distributed

consensus-based sensor selection for large scale multi-target tracking applications where

targets overlap and occlude each other.

7. Reduced-Order Implementations: In the thesis, I focused primarily on the full-order

distributed particle filter implementations where the entire state vector is estimated at each

node. Appendix E presents some initiative results on distributed reduced-order particle

filters and the corresponding reduced-order computation of the dPCRLB. Recall in reduced­

order estimation, a different subset of the state vector is estimated at the processing nodes.

The overall system is divided into several coupled low-dimensional sub-systems. The particle

filter implemented at one sub-system computes the marginal posterior density of the local

state variables. Marginalizing a sampled representation (particle filter) has proved to be

computationally straightforward [175], i.e., the marginal over a subset of state variables

is represented by dropping the particles for other state components (ignoring them). This

feature of the particle filters encourages further investigation of the reduced-order distributed

228

implementations. The key issue when distributing the particle filter for such reduced-order

scenarios is to ensure that the local marginal posteriors approximate the centralized posterior

in a meaningful way. If the local marginal posterior evolve independently at each sub-system,

they may lose any coherence with the centralized posterior. Motivated by non-linear sparse

and localized large-scale problems such as smart power grids [48], developing more accurate

and near-optimal reduced-order distributed implementations of the particle filter is another

important future research direction.

7 .3 Applications of Distributed Particle Filter Implementations

The theses focused primarily on distributed tracking application based on bearing and range

measurements. Other areas where distributed particle filter can be applied are outlined below.

1. State Estimation in Power Grids: State estimation [106-109] in electrical power grids

is used to monitor the state of the grid, enable energy management, optimize power flows,

and perform reliability /security assessment. State forecasts are also used to analyze con­

tingencies and determine necessary corrective actions against possible failures in the power

systems. In the electric power distribution networks, the underlying state and observation

models are highly nonlinear. The observations are geographically distributed across the

entire distribution grid. The large dimensionality of the estimation problem precludes the

direct application of the centralized particle filter primarily due to its high computational

complexity. In other words, although the centralized approach is optimal, it is neither robust

nor scalable to such large-scale dynamical systems with geographical distributed observa­

tion nodes primarily because of two reasons. First, extensive computations are required

at the fusion node due to the high dimensionality of the dynamical systems. Second, the

centralized implementation requires a large number of information transfers to the fusion

229

centre thus adding considerable latency (a major drawback for real-time applications) to

the estimation mechanism.

The state estimation approaches in complex electric power distribution networks, typically

consider the overall system as a union of several low-dimensional subsystems. Each subsys­

tem is a combination of multiple, geographically distributed nodes representing a variety

of power devices such as generating stations, compensators, or loads. Within each sub­

system, the voltage and power supplied to a feeder at the substation are usually the only

real time measurements available to the system operator at the distribution control centre.

More extensive real time monitoring and control are required for effective operation of the

system and for good quality of service to the customer coupled with the need to prevent

wide-spread power blackouts. As outlined below, there are at lease three major aspects in

the power grids that directly impact state estimation approaches and motivate development

of distributed estimation implementations.

(a) Monitoring the power grid over large geographical areas calls for distributed control,

and hence, distributed state estimation to facilitate coordinated monitoring.

(b) More advanced measurement technologies like phasor measurement units (PMUs) have

offered hope for near real-time monitoring of the power grid. However, the latency in­

troduced by the centralized estimation architecture is a major barrier toward achieving

this goal.

(c) To facilitate smart grid features such as demand response and two-way power flow,

timely and accurate models and estimation approaches are required which calls for

distributed on-line state estimation at the distribution level.

Application of the proposed distributed particle filter implementations to the power grid

230

is an area of research that can be pursued in the future. Such applications would require

extension of the particle filter approaches to reduced-order systems.

2. State Estimation in Distributed Camera Networks: Over the past decade, large-scale

camera networks [110) have become increasingly popular in a wide range of applications,

including: (i) Sports analysis; (ii) Security and surveillance; (iii) disaster response, and; (iv)

Environmental modeling, where the objective is to follow the trajectory of a key target, e.g.,

a star player in a soccer game or a suspect in a surveillance environment. In many appli­

cations, bandwidth constraints, security concerns, and difficulty in storing and analyzing

large amounts of image data centrally at a single location necessitate the development of

distributed camera network (DCN) architectures [111). In distributed tracking via camera

networks each camera acts as a local agent and estimates certain parameters of the target

using a signal processing algorithm based upon its own set of video sequences. The lo­

cal estimates are then shared with the neighbouring cameras in an iterative, decentralized,

gossip-type fashion, and a final estimate is computed across the network using consensus

algorithms.

Most of the recent focus on distributed tracking algorithms for DCN is devoted to developing

distributed implementation of the Kalman filters [111]. Although particle filters are popular

for visual tracking (112, 113) in a centralized architecture, their distributed implementations

are less explored for tracking in DCNs. Distributed particle filter approaches proposed in

the thesis can be applied (with proper modifications) to tracking problems in DCN, which

is another area of future research worth pursuing.

231

A Proof of the Results Reported in Chapter 3

A.1 Proof of Lemma 1

Proof. The local sufficient statistic yCl) (k) ~ 73 (z(l) (k)) exists by assumption. Using the Fisher-

Neyman factorization theorem (Eq. (3.1)) and Eq. (2.14), the global likelihood P (z(k)lx(k)) can

be stated as a product of a function only dependent on local observation vector z(l)(k) and a

function depending on both x(k) and {Y(l) (k), ... , y(N) (k)} as follows

N N

P(z(k)lx(k)) = IJTi(l) (z(l)(k)) IJ72Cl) (y(l)(k),x(k)), (A.1)
l=l l=l

Hence, {Y(1)(k), ... ,y<N)(k)} are jointly sufficient for estimating the state variables x(k). D

A.2 Proof of Lemma 2

Proof. We start considering two observations, i.e., z(k) = [z(i)T (k), z(i)r (k)jT, where the global

likelihood P(z(k)lx(k)) is factorized as follows using Eqs. (2.14) and (3.2)

Application of Eq. (3.3) to Eq. (A.2), yields the following result

P(z(k)lx(k)) = h2 (¢(z(i) (k), z(j) (k)), x(k)) h1 (z(i) (k)) h1 (zU) (k))[h3 (x(k))]2 h4 (z(i) (k), zU) (k)).

(A.3)

232

Therefore, a sufficient statistic ¢(z(i)(k),z(j)(k)) is found from z(i)(k) and z(j)(k). By induction

to any number of nodes N, we observe that there exist a function S(·) such that the GSS equals

D

A.3 Proof of Theorem 2·

Proof The true bearing to the target can be defined as follows

[X(k)-X(l)] cos(Z~l)(x(k)))-[Y(k)-Y(l)] sin(z~l)(x(k))) = 0. (A.4)

The bearing measurement z~l\k) observed by node l, for (1 ::; l ::; N) is noisy. When the noisy

measured bearing is used in place of the true bearing in Eq. (3.12), Reference (119] shows that

the relationship in Eq. (A.4) changes to

which is reordered as

z~1 > (k)

= Y(k) sin(z~l)(k)) - X(k) cos(z~l)(k)) + (X2 (k) + Y2 (k)) 112 sin((o(l)(k)), (A.6)

For (~l)(k) rvN(O,a~l)
2

(k)), noise V~l)(k) is zero mean with variance given by

(A.7)

obtained by observing that E{sin2 (dl)(k))} = 1/2(1 - exp(-2abl)
2

)). Evaluating R(l)(k) requires

the propagation of the second moment matrix

S(k) =E{J(x(k-l))JT (x(k-1))} + Q(k), (A.8)

233

obtained from state equation (Eq. (2.3)), where S(k) can be computed locally using particle

Xi (k- l) and their corresponding weights Wi (k- l) as follows

NP

S(k)= L Wi(k-l) [/ (Xi(k-1)) IT (Xi(k-l))]+Q(k), (A.9)
i=l

and Q(k) is the second moment of the state noise e(k) in Eq. (2.3). Note that term E{X2(k) +

Y2 (k)} in Eq. (A.7) equals the sum of the first two diagonal entries of S(k). Based on Eqs. (A.6)-

(A.8), the global likelihood function is then given by

1 N (z~l)(k)-Q~z)(x(k))) 2

P(zo(k)lx(k)) = C (k) exp { - L (l) }
o l=l 2R0 (k)

(A.10)

where Co(k) = (27r)Nf2 il~ 1 (R~l) (k))112 , and g~l) (x(k)) = Y(k) sin(z~l) (k))-X (k) cos(z~l) (k)).

D

A.4 Proof of Theorem 3

Proof. First, Eq. (3.21) is rearranged as

(A.11)

Eq. (A.11) is further expanded as

which is given by

The global likelihood function is then given by

1 N (z~l)(k)-Q~z>(x(k))) 2

P(z¢(k)lx(k)) = C (k) exp { - L (l) }, (A.14)
¢ l=l 2R<P (k)

234

z~O (k) = z~l) (k) cos(Z~t) (k))-xCt) (k) sin(Z~t) (k)) sin(Z~t) (k))-Y(t) (k) sin(Z~t) (k)) cos(Z~t) (k)),

(A.15)

and

(A.16)

Finally based on (119], elevation bearing noise variance is

(!)2

R~)(k) =E{X2(k)+Y2(k)+Z2(k)}(l-exp-4
a<1>)/4. (A.17)

The global elevation bearing likelihood function can be expressed as function of ten GSSs given by

N

G¢,1(k) = ''f)z~t)(k))2 /(R~)(k))
l=l
N

G¢,2(k) = L ((z~l) (k))2 cos2 (z~l) (k))) /(R~) (k))
l=l

G (k) _ ~ z~l)(k) sin(Z~t)(k)) sin(z~l)(k))
¢,3 - ~ R(l) (k)

l=l <P

N zCt)(k) cos(z(t)(k)) sin(z(l)(k))
G 4(k) - """ <P

9
¢

</>, - {:-: R~)(k)

N

G¢,5(k) = L (cos2 (Z~l)(k)))/(R~)(k))
l=l
N

G¢,6(k) = L (cos(Z~t)(k)) sin(z~l)(k))) 2 /(R~)(k))
l=l
N

G¢,1(k) = L (sin(Z~l) (k)) sin(z~l) (k)))
2 /(R~) (k))

l=l

N sin(zCO (k)) sin(zCl) (k)) cos(zCl) (k))
G¢,s(k) = L 9 R(lf (k) <P

l=l <P

235

N cos(z(l)(k)) sin(z(l)(k)) cos(z(l)(k))
G (k) - "°" 9

<P <P
¢,9 - ~ R(l) (k)

l=l <P

N (l) . (l) (l)
G

10
(k) = "°" cos (Z 9 (k)) sm (Z 9 (k)) cos (Z 9 (k))

¢, ~ R(l) (k)
l=l <P

D

A.5 Proof of Theorem 4

Proof. Based on Eqs. (A.11)-(A.13), the observation model for range based tracking can be ap-

proximated as

which simplifies to

z~l(k)

~ X(k) sin (z~l)(k)) + Y(k) cos (z~l)(k)) +(~)(k). (A.19)

The global likelihood function is then given by

N ((l)) (l)) 2

P(zR(k)lx(k)) ex: exp { - L ZR (k -~)R (x(k)) }·
l=l 2RR (k)

(A.20)

Based on [119], the range noise variance is given by

[,,..(l)(k)]2(l + e-2t.~1)(k))2
R~) (k) = ..;:....':._R_...::.._ ____ _

4
(A.21)

By expanding Eq. (A.20), the global range likelihood function can be expressed as function of six

GSSs given in Eq. (3.29). D

236

B Proof of the Results Reported in Chapter 4

B.1 Proof of Theorem 5 {127}

Proof Applying the Bayes' rule to Eq. (4.4), the posterior distribution is given by

P(x(O: k) lz(l: k)) cxP(z(k)lx(k)) P(x(O: k)lz(l: k-1)). (B.1)

Now, using the Markovian property of the state variables, Eq. (B.1) becomes

P(x(O: k) lz(l: k)) ex P(z(k)lx(k)) x P(x(k) lx(k-1)) P(x(O: k-1) lz(l: k-1)). (B.2)

Assuming that the local observations made at two sensor nodes conditioned on the state variables

are independent of each other Eq. (B.2) becomes

P(x(O: k)lz(l: k)) oc ([! P(zOl (k)lx(k})) x P(x(k)lx(k-l))P(x(O: k-l)lz(l: k-1)). (B.3)

Using the Bays' rule, the local likelihood function P (z(l)(k)lx(k)) at node l, for (1 :::; l:::; N) is

P (z(l)(k)lx(k)) = p (x(k)lz(l)(l:k)) P (z(l)(k)lz(l)(l:k-1)). (B.4)
P (x(k)lz(l)(l :k-1))

Finally, the result (Eq. (4.4)) is provided by substituting Eq. (B.4) in Eq. (B.3). D

237

Table B.1: Comparison of the Computational Complexity.

UKF/FF Particle Filter Consensus

Complexity Complexity Step

Centralized max(O(n~), O(N3), O(nxN2)) O((n; + N)Ns) -

Per node O(n~) O(NupFn;) O(n;~gNc(U))
UCD/DPF

Total O(Nn~) O(NNupFn;) O(Nn;b..gNc(U))

Per node O(NFFn;) O(NLFn;) O(n;~gNc(U))
CF/DPF

Total O(NNFFn;) O(NNLFn;) O(Nn;~gNc(U))

B.2 Proof of Theorem 6

Proof. Following the approach in the proof of Theorem 5 (Appendix B.l), we first write the

posterior density at iteration k + m as

Il~ P(x(k+m)lz(l)(l:k+m))
P(x(O:k+m)lz(l:k+m)) <X Nl-l () P(x(O:k+m)lz(l:k+m-l))(B.5)

Ilt=l P x(k+m)lz(l)(l:k+m-1)

Then the last term is factorized as follows

P (x(O: k+m)lz(l :k+m-1)) = P (x(k+m)lx(k+m-1)) P (x(O:k+m-l)lz(l :k+m-1)). (B.6)

As in Eq. (B.5), we continue to expand P(x(O: k+m-l)lz(l: k+m-1)) (i.e., the posterior

distribution at iteration k+m-1) all the way back to iteration k+l to prove Eq. (4.27). D

B.3 Computational Complexity of The CF /DPF and UCD /DPF

In this section, I provide a rough comparison of the computational complexity of the UCD /DPF

and CF /DPF versus that of the centralized implementation. Because of the non-linear dynamics

of the particle filter, it is somewhat difficult to drive a generalized expression for its computational

238

complexity. There are steps that can not be easily evaluated in the complexity computation of

the particle filter such as the cost of evaluating a non-linear function (as is the case for the state

and observation models) [131]. Below the simplified case of a linear state model with Gaussian

excitation and observation noise is considered. Further, the observations are assumed to be

uncorrelated.

Following the approach proposed in [131], the computational complexity of different imple­

mentations of the particle filter is expressed in terms of flops, where a flop is defined as addition,

subtraction, multiplication or division of two floating point numbers. In the analysis, I take into

account the number nx of states, which are at times ignored in the computational complexity

of the particle filter. Note that the computational complexity of multiplication or inversion of

(nx x nx) matrices is of 0 (n~), and multiplication of (nx x nx) matrix with an (nx x 1) vector

is of 0 (n~). As such, the total equivalent flop computational complexity (131] of the centralized

particle filter for N-node network with Ns particles is derived as follows:

1. State Update (based on Eq. (2.3)): 0 (n;Ns) considering a linear state model.

2. Evaluation of Weights (based on Eq. (2.79)): 0 (NN8) assuming uncorrelated observations

with Gaussian distributions.

3. Resampling (if needed): 0 (Ns) (a direct implementation of the resampling procedure has a

complexity of O(Ns log(Ns)) [43], however, there are several alternative approaches including

systematic resampling (43] which has a complexity of 0 (Ns)).

The computational complexity of the centralized particle filter is given by 0 ((n~ + N)Ns), which

includes the dependence on the number nx of states. Table B.1 compares the computational

complexity of the centralized implementation versus its distributed counterparts: the UCD /DPF

and CF /DPF. The CF /DPF runs two particle filters (local filter and fusion filter) at each node,

239

N LF denotes the number of particles used by the local filter and NF F denotes the number of

particles used by the fusion filter. The number of particles used by the UCD /DPF implementation

is denoted by NuPF· The derivation of the expressions listed in Table B.l is described below.

The centralized implementation is based on an unscented particle filter [44], which uses an

additional step of the unscented Kalman filter (UKF). The computational complexity of the UKF

component is given by max(O(n~), O(N3
), O(nxN2

)), or, O(N3), for nx << N. The overall

computational complexity of the centralized particle filter is, therefore, of O(N3 + N N8).

The first distributed implementation based on the UCD /DPF runs a particle filter at each

observation node. The individual particle filter is similar in complexity to the centralized par­

ticle filter (without the UKF) except that the observation (target's bearing at each node) is a

scalar. Setting N = 1, the computational complexity of the UCD/DPF is of 0 (n;NuPF + NuPF)

or 0 (n;NuPF) per node, where NuPF is the number of particles at each sensor node in the

UCD/DPF. The overall computational complexity of UCD/DPF is, therefore, of 0 (Nn;NuPF)·

There are two additional components to the UCD/DPF. First, the unscented Kalman filter in

the UCD/DPF has an overall computational complexity of O(Nn~). Second, the distributed

implementations (UCD /DPF and CF /DPF) introduce an additional consensus step, whose com­

plexity is derived as a function of the maximum degree ~g of the network and the total number

of consensus iterations Nc(U) required to reach a global consensus. The computational complex­

ity of the consensus step at each node is at most of O(n;~g) per iteration times total number

of consensus iterations Nc(U), therefore, the consensus step has a computational complexity of

O(n;~gNc(U)). The associated convergence time Nc(U) = 1/ log(l/rasym(U)), which provides

the asymptotic number of consensus iterations (required for the error to decrease by the factor of

1/e) can be computed using the asymptotic convergence rate (Eq. (2.119)). According to Theo­

rem 1, Nc(U) = -1/ max2<i<N log(J--\i(U)I). The computational complexity of the consensus step

240

is, therefore, related to the properties of the communication network and the consensus matrix

U. Based on the aforementioned derivation, the computational complexity of the UCD /DPF is

given by max{O(Nn;Nupp,Nn~,n;~gNc(U))}.

The computational complexity of the CF /DPF is similarly derived and listed in Table B. l.

The CF /DPF does not use the UKF instead it uses the fusion filter, which has complexity similar

to the distributed particle filter as shown in column 2 of Table B.l. The computational complexity

of the CF/DPF is, therefore, given by max{O(Nn;NLp,NNppn;,n;~gNc(U))}.

Since the computational complexity of the three implementations involve different variables,

it is difficult to compare them subjectively. In the simulations, the value of the variables are as

follows: nx = 4, N = 20, N 8 = 10, 000, NuPF = NLF = NFF = 500, and Nc(U) = 8 which

results in the following rough computational counts for the three implementations: Centralized

implementation: 3.6 x 105 , CF /DPF: 3.4 x 105 , and UCD /DPF: 1.8 x 105 computational counts.

This means that the three implementations have roughly the same computational complexity for

the simulation. Note that the computational burden is distributed evenly across the nodes in

the CF /DPF and UCD/DPF, while the fusion center performs most of the computations in the

centralized particle filter. This places an additional power energy constraint on the fusion center

causing the system to fail if the power in the fusion center drains out. Finally, I note that the

UCD /DPF and CF /DPF require a higher number of information transfers but the goal here is to

implement a distributed system without the fusion center.

241

C Proof of the Results Reported in Chapter 5

C.1 Proof of Proposition 2

Proof The proof of Proposition 2 uses the Markovian property of the state variables and is based

on the following factorization of the joint prediction distribution

P(x(O: k + l)lz(l: k)) = P(x(k + l)lx(k))P(x(O: k)lz(l: k)).

The steps involved are similar to the proof of Theorem 7 included below and not repeated here. 0

C.2 Proof of Theorem 7

Proof. The proof for Theorem 7 is based on the following nonlinear Bayesian fusion rule [127]

(Lemma 6), which expresses the global posterior density as a function of local filtering and pre-

diction densities.

Lemma 6. Assuming that the observations conditioned on the state variables made at node l are

independent of the observations made at a different node j, (j -=/:- l), the global posterior for a

N -sensor network is

P(x(O: k + l)lz(l: k + 1)) oc

Il~1 P(x(k + l)lz(l)(l : k + l)) p (x(k + l)lx(k)) P (x(O: k)lz(l : k)). (C.1)
Il~ 1 P (x(k + l)lz(l)(l: k))

242

We first consider JFo(x(O:k)). Decomposing x(O:k) = [xT(O:k-1),xT(k)]T in JFo(x(O:k)),

Eq. (6.34) from Definition 3 reduces to

[~x(O:k-1) i ~x(k)] [11
x(O:k-1) j x(O:k-1)

6
AFo(k)

JFo(x(O: k)) = lE{- ---------------~--------------- logP(x(O: k)lz(l: k))} =
~x(O:k-1): ~x(k) 2l

x(k) ! x(k) AFo(k)

A}b(k) l
Aib(k)

(C.2)

provided that the aforementioned expectations and derivatives exist. The bottom right block

(denoted by A~b(k)) on the right hand side (RHS) of Eq. (C.2) corresponds to a (2 x 2) block

matrix, i.e., Aib(k) ~ lE{-~~~~~ logP(x(O: k)lz(l:k))}, and similarly for the remaining AF-'Q's.

Following the aforementioned procedure used to derive Eq. (C.2) for JFo(x(O:k+l)), we get

~x(O:k-1) i ~ x(k) i ~ x(k+l)

---~~?_:~~~!_i ___ ~~?_:~~~!_l ___ ~~?:~~~!_
-~;i~t='lj___~;iZ~ ____ j __ ~;i~Cl__ log P(x(o: k + I)lz(l : k + 1))}

~x(O:k-1) j ~ x(k) j ~ x(k+l)

JFo(x(O: k + 1))

x(k+l) i x(k+l) i x(k+l)

EM)(k) E}b(k) E}b(k)

E~t(k) Eib(k) E~b(k)

Eit(k) En(k) Eib(k)

(C.3)

It can be shown that E~1a(k) = A}b(k), E~b(k) = A}b(k), Eib(k) = Eit(k) = 0, E~t(k) =

A~b(k), E~b(k) = Aib(k) + cn(k), E~b(k) = cn(k), E~b(k) = C~t(k), and E~b(k) =

c~b(k), which leads to the following structure (similar to the one in [148])

A}b(k) 0

ho(x(O: k + 1)) = A~b(k) Aib(k) + cn(k) cn(k) (C.4)

0

where block 0 stands for a block of all zeros with the appropriate dimension. To save on space,

we only prove the equalities E~t(k) = A}b(k) and E~b(k) = cn(k). The remaining entries

can be proven following a similar procedure.

243

Case 1 (Proof for E~b(k) = A}b(k)): Factorizing the posterior distribution for the top left block

in Eq. (C.3),

x(O·k 1) () Ax(O:k-1) lo P(z(k+l)lx(k+l))P(x(k+l)lx(k))
~x(O;k::::l)logP x(O:k+l)Jz(l:k+l) ux(O:k-l) g P(z(k+l)Jz(l:k))

+ ~:~~~Z::::~~ log P(x(O : k) lz(l : k)), (C.5)

which leads to

E~b(k) ~ 1EP(x(o:k+i),z(1:k+i)) { - ~:~~~z::::g log P(x(O: k + l)lz(l : k + 1))}

-ff ~:~~~z::::g logP(x(o: k)Jz(l: k))

x [/ f P(x(O: k + 1), z{l : k + l)}dx{k + l)dz(k + 1)] dx{O : k)dz{l : k). (C.6)

The inner integral reduces to P(x(O: k), z(l: k)), which gives

E~b(k) = - ff ~:~~;~::::~~logP(x(O:k)Jz(l:k))P(x(O:k),z(l:k))dx(O:k)dz(l:k) = A}b(k)(C.7)

as per the definition of A}b(k) in Eq. (C.5).

Case 2 (Proof for E~Mk) = C~b{k)): Based on Eq. (C.1), term log(P(x(O: k+l)lz(l: k+l))) is

N N

log P(x(O:k+l) lz(l:k+l)) Llog(P(x(k+l)lz(l) (l:k+l))) - L log (P(x(k+l)lz(l) (1: k)))
l=l l=l

+ log(P(x(k+l)lx(k))) +log(P(x(O:k)lz(l:k))). (C.8)

Substituting (C.8) in the definition of E~Mk) (Eq. (C.3)), we get

E~~(k) :@: lE{-~:~~!~~log(P(x(k+l)Jx(k)))}
N

+ L:::JE{-~:~Z!g log (P(x(k+1)Jz(l)(1:k+1)))}
l=l
N

- :LJE{-~:~Z!~~ log (P(x(k+l)Jz(l)(l: k))) },
l=l

which equals cn(k) based on Eq. (5.28).

244

(C.9)

Going back to complete the proof of Theorem 7, we note that the information sub-matrix

ho (x(k+ 1)) is given by the inverse of the right bottom (nx x nx) block corresponding to C~b (k)

in Eq. (C.4), i.e.,

Jpo (x(k+l))

(C.10)

Further, Term Jpo(x(k)), defined as the information submatrix for estimating x(k), is given by

the inverse of the (nx x nx) right-lower block of [Jpo (x(O : k)) r 1
in Eq. (C.2). Based on the

matrix inversion Lemma [152], the middle term in Eq. (C.10) reduces to

A~b(k) - A~b(k) [Aib(k)]- 1
Aib(k) = Jpo(x(k)). (C.11)

Substituting Eq. (C.11) in Eq. (C.10) proves Theorem 7. D

C.3 Proof of Corollary 1

Proof The proofs for Eqs. (5.30) and (5.31) are similar to that for Theorem 7 with the posterior

factorization of P(x(O: k + l)lz(l: k + 1)) defined in Lemma 7, [127], below.

Lemma 7. Assuming that the observations conditioned on the state variables made at node l are

independent of the observations made at a different node j, (j =/= l), the global posterior for a

N -sensor network is

TIN P(x(k+l)lz(l)(k+l) z(l·k))
P(x(O:k+l)lz(l:k+l))cx: l=l N ' · P(x(k+l)lx(k))P(x(O:k)lz(l:k)).

Ilt=l P(x(k+l)lz(l: k))

(C.12)

245

The change in P(x(O: k+l) lz(l: k+l)) is due to the setup used in Scenario 2, where both current

local observation and previous global observations are used in the current state estimate. D

C.4 Proof of Lemma 9

Proof Using the Markovian property

P(x(O: k + 1), z(k + l)lz(l: k)) = P(z(k + l)lx(k + l))P(x(k + l)lx(k))P(x(O: k)lz(l: k)).

(C.13)

Considering independent observations given the state variables, the first term on the right hand

side (RHS) of Eq. (C.13) is

_ IJN (l) _ IJN P (x(k + 1), z(l)(k + l)Jz<l)(l: k))
P(z(k+l)lx(k+l))- P(z (k+l)lx(k+l))- (()I (l)(.)) ·

l=l l=l p x k + 1 z 1 . k

(C.14)

Using the Chong-Mori-Chang track-fusion theorem [127], the third term on the RHS of Eq. (C.13)

is factorized as follows

P (x(O: k)iz(l : k)) ex v~1 P(x(k)lz(l)(l : k)) P (x(k)lx(k - 1)) P (x(O: k - l)lz(l : k - 1)).
Ilt=l P (x(k)iz<O(l: k - 1))

(C.15)

Finally, substituting (C.14) and (C.15) in (C.13), we get (5.71). D

246

C.5 Proof of Theorem 8

Proof. Decomposing x(O: k+l) = [xT(o: k-l),xT(k),xT(k+l)jT, Eq. (6.34) for iteration k+l

reduces to

1(0: k + 1)

~x(O:k-1): ~x(k) : ~x(k+l)
---~~?_:~~~}_i ___ ~~?:~~~}_i ___ ~~?:~~~}_
-~;~~t'l_j ___ ~;~Zl__) 5~;t'l __ IogPc(k + 1)}
~x(O:k-1) i ~x(k) i ~x(k+l)

x(k+l) i x(k+l) i x(k+l)

(C.16)

A}b(k) 0

A~b(k) A~b(k) + C~b(k) C~b(k) (C.17)

0 C~b(k)

Block 0 stands for a block of all zeros. Terms C~b (k), en (k) and C~b (k) are defined as in

Eqs. (5.68)-(5.69). Terms Aib(k), Ait(k), A~b(k), and A~b(k) are derived as follows

AFo k AFo k = 1E - ---~~?~~~~l-f---~~?_:~~~}_ log Pa(k)
[

11 () 12 () l { [~x(O:k-1) i~x(k)] }

A~b(k) A~b(k) ~:~~)k-l) ! ~:~~~
(C.18)

where Pa(k) £. P(x(O: k)lz(l : k)). Term JFo,Aux(k) is the inverse of the (nx x nx) right-lower

block of Eq. (C.18), i.e.,

Term C~b(k) = JE{-~:~~!g logPc(k+l)} is simplified as

C~b(k) = lEpc(ktl){-~:~~!~~ log (P(x(k+l)lx(k)))}

N

+ LlEPc(k+-1){-~:~~!~~log(P(x(k+l), z(l) (k+l)) lz(l) (l:k)))}
l=l

N

- LlEPc(kt-1){-~:~~!~~ log (P(x(k+l)lz(l)(l:k))) }·
l=l

(C.19)

(C.20)

Finally, using Eq. (C.20) and definitions (5.65)-(5.66), term cn(k) reduces to Eq (5.70). The

information sub-matrix LFo(x(k+l)) can be calculated as the inverse of the right lower (nx x nx)

247

sub-matrix of [I(x(O:k+l))FoJ- 1 and Eq. (C.19) as follows

Lpo(x(k+l))
[

A 11 (k) A12 (k) i-1

[o l 22 () [C21 (k)] FO FO CFO k - 0 FO

A~b(k) A~b(k) + cn(k) C~b(k)

cn(k) - cib(k)(ho,Avx(x(k)) + C~b(k)f 1cn(k). (C.21)

D

248

D Proof of the Results Reported in Chapter 6

D.1 Local Conditional FIM

Below, we highlight the relationship between the local accumulated conditional FIM J(l) (0: k+ 1)

and local instantaneous conditional FIM L(l)(k+ 1). The local instantaneous conditional FIM

L(l)(k+l) is computed using either of the following three approaches: (i) Directly by inverting large

matrix J(l)(O: k+l); (ii) Recursively as a function of the previous local instantaneous auxiliary FIM

Jfbx(k) [55], and; (iii) Recursively as a function of the previous local instantaneous conditional

FIM L < l) (k) presented in Result 1. In approach (i), first the local accumulated conditional FIM

J(l)(O: k+l) is factorized as follows

Then, the local instantaneous conditional FIM L(l)(k+l) associated with the estimate x(k+l)

is obtained by taking the inverse of the (nx x nx) right-lower square block of [J(l)(O: k+l)]- 1 by

applying the following matrix inversion Lemma [152].

Lemma 8. Matrix inversion Lemma:

[

n-1 -A-1 B~-1 l
-~-1 BT A-1 ~-1 '

(D.2)

249

where subblocks {A, B, C} have conformable dimensions, n = A - nc-1 BT, and <I> = c -

Based on Lemma 8, the local instantaneous conditional FIM is given by

which requires inversion of large matrix [A11 (k+l)J(l)_

D.2 Proof of Result 1

Here Result 1 is derived. We also show that under a minor constraint, the result in [55) reduces to

Result 1, which is equivalent to replacing the local instantaneous auxiliary FIM [JAux(x(k))]<l) by

the local instantaneous conditional FIM L(l)(k). The rational for the approximation is included

after the proof.

Proof. The conditional FIM given observations up to and including time k - 1 is factorized as

follows

(l) FO FO x(O:k-1) i x(O:k-1) (l)

[

[A 11 (k)) (l) [A 12 (k)) (l) l , [D.. x(O:k-1) [D.. x(k)] }

I (0: k) = [Aib(k)] (l) [A~~(k)J(l) = - ~:~~);;::1)-r---~:~ff- log pc (k) , (D.4)

where pJl)(k) = P(x(O:k),z(l)(k)lz(l)(l:k-1)). Term L(l)(k) is the inverse of the right lower

block of [J(l)(O: k)J- 1 which is given by (using the matrix inversion lemma)

(D.5)

For next iteration k+l, we have

/:).. x(O:k-1) /:).. x(k) D,_x(k+l)
x(O:k-1) x(O:k-1) x(O:k-1)

JOl(o: k+l) = ll+ -~;l~i~~li: _:-:~;l~C ::~;l~f'):: logPJ
1
l(k++

/:).. x(O:k-1) /:).. x(k) D,.x(k+l)
x(k+l) x(k+l) x(k+l)

(D.6)

250

where pJl)(k+l) = P(x(O:k+l),z(l)(k+l)lz(l)(l:k)) which can be factorized as follows

.P(x(O: k+l),zCl)(k+l)lz(l)(l: k)) P(z(l)(k + l)lx(k + 1)) (D.7)

x P(x(k l)lx(k))P(x(O: k),z(l)(k)lz(l)(l: k-1))
+ P(z(l)(k)lz(l)(l: k-1))

Taking logarithm of Eq. (D.7).

logPJL>(k+l) = logP(z{l)(k+l)lx(k+l))

+ log PJl) (k) +log P(x(k+ 1) lx(k))-log P(z(l) (k) lz(l) (1: k-1)).

Therefore, Eq. (D.6) reduces to

(D.8)

-~~~!-_':_~~~-~~~;~~~;-~-~~-~~-~-~~~l!-~~?L ______ ~-~~~~~~~-~~~-~~~~!~~~~-~~~-~~~~~-~:--------~--------~--------
JE ~x(O:k-1)1 P.(l)(k); lE ~x(k)l P.(l)(k) [Bll(k)]Cl):[B12(k)]Cl)

- p~L)(k+l) x(k) og c 1- p~L)(k+l) x(k) og c + j '
------------------------o-----------------------r----------------------f .B2i(k)]<z) ________________________ ff .B22-(k)]<z)-

where PJL> (k) = P(x(O:k),z(l)(k)lz(l)(l:k-1)), [B11 (k)]Cl), [B12 (k)]Cl), [B21 (k))Cl), and [B22 (k)]Cl)

are given by Eqs. (6.38)-(6.40). The four blocks on the top left sub-matrix of Eq. (D.8) are

functions of z(l)(k) which make them different from [A**(k)]Cl) in Eq. (D.4). In order to recursively

compute L(l)(k+l) from L(l)(k), these four terms are approximated by their expectations with

respect to P(z(l)(k)lz(l)(l: k-1)), i.e.,

-JEp~l) (k+l) { ~:~~;~=g log pJl) (k)} ~ -JEP(z(l) (k)lz(l) (1: k-1)) { lE pJ')(k+l)~:~~;~=g log pJl>(k)}

-j P(z(l)fk)lz(l)(l: k - l))PJZ)(k + 1)

(D.9)

251

Similarly, it can be shown that

-JE P~t> (k+i) { Ll:~~:k-l) log P2) (k)} ~ [A12(k)](t). (D.10)

JE {Llx(k:k-l)l p(l)(k)}
- p~ 1 > (k+l) x(k) og c ~ [A21(k)]<l). (D.11)

-lEp~l)(k+l) { Ll:~z~ logP?)(k)} ~ [A22(k)]<t). (D.12)

Finally, Eq. (D.8) can be approximated as follows

Going back to complete the proof, we note that the information sub-matrix L(l)(k+l) is given by

the inverse of the right bottom (nx x nx) block of [J(l)(O: k)J- 1 (corresponding to [B22 (k)]<l) in

Eq. (D.13)), i.e.,

[A12 (k)]<l) O

l
-1 [l

[A22(k)]<l)+[B11(k)]<l) [B12(k)J(l) '

(D.13)

which results in the following equation

L(l)(k+l) = [B22 (k)](l)

_ [B21 (k)](l) ([A 22(k)]<l) _ [A 21 (k))(t) [A 11(k)]<l)-
1
[A 12(k))(t) + [Bn (k)] (l)) (n12(k))(t))

(D.14)

Based on Eq. (D.5), the middle term in Eq. (D.14) reduces to L(l)(k) + [B11 (k)J(l) which by

substituting in Eq. (D.14) proves Result 1. D

Finally we note that Result 1 is valid with the following approximation:

The top left four blocks of the accumulated conditional FIM given by Eq. (D.8) are replaced

by their expectations with respect to P(z(l)(k)lz(l)(l: k-1)).

252

As shown above, this leads to Eqs. (6.37)-(6.40) of Result 1. Comparing Eqs. (6.37)-(6.40)

with our earlier result (55], we note that the instantaneous auxiliary FIM Jfbx(k) is replaced with

the instantaneous conditional FIM L(l)(k). Consequently, the CQ/dPCRLB updates the condi­

tional dPCRLB directly without the need of computing the auxiliary FIM leading to significant

communication savings (by a factor of 2).

Finally, we note that the centralized conditional PCRLB [152] our earlier result (55] (dis­

tributed counterpart of (152]) and Result 1 use approximations at each iteration with the possibil­

ity that the error due to approximations accumulates over time (153]. It is difficult to perform an

exact error comparison between the result in [55] and the proposed Result 1. Intuitively speaking,

the approximation in [55] is only applied to the top left block of the auxiliary FIM, while in

Result 1 the approximation is applied to all four blocks of the conditional FIM. Note however

that the approximated block in [55] is involved in three inversions to complete the update at each

iteration, which propagates the approximation to all the elements of the conditional PCRLB. As

such, both approximations have comparable error. This explains why the gap between the two

corresponding bounds is negligible as shown by simulations.

D.3 Proof of Result 2

Below, Result 2 is proved. First, we derive Lemma 9 which provides a factorization of the global

quantized conditional posterior distribution PQ,c(k + 1) at iteration k + 1 as a function of the

local quantized conditional posterior distribution Pg:c (k + 1) at iteration k + 1 and the global

quantized conditional posterior distribution PQ,c(k) at iteration k.

Lemma 9. Assuming that the quantized observations conditioned on the state variables are in-

253

dependent, the global posterior for a network with N f processing nodes is factorized as follows

nN1 p(l) (k+l)
PQc(k+l) ~ P(x(O:k+l),Y(k+l)jY(l:k)) ex: N l=l Q,c P(x(k+l)lx(k))PQc(k),

, Tizl1 P(x(k+l)IYCL)(l:k)) '

(D.15)

where

PQ,c(k) ~ P(x(O:k),Y(k)IY(l:k-1)),

and

Proof of Lemma 9. Using the Markovian property

PQ,c(k+l) = P(Y(k+ 1) lx(k+ l))P(x(k+ l)lx(k))P(x(O: k)IY(l: k)). (D.16)

Comparing Eq. (D.15) with (D.16), we need to prove: (i) P(Y(k+l)lx(k+l)) ex: f1~1 Pg:c(k+

1)/P(x(k+l)IY(l)(l:k)), and; (ii) PQ,c(k) ex: P(x(O:k)IY(l:k)).

Relationship (i): Given the state variables, the observations are assumed to be independent

as is the case in most Bayesian estimators. Then, the first term on the right hand side (RHS)

of (D.16) is given by

N1

P(Y(k+l)lx(k+l)) =IT P(Y(l)(k+l)lx(k+l)). (D.17)
l=l

We also factorize the local conditional distribution at node l, for (1 ~ l ~ N1), as follows

P(x(k+ 1),Y(l)(k+ l)IY(l) (1: k)) = P(YCL) (k+ l)lx(k+ l))P(x(k+l)IY(l) (1: k)). (D.18)

In terms of the local likelihood P(Y(l)(k + l)lx(k + 1)), Eq. (D.18) can be expressed as follows

(
(l)()I ()) _ P(x(k+l),YCL)(k+l)IY(l)(l:k))

P Y k+1 x k+1 - (()I cz)()) p x k+l y l:k
(D.19)

254

Substituting Eq. (D.19) in Eq. (D.17), we have

(
()I (k)) = ITNJ P (x(k+l),Y(l)(k+l)IY(l)(l:k))

Py k+l x +l l=l P(x(k+l)IY(l)(l:k)) '

which proves Relation (i).

Relationship (ii): Term PQ,c(k) can be factorized as follows

PQ,c(k) = P(x(O:k)IY(l:k))P(Y(k)IY(l:k-1)). (D.20)

Since P(Y(k)IY(l: k-1)) is independent of the state variables, Eq. (D.20) can be expressed as

follows

PQ,c(k) ex P(x(O:k)IY(l :k)), (D.21)

which proves Relation (ii).

This completes the proof for Lemma 1. D

Proof of Result 2. Given the quantized observations up to and including time k, the global accu-

mulated conditional FIM can be decomposed as follows

{ [

.£'.ix(O:k-1) i.£'.ix(k)] } [11 () 12 (l (G) x(O:k-1) i x(O:k-1) A Epo k Epo k)
IQ (0: k)=IE - --------------:-------------- log PQ,c(k) = .

~x(O:k-1), ~x(k) 21 22
x(k) ! x(k) Ep0 (k) Epo(k)

(D.22)

As stated previously in Appendix A, the instantaneous conditional FIM L~G)(k) is obtained by

taking the inverse of the right lower block of [I6G) (0: k)]- 1. Using Lemma 8 we get

(D.23)

For iteration k + 1, we decompose x(O: k+l) = [xT(O: k-l), xT(k), xT(k+l)jT. As for Eq. (D.22),

the global accumulated conditional FIM for iteration k + 1 is then given by

Li x(O:k-1) ~ x(k) ~ x(k+l)
x(O:k-1) x(O:k-1) x(O:k-1)

r&G>(o: k + 1) = { -~;~~f~ii-::::~_~@::: ::~;l~ji>:: logPQ,c(k + 1)}. (D.24)

~ x(O:k-1) ~ x(k) ~ x(k+l)
x(k+l) x(k+l) x(k+l)

255

Using Lemma 9, Eq. (D.24) reduces to

-lEpQ,c(k+l)~:~~;~=~~ log PQ,c(k) -lEpQ,c(k+l)~:~~;k-l) log PQ,c(k) 0
-- -- ------------

J~G) (O: k+l)= -lEpQ,c(k+l)~:~~)k-l) log PQ,c(k) -IEPQ,c(k+I)~:~~~ log PQ,c(k) + cn(k) Cffeb(k)
-- -- ------------

0 C~b(k) C~b(k)

(D.25)

where PQ,c(k+l) ~ P(x(O: k+l), Y(k+l)IY(l: k)). Similar to our discussion in Appendix B,

the four blocks on the top left sub-matrix of Eq. (D.25) are functions of Y(k), which make them

different from E**(k) in Eq. (D.22). In order to recursively compute L~G)(k+l) from L~G)(k),

these four blocks are approximated by taking their expectations with respect to P(Y(k)IY(l: k-1))

resulting in

Effeb(k) 0

(D.26)

0

where block 0 denotes a block of all zeros. Terms Cb1 (k), Cb2 (k) and C~1 (k) were defined

previously in Eqs. (6.52)-(6.53). Next, using Lemma 9, term C~2 (k) =IE{-~:~~!g log PQ,c(k + 1)}

in Eq. (D.26) is expressed as

lEpQ,c(k+l){-~:~~!g log (P(x(k+l)lx(k)))}

N1

+ LIEPQ,c(k+l){-~:~~!glog(P(x(k+l), y(l) (k+l))IY(l) (l:k)))}
l=l
N1

- LIEPQ,c(k+l){-~:~~!~~ log (P(x(k+l)IY(l)(l:k)))}
l=l

(D.27)

Finally, we note that the two summation terms in Eq. (D.27) are individual sums of the local

instantaneous conditional FIMs at iteration k+ 1, i.e.,

N1 N1

LlEPQ,c(k+l){-~:~~!~~log(P(x(k+l), y(l) (k+l))IY(l) (l:k)))} ~ L Lg) (k+ 1) (D.28)
l=l l=l

256

and

N1 N1

LlEPQ,c(k+l){-Li:~~!~~log(P(x(k+l)IY(l)(l:k)))} ~ LLg)(k+llk).
l=l l=l

(D.29)

Term C~2 (k) in Eq. (D.27), therefore, reduces to

N1 N1

C~2 (k) ~ LLg)(x(k+l))- LLg)(k+llk)+lE{-Li:~~!glogP(x(k+l)lx(k))}.
l=l l=l

The information sub-matrix L~G)(k + 1) can then be calculated as the inverse of the right lower

(nx x nx) sub-matrix of [I~G)(O: k + l)J- 1 (Eq. (D.26)) as follows

[

Eu (k) Ei'b(k) i-l [o l L~G)(k + 1) ~ C~2 (k) - [o C~1 (k)] FO

E~t(k) E~b(k) + Cb1 (k) Cb2 (k)

(D.30)

Simplifying Eq. (D.30), we get

where Eq. (D.23) has been used to obtain the final result. This completes the proof for Result 2.

D

257

E Reduced order Distributed Particle Filter

The UCD/DPF (Section 3.4) , the CSS/DPF (Section 3.1), and the CF /DPF (Chapter 4) im­

plementations are all full-order distributed estimation algorithms (Section 2.1.2.1) where all the

state variables are estimated at each node. In this section, I propose a reduced-order distributed

implementation of the particle filter which is more suitable for large scale dynamical systems

where the dimension of the state vector is relatively large and observations are localized.

As previously stated in Section 2.1.2.2, reduced-order state estimation algorithms [84-86],

decompose the large-scale system into smaller subsystems with only a subset of nx state vari­

ables estimated at each subsystem. Such methods are more efficient than full-order distributed

implementations both in terms of the computational complexity and the number of transmis­

sions (information transfers) between neighbouring nodes. Most of the existing reduced-order

distributed estimation approaches have been developed for linear dynamical systems (84], while

their nonlinear counterparts [85, 86] decouple the subsystem dynamics from each other. In other

words, the state model in the subsystems have no or little interaction between themselves.

Motivated by the nonlinear, large-scale estimation problems as in smart grids [48], I propose

a fusion-based reduced order, distributed implementation of the particle filter (FR/DPF). The

FR/DPF partitions the overall system and implements a reduced order, localized particle fil­

ter at each lower dimensional subsystem. Unlike the existing nonlinear reduced-order tracking

approaches [85, 86] that decouple the subsystems from each other, the state dynamics of the sub-

258

systems overlap in the FR/DPF, i.e., they share common states and are coupled through local

system interactions. The FR/DPF ensures the consistency of its localized marginal filtering dis-

tributions with those of its centralized counterpart by introducing state and observation fusion

between neighbouring subsystems.

Based on Eqs. (2.18) and (2.19), each subsystem runs a local particle filter and represents

its marginalized filtering distribution with its own local particles X~l) (k- l) and their associated

weights Wi(l) (k-l). Iteration k of the FR/DPF consists of the following three steps (Section E.0.1-

E.0.3).

E.0.1 Local Particle Filters (Observation Fusion)

Updating the particles X~l) (k-1) at each subsystem is implemented in pretty much the usual way

(Eq. (2.76)) but based on localized process models (Eq. (2.19)). In each subsystem, the particle

update includes forcing terms d(l)(k-l), which are obtained in Section E.0.3, described later. The

critical computation step in the local filters is the update of the particle weights wP\k-l). The

weight update (Eq. (2.77)) requires calculation of the likelihood function, P(z(k)lx(k)) derived

from the global observation model. Subsystem Sl, therefore, needs observations, local particles,

and their associated weights from all other subsystems Sm, m =Fl, for (1 ::; m::; N). Alternatively,

the weight update equation (Eq. (2. 77)) at subsystem Sl can be expressed in terms of the local

state estimates instead of the particles for states not being estimated at Subsystem 81. The

approximated expression is given by

where X:(#l)(·) are estimates of the state variables not included in the local state vector x(l)

for subsystem Sl. Note that Eq. (E.1) for Subsystem Sl still requires all observations from the

259

entire network. Clearly, such an approach is impractical. A further approximation is to limit the

observation fusion to the neighbouring nodes g(t), which have shared states with Subsystem St.

This also restricts the required non-local state estimates xi=l (·) to only those from g(t). Estimates

xi=l (k-1) are available at the neighbouring nodes in g(l) from the previous iteration. The predicted

state variables :X:(i=l)(kik-1) are computed from particles){(i=l)(kik-1) of the neighbouring nodes.

In the context of the reduced-order illustrative example included in Section 2.1.2.2, Subsystem

S1 updates vector particles X~ 1)(k-1) = [X~~f (k-1),X~~)(k-1),X~~)(k-1)] based on the reduced­

order process model defined in Eq. (2.29). For subsystem Si, :X:(i=I)(k) = [X4 (k), X5 (k)] and

Eq. (E.1) reduces to

wi(i) (k) ex wi(i) (k-1)P(z(k)IX~ 1) (k), X4(klk-1), Xs(klk-1))

P (x~ 1) (k) 1x~ 1) (k -1), X4 (k -1), x s (k-1))
x q(Xl1

) (k)IXl1
) (k-1), X4(k-l), Xs(k-1), z(k)).

(E.2)

Limiting the observation z(k) to z(1)(k) and those at the neighbouring nodes g(i) = {S2}, (i.e.,

z(2)(k)), Eq. (E.2) reduces to

x

wp)(k- l)P(z(l)(k),z(2)(k)IX?)(k),X4(kik-1))

P (x~ 1) (k) Ix~ 1) (k - 1) , x 4 (k - 1))

q (x~ 1) (k) 1x~ 1) (k - 1), x 4 (k - 1), z (1) (k) , z (2) (k)) '
(E.3)

where X4(klk-l) = E~1 wP)(k)X~~)(kik-1) is computed from the updated particles at Subsys-

tern S2 • Note that Eq. (E.3) restricts :X:(i=l) to estimates of the state variables at the neighbouring

nodes. Intuitively speaking, this approximation works well because of the localized nature of the

observations. The approach of restricting observations to their immediate neighborhoods is simi-

lar to the distributed estimation methodology used in linear systems [84). Subsystems S2 and S3

also update their particles and weights using a similar localization approach.

260

E.0.2 Reduced-order State Fusion

The FR/DPF based distributed implementation introduces different estimates of shared states

across the network. For example, X2 and X3 are both shared between S1 and S2 with their own

particle sets resulting in different local estimates. For each state variable Xn, (1 ~ n ~ nx), we

define a different state-based neighbourhood 9n which includes subsystems having Xn in their

local state vector. If 9n contains more than one subsystem, there are multiple estimates of Xn

available. Fig. 2.4 lists state neighbourhood 9n and subsystem neighbourhood g(l) for system

shown in Fig. 2.3.

Fusing the estimated values is considered to provide consistency across the network. Two issues

related to state fusion are observed: (i) In order to perform state fusion, the common information

between the subsystems sharing the same state variable must be compensated for, or, instead, a

conservative fusion rule should be used; (ii) Transferring particle sets corresponding to the shared

sates is not practical due to an impractically large number of information transfers. I choose to

use a conservative fusion rule and perform the fusion without sending complete set of particles for

the shared states. For each shared state Xn(k), Subsystem St E Yn computes the minimum mean

square error (MMSE) estimateµ~) (k) and its corresponding error covariance matrix P~t) (k). The

fusion criterion used to merge is the following parallel estimation fusion rule [84]

x~fused)(k) = (I: [p~t)(k)flf (I: [p~t)(k)rlµ~)(k)),
tE9n tEQn

(E.4)

with error covariance p~rused)(k) = LtEgJP~t)(k)]- 1 . The summation terms in Eq. (E.4) are

calculated using average consensus algorithms. Once the state fusion process for state Xn (k) is

complete, Subsystem St E 9n updates its local particles for state Xn by generating particles from

N(XAfused) (k), p~fused) (k)).

In the context of the reduced-order illustrative example included in Section 2.1.2.2, I have

261

91 ={Si} for state X1(k) implying X1 is only observed at S1 and no fusion is needed. For state

X2(k), 92 ={Si, S2}. Its fused estimate is

The process is repeated for all remaining states S3, S4, and S5 .

E.0.3 Computing Forcing Terms

The final step is to compute d(l)(k) and x_(:f:l)(k) to be used in the next iteration (k+l). At this

stage, all subsystems have consistent estimates for their shared states. Subsystem St requests

the required forcing term d(l)(k) from its neighbours S1 E 9(l). Subsystem S1 computes d(l)(k)

by taking a weighted combination of the particles X~j) (k) corresponding to states included in

d(l)(k). Term x_(l)(k) is computed the same way as for d(l)(k). In our running example, the

forcing term required by Subsystem S1 is d(1)(k) = [X4 (k)]. Subsystem S2 computes d(1)(k) =

L~1 wF)(k)Xi~](k), which is then transferred to S1. Similarly, for the forcing terms at other

subsystems S2 and S3.

E.0.4 Computational Complexity

Following the approach suggested by Karlsson [122], the computational complexity of the particle

filter for nx state variables and N 8 vector particles with (nx x 1) dimension, is approximately given

by O(n;N8) floating point operations (flops). By partitioning the overall system into N localized

subsystems, the number of state variables per subsystem is roughly nx/N. If N8 vector particles

for each reduced state is maintained at each subsystem and taking the extreme case with no state

variables shared between neighbouring subsystems, the computational complexity of the FR/DPF

is N x 0((~)2 N8) ~ O(n;N8 /N). In other words, the FR/DPF provides a computational savings

262

of up to a factor of N over its centralized counterpart. Note that the above is a lower bound as

some states will always be shared.

E.1 PCRLB for Reduced-order Distributed Estimation

In this section, I derive the recursive expression for computing the dPCRLB for reduced-order

configured .systems. The problem I wish to solve is to express the global information sub-matrix,

denoted by JRo(x(k+l)), in terms ofits previous iterate JRo(x(k)), local FIMs JRo(x(l)(k+l)),

and local prediction FIMs JRo(x(l)(k + llk)), for 1::; l::; N.

Definition 9. Term JRo(x(l)(O: k)), for 1::; l::; N, denotes the local FIM corresponding to the

local estimate of x(l)(O: k) derived from the local posterior density P(x(l)(O: k)lz(l)(l: k)). We

define JRo(x(l)(k)) as the FIM submatrix for estimating x(l)(k) given z(l)(l: k).

Definition 10. Term JRo(x(l)(O : k + llk)) denotes the local FIM corresponding to the local

prediction estimate of x(l) (0 : k+l) derived from the local prediction density P(x(l) (0 : k+l)lz(l) (1 :

k)). Term JRo(x(l)(k + llk)) is defined as the FIM submatrix for estimating x(l)(k + 1) given

z(l)(l: k).

As for the full-order system, the inverse of the local filtering FIM, i.e., [JRo(x(l)(k))]- 1 is equal

to the nx<t> x nx<L> right-lower block of [JRo(x(l) (0 : k))]- 1 . In deriving the recursive expression for

computing the reduced-order dPCRLB, I encounter a second form of the reduced-order local FIM

(denoted by JRo(x(l)(k))) as the bound on the local filtering distribution P(x(l)(k)lz(l)(l : k)),

i.e.,

(E.6)

The inverse of the prediction FIM JRo(x(l)(k+llk)) is given by the inverse of the nx<L> x nx<l)

263

right-lower block of [JRo(x(l)(O:k+llk))r
1

. The bound on the local prediction is

(E.7)

Next, I present Theorem 9 that forms the basis of the optimal recursive algorithm for updat-

ing JRo(x(k)).

Theorem 9. The reduced-order FIM {Jno(x(k))} for the filtering estimate x(k) follows the

recursion

Jno(x(k+l)) C~20(k) - C~1a(k)(Jno(x(k)) + C11o(k))-
1
Ch2o(k) (E.8)

Ch1a(k) IE{ - ~:~Z~logP(x(k+l)lx(k)) }, (E.9)

C12o(k) [c~1a(k)f =IE{ - ~:~zt>1ogP(x(k+l)lx(k))}, (E.10)

and C~2o(k+l) IE{-~:~Z!g log P(x(k+l)lx(k))}
N

+ L ([T(l)(k)J+[Jno(x<l)(k+l)) -lno(x<l)(k+llk))J[T<Z)(k)]+r). (E.11)
l=l

Derived for reduced-order estimation, Theorem 9 is similar in nature to Theorem 7 for the

full-order dPCRLB (Eqs. (5.26)-(5.27)) except for Cfit{k) which involves local reduced-order

FIMs JRo(x(l)(k)) and JRo(x<l)(k+ Ilk)). Terms CA1a(k), CA't(k) and Cfib(k) are the same

as their counterparts and still based on the overall state model. As for full-order systems, terms

JRo(x<l)(k+l)) and JRo(x<l)(k+llk)) are approximated by their counterparts JRo(x(l)(k+l)) and

JRo(x(l)(k+llk)). Later in this section, I investigate how to compute these terms locally within

each reduced-order subsystem. Theorem 9 (Eqs. (E.8)-(E.11)) provides the optimal recursive

expression for computing the global FIM in terms of of local reduced-order FIMs, when the

spatial decomposition of the system maintains the structure of the overall process model. The

proof of Theorem 9 is provided below.

Proof of Theorem 9. To prove Theorem 9, we use a different factorization of the posterior, which

264

expresses the global posterior distribution P(x(O: k)lz(l : k)) as a function of local reduced-order

filtering distributions P(xCO(k)lz(l)(l: k)). Lemma 10 [176] describes the nonlinear fusion rule.

Lemma 10. Assuming that the observations conditioned on the state variables made at node l are

independent of the observations made at node j, (j -:/:- l), the global posterior for a reduced-order

estimation model is given by

N

IJP (x(l)(k)lz(l)(l:k))

P(x(O:k)lz(l:k)) ex ~=l P(x(k)lx(k-l))P(x(O:k-l)lz(l:k-1)).

IJP (x(l)(k)lz(l)(l:k-1))
l=l

(E.12)

Due to limited space, we only highlight the main steps of the proof. The FIM JRo (x(0: k+ 1))

and the associated notation E;;(k) for the reduced-order is similar in structure to Eq. (C.3)

except the subscript 'FO' is replaced by 'RO'. Using factorization (E.12) in the first term on RHS

of Eq. (C.3) for JRo(x(O:k+l)) and simplifying

[

A
11 (k) A

12
(k) : O] RO RO :

JRo (x(O: k+ 1)) = ~-~~-~~! ___ ~1~~~!-~-~~~-~~!-t.~~~-~~! ,
o n 21 (k) : c 22 (k) RO : RO

(E.13)

where terms A~1a(k), Alf0 (k), A~1a(k) and A~~(k) are the same as their full-order counterparts

(i.e., AR,0 (k) = Af.0 (k)) as defined in Eq. (C.2) and CAb(k), CA'b(k), C~b(k), and C~2a(k) are

expressed in Eqs. (E.9)-(E.11). Note that the derivation of Eq. (E.13) is similar to the derivation of

(C.4) included in the proof of Theorem 7. The information sub-matrix JRo(x(k+ 1)) is calculated

as the inverse of the right lower (nxXnx) sub-matrix of [JRo(x(O:k+l))]-1 in Eq. (E.13) which

is given by Eq. (E.8). D

265

E.1.1 Reduced-order Computation of RO/dPCRLB

In order to compute the RO/ dPCRLB, one approach is to follow the steps listed for the full-order

scenario in Section 5.2.2. This will result in the global FIM at each node. In a reduced-order

system, the processing nodes do not have access to the global model nor estimates for all states,

therefore, such an approach is impractical. Instead, I propose computation of a block of FIM that

corresponds to the states local at a node. In my approach, subsystem l computes the diagonal

block J~b°bal(x(l)(k + 1)) of the FIM JRo(x(k + 1)) corresponding to its local sates x<O(k). The

FIM block for x<l)(k) is

(E.14)

where T(l)(k) denotes the (nx<i> x nx) transformation matrix. Exploiting the block banded struc­

ture of the global FIM, the dPCRLB for the local states is then computed from the local FIM

block and the adjacent blocks obtained from the neighbouring nodes. This is explained later in

Step 3.

I first outline the procedure for updating FIM block J~bobal(x(l)(k + 1)) at node l. Using

Theorem 9, Eq. (E.14) is expanded as follows

J~b°bal(x(l)(k + 1)) = [Cfib(k)](l)

-T(l)(k)Cfib(k) (J~b°ba1 (x(k)) + C~b(k))- 1 [T(l)(k)Cfib(k)]T (E.15)

S(k)

where [Cfib(k)]<O = T(l)(k)C~b(k)[T<l)(k)f. Next I describe the steps required to compute

Eq. (E.15) in a distributed reduced-order fashion.

Step 1: In order to compute [Cfib(k)]<l), node l, for 1 ::::; l ::::; N, needs to compute local FIM

blocks JRo(x(l)(k + 1)) and JRo(x<l)(k+llk)). Based on Proposition 1 (following the procedure

266

for derivation of Eq. (5.38)), I get

with

and [D~b(k)](l)

lE [-~:~:~ ~~~ 1\ogP(x(l)(k+l) lx(l)(k), d(l)(k))]

(!)

lE [-~ x~~t> logP(x(l) (k+ 1) lx(l) (k), d(l) (k))]
x(k+1)

(!)

- lE r~ x~~>+ 1 > logP(z(l) (k+ 1) lx(l) (k+ 1))] .
t x(k+l}

The local predictive FIM is similarly derived from Eq. (5.44) and is given by

where

(E.17)

(E.18)

(E.19)

(E.20)

(E.21)

Note that terms (D~b(k)]<l), (D~b(k)]<l), (D~b(k)](l), and (B~b(k)](l) are based on reduced-order

models and can be computed locally.

Step 2: Having computed the local FIMs JRo(x<l)(k+l)) and JRo(x<l)(k+llk)), node l computes

(C~b(k)]<l) with a modified version of Eq. (E.11) where the summation is limited to neighbouring

nodes of node l with which it has shared states. Due to the sparse and localized nature of

the process model, only the neighbouring nodes of subsystem l have shared states with node l.

Therefore, the communication and computational overheads for the distributed computation of

(C~b(k)]<l) is limited to its local neighbourhoods.

Step 3: The next step is to compute the second term on the RHS of Eq. (E.15). (i) First, note

267

that because the local state model at node l only includes a subset of state variables, x<l) (·)

and d(l)(·), derivations with respect to x(·) will result in a block of zero terms corresponding

to the states not present in the local state model. Therefore, T(l)(k)C~b(k) is partitioned as

[[c~b(k)J(l) i [C~b(k)]<t,d) i o], with

(E.22)

and

Matrix T(l,d)(k) denotes the nd<'> x nx<'> nodal transformation matrix corresponding to the nd<'>

required forcing terms d(l)(k) at node l. (ii) Second, based on the above partitioning, a subdivision

of matrix S (k) is constructed as follows

[-i s~:~;-i~lv·;~.~~~~] = [-iT~><i~f lf ~~~~:~;-i~ll~vh:;~;~i~~~~~;;~;i(i~\jr-] -(E.
24 i

Note that, T(l)(k)S(k)[T(l)(k)]T is (nx<'> x nx(l>), sub-block of S(k). (iii) Finally, the RHS of

Eq. (E.15) is expanded as follows

T(l) (k)C~b(k)S(k) [T<l) (k)C~b(k)V

[C~b(k)](l) s<l) (k)[C~b(k)](l)T + [C~b(k)] (l) s<l,d) (k) [C~b(k)](l,d)T

+ ([C~b(k))(l) 5(l,d) (k)[C~b(k)](l,d)r) T + [C~b(k)](l,d) S(d,d) (k)[C~b(k)](l,d)T. (E.25)

Two issues need to be addressed at this step. First, although matrix S(k) is inverse of a large (nx x

nx) matrix (JRo (x(k)) + CAb (k)), it is not computed directly. Instead the four blocks defined in

Eq. (E.24) are computed using block with dimension (nx<'> x nx<'>) at the most and without taking

the inverse of large matrix. This can be accomplished using distributed iterate-collapse-inversion-

overrelaxation (DICI-OR) algorithm [84]. The DICI-RO is an iterative distributed algorithm

268

used for computing the inverse of the symmetric positive definite banded matrix S (k) defined in

Eq. (E.15), when its submatrices in the banded area are distributed among different local nodes.

The DICI-RO is a 2-step algorithm with an iterate step and a collapse step. The iterate step is

implemented to compute the corresponding (banded) elements of the inverse of S(k). A nonlinear

collapse step is then employed to compute the non-banded elements of the inverse of S(k) from

already computed banded elements of the inverse of S(k). Please refer to [84] for further details.

In our problem, we need to compute the inverse of S(k) from diagonal blocks distributed across the

network at local subsystems. Matrix S(k) = J~g>bal(x(k)) + C:i\b(k) is assumed block-banded

as only diagonal blocks corresponding to the local subsystems are computed in our algorithm.

Matrix C~b (k) is also banded because of the localized and sparse nature of the state model.

Instead of using the global FIM JRo(x(k)) and C:i\,b(k), the DICI-OR algorithm [84] computes

S(l)(k), S(l,d)(k), S(d,d)(k) based on the local FIMs J~g>bal(x(m)(k)) and [C~b(k)J{m) of the

neighbouring nodes m E N(l) of node l. Second, term [C~b(k)J(l) can be approximated by its local

counterparts, i.e., [C~b(k)J(l) ~ [D~b(k)]<O and term [C~b(k)](l,d) is obtained from the local

matrix [D~b(k)](m) of neighbouring node m of node l's which has d(l) in its local state vector.

Step 4: Finally, Eq. (E.15) is used to update J~b°bal(x(l)(k + 1)) at node l, for 1 ~ l ~ N. The

convergence of the proposed computational algorithm for estimating a sub-block of the global

FIM corresponding to the local state subset is guaranteed by the convergence properties of the

DICI-OR algorithm. See [84) for details.

E.1.2 Computing the RO/dPCRLB from localized FIM

The inversion algorithm for block banded matrices can be used to compute the RO/ dPCRLB

(i.e., to compute inverse of the FIM). One such approach, referred to as the DICI-RO. Note that

the FIM is a full matrix and the RO/ dPCRLB approach suggested in Section E.1.1 updates only

269

its diagonal block entries. This may result in some variation in the RO/dPCRLB as compared to

the approach suggested in Section 5.2.2. The accuracy of the block-banded FIM approach can be

improved by computing the off-diagonal blocks, which will additional more computation overhead.

In this appendix, I limit myself to obtaining the RO/dPCRLB from the diagonal blocks of the

FIM.

E.1.3 Particle Filter Realization for reduced-order dPCRLB

The particle-based computation of the dPCRLB equations for the reduced-order systems is similar

to the full-order scenario (Section E.1.3) except for the following differences. At subsystem l,

derivations in Eq. (5.48)-(5.53) are now based on the local state vector x<l)(-). A reduced-order

distributed implementation of the particle filter is employed to compute the required particle set

{X~l,FF)(k), w?·FF)}. For example, Eq. (E.17) can be represented in terms of the reduced-order

particle sets as

For the additive Gaussian forcing terms, the above equation reduces to

Nv

[D~b(k)](l) ~ L:w?·FF)(k)([\7x<1)(k)fT(k)]Q-1(k)[\7x(k)fT(k)J)I (!FF) •

i=l x(k)=Xi ' (k)
(E.27)

As a final note to the dPCRLB implementations, I note the differences between Theorem 7 (the

dPCRLB algorithm for full-order systems) and Theorem 9 (the dPCRLB algorithm for reduced-

order systems). Theorem 7 is applicable when the estimates of the entire state vector is available

locally at each node. In reduced-order estimation, a different subset of the state vector is estimated

at the local nodes. Eq. (5.28) included in Theorem 7 cannot be implemented in the reduced-order

systems and is replaced by Eq. (E.11) which allows for reduced-order FIMs corresponding to

different subsets of the state vector to be fused to determine the overall FIM. In the reduced-

270

order format, Theorem 9 includes Eqs. (E.9)-(E.10) which are similar to Eqs. (5.26)-(5.27). In

reality, reduced-order systems can not compute Eqs. (E.9)-(E.10) directly which requires the entire

state vector to be known at each node. In Section E.1.1, I discussed how Eqs. (E.9)-(E.10) in

Theorem 9 are computed in a reduced-order fashion.

271

Bibliography

[1] 0. Hlinka, F. Hlawatsch, P.M. Djuric, "Distributed Particle Filtering in Agent Networks: A Survey,

Classification, and Comparison," IEEE Signal Processing Magazine, vol. 30, no. 1, pp. 61-81, 2013.

[2] P.K. Varshney, "Distributed Detection and Data Fusion", New York: Springer-Verlag,1996.

[3] Y. Bar-Shalom and X. Li, Multitarget-multisensor tracking: principles and techniques, 1995.

[4] Y. Huang, W. Liang, H. Yu, and Y. Xiao, "Target tracking based on a distributed particle filter in

underwater sensor networks", In Wireless Communication and Mobile Computing, pp. 1023-1033,

2008.

[5] G.G. Rigatos, "Distributed particle filtering over sensor networks for autonomous navigation of

UAVs," in Robot Manipulators, SciYo Publications, Croatia, 2010.

[6] S. Thrun, W. Burgard, and D. Fox, "Probabilistic Robotics," The MIT Press, 2005.

[7] A. Simonetto, T. Keviczky, R. Babuska, "Distributed Non-linear Estimation for Robot Localization

using Weighted Consensus", In IEEE Inter. Con. on Robotics and Automation, pp.3026-3031, 2010.

[8] H. Aghajan and A. Cavallaro, "Multi-Camera Networks: Principles and Applications," New York:

Academic, 2009.

[9] Y. Bar-Shalom, X.R. Li, T. and Kirubarajan, "Estimation with Applications to Tracking and Navi­

gation: Theory, Algorithms, and Software," New York: Wiley, 2001.

[10] M. Gaynor, S.L. Moulton, M.Welsh, E. LaCombe, A. Romwan, and J Wynne, "Intergrating wireless

sensor networks with the grid," IEEE Internet Computing, vol. 8, no. 4, pp. 32-39, 2004.

272

[11] P. Corke, T. Wark, R. Jurdak, W. Hu, P. Valencia, and D. Moore, "Environmental wireless sensor

networks," Proc. IEEE, vol. 98, pp. 1903-1917, 2010.

[12] J. G. Ko, C. Lu, M. B. Srivastava, J. A. Stankovic, A. Terzis, and M. Welsh, "Wireless sensor

networks for healthcare," Proc. IEEE, vol. 98, pp. 1947-1960, 2010.

[13] T. Zhao and A. Nehorai, newblock "Distributed sequential Bayesian estimation of a diffusive source

in wireless sensor networks," IEEE 11rans. Signal Processing, vol. 55, pp. 15111524, 2007.

[14] F. Zhao and L. J. Guibas, "Wireless Sensor Networks: An Information Processing Approach,"

Amsterdam, The Netherlands: Morgan Kaufmann, 2004.

[15] R. Tharmarasa, T. Kirubarajan, A. Sinha, and T. Lang, "Decentralized Sensor Selection for Large­

Scale Multisensor-Multitarget Tracking," IEEE 11rans. Aerospace and Electronic Systems, vol. 47,

no. 2, pp. 1307-1324, 2011.

[16] M. Coates, "Distributed particle filters for sensor networks," ISPN Sensor Networks, pp. 99-107,

2004.

[17] X. Sheng, Y. Hu, and P. Ramanathan, "GMM approximation for multiple targets localization and

tracking in wireless sensor network," in Fourth International Symposium on Information Processing

in Sensor Networks, pp. 181-188, 2005.

[18] D. Gu, "Distributed particle filter for target tracking," in IEEE Con. on Rob. & Automation, pp.

3856-3861, 2007.

[19] D. Ustebay, M. Coates, and M. Rabbat, "Distributed auxiliary particle filters using selective gossip,"

In IEEE Inter. Conj. on Acoustics, Speech and Signal Proc., pp. 3296-3299, 2011.

[20] S. Farahmand, S. I. Roumeliotis, and G. B. Giannakis, "Set-membership constrained particle filter:

Distributed adaptation for sensor networks, IEEE 11rans. on Signal Processing, vol. 59, no. 9, pp.

4122-4138, Sept. 2011.

273

[21] 0. Hlinka, 0. Sluciak, F. Hlawatsch, P.M. Djuric, M. Rupp, "Likelihood consensus: Principles and

application to distributed particle filtering," In IEEE Asilomar Conference on Signals, Systems and

Computers, pp.349-353, 2010.

[22] 0. Hlinka, 0. Slucciak, F. Hlawatsch, P.M. Djuric, and M. Rupp, "Likelihood Consensus and Its

Application to Distributed Particle Filtering," IEEE Transactions on Signal Processing, vol. 60, no.

8, pp. 4334-4349, Aug. 2012.

[23] D. Gu, S. Junxi, H. Zhen and L. Hongzuo, "Consensus based distributed particle filter in sensor

networks," in IEEE Int. Con, on Information and Automation, pp. 302-307, 2008.

[24] M.J. Coates and B.N. Oreshkin, "Asynchronous distributed particle filter via decentralized evaluation

of gaussian products," in Proc. ISIF Int. Conj. Information Fusion, Edinburgh Scotland, 2010.

[25] L.-L. Ong B. Upcroft T. Bailey M. Ridley S. Sukkarieh and H. Durrant-Whyte, "A decentralised

particle filtering algorithm for multitarget tracking across multiple flight vehicles," in IEEE/RSJ

International Conference on Intelligent Robots and Systems, pp. 4539-4544, 2006.

[26] L. L. Ong B. Upcroft M. Ridley T. Bailey S. Sukkarieh and H. Durrant-Whyte, "Decentralised data

fusion with particles," in Australasian Con. on Robotics and Automation, 2004.

[27] L.L. Ong, T. Bailey, B. Upcroft, and H. Durrant-Whyte, "Decentralised particle filtering for multiple

target tracking in wireless sensor networks," in 11th Int. Conference on Information Fusion, 2008.

[28] S. Lee and M. West, "Markov chain distributed particle filters (MCDPF)," in IEEE Conj. Decision

and Control, Shanghai, 2009.

[29] B. Balasingam, M. Bolic, P.M. Djuric, and J. Miguez "Efficient distributed resampling for particle

filters," In IEEE Int. Con. on Acoustics, Speech and Sig. Proc., pp. 3772-3775, 2011.

[30] M. Bolic, P.M. Djuric, and Sangjin Hong, "Resampling algorithms and architectures for distributed

particle filters," In IEEE 11ransactions on Signal Processing, vol. 53, no. 7, pp. 2442-2450, 2005.

[31] A. Olshevsky and J. N. Tsitsiklis, "Convergence speed in distributed consensus and averaging," In

SIAM J. Control Optim., vol. 48, no. 1, pp. 33-56, 2009.

274

[32] R. Olfati-Saber, A. Fax and R.M. Murry, "Consensus and coopration in networked multi-agent

systems," in Proceedings of the IEEE, 2007.

[33] A.G. Dimakis, S. Kar, J.M.F. Moura, M.G. Rabbat and A. Scaglione, "Gossip algorithms for dis­

tributed signal processing," Proceedings of the IEEE, vol. 98, pp. 1847-1864, 2010.

[34] R. Olfati-Saber, "Distributed kalman filtering for sensor networks," in 46th IEEE Conference on

Decision and Control, pp. 5492-5498, 2007.

[35] D. Bauso, L. Giarre and R. Pesenti, "Non-linear protocols for optimal distributed consensus in

networks of dynamic agents," Systems and Control Letters, vol. 55, pp. 918-928, 2006.

[36] M.A. Paskin and C.E. Guestrin, "Robust probabilistic inference in distributed systems," Uncertainty

in Articial Intelligence, 2004.

[37] M. Buehner, P. Malanotte-Rizzoli, A. Busalacchi, and T. Inui, "Estimation of the tropical Atlantic

circulation from altimetry data using a reduced-rank stationary Kalman filter," Elsevier Oceano­

graphic Series, vol. 68, no. 9, pp. 49-92, 2003.

[38] F. Khellah, P. Fieguth, M. Murray, and M. Allen, "Statistical processing of large image sequences,"

IEEE Trans. Image Proc., vol. 14, 2005.

[39] G. Rigatos, P. Siano, and N. Zervos, "A Distributed State Estimation Approach to Condition

Monitoring of Nonlinear Electric Power Systems," Asian Journal of Control, 2012.

[40] M. Ilic, E. Allen, J. Chapman, C. King, J. Lang, and E. Litvinov, "Preventing future blackouts by

means of enhanced electric power systems control: From complexity to order," Proceedings of IEEE,

vol. 93, no. 11, pp. 1920-1941, 2005.

[41] T.C. Henderson and H.F. Durrant-Whyte,

Robotics, 2008.

Multisensor Data Fusion, Springer Hand. of

[42] S. Grime and H. F. Durrant-Whyte, "Data fusion in decentralized sensor networks," in Control

Engineering Practice, vol. 2, no. 5, pp. 849-863, 1994.

275

[43] N. Gordon, M. Sanjeev, S. Maskell, and T. Clapp, "A tutorial on particle filters for online non­

linear/non-gaussian bayesian tracking," IEEE Trans. on Sig. Proc., vol. 50, pp. 174-187, 2002.

(44] R. Van der Merwe, A. Doucet, N. de Freitas and E. Wan, "The unscented particle filter," Tech. Rep.

CUED/F-INFENG/TR 380, Cambridge University, 2000.

[45] N. J. Gordon, D. Salmond, and A. Smith, "Novel approach to non-linear/non-gaussian bayesian

state estimation," IEE Proceedings, vol. 140(2), pp. 107-113, 1993.

(46] S. Challa, M. Palaniswami and A. Shilton, "Distributed data fusion using support vector machines,"

in Int. Con. on Information Fusion, (FUSION}, vol. 2, p. 881-885, 2002.

[47] M. Rosencrantz, G. Gordon, and S. Thrun, "Decentralized data fusion with distributed particle

filters," in Conference on Uncertainty in AI {UAI}, 2003.

[48] G.G. Rigatos and P. Siano, "Distributed state estimation for condition monitoring of non-linear

electric power systems," In IEEE Int. Sym. on Industrial Electronics, pp. 1703-1708, 2011.

(49] A. Mohammadi and A. Asif, "A Constraint Sufficient Statistics based Distributed Particle Filter for

Bearing Only Tracking", IEEE International Conference on Communication (ICC}, pp. 3670-3675,

2012.

[50] A. Mohammadi and A.Asif, "Consensus-based Particle Filter Implementations for Distributed Non­

linear Systems", chapter 9 in Nonlinear Est. f3 Applications to Industrial Sys. Control, Editor G.

Rigatos, 2011.

[51] A. Mohammadi and A.Asif, "Distributed Particle Filter Implementation with Intermittent/Irregular

Consensus Convergence," IEEE Transactions on Signal Processing, vol. 61, no. 10, pp. 2572-2587,

May15, 2013.

(52] A. Mohammadi and A.Asif, "Full Order Nonlinear Distributed Estimation in Intermittently Con­

nected Networks", in IEEE International Conference on Acoustics, Speech, and Signal Processing

(ICASSP), 2013.

276

[53] A. Mohammadi and A.Asif, "Posterior Cramer-Rao Bounds for Full and Reduced-order Distributed

Bayesian Estimation", submitted to IEEE T'rans. on Aerospace €3 Electronic Systems, 2013.

[54] A. Mohammadi and A. Asif, "Theoretical Performance Bounds for Reduced-order Linear and Non­

linear Distributed Estimation," IEEE Global Communications Conference (GLOBECOM}, pp. 3929-

3935, 2012.

[55] A. Mohammadi and A.Asif, "Decentralized Conditional Posterior Cramer-Rao Lower Bound for

Nonlinear Distributed Estimation," IEEE Signal Processing Letters, vol. 20, no. 2, pp. 165-68, Feb.

2013.

[56] A. Mohammadi and A.Asif, "Decentralized Computation of the Conditional Posterior Cramer-Rao

Lower Bound: Application to Adaptive Sensor Selection", in IEEE International Conference on

Acoustics, Speech, and Signal Processing (ICASSP}, 2013.

[57] A. Mohammadi and A. Asif, "Application of Constraint Sufficient Statistics to Distributed Particle

Filters: Bearing/Range Tracking," submitted to IEEE Transactions on Signal Processing, 2013.

[58] X. Zhong, A. Mohammadi, A. B. Premkumar and A. Asif, "A Distributed Unscented Particle

Filtering Approach for Multiple Acoustic Source Tracking Using an Acoustic Vector Sensor Network,"

submitted to Elsevier Signal Processing, 2013.

[59] A. Mohammadi and A. Asif, "Consensus-Based Distributed Unscented Particle Filter," IEEE Sta­

tistical Sig. Proc. {SSP}, pp. 237-240, 2011.

[60] X. Zhong, A. Mohammadi, W. Wang, A.B. Premkumar, and A. Asif, "Acoustic Source Tracking in

a Reverberant Environment Using a Pairwise Synchronous Microphone Network," in IEEE Interna­

tional Conference on Information Fusion, 2013.

[61] A. Mohammadi and A. Asif, "Distributed State Estimation for Large-scale Nonlinear Systems: A

Reduced Order Particle Filter Implementation," IEEE Statistical Sig. Proc. (SSP}, pp. 249-252, 2012.

277

[62] A. Mohammadi and A. Asif, "Distributed Particle Filters for Intermittent Connections: Feedback

Between Fusion and Local Filters improves Performance," IEEE Statistical Sig. Proc. (SSP), pp.

524-527, 2012.

[63] A. Mohammadi and A. Asif, "A Consensus/Fusion based Distributed Implementation of the Particle

Filter" in IEEE Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), pp. 285-

288, 2011.

[64] A. Mohammadi and A. Asif, "Distributed Posterior Cramer-Rao Lower Bound for Nonlinear Se­

quential Bayesian Estimation," IEEE Sensor Array and Multichannel Signal Processing (SAM), pp.

509-512, 2012.

[65] A. Mohammadi, A. Asif, X. Zhong, and A. B. Premkumar, "Distributed Computation of the Condi­

tional PCRLB for Quantized Decentralized Particle Filters", submitted to IEEE International Con­

ference on Acoustics, Speech, and Signal Processing {ICASSP), available online at: arXiv:130"1.5435,

2014.

[66) A. Mohammadi, A. Asif, and A. Asif, X. Zhong, and A.B. Premkumar, "Decentralized Bayesian

Estimation with Quantized Observations: Theoretical Performance Bounds," in IEEE International

Conference on Distributed Computing in Sensor Systems (DCOSS), pp.149-156, May 2013.

[67] A. Mohammadi and A. Asif, "Decentralized Sensor Selection based on the Distributed Posterior

Cramer-Rao Lower Bound," IEEE International Conference on Information Fusion, pp. 1668-1675,

2012.

[68] A. Mohammadi, A. Asif, and S. Saxena, "Reduced Order Distributed Particle Filter Estimation in

Nonlinear Electric Power Grid," submitted to IEEE Journal of Selected Topics in Signal Processing,

Special Issue on Signal Processing in Smart Electric Power Grid, 2013.

[69] A. Mohammadi and A. Asif, "Distributed particle filtering for large scale dynamical systems," In

IEEE 13th Inter. Multitopic Conference, pp.1-5, 2009.

[70] C.Y. Chong, "Hierarchical estimation," in 2nd MIT/ONR Workshop on C3, 1979.

278

[71] Y. Bar-Shalom, "On the track-to-track correlation problem," IEEE Trans. Automat. Contr., vol.

15, pp. 571-572, 1981.

[72] H. Hashemipour, S. Roy and A. Laub, "Decentralized structures for parallel kalman filtering," IEEE

Trans. Automatic Control, vol. 33, pp. 88-93, 1988.

[73] B.S. Rao and H.F. Durrant-Whyte, "Fully decentralised algorithm for multisensor kalman filtering,"

IEE Proceedings, vol. 138, no. 5, pp. 413-420, 1991.

[74] S. Utete H.F. Durrant-Whyte, Network Management in Decentralised Sensing Systems, Ph.D. thesis,

University of Oxford, 1994.

[75] M.S. Mahmoud, H.M. Khalid, "Distributed Kalman filtering: a bibliographic review," JET Control

Theory & Applications, vol. 7, no. 4, pp. 483-501, 2013.

[76) S. L. Sun and Zi-Li Deng, "Multi-sensor optimal information fusion Kalman filters with applications,"

Automatica, vol. 40, no. 6, pp. 57-62, 2004.

[77] R. Olfati-Saber, "Kalman-consensus filter: Optimality, stability, and performance," in 48th IEEE

Conference on Decision and Control, pp.

[78] R. Olfati-Saber, "Distributed kalman filter with embedded consensus filters," in 44th IEEE Confer­

ence on Decision and Control, pp. 8179-8184, 2005.

[79] R. Olfati-Saber and N.F. Sandell., "Distributed tracking in sensor networks with limited sensing

range," in IEEE American Control Conference. 2008, p. 3157-3162.

[80] P. Alriksson and A. Rantzer, "Distributed kalman filtering using weighted averaging," in Int. Symp.

on Mathematical Theory of Networs and Systems, 2006, pp. 8179-8184.

[81] S. Kar, B. Sinopoli, and J. Moura, "Kalman Filtering with Intermittent Observations: Weak Con­

vergence to a Stationary Distribution," to appear in IEEE Transactions on Automatic Control.

[82] D.J. Lee, "Nonlinear Estimation and Multiple Sensor Fusion Using Unscented Information Filtering,"

IEEE Signal Processing Letters, vol. 15, pp. 861-864, 2008.

279

[83] L. Wenling and J. Yingmin Jia "Consensus-Based Distributed Multiple Model UKF for Jump Markov

Nonlinear Systems," IEEE Transactions on Automatic Control, vol. 57, no. 1, pp. 227-233, 2012.

[84] U.A. Khan and J.M.F. Moura, "Distributing the Kalman filter for large-scale systems," IEEE Trans.

on Signal Processing, vol. 56, no.10, pp. 4919-4935, 2008.

[85] M. Briers, A. Doucet and S. S. Singh, "Sequential auxiliary particle belief propagation", Int. Conj.

on Inf. Fusion, pp. 705-711, 2005.

[86] M.F. Bugallo, Ting Lu and P.M. Djuric, "Target Tracking by Multiple Particle Filtering," Aerospace

Conference, pp.1-7, 2007.

[87] T.M. Berg and H.F. Durrant-Whyte, "Model distribution in decentralized multi-sensor data fusion,"

American Cont. Con., pp. 2292-2293, 1991.

[88] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, "Randomized gossip algorithms," IEEE Transactions

on Information Theory, vol. 52, pp.2508-2530, 2006.

[89] A. Papoulis and S.U. Pillai, Distributed algorithms, Morgan Kaufmann, 1997.

[90] J. Tsitsiklis, Problems in decentralized decision making and computation, Ph.D. thesis, MIT, 1984.

[91] A. Jadbabaie, J. Lin, and A.S. Morse, "Coordination of groups of mobile autonomous agents using

nearest neighbor rules," IEEE 11rans. Autom. Control, vol. 48, no. 6, pp. 988-1001, 2003.

[92] J.A. Fax and R.M. Murray, "Information flow and cooperative control of vehicle formations," IEEE

Trans. Autom. Control, vol. 49, no. 9, pp. 1465-1476, 2004.

[93] L. Xiao, S. Boyd and S. Lall, "A scheme for asynchronous distributed sensor fusion based on average

consensus," in Int. Symp. on Info. Proc. in Sensor Networks, 2005.

[94] S. Kar, S.A. Aldosari, and J.M.F. Moura, "Topology for distributed inference on graphs," IEEE

Trans. Signal Process., vol. 56, no. 6, pp. 2609-2613, 2008.

[95] S. Kar and J.M.F. Moura, "Distributed consensus algorithms in sensor networks with imperfect

communication: Link failures and channel noise," IEEE Tran. on Sig. Proc., vol. 57, pp. 355-369,

2009.

280

[96] R. Rajagopal and M. J. Wainwright, "Network-based consensus averaging with general noisy chan­

nels," in Allerton Conference on Communication, Control, and Computing, 2007.

[97] A. Ozdaglar A. Nedic, A. Olshevsky and J. Tsitsiklis, "On distributed averaging algorithms and

quantization effects," Tech. Rep., Massachusetts Institute of Technology, 2007.

[98] Khan, U.A.; Kar, S.; Moura, J.M.F.; , "Distributed average consensus: Beyond the realm of linear­

ity," In Asilomar Conference on Sig., Systems and Computers, pp. 1337-1342, 2009.

[99] L. Georgopoulos and M. Hasler, "Non-linear average consensus, in Proc. NOLTA-09. pp. 10-14,

2009.

[100] L. Xiao and S. Boyd., "Fast linear iterations for distributed averaging," Systems and Control

Letters, vol. 53, pp. 65-78, 2004.

[101] R.W. Wei Ren and Beard, D.B. Kingston, "Multi-agent Kalman consensus with relative uncer­

tainty," In Proceeding of American Control Conference, vol. 3, pp. 1865-1870, 2005.

[102] B. Ristic and M.S. Arulampalam, "Tracking a manoeuvring target using angle-only measurements:

algorithms and performance," IEEE Trans. on Sig. Proc., vol. 83, pp. 1223-1238, 2003.

[103] M.S. Arulampalam, B. Ristic, N. Gordon, and T. Mansell, "Bearings-only tracking of maneuvering

targets using particle filters," Appl. Sig. Proc., vol. 15, pp. 2351-2365, 2004.

[104] A. Farina, "Target tracking with bearings-only measurements," Signal Processing, vol. 78, no. 1,

pp. 61-78, 1999.

[105] X. Zhong and A. B. Premkumar, "Particle filtering approaches for multiple acoustic source detection

and 2-D direction of arrival estimation using a single acoustic vector sensor," IEEE Trans. Signal

Process., vol. 60, no. 9, pp. 4719 -4733, 2012.

[106] Yih-Fang Huang, S. Werner, J. Huang; N. Kashyap, V. Gupta, "State Estimation in Electric Power

Grids: Meeting New Challenges Presented by the Requirements of the Future Grid," IEEE Signal

Processing Magazine, vol. 29, no. 5, pp. 33-43, 2012.

281

[107] S. Wang, W. Gao, A.P.S. Meliopoulos, "An Alternative Method for Power System Dynamic State

Estimation Based on Unscented Transform," IEEE Transactions on Power Systems, vol. 27, no. 2,

pp. 942-950, May 2012.

[108] G. Valverde, V. Terzija, "Unscented ka.lman filter for power system dynamic state estimation," JET

Generation, Transmission €3 Distribution, vol. 5, no. 1, pp. 29-37, Jan. 2011.

[109] E. Ghahremani, I. Kamwa, "Online State Estimation of a Synchronous Generator Using Unscented

Kalman Filter From Phasor Measurements Units," IEEE Transactions on Energy Conversion, vol.

26, no. 4, pp. 1099-1108, Dec. 2011.

[110] B. Song, C. Ding, A.T. Kamal, J.A. Farrell, A.K. Roy-Chowdhury, "Distributed Camera Networks,"

IEEE Sig. Proc. Magazine, vol. 28, no. 3, pp. 20-31, 2011.

[111] M. Taj, A. Cavallaro, "Distributed and Decentralized Multicamera Tracking," IEEE Sig. Proc.

Magazine, vol. 28, no. 3, pp. 46-58, 2011.

[112] P. Perez, J. Vermaak, A. Blake, "Data fusion for visual tracking with particles," Proceedings of the

IEEE, vol. 92, no. 3, pp. 495-513, 2004.

[113] G.Mallikarjuna Rao and Ch.Satyanarayana, "Visual Object Target Tracking Using Particle Filter:

A Survey," International Journal of Image, Graphics and Signal Processing (IJIGSP}, vol. 5, no. 6,

2013.

[114] R. Carli, A. Chiuso, L. Schenato, and. S. Zampieri, "Distributed Kalman filtering based on consensus

strategies," IEEE Journal on Selected Areas in Communications, vol.26, no.4, pp.622-633, May 2008.

[115] K. Zhou, S.I. Roumeliotis, "Multirobot Active Target Tracking With Combinations of Relative

Observations," IEEE Transactions on Robotics, vol. 27, no. 4, pp. 678-695, 2011.

[116] R. Viswanathan, "A note on distributed estimation and sufficiency," inIEEE 'Iran. on Inf. Theory,

vol. 39, no. 5, pp. 1765-1767, 1993.

[117] S. M. Kay, "Fundamentals of Statistical Signal Processing: Estimation Theory", Upper Saddle

River, NJ, Prentice-Hall, 1993.

282

(118) X.R. Li, V.P. Jilkov, "Survey of maneuvering target tracking. Part I. Dynamic models," IEEE

Transactions on Aerospace and Electronic Systems, vol. 39, no. 4, pp. 1333-1364, 2003.

(119) T. L. Song, J. Ahn, and C. Park. "Suboptimal Filter Design with Pseudo-measurements for Target

Tracking," in IEEE Trans. Aerospace and Electronic Systems, pp. 28-39, 1988.

[120) Y. Mo and B. Sinopoli, "Communication Complexity and Energy Efficient Consensus Algorithm,"

in Workshop on Estimation and Control of Networked Systems, 2010.

(121) U.A. Khan, S. Kar, J.M.F. Moura, "Higher Dimensional Consensus: Learning in Large-Scale

Networks," IEEE Transactions on Signal Processing, vol. 58, no. 5, pp. 2836-2849, 2010.

(122] R. Karlsson, T. Schon, and F. Gustafsson, "Complexity Analysis of the Marginalized Particle

Filter," IEEE Trans. Signal Processing, vol. 53, no. 11, pp. 4408-4411, 2005.

(123] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. I. Jordan, and S. S. Sastry, "Kalman

filtering with intermittent observations", IEEE Trans. Automat. Contr., Vol. 49, No. 9, pp. 1453-

1464, 2004.

[124] S. Kar, B. Sinopoli, and J. Moura, "Kalman Filtering with Intermittent Observations: Weak

Convergence to a Stationary Distribution," to appear in IEEE Transactions on Automatic Control.

[125] T. Schon, F. Gustafsson, P.J. Nordlund, "Marginalized particle filters for mixed linear/nonlinear

state-space models," IEEE Trans. on Signal Proc., vol. 53, no. 7, pp. 2279-2289, 2005.

[126] Y. Derek, J.P. Reilly, T. Kirubarajan, K. Punithakumar, "Approximate Conditional Mean Particle

Filtering for Linear/Nonlinear Dynamic State Space Models," IEEE Trans. on Sig. Proc., vol. 56,

no. 12, pp. 5790-5803, 2008.

(127] C.Y. Chong, S. Mori, and K.C. Chang, Multi-target Multi-sensor Tracking, chapter Distributed

Multi-target Multi-sensor Tracking, Artech House, pp. 248-295, 1990.

[128] Y. Zhu, Z. You, J. Zhao, K. Zhang, and X. Li, "The optimality for the distributed Kalman filtering

fusion with feedback", Automatica, vol. 37, no. 9, pp. 1489-1493, 2001.

283

[129] M. Gales and S. Airey, "Product of Gaussians for speech recognition," Comp. Speech €3 Lang.,

vol. 20, pp. 22-40, 2006.

[130] H.Q. Liu, H.C. So, F.K.W. Chan, and K.W.K. Lui, "Distributed particle filter for target tracking

in sensor networks," Progress In Electromagnetics Research C, Vol. 11, Non. pp. 171-182, 2009.

[131] R. Karlsson, T. Schon ,and F. Gustafsson, "Complexity analysis of the marginalized particle filter,"

IEEE Trans. Signal Processing, vol. 53(11), pp. 4408-4411, 2005.

[132] H. L. van Trees, "Detection, Estimation and Modulation Theory," New York, Wiley, 1968.

[133] H. Rowaihy, S. Eswaran, M. Johnson, D. Verma, A. Bar-Noy, T. Brown, and T. L. Porta, "A survey

of sensor selection schemes in wireless sensor networks, in Proc. SPIE, 2007.

[134] C. Kreucher, K. Kastella, and A. Hero III, "Sensor management using an active sensing approach,"

Signal Processing, vol. 85, no. 3, pp. 607-624, 2005.

[135] F. Zhao, 1. Shin, and J. Reich, "Information-driven dynamic sensor collaboration," IEEE Signal

Processing Magazine, vol. 19, no. 2, pp. 61-72, 2002.

[136] M. I. Smith, C. R. Angell, M. L. Hernandez, and W. J. Oxford, "Improved data fusion through

intelligent sensor management," in Proceedings of the SPIE, vol. 5096, 2003.

[137] D. Smith and S.Singh, "Approaches to multisensor data fusion in target tracking: A survey" . .IEEE

Transactions on Knowledge and Data Engineering, vol. 18, pp. 1696-1710, 2006.

[138] G. M. Hoffmann and C. 1. Tomlin, "Mobile sensor network control using mutual information

methods and particle filters," IEEE Transactions on Automatic Control, vol. 55, no. 1, pp. 32-47,

2010.

[139] A.S. Chhetri, D. Morrell, and A.P. Suppappola, "The use of particle filter with the unscented

transform to schedule sensors," ICASSP, 2004.

[140] D. Guo and X. Wang, "Dynamic sensor collaboration via sequential monte carlo," IEEE J. Sel.

Areas in Comm., vol. 22, pp. 1037-1047,2004.

284

[141] L. Zuo, R. Niu, and P. K. Varshney, "Posterior CRLB based sensor selection for target tracking in

sensor networks," Proc. ICASSP, vol. 2, pp. 1041-1044, 2007.

[142] F. Ghassemi and V. Krishnamurthy, "Separable Approximation for Solving the Sensor Subset

Selection Problem," IEEE Trans. on Aer. f3 Elec. Sys., vol. 47, no. 1, pp. 557-568, 2011.

[143] L.M. Kaplan, "Global node selection for localization in a distributed sensor network," IEEE 'lrans.

on Aer. f3 Elec. Sys., vol. 42, no. 1, pp. 113-135, 2006.

[144] K. Punithakumar, T. Kirubarajan, M. Hernandez, "Multisensor deployment using PCRLBS, incor­

porating sensor deployment and motion uncertainties," IEEE Trans. on Aer. f3 Elec. Sys., vol. 42,

no. 4, pp. 1474-1485, 2006.

[145] R. Tharmarasa, T. Kirubarajan, P. Jiming, and T. Lang, "Optimization-Based Dynamic Sensor

Management for Distributed Multitarget Tracking," IEEE 'lrans. Sys., Man, f3 Cybernetics, vol. 39,

pp. 534-546, 2009.

[146] M.L. Hernandez, T. Kirubarajan, Y. Bar-Shalom, "Multisensor resource deployment using posterior

Cramer-Rao bounds," IEEE 'lrans. Aerospace f3 Elec. Sys., vol. 40, no. 2, pp. 399-416, 2004.

[147] R. Tharmarasa, "PCRLB based multisensor array management for multitarget tracking." IEEE

'lransactions on Aerospace and Electronic Systems, vol. 43, pp. 539-555, 2007.

[148] P. Tichavsky, C.H. Muravchik, and A. Nehorai, "Posterior Cramer-Rao bounds for discrete-time

nonlinear filtering," IEEE Trans. Sig. Proc., vol. 46, no. 5, pp. 1386-1396, 1998.

[149] M.L. Hernandez, A.D. Marrs, N.J. Gordon, S.R. Maskell, and C.M. Reed, "Cramer-Rao bounds for

non-linear filtering with measurement origin uncertainty," Int. Conj. Inf. Fusion, vol. 1, pp. 18-25,

2002.

[150] M.L. Hernandez, A. Farina, B. Ristic, "PCRLB for tracking in cluttered environments: measure­

ment sequence conditioning approach,," IEEE 'lrans. on Aer. f3 Elec. Sys., vol. 42, no. 2, pp. 680-704,

2006.

285

[151] L. Ming, B.J. Van Wyk, Q. Yong "Online Estimation of the Approximate Posterior Cramer-Rao

Lower Bound for Discrete-Time Nonlinear Filtering," IEEE Trans. on Aer. & Elec. Sys., vol. 47, no.

1, pp. 37-57, 2011.

[152] L. Zuo, R. Niu, and P.K. Varshney, "Conditional Posterior Cramer-Rao Lower Bounds for Nonlinear

Sequential Bayesian Estimation," IEEE Trans. Sig. Proc., vol. 59, no. 1, 2011.

[153] Y. Zheng, 0. Ozdemir, R. Niu, and P.K. Varshney, "New Conditional Posterior Cramer-Rao Lower

Bounds for Nonlinear Sequential Bayesian Estimation," IEEE Trans. Sig. Proc., vol. 60, no. 10, pp.

5549-5556, 2012.

[154] T. Brehard and J.R. Le Cadre, "Closed-form posterior Cramer-Rao bounds for bearings-only track­

ing," IEEE Trans. on Aer. & Elec. Sys., vol. 42, no. 4, pp. 1198-1223, 2006.

[155] C. Hue, J.P. Le Cadre, P. Perez, "Posterior Cramer-Rao bounds for multi-target tracking," IEEE

Trans. on Aer. & Elec. Sys., vol. 42, no. 1, pp. 37-49, 2006.

[156] M. Simandl, J. Kralovec, P. Tichavsky, "Filtering, predictive, and smoothing Cramer-Rao bounds

for discrete-time nonlinear dynamic systems," Automatica, vol. 37, no. 11, pp. 1703-1716, 2001.

[157] L. Ming, P. Del Moral, C. Baehr, "Error analysis of approximated PCRLBs for nonlinear dynamics,"

ICCA, pp. 1988-1993, 2010.

[158] P.M. Djuric, J.H. Kotecha, J. Zhang, Y. Huang, T. Ghirmai, M. f. Bugallo and J. Miguez, "Particle

Filtering", IEEE Sig. Proc. Mag., vol. 20, no. 5, pp. 19-38, 2003.

[159] B. Ristic, S. Arulampalam, and N. Gordon, "Beyond the Kalman Filter. Particle Filters for Tracking

Applications," Norwood, MA: Artech House, 2004.

[160] X. Zhang, and P.K. Willett, "Cramer-Rao bounds for discrete time linear filtering with measurement

origin uncertainty" Workshop on Estimation, Track. & Fusion: A Tribute to Yaakov Bar-Shalom,

2001.

286

[161] M.M. Olama, S.M. Djouadi, C.D. Charalambous, and LG. Papageorgiou, "Position and velocity

tracking in mobile networks using particle and Kalman filtering with comparison", IEEE Tran. on

Vehicle Tech., Vol. 57, No. 2, pp. 1001-101, 2008.

[162] C. Chong, F. Zhao, S. Mori and S. Kumar, "Distributed tracking in wire-less ad hoc sensor net­

works", Int. Conj. Info. Fusion, pp. 431-438, 2003.

[163] C.H. Papadimitriou and K. Steiglitz, "Combinatorial Optimization Algorithms and Complexity"

Mineola, NY: Dover Publication, 1998.

[164] Y. Ruan and P. Willett, "A quantization architecture for track fusion," IEEE Transactions on

Aerospace and Electronic Systems, vol. 41, no. 2, pp.671-681, 2005.

[165] X. Rong Li and V.P. Jilkov, "Survey of maneuvering target tracking. Part V. Multiple-model

methods," IEEE 1ransactions on Aerospace and Electronic Systems, vol. 41, no. 4, pp. 1255-1321,

2005.

[166] T.H. Chung, J.W. Burdick, and R.M. Murray, "Decentralized motion control of mobile sensing

agents in a network," IEEE Conj. on Decision and Control, 2006.

[167] Y. Boers, J.N. Driessen, "Interacting multiple model particle filter," IEEE Radar, Sonar and

Navigation, vol. 150, no. 5, pp. 344-349, 2003.

[168] S. Kar, J.M.F. Moura, "Consensus+ innovations distributed inference over networks: cooperation

and sensing in networked systems," IEEE Signal Processing Magazine, vol. 30, no. 3, pp. 99-109,

2013.

[169] U.A. Khan and A. Jadbabaie, "Networked estimation under information constraints," arXiv preprint

arXiv:1111.4580, 2011.

[170] V. Vapnik and S. Mukherjee, "Suppoert vector method for multivariate density estimation", Ad­

vances in Neural information Processing systems, Vol. 12, MIT press, 2000.

[171] C. Jauffret, and Y. Bar-Shalom, "Track Formation With Bearings and Frequency Measurements in

Clutter," IEEE Trans. on Aero. €3 Elec. Sys., vol. 26, no. 6, pp. 999-1010, 1990.

287

[172] T. Kirubarajan, and Y. Bar-Shalom, "Low Observable Target Motion Analysis Using Amplitude

Information," IEEE Trans. on Aero. €3 Elec. Sys., vol. 32, no. 4, pp. 1367-1384, 1996.

[173] R. Nui, P.K. Willett, and Y. Bar-Shalom, "Matrix CRLB Scaling Due to Measurements of Uncertain

Origin," in IEEE Trans. on Sig. Proc., Vol. 49, No. 7, pp. 1325-1335, 2001.

[174] Z. Minghui, S. Martinez, "On Distributed Convex Optimization Under Inequality and Equality

Constraints," IEEE Transactions on Automatic Control, vol. 57, no. 1, pp. 151-164, 2012.

[175] D.A. Forsyth and J. Ponce. "Computer Vision: A Modern Approach", Prentice Hall, 2003.

[176] A. T. Alonani. "Nonlinear data fusion," Proc. Conference on Decision and Control, pp. 569-572,

1989.

288

