399 research outputs found

    The effects of periodic impulsive noise on OFDM

    Get PDF
    Abstract: The effect of periodic impulsive (short duration) noise on OFDM is investigated. We present results on the nature of periodic impulsive noise, showing that the PDF of periodic impulsive noise is not exactly Gaussian. We also present results showing that periodic impulsive noise can be more devastating to OFDM compared to random impulsive noise. This is because periodic impulsive noise energy is not spread by the FFT on the receiver side of the OFDM, instead it appears periodic in the frequency domain. Results showing the effect of nulling to mitigate periodic impulsive noise are presented. We suggest a simple short block code (as opposed to long block codes) that can effectively combat the effects of periodic impulsive noise

    Design and Analysis of OFDM System for Powerline Based Communication

    Get PDF
    Research on digital communication systems has been greatly developed in the past few years and offers a high quality of transmission in both wired and wireless communication environments. Coupled with advances in new modulation techniques, Orthogonal Frequency Division Multiplexing (OFDM) is a well-known digital multicarrier communication technique and one of the best methods of digital data transmission over a limited bandwidth [1]. In this paper, design and analysis of OFDM system for powerline based communication is proposed. In doing so, MATLAB and embedded Digital Signal Processing (DSP) systems are used to simulate the operation of virtual transmitter and receiver. The performance of the system design is then analysed by adding noise (additive white Gaussian noise, Powerline coloured background noise and Middleton Class A noise) in an attempt to corrupt the signal. In this paper results will show that performance is improved by using lower order modulation formats e.g. Binary Phase Shift Keying (BPSK), QPSK, etc. compared to the higher modulation schemes e.g. 64 Quadrature Amplitude Modulation (QAM); as they offer lower data rates but are more robust in the presence of noise. The performance study of OFDM scheme is also examined with and without presence of noise and application of forward error correction (FEC)

    Analysis of GFDM as a robust 5G communication technique in noisy environment

    Get PDF
    One of the challenges of modulation techniques used in Fifth-Generation (5G) is their robustness in noisy environment. Conventional Orthogonal Frequency Division Multiplexing (OFDM) cannot be considered as a 5G waveform in its original form because of its certain limitations, such as performance degradation by impulsive noise (IN) and high peak to average power ratio (PAPR). Numerous modulation schemes proposed for 5G communications are able to overcome these drawbacks. Generalised Frequency Division Multiplexing (GFDM) is one of them. This paper analyses the performance of GFDM in presence of Additive White Gaussian Noise (AWGN), IN and Narrow Band Interference (NBI). It is found that GFDM is able to perform better than OFDM and Vector Orthogonal Frequency Division Multiplexing (VOFDM) in presence of noises, which can potentially be present in 5G applications. Simulation results show that GFDM achieve lower PAPR and Symbol Error Rate (SER) and an average of 10.73 dB and 4.73 dB gain in Signal to Noise Ratio (SNR) in presence of IN and combined IN and NBI respectively, as compared to OFDM and VOFDM

    State-of-the-art in Power Line Communications: from the Applications to the Medium

    Get PDF
    In recent decades, power line communication has attracted considerable attention from the research community and industry, as well as from regulatory and standardization bodies. In this article we provide an overview of both narrowband and broadband systems, covering potential applications, regulatory and standardization efforts and recent research advancements in channel characterization, physical layer performance, medium access and higher layer specifications and evaluations. We also identify areas of current and further study that will enable the continued success of power line communication technology.Comment: 19 pages, 12 figures. Accepted for publication, IEEE Journal on Selected Areas in Communications. Special Issue on Power Line Communications and its Integration with the Networking Ecosystem. 201

    PLC for the smart grid: state-of-the-art and challenges

    Get PDF
    This paper aims to review systems and applications for power line communications (PLC) in the context of the smart grid. We discuss the main applications and summarise state-of-the-art PLC systems and standards. We report efforts and challenges in channel and noise modelling, as well as in state-of-the-art transmission technology approaches

    Fifty Years of Noise Modeling and Mitigation in Power-Line Communications.

    Get PDF
    Building on the ubiquity of electric power infrastructure, power line communications (PLC) has been successfully used in diverse application scenarios, including the smart grid and in-home broadband communications systems as well as industrial and home automation. However, the power line channel exhibits deleterious properties, one of which is its hostile noise environment. This article aims for providing a review of noise modeling and mitigation techniques in PLC. Specifically, a comprehensive review of representative noise models developed over the past fifty years is presented, including both the empirical models based on measurement campaigns and simplified mathematical models. Following this, we provide an extensive survey of the suite of noise mitigation schemes, categorizing them into mitigation at the transmitter as well as parametric and non-parametric techniques employed at the receiver. Furthermore, since the accuracy of channel estimation in PLC is affected by noise, we review the literature of joint noise mitigation and channel estimation solutions. Finally, a number of directions are outlined for future research on both noise modeling and mitigation in PLC

    Mitigation of impulsive noise in OFDM channels using ANN technique

    Get PDF
    Abstract: Orthogonal frequency division multiplexer (OFDM) is a recent modulation scheme used to transmit signals across power line communication (PLC) channel due to its robustness against some known PLC problems. However, this scheme is greatly affected by the impulsive noise (IN) and often causes corruption with the transmitted bits. Different impulsive noise error correcting methods have been introduced and used to remove impulsive noise in OFDM systems. However, these techniques suffer some limitations and require much signal to noise ratio (SNR) power to operate. In this paper, an approach of designing an effective impulsive-noise error-correcting technique was introduced using three-known artificial neural network techniques (Levenberg-Marquardt, Scaled conjugate gradient, and Bayesian regularization). Findings suggest that both Bayesian regularization and Levenberg-Marquardt ANN techniques can be used to effectively remove the impulsive noise present in an OFDM channel and using the least SNR power
    • …
    corecore