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Abstract--- Orthogonal frequency division multiplexer 
(OFDM) is a recent modulation scheme used to transmit 
signals across power line communication (PLC) channel due 
to its robustness against some known PLC problems. 
However, this scheme is greatly affected by the impulsive 
noise (IN) and often causes corruption with the transmitted 
bits. Different impulsive noise error correcting methods have 
been introduced and used to remove impulsive noise in 
OFDM systems. However, these techniques suffer some 
limitations and require much signal to noise ratio (SNR) 
power to operate. In this paper, an approach of designing an 
effective impulsive-noise error-correcting technique was 
introduced using three-known artificial neural network 
techniques (Levenberg-Marquardt, Scaled conjugate 
gradient, and Bayesian regularization). Findings suggest that 
both Bayesian regularization and Levenberg-Marquardt 
ANN techniques can be used to effectively remove the 
impulsive noise present in an OFDM channel and using the 
least SNR power.  
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1. INTRODUCTION 
Orthogonal frequency division multiplexer (OFDM) is 

a developed modulation technique that is recently used in 
powerline communication (PLC) due to its robustness 
against some known PLC challenges such as frequency-
selective fading, multipath and interference [1]. An OFDM 
system is a multicarrier communication technique that uses 
both inverse fast Fourier transform (IFFT) and fast Fourier 
transform (FFT) for modulation and demodulation 
respectively. Industrial application of OFDM includes 
field-programmable gate array (FGPA) that is commonly 
used for high performance computing, communication and 
broadcast [2].                 

Despite its merits, OFDM is still disturbed by 
some noise signals such as impulsive noise (IN) that 
spreads among its subcarriers during transmission. This 
impulsive noise imposes the risk of data corruption at the 
receiver end and increases when the energy present in the 
impulsive noise exceeds a certain threshold (background 
noise level) [3, 4]. Hence, the need for an impulsive-noise 
removal technique is essential in an OFDM system. The 
impulsive noise is categorized into three: periodic  

 
 
impulsive noise synchronous to the main frequency, 
asynchronous impulsive noise (AIN), and periodic 
impulsive noise asynchronous to the main frequency [5, 6]. 
The periodic impulsive noise synchronous with the mains 
is a cyclostationary noise that commonly exists in silicon-
controlled rectifiers (SCR) power supply and operates at 
certain frequency (e.g. 50 Hz or 100 Hz in European 
countries) [7, 8]. AIN is a form of noise that occurs rapidly 
due to ON and OFF of electrical devices while periodic 
impulsive noise asynchronous to the main frequency is a 
type of noise similar to the synchronous impulsive noise 
but operates at a frequency [8].  

Different error-correcting techniques have been 
proposed and used to remove impulsive noises from 
OFDM channel. However, most of these techniques suffer 
some limitations. For example, clipping and nulling 
(blanking) technique was used to remove impulsive noise 
[9]. However, this technique demands a good knowledge 
of the impulsive noise magnitudes and predicting a 
clipping threshold that only removes impulsive noise 
below the clipping threshold [10]. Similarly, iterative 
technique, an impulsive-noise correcting method that 
works with the difference between the impulsive noise (IN) 
and the received signal vector (r). Iterative technique 
requires a high number of iterations for performance 
improvement, time consuming, and does not eliminate the 
complete impulsive noises from the PLC channel [11]. 
Lastly, the use error correcting codes such as turbo, 
convolution coding and Reed-Solomon (RS) code and low 
parity check coding that exhibits a high performance in 
removing impulsive noise in PLC suffers different 
shortcomings [12]. For instance, convolution code 
performs poorly with BPSK modulator (a component in 
OFDM channel) while convolution codes are unsuitable 
for non-linear time invariant (NLTI) systems [13].  

The contribution of this paper is to introduce an 
innovative use of artificial neural network (ANN) for the 
mitigation of impulsive noise from an OFDM channel. 
Second contribution is a work done using three different 
ANN optimization techniques (Levenberg-Marquardt, 
scaled conjugate, and Bayesian ANN) to determine a more 
fitting ANN method that can be considered for impulsive 
noise mitigation in OFDM systems.  
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The structure of this paper is arranged as follows, 
section 2 will present a summary of the used ANN 
techniques. In section 3, a report of the experiment setup 
and method is provided. Section 4 will present the results, 
and section 5 will include the conclusions. 
 

II. ANN TECHNIQUES 
Artificial neural network (ANN) technique is a 

machine learning technique that is commonly used to solve 
some worldly (both linear and non-linear) problems due to 
its fast computation time and accuracy. ANN incorporates 
the use of activation functions (e.g. tansig function) for 
computation task and the interconnection of several hidden 
layers and neurons to link the inputs and outputs (targets) 
of the network together [14]. ANN can be classified into 
feedforward and the feedback neural network 
(backpropagation). Examples of feedforward neural 
networks include multilayer perceptron (MLP), 
probabilistic neural network, Adaline and Madaline neural 
network while examples of backpropagation neural 
networks include Hopfield network, bi-directional and 
associative memory (BAM) neural network [15, 16]. 
Several ANN techniques have been used for different 
applications e.g. prediction of weather information, 
optimization of power in solar energy systems, 
classification of data samples, etc. [17]. This paper will 
focus on three-known ANN training techniques 
(Levenberg-Marquardt, scaled conjugate gradient, and 
Bayesian regularization ANN algorithms). 

The Levenberg-Marquardt (LM) is a hybrid 
technique that combines the fast converging speed of 
Gauss-Newton algorithm and the stable capability of the 
steepest descent method for training process into a single 
algorithm [18]. The mathematical model of LM algorithm 
can be defined using equation (1) while the dual working 
operation of Levenberg-Marquardt algorithm is explained 
using equations (2) and (3), 

 
    (1) 

   (2) 

   (3) 
 
where µ is the combination coefficient, I is the identity 
matrix, J is the Jacobian matrix, JTJ is the Hessian matrix, 
g is the gradient vector, e is the error vector, α is the 
learning constant (step size), w is the weight vector and k 
is the index of iteration [19]. When µ is very small 
(approaching zero), the Levenberg-Marquardt switches 
from equation (1) to equation (2) known as Gauss-Newton 
algorithm. Similarly, when µ is very large, the descent 
method represented by equation (2) is used [20, 21]. 

The Bayesian regularization is another ANN 
algorithm introduced lately and have been used by research 
scholars to solve real-world problems. The Bayesian 

regularization helps to reduce noise in the training data of 
ANN and ensures that smoother network-response. The 
Bayesian algorithm helps to accommodate large weight 
vector in ANN by fine-tuning the used objective function 
and with the addition of a penalty term that comprises of 
squares of all network weights [22, 23]. 

The scaled conjugate is an algorithm commonly 
used to train networks that have a large number of weights 
due to the rapid training speed that the algorithm exhibit 
[24, 25, 26, 27]. 
 

III. SIMULATION MODEL 
To examine the feasibility of the proposed noise 

mitigation technique modelled using different ANN 
algorithm to identify the most suitable algorithm that can 
effectively remove the impulsive noise (IN) existing in the 
transmitted signal  in an OFDM channel, a case study 
was done with three different ANN techniques (Bayesian, 
Levenberg Marquardt, and Scaled cojugate gradient).  

A complete OFDM system that comprises of 
Bernoulli binary generator for generating the transmitted 
bit signals of 0 and 1 ( ), binary phase shift keying 
(BPSK) modulator, Inverse fast fourier transform (IFFT), 
FFT (fast fourier transform), BPSK demodulator, additive 
white Gaussian noise channel and randomly-corrupt 
impulsive-noise data of variance of 50% and probability of 
50% were added to the OFDM model to achieve the 
objective of the experiment. The random impulsive noise 
datasets were produced using equations (4-6), 

   (4) 

 where,       (5) 

 and      (6) 

 is the probability density distribution (PDF) of a 

noisy signal ,   expresses the 

Gaussian PDF,  is the mean,  is the variance with k 

-samples.  denotes the impulsive noise variance,  is 

the additive white Gaussian noise (AWGN).  =  

denotes the Gaussian-to-impulsive-noise power ratio. The 
parameter  is the density of impulses within a specific 
width and observation  period.  
 

Figure 2 displays the block diagram of a complete 
OFDM system modelled using ANN error-correcting 
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schemes. The ANN training was conducted using 
Bayesian-regularization, Levenberg-Marquardt, and 
Scaled-conjugate gradient algorithm. These supervised 
ANN controllers learn using 10,000 samples of signals  
and , where  is the transmitted signal (Tx) mixed with 
impulsive noise and AWGN, and -the impulsive noise 
are the input variables (u,v) (predictors) and signal  
(output signal from the IFFT/AWGN block) is the target. 
For simplicity, the complex-variable data   

 
were split into real and imaginary components and both the 
real and imaginary parts of signals ( ) were the ANN 

inputs ( ) while the real and imaginary 

component of signal  were used as targets.  The 
ANN channel is then applied just before the BPSK 
demodulation in order to mitigate the impulsive noise from 
the trasmitted data. 

 

 
Fig. 2: Complete OFDM channel Using ANN Techniques 

 
Figure 3 presents the amplitude level of the corrupted 
impulsive noise signal in the OFDM channel for 500 
seconds.  
 

 
Fig. 3: Impulsive signal Magnitude 

 

IV. EXPERIMENTAL RESULTS 
Figures (4) – (7) and Tables (1) - (2) present the 

graphical results and tabulated results of the used ANN 
error correcting techniques done using MATLAB 
simulation approach respectively. From Table I, it can be 
seen that Bayesian regularization technique exhibited the 
best training performance with the lowest mean square 
error (MSE is 6.1834e-11) while scaled conjugate gradient 
exhibited the worst performance (MSE is 2.7545e-2). 
However, Bayesian regularization takes a longer time to 
train as the training for 1000 epochs was completed in 7 
mins 20 seconds while Levenberg-Marquardt had the 
fastest training time (32 seconds).   

 
Table 1: Parameters for the three ANN algorithms 

 Bayesian 
Regularization 

Levenburg 
Marquardt 

Scaled 
Conjugate 
Gradint 

Hidden neurons 10 10 10 
Training MSE 6.1834e-11 5.6757e-10 2.7545e-2 
Validation MSE 0 5.7723e-10 2.8855e-2 

Testing MSE 6.9677e-11 6.9364e-10 2.6541e-2 
Traing Regression 9.9999e-1 9.9999e-1 9.7451e-1 
Validation 
Regression 

0 9.9999e-1 9.7348e-1 

Testing Regression 9.9999e-1 9.9999e-1 9.7519e-1 
Epoch 1000 1000 124 
Perfomance 6.18e-11 5.68e-10 0.0273 
Time 7mins 20secs 32secs 33secs 
Gradient 2.07e-6 1.27e-5 0.0135 

 
Figure 4 displays the bit error rate (BER) 

graphical results of a comparison done with Bayesian 
regularization ANN impulsive-noise error-correcting 
technique and conventional (uncorrected) method using an 
OFDM system that has been corrupted with both both 
AWGN and impulsive noise. From the obtained graphical 
results,  the high performance of the Bayesian 
regularization technique can be observed as it requires less 
than 10 dB power to achieve a BER of 10-4 whereas with 
an uncorrected OFDM channel requires a high SNR power. 

 

 
Fig 4: BER performanne of Bayesian Regularization algorithm 

 
Figure 5 shows the BER results of the OFDM 

chanel (mixed with AWGN and IN) corrected using 
levenberg marquardt error correcting algorithm compared 
with the conventional uncorrected OFDM system. From 
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the obtained results, the high impulsive-noise mitigating 
capability of the Levenberg-Marquardt can be seen as it 
requires less than 10 dB to achieve a BER of 10-4, while the 
uncorrected corrupted OFDM channel consumes more 
SNR power. 

 

 
Fig 5: BER performance of Levenberg-Marquardt algorithm 

  
Figure 6 presents the bit error rate (BER) 

performance of the OFDM channel (mixed with impulsive 
noise and AWGN) incorporated using scaled conjugate 
gradient ANN algorithm compared with the uncorrected 
OFDM system. From the obtained results, it can be seen 
that using scaled conjugate method requires approximately 
10 dB SNR power to achieve a BER of 10-4.  

 

 
Fig 6: BER performance of scaled Conjugate Gradient 

 
Figure 7 shows a comparison of the BER 

performances of the above-mentioned ANN algorithms 
(Levenberg, Bayesian, and scaled-conjugate) results and 
the conventional un-corrected OFDM results. From the 
obtained results, it can be seen that both Levenberg-
Marquardt and Bayesian regularization requires the lowest 
SNR power for the mitigation of impulsive noise in a 
corrupt OFDM channel. 

 

 
Fig. 7: Comparion of the BER performances of the Bayesian corrected 

OFDM, Levenberg-Maquardt corrected OFDM, scaled-conjugate 
corrected OFDM and the uncorrected OFDM 

Table 2 displays the tabulated bit error rate (BER) results 
under different SNR (signal-to-noise ratio) power in 
decibels. T is the theorectical results for OFDM channel 
mixed with AWGN only. SC is the scaled conjugate error 
correcting algorithm, BR is the Bayesian regularization, 
LM is the Levenberg-Marquardt, and CO is the convential 
uncorrected results for OFDM channel that was corrupted 
with both  impulsive noise and AWGN respectively.  
 

Table 2: BER results for the theoretical, scaled-conjugate, Bayesian 
regularization, Levenberg-Marquart algorithm, and conventional 

uncorrected OFDM channel under different SNR power 
SNR T 

BER 
SC 

BER 
BR 

BER 
LM 
BER 

CO 
BER 

0 0.0786 0.067110 0.06579 0.06579 0.2577 
3 0.0228 0.038460 0.01623 0.01623 0.2278 
6 0.0023 0.003177 0.00239 0.00239 0.2119 
9 3.36e-5 2.500e-4 5.177e-5 5.177e-5 0.1658 
12 9.00e-9 1.918e-5 - - 0.1460 
15 9.1e-16 - - - 0.1220 
18 1.4e-29 - - - 0.1063 
21 5.3e-57 - - - 0.08091 
24 1e-111 - - - 0.0540 
27 2e-220 - - - 0.03185 
30 - - - - 0.01768 
33 - - - - 0.006662 
36 - - - - 0.001662 

 
From the obtained results (see Fig. 4-7 and Tables 

1-2), it was observed that both Bayesian and Levenberg-
Marquardt exhibited an effective impulsive noise error 
correcting capability while scaled conjugate algorithm 
displayed the lowest impulsive noise error-correcting 
performance.  
 

V. CONCLUSIONS 
This paper presents an innovative use of 

Levenberg-Marquardt and Bayesian regularization ANN 
machine learning techniques for the improved mitigation 
of impulsive noise in an Orthogonal Frequency Division 
Multiplexer (OFDM) channel. To validate the efficiency of 
the above-mentioned ANN techniques (Levenberg-
Marquadt and Bayesian regularization), an OFDM channel 
that lacks an error-correcting scheme simulation results 
was compared with Levenberg-Marquardt results, 
Bayesian regularization results and with the results of 
another popular ANN technique (scaled conjugate) in order 
to validate the importance of impulsive noise error-
correcting scheme and thus evaluate the effectiveness of 
the used error-correcting methods. Findings suggest that 
both Levenberg-Marquardt and Bayesian regularization 
exhibit better performance in removing the impulsive noise 
in the OFDM channel and required minimal signal-to-noise 
(SNR) power. 
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