4,122 research outputs found

    Can Musical Emotion Be Quantified With Neural Jitter Or Shimmer? A Novel EEG Based Study With Hindustani Classical Music

    Full text link
    The term jitter and shimmer has long been used in the domain of speech and acoustic signal analysis as a parameter for speaker identification and other prosodic features. In this study, we look forward to use the same parameters in neural domain to identify and categorize emotional cues in different musical clips. For this, we chose two ragas of Hindustani music which are conventionally known to portray contrast emotions and EEG study was conducted on 5 participants who were made to listen to 3 min clip of these two ragas with sufficient resting period in between. The neural jitter and shimmer components were evaluated for each experimental condition. The results reveal interesting information regarding domain specific arousal of human brain in response to musical stimuli and also regarding trait characteristics of an individual. This novel study can have far reaching conclusions when it comes to modeling of emotional appraisal. The results and implications are discussed in detail.Comment: 6 pages, 12 figures, Presented in 4th International Conference on Signal Processing and Integrated Networks (SPIN) 201

    Emotional Brain-Computer Interfaces

    Get PDF
    Research in Brain-computer interface (BCI) has significantly increased during the last few years. In addition to their initial role as assisting devices for the physically challenged, BCIs are now proposed for a wider range of applications. As in any HCI application, BCIs can also benefit from adapting their operation to the emotional state of the user. BCIs have the advantage of having access to brain activity which can provide signicant insight into the user's emotional state. This information can be utilized in two manners. 1) Knowledge of the inuence of the emotional state on brain activity patterns can allow the BCI to adapt its recognition algorithms, so that the intention of the user is still correctly interpreted in spite of signal deviations induced by the subject's emotional state. 2) The ability to recognize emotions can be used in BCIs to provide the user with more natural ways of controlling the BCI through affective modulation. Thus, controlling a BCI by recollecting a pleasant memory can be possible and can potentially lead to higher information transfer rates.\ud These two approaches of emotion utilization in BCI are elaborated in detail in this paper in the framework of noninvasive EEG based BCIs

    Optimal set of EEG features for emotional state classification and trajectory visualization in Parkinson's disease

    Get PDF
    In addition to classic motor signs and symptoms, individuals with Parkinson's disease (PD) are characterized by emotional deficits. Ongoing brain activity can be recorded by electroencephalograph (EEG) to discover the links between emotional states and brain activity. This study utilized machine-learning algorithms to categorize emotional states in PD patients compared with healthy controls (HC) using EEG. Twenty non-demented PD patients and 20 healthy age-, gender-, and education level-matched controls viewed happiness, sadness, fear, anger, surprise, and disgust emotional stimuli while fourteen-channel EEG was being recorded. Multimodal stimulus (combination of audio and visual) was used to evoke the emotions. To classify the EEG-based emotional states and visualize the changes of emotional states over time, this paper compares four kinds of EEG features for emotional state classification and proposes an approach to track the trajectory of emotion changes with manifold learning. From the experimental results using our EEG data set, we found that (a) bispectrum feature is superior to other three kinds of features, namely power spectrum, wavelet packet and nonlinear dynamical analysis; (b) higher frequency bands (alpha, beta and gamma) play a more important role in emotion activities than lower frequency bands (delta and theta) in both groups and; (c) the trajectory of emotion changes can be visualized by reducing subject-independent features with manifold learning. This provides a promising way of implementing visualization of patient's emotional state in real time and leads to a practical system for noninvasive assessment of the emotional impairments associated with neurological disorders

    The brain's response to pleasant touch: an EEG investigation of tactile caressing

    Get PDF
    Somatosensation as a proximal sense can have a strong impact on our attitude toward physical objects and other human beings. However, relatively little is known about how hedonic valence of touch is processed at the cortical level. Here we investigated the electrophysiological correlates of affective tactile sensation during caressing of the right forearm with pleasant and unpleasant textile fabrics. We show dissociation between more physically driven differential brain responses to the different fabrics in early somatosensory cortex - the well-known mu-suppression (10-20 Hz) - and a beta-band response (25-30 Hz) in presumably higher-order somatosensory areas in the right hemisphere that correlated well with the subjective valence of tactile caressing. Importantly, when using single trial classification techniques, beta-power significantly distinguished between pleasant and unpleasant stimulation on a single trial basis with high accuracy. Our results therefore suggest a dissociation of the sensory and affective aspects of touch in the somatosensory system and may provide features that may be used for single trial decoding of affective mental states from simple electroencephalographic measurements

    A real time classification algorithm for EEG-based BCI driven by self-induced emotions

    Get PDF
    Background and objective: The aim of this paper is to provide an efficient, parametric, general, and completely automatic real time classification method of electroencephalography (EEG) signals obtained from self-induced emotions. The particular characteristics of the considered low-amplitude signals (a self-induced emotion produces a signal whose amplitude is about 15% of a really experienced emotion) require exploring and adapting strategies like the Wavelet Transform, the Principal Component Analysis (PCA) and the Support Vector Machine (SVM) for signal processing, analysis and classification. Moreover, the method is thought to be used in a multi-emotions based Brain Computer Interface (BCI) and, for this reason, an ad hoc shrewdness is assumed. Method: The peculiarity of the brain activation requires ad-hoc signal processing by wavelet decomposition, and the definition of a set of features for signal characterization in order to discriminate different self-induced emotions. The proposed method is a two stages algorithm, completely parameterized, aiming at a multi-class classification and may be considered in the framework of machine learning. The first stage, the calibration, is off-line and is devoted at the signal processing, the determination of the features and at the training of a classifier. The second stage, the real-time one, is the test on new data. The PCA theory is applied to avoid redundancy in the set of features whereas the classification of the selected features, and therefore of the signals, is obtained by the SVM. Results: Some experimental tests have been conducted on EEG signals proposing a binary BCI, based on the self-induced disgust produced by remembering an unpleasant odor. Since in literature it has been shown that this emotion mainly involves the right hemisphere and in particular the T8 channel, the classification procedure is tested by using just T8, though the average accuracy is calculated and reported also for the whole set of the measured channels. Conclusions: The obtained classification results are encouraging with percentage of success that is, in the average for the whole set of the examined subjects, above 90%. An ongoing work is the application of the proposed procedure to map a large set of emotions with EEG and to establish the EEG headset with the minimal number of channels to allow the recognition of a significant range of emotions both in the field of affective computing and in the development of auxiliary communication tools for subjects affected by severe disabilities
    corecore