30,920 research outputs found

    Cognitive transfer of spatial awareness states from immersive virtual environments to reality.

    Get PDF
    An individual's prior experience will influence how new visual information in a scene is perceived and remembered. Accuracy of memory performance per se is an imperfect reflection of the cognitive activity (awareness states) that underlies performance in memory tasks. The aim of this research is to investigate the effect of varied visual fidelity of training environments on the transfer of training to the real-world after exposure to immersive simulations representing a real-world scene. A between groups experiment was carried out to explore the effect of rendering quality on measurements of location-based recognition memory for objects and associated states of awareness. The immersive simulation, consisted of one room that was either rendered flat-shaded or using radiosity rendering. The simulation was displayed on a stereo head-tracked Head Mounted Display. Post exposure to the synthetic simulation, participants completed a memory recognition task conducted in a real-world scene by physically arranging objects in their physical form in a real world room. Participants also reported one of four states of awareness following object recognition. They were given several options of awareness states that reflected the level of visual mental imagery involved during retrieval, the familiarity of the recollection and related guesses. The scene incorporated objects that 'fitted' into the specific context of the real-world scene, referred to as consistent objects, and objects which were not related to the specific context of the real-world scene, referred to as inconsistent objects. A follow-up study was conducted a week after the initial test. Interestingly, results revealed a higher proportion of correct object recognition associated with mental imagery when participants were exposed to low fidelity flat-shaded training scenes rather than the radiosity rendered ones. Memory psychology indicates that awareness states based on visual imagery require stronger attentional processing in the first instance than those based on familiarity. A tentative claim would therefore be that those immersive environments that are distinctive because of their variation from 'real', such as flat-shaded environments, recruit stronger attentional resources. This additional attentional processing may bring about a change in participants' subjective experiences of 'remembering' when they later transfer the training from that environment into a real-world situation

    Fidelity metrics for virtual environment simulations based on spatial memory awareness states

    Get PDF
    This paper describes a methodology based on human judgments of memory awareness states for assessing the simulation fidelity of a virtual environment (VE) in relation to its real scene counterpart. To demonstrate the distinction between task performance-based approaches and additional human evaluation of cognitive awareness states, a photorealistic VE was created. Resulting scenes displayed on a headmounted display (HMD) with or without head tracking and desktop monitor were then compared to the real-world task situation they represented, investigating spatial memory after exposure. Participants described how they completed their spatial recollections by selecting one of four choices of awareness states after retrieval in an initial test and a retention test a week after exposure to the environment. These reflected the level of visual mental imagery involved during retrieval, the familiarity of the recollection and also included guesses, even if informed. Experimental results revealed variations in the distribution of participants’ awareness states across conditions while, in certain cases, task performance failed to reveal any. Experimental conditions that incorporated head tracking were not associated with visually induced recollections. Generally, simulation of task performance does not necessarily lead to simulation of the awareness states involved when completing a memory task. The general premise of this research focuses on how tasks are achieved, rather than only on what is achieved. The extent to which judgments of human memory recall, memory awareness states, and presence in the physical and VE are similar provides a fidelity metric of the simulation in question

    Training high performance skills using above real-time training

    Get PDF
    The Above Real-Time Training (ARTT) concept is a unique approach to training high performance skills. ARTT refers to a training paradigm that places the operator in a simulated environment that functions at faster than normal time. Such a training paradigm represents a departure from the intuitive, but not often supported, feeling that the best practice is determined by the training environment with the highest fidelity. This approach is hypothesized to provide greater 'transfer value' per simulation trial, by incorporating training techniques and instructional features into the simulator. These techniques allow individuals to acquire these critical skills faster and with greater retention. ARTT also allows an individual trained in 'fast time' to operate at what appears to be a more confident state, when the same task is performed in a real-time environment. Two related experiments are discussed. The findings appear to be consistent with previous findings that show positive effects of task variation during training. Moreover, ARTT has merit in improving or maintaining transfer with sharp reductions in training time. There are indications that the effectiveness of ARTT varies as a function of task content and possibly task difficulty. Other implications for ARTT are discussed along with future research directions

    Part 1: Executive summary

    Get PDF
    A workshop was convened by the FAA and NASA for the purpose of providing a forum at which leading designers, manufacturers, and users of helicopter simulators could initiate and participate in a development process that would facilitate the formulation of qualification standards by the regulatory agency. Formal papers were presented, special topics were discussed in breakout sessions, and a draft FAA advisory circular defining specifications for helicopter simulators was presented and discussed. A working group of volunteers was formed to work with the National Simulator Program Office to develop a final version of the circular. The workshop attracted 90 individuals from a constituency of simulator manufacturers, training organizations, the military, civil regulators, research scientists, and five foreign countries. A great amount of information was generated and recorded verbatim. This information is presented herein within the limits of accuracy inherent in recording, transcribing, and editing spoken technical material

    NASA/FAA helicopter simulator workshop

    Get PDF
    A workshop was convened by the FAA and NASA for the purpose of providing a forum at which leading designers, manufacturers, and users of helicopter simulators could initiate and participate in a development process that would facilitate the formulation of qualification standards by the regulatory agency. Formal papers were presented, special topics were discussed in breakout sessions, and a draft FAA advisory circular defining specifications for helicopter simulators was presented and discussed. A working group of volunteers was formed to work with the National Simulator Program Office to develop a final version of the circular. The workshop attracted 90 individuals from a constituency of simulator manufacturers, training organizations, the military, civil regulators, research scientists, and five foreign countries

    A Framework for Delivering Contextually Appropriate Opportunities for Warfighter Practice

    Get PDF
    Computer-based modeling and simulation has been a training staple in the military domain since the first aircraft simulators were adopted. More recently, virtual environments based on modeling, simulation and serious games, have introduced relatively low-cost, yet high value additions to the learning environment. As these virtual environments have proliferated, many researchers have investigated the relationship between theoretical foundations of learning, learner development and content delivery, and applied their findings in an attempt to bolster learning, yet performance deficiencies continue to exist. This study asserts that performance deficiencies exist in part because of insufficient contextually appropriate opportunities to practice. This work is multi-disciplinary in nature. Its foundation is modeling and simulation engineering; the use of technology to deliver training. Educational psychology and human factors concepts explain the theoretical basis for modeling and simulation as an effective training delivery agent. The study\u27s thesis is that a framework for delivering contextually appropriate opportunities for warfighter practice can be applied to discover whether modeling, simulation and game-based virtual environments have the potential to improve individual performance for learners beyond the Novice Stage (e.g., Competent Stage) of skills acquisition. Furthermore, this conceptually appropriate practice (CAP) framework can be used to assess the potential of low fidelity virtual environments to provide targeted practice and to improve individual performance, not only during training in high-fidelity virtual environments (near transfer) but also in the live environment (far transfer). To evaluate the thesis, this study investigates the relationship of technology and learning science, and features an empirical evaluation of training effectiveness afforded by delivering additional training repetitions using both low-fidelity virtual environment simulator systems and high-fidelity aircraft simulators

    An evaluation of NASA's program in human factors research: Aircrew-vehicle system interaction

    Get PDF
    Research in human factors in the aircraft cockpit and a proposed program augmentation were reviewed. The dramatic growth of microprocessor technology makes it entirely feasible to automate increasingly more functions in the aircraft cockpit; the promise of improved vehicle performance, efficiency, and safety through automation makes highly automated flight inevitable. An organized data base and validated methodology for predicting the effects of automation on human performance and thus on safety are lacking and without such a data base and validated methodology for analyzing human performance, increased automation may introduce new risks. Efforts should be concentrated on developing methods and techniques for analyzing man machine interactions, including human workload and prediction of performance

    Three levels of metric for evaluating wayfinding

    Get PDF
    Three levels of virtual environment (VE) metric are proposed, based on: (1) users’ task performance (time taken, distance traveled and number of errors made), (2) physical behavior (locomotion, looking around, and time and error classification), and (3) decision making (i.e., cognitive) rationale (think aloud, interview and questionnaire). Examples of the use of these metrics are drawn from a detailed review of research into VE wayfinding. A case study from research into the fidelity that is required for efficient VE wayfinding is presented, showing the unsuitability in some circumstances of common metrics of task performance such as time and distance, and the benefits to be gained by making fine-grained analyses of users’ behavior. Taken as a whole, the article highlights the range of techniques that have been successfully used to evaluate wayfinding and explains in detail how some of these techniques may be applied

    Operator/equipment Performance Measures: Results Of Literature Search

    Get PDF
    Literature review focuses on topics concerning perception, acceptable transmission delay, fidelity, and visual systems, including resolution, field of view, and target-background contrast
    corecore