443 research outputs found

    Neuromuscular Reflex Control for Prostheses and Exoskeletons

    Get PDF
    Recent powered lower-limb prosthetic and orthotic (P/O) devices aim to restore legged mobility for persons with an amputation or spinal cord injury. Though various control strategies have been proposed for these devices, specifically finite-state impedance controllers, natural gait mechanics are not usually achieved. The goal of this project was to invent a biologically-inspired controller for powered P/O devices. We hypothesize that a more muscle-like actuation system, including spinal reflexes and vestibular feedback, can achieve able-bodied walking and also respond to outside perturbations. The outputs of the Virtual Muscle Reflex (VMR) controller are joint torque commands, sent to the electric motors of a P/O device. We identified the controller parameters through optimizations using human experimental data of perturbed walking, in which we minimized the error between the torque produced by our controller and the standard torque trajectories observed in the able-bodied experiments. In simulations, we then compare the VMR controller to a four-phase impedance controller. For both controllers the coefficient of determination R^2 and root-mean-square (RMS) error were calculated as a function of the gait cycle. When simulating the hip, knee, and ankle joints, the RMS error and R^2 across all joints and all trials is 15.65 Nm and 0.28 for the impedance controller, respectively, and for the VMR controller, these values are 15.15 Nm and 0.29, respectively. With similar performance, it was concluded that the VMR controller can reproduce characteristics of human walking in response to perturbations as effectively as an impedance controller. We then implemented the VMR controller on the Parker Hannifin powered exoskeleton and performed standard isokinetic and isometric knee rehabilitation exercises to observe the behavior of the virtual muscle model. In the isometric results, RMS error between the measured and commanded extension and flexion torques are 3.28 Nm and 1.25 Nm, respectively. In the isokinetic trials, we receive RMS error between the measured and commanded extension and flexion torques of 0.73 Nm and 0.24 Nm. Since the onboard virtual muscles demonstrate similar muscle force-length and force-velocity relationships observed in humans, we conclude the model is capable of the same stabilizing capabilities as observed in an impedance controller

    Neuromuscular Reflex Control for Prostheses and Exoskeletons

    Get PDF
    Recent powered lower-limb prosthetic and orthotic (P/O) devices aim to restore legged mobility for persons with an amputation or spinal cord injury. Though various control strategies have been proposed for these devices, specifically finite-state impedance controllers, natural gait mechanics are not usually achieved. The goal of this project was to invent a biologically-inspired controller for powered P/O devices. We hypothesize that a more muscle-like actuation system, including spinal reflexes and vestibular feedback, can achieve able-bodied walking and also respond to outside perturbations. The outputs of the Virtual Muscle Reflex (VMR) controller are joint torque commands, sent to the electric motors of a P/O device. We identified the controller parameters through optimizations using human experimental data of perturbed walking, in which we minimized the error between the torque produced by our controller and the standard torque trajectories observed in the able-bodied experiments. In simulations, we then compare the VMR controller to a four-phase impedance controller. For both controllers the coefficient of determination R^2 and root-mean-square (RMS) error were calculated as a function of the gait cycle. When simulating the hip, knee, and ankle joints, the RMS error and R^2 across all joints and all trials is 15.65 Nm and 0.28 for the impedance controller, respectively, and for the VMR controller, these values are 15.15 Nm and 0.29, respectively. With similar performance, it was concluded that the VMR controller can reproduce characteristics of human walking in response to perturbations as effectively as an impedance controller. We then implemented the VMR controller on the Parker Hannifin powered exoskeleton and performed standard isokinetic and isometric knee rehabilitation exercises to observe the behavior of the virtual muscle model. In the isometric results, RMS error between the measured and commanded extension and flexion torques are 3.28 Nm and 1.25 Nm, respectively. In the isokinetic trials, we receive RMS error between the measured and commanded extension and flexion torques of 0.73 Nm and 0.24 Nm. Since the onboard virtual muscles demonstrate similar muscle force-length and force-velocity relationships observed in humans, we conclude the model is capable of the same stabilizing capabilities as observed in an impedance controller

    Neuromuscular Reflex Control for Prostheses and Exoskeletons

    Get PDF
    Recent powered lower-limb prosthetic and orthotic (P/O) devices aim to restore legged mobility for persons with an amputation or spinal cord injury. Though various control strategies have been proposed for these devices, specifically finite-state impedance controllers, natural gait mechanics are not usually achieved. The goal of this project was to invent a biologically-inspired controller for powered P/O devices. We hypothesize that a more muscle-like actuation system, including spinal reflexes and vestibular feedback, can achieve able-bodied walking and also respond to outside perturbations. The outputs of the Virtual Muscle Reflex (VMR) controller are joint torque commands, sent to the electric motors of a P/O device. We identified the controller parameters through optimizations using human experimental data of perturbed walking, in which we minimized the error between the torque produced by our controller and the standard torque trajectories observed in the able-bodied experiments. In simulations, we then compare the VMR controller to a four-phase impedance controller. For both controllers the coefficient of determination R^2 and root-mean-square (RMS) error were calculated as a function of the gait cycle. When simulating the hip, knee, and ankle joints, the RMS error and R^2 across all joints and all trials is 15.65 Nm and 0.28 for the impedance controller, respectively, and for the VMR controller, these values are 15.15 Nm and 0.29, respectively. With similar performance, it was concluded that the VMR controller can reproduce characteristics of human walking in response to perturbations as effectively as an impedance controller. We then implemented the VMR controller on the Parker Hannifin powered exoskeleton and performed standard isokinetic and isometric knee rehabilitation exercises to observe the behavior of the virtual muscle model. In the isometric results, RMS error between the measured and commanded extension and flexion torques are 3.28 Nm and 1.25 Nm, respectively. In the isokinetic trials, we receive RMS error between the measured and commanded extension and flexion torques of 0.73 Nm and 0.24 Nm. Since the onboard virtual muscles demonstrate similar muscle force-length and force-velocity relationships observed in humans, we conclude the model is capable of the same stabilizing capabilities as observed in an impedance controller

    EMG Feedback for Enhanced Control of Myoelectric Hand Prostheses:Towards a More Natural Control Interface

    Get PDF

    Discrete vibro-tactile feedback prevents object slippage in hand prostheses more intuitively than other modalities

    Get PDF
    In the case of a hand amputation, the affected can use myoelectric prostheses to substitute the missing limb and regain motor functionality. Unfortunately, these prostheses do not restore sensory feedback, thus users are forced to rely on vision to avoid object slippage. This is cognitively taxing, as it requires continuous attention to the task. Thus, providing functionally effective sensory feedback is pivotal to reduce the occurrence of slip events and reduce the users’ cognitive burden. However, only a few studies investigated which kind of feedback is the most effective for this purpose, mostly using unrealistic experimental scenarios. Here we attempt a more realistic simulation of involuntary hand opening and subsequent recovery of a stable grasp of the slipping object using a robotic hand operated by the subjects through a standard myoelectric control interface. We compared three stimulation modalities (vision, continuous grip force feedback and discrete slip feedback) and found that the discrete feedback allowed subjects to have higher success rates (close to 100%) in terms of objects recovered from slippage, basically requiring no learning. These results suggest that this simple yet effective feedback can be used to reduce grasp failures in prosthetic users, increasing their confidence in the device

    EMG feedback outperforms force feedback in the presence of prosthesis control disturbance

    Get PDF
    Closing the prosthesis control loop by providing artificial somatosensory feedback can improve utility and user experience. Additionally, closed-loop control should be more robust with respect to disturbance, but this might depend on the type of feedback provided. Thus, the present study investigates and compares the performance of EMG and force feedback in the presence of control disturbances. Twenty able-bodied subjects and one transradial amputee performed delicate and power grasps with a prosthesis in a functional task, while the control signal gain was temporarily increased (high-gain disturbance) or decreased (low-gain disturbance) without their knowledge. Three outcome measures were considered: the percentage of trials successful in the first attempt (reaction to disturbance), the average number of attempts in trials where the wrong force was initially applied (adaptation to disturbance), and the average completion time of the last attempt in every trial. EMG feedback was shown to offer significantly better performance compared to force feedback during power grasping in terms of reaction to disturbance and completion time. During power grasping with high-gain disturbance, the median first-attempt success rate was significantly higher with EMG feedback (73.3%) compared to that achieved with force feedback (60%). Moreover, the median completion time for power grasps with low-gain disturbance was significantly longer with force feedback than with EMG feedback (3.64 against 2.48 s, an increase of 32%). Contrary to our expectations, there was no significant difference between feedback types with regards to adaptation to disturbances and the two feedback types performed similarly in delicate grasps. The results indicated that EMG feedback displayed better performance than force feedback in the presence of control disturbances, further demonstrating the potential of this approach to provide a reliable prosthesis-user interaction

    Continuous Proportional Myoelectric Control of an Experimental Powered Lower Limb Prosthesis During Walking Using Residual Muscles.

    Full text link
    Current robotic lower limb prostheses rely on intrinsic sensing and finite state machines to control ankle mechanics during walking. State-based controllers are suitable for stereotypical cyclic locomotor tasks (e.g. walking on level ground) where joint mechanics are well defined at specific gait phases (i.e. states) and state transitions are easily detected. However, state-based controllers are not ideal for non-stereotypical acyclic tasks (e.g. freestyle dancing) where joint mechanics cannot be predefined and transitions are unpredictable. An alternative to state-based control is to utilize the amputee's nervous system for myoelectric control. A robotic lower limb prosthesis that uses continuous proportional myoelectric control would allow the amputee to adapt their ankle mechanics freely. One potential source for myoelectric control is the amputee’s residual muscles. I conducted four studies to examine the feasibility of using residual muscles for continuous myoelectric control during walking. In my first study, I demonstrated that it is possible to record residual electromyography from amputees during walking that are viable for continuous myoelectric control. My results showed that the stride-to-stride variability of residual and intact muscle activation patterns was similar. However, residual muscle activation patterns were significantly different across amputee subjects and significantly different than corresponding muscles in intact subjects. In my second study, I built and tested an experimental powered transtibial prosthesis and demonstrated that an amputee subject was able to walk using continuous proportional myoelectric control to alter prosthetic ankle mechanics. In my third study, I showed that five amputee subjects were able to adapt their residual muscles to walk using continuous proportional myoelectric control. With visual feedback of their control signal, amputees were able to generate higher peak ankle power walking with the experimental powered prosthesis compared to their prescribed prosthesis. In my fourth study, I conducted a user experience study and found that despite challenges with the device user interface, walking with continuous proportional myoelectric control gave amputees a sense of empowerment and embodiment. The results of my studies demonstrated the advantages and disadvantages of using continuous proportional myoelectric control for a powered transtibial prosthesis and suggest how next generation prostheses can build upon these findings.PHDBiomedical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/110412/1/shuangz_1.pd

    Investigating motor skill in closed-loop myoelectric hand prostheses:Through speed-accuracy trade-offs

    Get PDF
    • …
    corecore