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ENGLISH SUMMARY 

Myoelectric hand prostheses aim to restore lost functionalities and improve 
the quality of life for individuals with upper-limb differences. User-prosthesis 
interfaces play a vital role in this technology. The most sophisticated 
interfaces translate user intentions into prosthesis movements and provide 
feedback on the prosthesis state, enabling closed-loop bidirectional 
interactions. Acquiring skilled prosthesis use involves learning how to 
activate residual muscles effectively and is determined by the interfaces 
used. Therefore, evaluating and monitoring user skill, and designing 
interfaces to facilitate it, is critical to the pursuit of a functional restoration of 
the lost hand. 

Despite the growing efforts in designing closed-loop interfaces, evaluating 
how they facilitate the acquisition of skilled prosthesis usage and, moreover, 
how different interfaces compare in this respect remains unclear. While 
previous studies investigated learning effects and the underlying control 
processes in user-prosthesis interaction, they have either explored a subset 
of what constitutes prosthesis skill or used specialized experimental setups 
that may not be widely accessible. Specifically, skilled behavior is 
characterized by accurately and precisely executing movements, even at 
faster speeds – an aspect that has so far not been investigated.  

In this thesis, we leveraged the phenomenon of speed-accuracy tradeoffs 
(SAF) – the scientific equivalent of ‘haste makes waste’ – and developed an 
experimental framework to evaluate and understand how two different 
closed-loop user-prosthesis interfaces affect user skill in the context of 
prosthesis grasp-force control. We investigated how speed accuracy 
requirements at the level of task influenced participants’ control policies, how 
the SAF afforded by each interface differed and how it evolved across days. 
Towards this end, we measured how the accuracy of force control varied 
with execution speeds and proposed novel behavioral outcomes that 
analyze the control policies of users and measure how variable and smooth 
the user-generated commands were.  

Notably, by characterizing the interfaces across a range of speeds and 
accuracies, we found that while interfaces could offer asymptotically similar 
performance (i.e., at the fastest speeds and highest accuracies), the 
tradeoffs they enable could be significantly different. Therefore, when 
evaluating competing interfaces, measuring the SAF provides a better 
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characterization of the interfaces than current methods. Further, we 
validated the utility and relevance of analyzing user-generated myoelectric 
commands to infer and monitor behavioral markers of skill. Finally, we 
developed parametric models of the SAF and proposed model-based 
methods to monitor user skill.  

Taken together, we have developed an experimental framework that can be 
used to determine the performance characteristics afforded by different 
interfaces, understand user behavior, and rigorously monitor user skill. We 
believe that it is a valuable addition to existing methods that enable us to 
carefully investigate motor skill in myoelectric hand prosthesis and develop 
interfaces and learning protocols that optimally facilitate it. 
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DANSK RESUME 

Undersøgelse af motoriske færdigheder i tovejs myoelektriske håndproteser 
Gennem afvejning af hastighed og nøjagtighed 

Myoelektriske håndproteser har til formål at genskabe tabte funktioner og 
forbedre livskvaliteten for personer med handicap i overekstremiteterne. 
Bruger-protese-grænseflader spiller en afgørende rolle i denne teknologi. De 
mest sofistikerede interfaces oversætter brugerens intentioner til protesens 
bevægelser og giver feedback om protesens tilstand, hvilket muliggør 
closed-loop tovejsinteraktioner. For at blive dygtig til at bruge protesen skal 
man lære at aktivere de resterende muskler effektivt, og det afhænger af de 
interfaces, der bruges. Derfor er det vigtigt at evaluere og overvåge 
brugerens færdigheder og designe grænseflader, der gør det lettere, hvis 
man vil genskabe den mistede hånds funktion. 

På trods af den voksende indsats for at designe closed-loop interfaces, er 
det stadig uklart, hvordan de letter tilegnelsen af færdigheder i protesebrug, 
og hvordan forskellige interfaces sammenlignes i denne henseende. Mens 
tidligere studier har undersøgt læringseffekter og de underliggende 
kontrolprocesser i interaktionen mellem bruger og protese, har de enten 
udforsket en delmængde af, hvad der udgør protesekompetence, eller brugt 
specialiserede forsøgsopstillinger, som måske ikke er bredt tilgængelige. 
Specifikt er dygtig adfærd kendetegnet ved nøjagtig og præcis udførelse af 
bevægelser, selv ved hurtigere hastigheder - et aspekt, der indtil videre ikke 
er blevet undersøgt.  

I denne afhandling har vi udnyttet fænomenet speed-accuracy tradeoffs 
(SAF) - den videnskabelige ækvivalent til "hastværk gør mester" - og udviklet 
en eksperimentel ramme til at evaluere og forstå, hvordan to forskellige 
closed-loop bruger-protese-grænseflader påvirker brugerens færdigheder i 
forbindelse med protesens grebskraftkontrol. Vi undersøgte, hvordan den 
SAF, som hvert interface gav, var forskellig, og hvordan den udviklede sig 
over flere dage. Til det formål målte vi, hvordan nøjagtigheden af 
kraftkontrollen varierede med udførelseshastigheden, og foreslog nye 
adfærdsmæssige resultater, der analyserer brugernes kontrolpolitikker og 
måler, hvor variable og jævne de brugergenererede kommandoer var.  

Ved at karakterisere grænsefladerne på tværs af en række hastigheder og 
nøjagtigheder fandt vi, at selvom grænsefladerne kunne tilbyde asymptotisk 
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lignende ydeevne (dvs. ved de hurtigste hastigheder og højeste 
nøjagtigheder), kunne de afvejninger, de muliggør, være væsentligt 
forskellige. Når man evaluerer konkurrerende grænseflader, giver måling af 
SAF derfor en bedre karakterisering af grænsefladerne end de nuværende 
metoder. Desuden validerede vi nytten og relevansen af at analysere 
brugergenererede myoelektriske kommandoer for at udlede og overvåge 
adfærdsmæssige markører for færdigheder. Endelig har vi udviklet 
parametriske modeller af SAF og foreslået en modelbaseret metode til at 
monitorere brugerfærdigheder.  

Samlet set har vi udviklet en eksperimentel ramme, der kan bruges til at 
bestemme de præstationsegenskaber, som forskellige grænseflader giver, 
forstå brugeradfærd og nøje overvåge brugerfærdigheder. Vi mener, at det 
er en værdifuld tilføjelse til eksisterende metoder, der gør os i stand til 
omhyggeligt at undersøge motoriske færdigheder i myoelektriske 
håndproteser og udvikle grænseflader og rehabiliteringsprotokoller, der letter 
det optimalt. 
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CHAPTER 1. INTRODUCTION 

s is customary in the field of bionic-hand research, we begin this 
thesis in awe of the human hand. With a sophisticated anatomy and a 
complex sensorimotor system that allow its numerous muscles to 

work in harmony, the human hands produce precise and intricate 
movements. This enables us to perform actions ranging from seemingly 
simple ones, such as picking up a cup of coffee, to those reserved for 
virtuoso violinists.  

The loss of a hand is, therefore, debilitating, restricting one’s ability to 
perform daily activities and engage in various social interactions. As a result, 
individuals with upper-limb differences face significant challenges that affect 
their quality of life and psychosocial well-being and require extensive 
physical rehabilitation and care.  

Throughout history, people have sought ways to compensate for this loss by 
developing prosthetic attachments ranging from purely cosmetic to hook-like 
gripping devices that are body-powered and highly advanced bionic hands 
(Thurston, 2007; Zuo & Olson, 2014). This pursuit of a bionic hand continues 
to captivate and challenge scientists, engineers, and designers alike, not just 
to restore and replace but reimagine the very form and function of human 
hands. 

1.1. MYOELECTRIC HAND PROSTHESES AND INTERFACES 

The current state-of-the-art in bionic hands is characterized by dexterous 
mechatronic devices driven by the user’s intentions. These ‘myoelectric’ 
prostheses record electromyography (EMG) signals from the user’s residual 
limb and estimate the movement intention behind the recorded signal. This 
estimation is then translated into the corresponding movements of the 
prosthesis. 

What sets these devices apart from traditional robotic systems is the central 
role of the interface between the user and the prosthesis. While conventional 
robotic control relies on well-defined cost functions that take advantage of 
high-precision sensing systems to move, the success of myoelectric 
prostheses hinges on the seamless integration of the user's intentions and 

A 
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the device's actions. 

The earliest myoelectric control interfaces, developed in the 1940s and 50s, 
used two-state amplitude modulation to drive the opening and closing of a 
prosthetic hook (for a brief historical perspective, see Parker et al., 2006). 
Stated simply, the amplitude of the EMG signal recorded from a single 
electrode was translated into on/off commands, depending on whether the 
amplitude was higher or lower than a set threshold. Then emerged multistate 
control, amplitude-modulation (or proportional control), and subsequently 
pattern recognition- and machine learning-based controllers, which used 
various algorithms to map EMG signals into intended movements (Zecca et 
al., 2002; E. Scheme & Englehart, 2011; Shehata et al., 2021).  

While breakthroughs in design and mechanics have allowed these bionic 
hands to mimic natural hand movements more closely than ever before 
(Catalano et al., 2014; Laffranchi et al., 2020; Piazza et al., 2019), and 
advancements in EMG acquisition continue to improve the quality and 
resolution of the recorded signals (Merletti & Farina, 2016; Holobar & Farina, 
2021), the precision and fluidity of control have yet to reach the same level 
of advancement (Salminger et al., 2020).  

Consequently, prosthesis abandonment rates have been reported to be 
high. While many factors have been linked to the rejection or abandonment 
of prostheses, such as comfort (related to the weight of the prosthetic hand 
and the socket that it is mounted on), cost, aesthetics, and perceived need 
for a prosthesis (Millstein et al., 1986; E. A. Biddiss & Chau, 2007; Kyberd & 
Hill, 2011; Østlie et al., 2012), here we focus on functional factors. Several 
studies report a lack of intuitiveness of the interface, reliance on visual 
feedback, and instabilities in control as contributing factors to prosthesis 
rejection (E. Biddiss et al., 2007; E. A. Biddiss & Chau, 2007; Burger & 
Marincek, 1994; Engdahl et al., 2015; Salminger et al., 2020). 

A particularly appealing and effective solution to address these drawbacks 
has been the inclusion of feedback in the system (Bensmaia et al., 2020; 
Jabban et al., 2022). 

1.2. THE PROMISE OF CLOSED-LOOP INTERFACES 

Biological control is closed-loop control. Dexterous hand movements are 
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constantly informed and even driven by the sensory feedback we receive 
through vision, touch, and proprioception. Closed-loop interfaces, which 
combine myoelectric control with some form of supplementary sensory 
feedback, seek to restore some aspects of feedback, e.g., perception of 
grasp strength, textural properties of objects, slippage etc. (Figure 1.1). 
Notably, these interfaces have been driven by user needs, and 
consequently, have been shown to provide both functional and psychosocial 
benefits (Jabban et al., 2022).  

Several approaches have been proposed to provide supplementary sensory 
feedback, ranging from invasive electrical stimulation of the brain using 
chronically implanted electrodes to non-invasive electrical or mechanical 
stimulation of the skin using wearable haptic systems (Flesher et al., 2021; 
D’Anna et al., 2019; Markovic et al., 2018c; for a recent review see 
Bensmaia et al., 2020). The main driving principle behind the invasive 
methods has been biomimicry, to provide sensations as close as possible to 
those available to the intact hand, while non-invasive methods have been 

Figure 1.1:  The anatomy of closed-loop myoelectric prostheses. 
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predominantly driven by sensory substitution principles. 

This thesis concerns itself with sensory substitution feedback, which involves 
conveying information that would typically be perceived by the missing limb 
through an intact sensory modality, such as through tactile vibrations or 
auditory cues, e.g., grasp force communicated as the amplitude of a 
vibration motor placed on the skin. Such feedback has been shown to 
enhance the user's control over their prosthetic device and facilitate a more 
intuitive and effective use of the prosthesis. Several studies have shown that 
electro- or vibrotactile stimulation improved the control of hand aperture, 
grasp force, joint position, and object properties (for a thorough discussion, 
see Antfolk et al., 2013; Schofield et al., 2014; Svensson et al., 2017; 
Dideriksen & Dosen, 2021).  

Further, based on theories of sensorimotor control, Cipriani et al., (2014) 
demonstrated that discrete event-based feedback, i.e., communicating the 
moment of object contact and release, improved manipulation performance 
and reduced object slippage (Clemente et al., 2016; Aboseria et al., 2018). 
Dosen et al., (2015) demonstrated that EMG biofeedback, i.e., to deliver 
user’s own myoelectric commands as feedback, improved grasp force 
control, conferred stronger internal models, and enabled better adaptation to 
control disturbances (Dosen et al., 2015b; Dosen et al., 2017; Tchimino et 
al., 2022). Finally, multi-variable feedback methods that simultaneously 
inform the user of the aperture, rotation, and force (Garenfeld et al., 2020, 
2023) are being developed to convey as much information to the user as 
possible, while maintaining interpretability. 

Despite these promising results, there have also been studies that cast a 
shadow on the utility of sensory substitution feedback. For example, 
Saunders & Vijayakumar (2011), report how such feedback may be 
beneficial only when there is uncertainty in feedforward control. Similarly, 
Markovic et al., (2018a) report that advanced substitution feedback provided 
a functional advantage only during ‘complex tasks’ (also see Markovic et al., 
2018b, Chatterjee et al., 2008; Cipriani et al., 2008; for a recent review on 
the promise and perils of feedback, see Jabban et al., 2022). Moreover, 
clinical utility through large-scale studies is yet to be shown. 

As a consequence, there are currently only a few prosthetic hands which 
include an option for feedback, including the evolution line of hands from 
Vincent Systems GmBH, the LUKE arm from Mobius Bionics Inc., and the 
Ability hand from Psyonic.  
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1.3. EVALUATING AND UNDERSTANDING CLOSED-LOOP USER-
PROSTHESIS INTERACTION 

Closed-loop user-prosthesis interaction is a complex, multi-faceted 
phenomenon, and therefore, determining whether a specific interface (or a 
part of it, such as feedback) enhances functionality for the end user is a 
difficult question. While task performance is an important indicator, it is far 
from complete. To understand the role of feedback in user-prosthesis 
interaction and to reconcile the apparently contradictory findings in literature, 
Sensinger & Dosen, (2020) propose that it is critical to look at this 
phenomenon through the framework of motor control and motor learning 
(Wolpert & Ghahramani, 2000; Krakauer, 2006; Kitago & Krakauer, 2013; 
Shadmehr & Krakauer, 2008).  

1.3.1. MOTOR CONTROL AND MOTOR LEARNING IN THE CONTEXT OF 
HAND LOSS  

In a nutshell, the theory of motor control explains that our brain solves three 
kinds of problems to move the body from a given state to a desired goal 
state. These three problems or processes are called system identification, 
state estimation and optimal control (Shadmehr & Krakauer, 2008). System 
identification involves predicting sensory consequences of intended 
movements (also called motor commands). State estimation generates an 
internal representation of the state of the body and the world by combining 
the predictions of the system identification process and actual sensory 
feedback. Optimal control then generates the optimal motor commands 
given the current state of the body and the desired goal state. The generality 
and explanatory power of this framework had a tremendous impact on 
understanding how humans move in both health and disease and has 
guided research and practice of recovery and rehabilitation in motor 
disorders (Kitago & Krakauer, 2013; Krakauer & Carmichael, 2022). 

Applying this framework to the context of hand loss and user-prosthesis 
interaction, we readily observe that all three processes are severely 
disrupted. State estimation becomes heavily reliant on alternative sensory 
inputs, such as visual cues and other forms of 'incidental feedback' not 
originally intended for controlling hand movements. And predicting sensory 
consequences of prosthesis movements and generating optimal commands 
(alternatively called internal models) needs to be learned anew.  
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The learning processes that determine how an amputee gains functional use 
of the prosthetic hand can be understood as a product of motor adaptation 
and skill learning. Motor adaptation is the process by which the motor 
system responds to perturbations – both internal bodily changes and 
environmentally imposed ones. Skill learning, on the other hand, involves the 
acquisition and retention of new movement patterns and achieving ever 
higher levels of performance (Krakauer, 2006; Kitago & Krakauer, 2013).  

As an amputee recovers from a limb loss and adjusts to their prosthesis, the 
motor system first needs to learn the properties of the prosthesis to predict 
how it responds to motor commands. At the same time, it needs to learn how 
to interpret the supplementary sensory information being provided (in the 
case of closed-loop interfaces) and include it in state estimation. Finally, the 
motor system must become more skilled at controlling the prosthesis, a long 
process thought to correspond to learning a new optimal control policy and 
getting increasingly more accurate and faster at implementing it.  

Importantly, feedback, whether it is error-based such as arising from task 
performance or sensory feedback supplemented through external 
stimulation, plays a key role in enabling the above-mentioned processes to 
occur. Specifically, supplementary feedback enables the formation and 
retention of stronger internal models, and aids state estimation, thereby 
supporting motor control processes. At the same time, it plays a role in 
facilitating and accelerating motor learning processes to achieve skilled 
prosthesis usage. 

1.3.2. EXISTING APPROACHES AND METRICS TO INVESTIGATE 
MOTOR CONTROL AND LEARNING 

Using the theoretical framework laid out above, either explicitly or implicitly, 
several studies have argued for evaluating and understanding the utility of 
feedback, or closed-loop interfaces, in a way that sheds light on how they 
affect users’ motor control and learning processes. Consequently, several 
methods and metrics were proposed to investigate user-prosthesis 
interaction, focused on quantifying various aspects of control, including 
quality and efficiency of the executed movements, reliability of control, user 
confidence, and so on, while also focusing on task-level performance. It is 
through this holistic approach that we can start to comprehend the utility of 
sensory substitution feedback.  

The first step in trying to understand the motor control aspects of user-
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prosthesis interaction is to look at visuomotor behavioral markers such as 
end-point kinematics (e.g., trajectory, speed, and efficiency of reaching 
movements), joint kinematics (e.g., range of motion and coordination 
between different joints), and visual gaze (e.g., where, and how long users 
look at the prosthesis or task at hand) (Kitago & Krakauer, 2013; de los 
Reyes-Guzmán et al., 2014; Alt Murphy & Häger, 2015). These metrics 
indicate the quality of prosthesis users’ movements and provide insights into 
how it differs from able-bodied individuals. For instance, end-point 
kinematics can reveal the precision and smoothness of the user's 
movements, while joint kinematics can indicate how effectively they are 
utilizing their residual limb and prosthesis. Visual gaze can help measure the 
extent to which users rely on vision to monitor their prosthetic movements, 
reflecting users’ trust in their prosthesis’ movements and consequently 
investigate if providing supplementary feedback reduces this dependence on 
vision.  

Towards this end, Bouwsema et al., (2012, 2014), demonstrated how 
performance and behavioral metrics that quantify multiple aspects of ‘skilled’ 
behavior such as speed, accuracy, and economy (in terms of end-point 
kinematics, and visual attention), recorded using motion capture and eye 
tracking, could be incorporated into rehabilitation practice. In a similar vein, 
the Gaze and Movement Assessment (GaMA) protocol was developed to 
quantify compensatory body movements and visual gaze behavior, along 
with rigorous validation and normative data captured in able-bodied 
individuals (Williams et al., 2019; Valevicius et al., 2018; Hebert et al., 2019). 
Using this protocol, Marasco et al., (2021) demonstrated that integrating 
touch and kinesthetic sensory feedback through sensory reinnervation led to 
more naturalistic prosthetic use. However, sensory substitution feedback has 
not been tested using such advanced methods yet. 

As alluded to previously, developing internal models of the prosthesis is a 
necessary component of gaining control ability. To this end, several groups 
have investigated the role of supplementary feedback in enabling the 
formation and retention of better internal models. Notably, Shehata, et al., 
(2018a, b, c) have developed a framework to evaluate internal model 
strength by measuring trial-by-trial adaptation to user generated errors and 
just noticeable differences in control disturbances. They demonstrated that 
supplementary feedback resulted in improved performance and movement 
efficiency in prosthesis control. Dosen et al., 2015 investigated the benefits 
of supplementary feedback in developing and maintaining an internal model 
of prosthesis grasp force control and demonstrated that supplementary force 
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feedback was essential in maintaining an internal model of prosthesis force 
control (also see Gillespie et al., 2010; Saunders & Vijayakumar, 2011; 
Johnson et al., 2017; Hahne et al., 2017). Further, Gholinezhad et al., 2021; 
Risso et al., 2019 and others used psychophysics-based approaches to 
quantify how substitution feedback is integrated into state estimation. 

All these studies, therefore, provide different ways to understand and reason 
about what aspects of the sensorimotor user-prosthesis interaction is 
affected by a particular intervention (such as a new feedback interface or a 
control algorithm), and by extension, how to evaluate if a particular interface 
improves functionality for the user. Particularly, measures concerning just-
noticeable differences in sensorimotor disturbances, internal model strength 
etc. provide insight into low-level motor control aspects. Kinematic analysis 
of visuomotor behavior enable an intermediate-level analysis of variables 
that are directly related to task success but are the result of multiple 
underlying control processes, and finally, gross performance in the task 
informs about overall ability.  

1.3.3. SKILL ACQUISITION AND SPEED-ACCURACY TRADEOFFS 

Learning to use a myoelectric (closed-loop) interface as explained earlier 
involves learning to implement arbitrary, new, movement patterns, such as 
activating flexor muscles to close a prosthetic hand (i.e., learning a new 
optimal control policy), and executing it faster and better (i.e., improved 
‘motor acuity’, see Krakauer et al., 2019; Du et al., 2022). This process of 
skill acquisition takes place over weeks and months (Schofield et al., 2020; 
Osborn et al., 2021; Butkus, 2022). However, the ways in which an interface 
(or practice or familiarity with an interface) affects this process, has been 
under-explored (Figure 1.2).  

Motor skill and its acquisition have typically been gauged using two distinct 
parameters: a task performance metric, such as accuracy, and the speed or 
duration of task execution. This approach often conflates skill and accuracy, 
where improved accuracy is inferred to mean enhanced skill. However, 
genuine skill improvement can only be inferred when both accuracy and 
speed improve simultaneously. If these parameters develop in opposite 
directions, e.g., if accuracy improves at the cost of speed, it becomes 
challenging to discern whether the improved accuracy is due to better skill or 
merely slower execution. Measuring a speed-accuracy tradeoff ‘function’ 
(SAF), i.e., how accuracy varies with speed, has therefore been proposed as 
the preferred metric to quantify skill, as it encapsulates both measures (Reis 
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et al., 2009; Shmuelof et al., 2012, 2014). Empirically measuring the SAF 
also enables rigorous kinematic analysis of underlying behavior, which can 
be used to understand the control policies developed by the users and to 
quantify motor acuity.   

Therefore, we believe that studying motor skill acquisition and motor acuity 
through SAF will lead to complementary and holistic understanding of 
learning and control processes in user-prosthesis interaction, and 
consequently equip us to comprehensively characterize the role of 
supplementary feedback. In addition to existing measures that enable us to 
understand low-level control processes, and intermediate-level visuomotor 
behaviors, measuring SAF adds a dimension, specifically that of execution 
speed, to rigorously characterize skill at the gross performance level and 
motor acuity that enables said skill at the intermediate-level. 

1.4. OUTLINING THE RESEARCH: SCOPE AND OBJECTIVES 

This section outlines the scope of research presented and discussed in this 
thesis, with the larger goal of developing ever better closed-loop user-

Figure 1.2: Motor skill acquisition in user-prosthesis interaction is determined by the 
interfaces. (A) Concept diagram indicates how one interface may facilitate faster and 
better skill acquisition than another. (B) The skill afforded by both interfaces in panel 

A, during a particular time point in the learning process, as measured by a speed-
accuracy tradeoff function (SAF). Notice that by simply measuring the performance 
at a single speed, it becomes impossible to figure out if the better performance due 

to interface 1 is due to better overall skill (‘better’ SAF) or merely due to slower 
execution speed. 
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prosthesis interfaces that bridge the gap between bionic and natural hand 
control. 

1.4.1. SCOPE 

This thesis will focus on evaluation and understanding of non-invasive, 
sensory substitution feedback based closed-loop interfaces for transradial 
myoelectric prostheses, with a particular emphasis on the role of feedback in 
this setting. We further limit our attention to quantifying the functional 
improvements made possible with these interfaces, as opposed to the 
equally (if not more) important psychosocial benefits of feedback. We focus 
on non-invasive myoelectric prostheses, since despite being in the nascent 
stages of technological advancement and accessibility – particularly in 
developing countries – they still account for the majority of devices in use 
today. Sensory substitution feedback offers a practical and convenient 
choice in providing users with vital information about their prosthesis and its 
interactions with the environment. Therefore, we believe that creating an 
understanding of these interfaces is an important goal. 

Further, we will focus on the problem of grasp force control, arguably the 
primary function of hand prostheses. Force control represents a classic 
instance where supplementary feedback is thought to be beneficial, and 
consequently has received a lot of attention (see Chapter 2). And 
importantly, fine force control has been shown to be one of the more difficult 
skills to obtain with current interfaces (Bouwsema et al., 2012, 2014; Butkus, 
2022). While the learning processes involved in other tasks, e.g., hand pre-
shaping (or grasp selection), might be different from grasp force control, we 
believe that the methodology we develop here is not constrained by the task 
at hand. 

1.4.2. OBJECTIVES 

Facilitating and monitoring skill acquisition is fundamental in enabling 
amputees to use their prosthesis proficiently. Therefore, creating interfaces 
to facilitate this process, and tools to evaluate it is the central concern of this 
thesis.  

Operating under the constraints laid out in Chapter 1.4.1, we aim to 
understand skill acquisition in prosthesis force control, and the role of 
different supplementary feedback interfaces in enabling it. Here, we 
operationally define skill acquisition as learning a new optimal control policy, 
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i.e., a control policy that generates optimal motor commands to move the
prosthesis from a given state to a desired state using the available system
identification and state estimation resources, and gaining acuity in executing
it, by reducing variability at the level of motor execution, even at faster
speeds.

Specifically, we will address the following two broad research questions: 

Q1. How do different closed-loop interfaces facilitate skill 
acquisition and how is it affected by training?  

The skill level in user-prosthesis interaction depends on the user's ability to 
utilize a specific interface. Consequently, different interfaces naturally vary in 
the skill they facilitate. Here, we make a crucial distinction between 
performance and skill, where the latter can only be understood as a 
combination of performance (accuracy) and execution speed. While 
interface- and learning-induced changes in performance have been 
investigated before, we argue that it only informs a part of the overall 
process of skill acquisition. For example, it is unknown if performance 
differences caused by interfaces exist at all execution speeds, or if 
differences between interfaces manifest only at some speeds. Similarly, it is 
unknown how training affects performance across different execution 
speeds.  

At a more fundamental level, behavioral differences and motor acuity 
enabled by different interfaces has not been studied before. To study this, 
we develop a method to empirically measure speed-accuracy tradeoffs 
enabled by different interfaces, borrowing from studies in human motor 
control of point-to-point movements. Together with performance changes 
related to execution speed, we will investigate how underlying behavior is 
affected by these interfaces. This leads to the second broad research 
question: 

Q2. What are the relevant behavioral markers of control 
policies and motor acuity in user-prosthesis interaction? 
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Characterizing and quantifying user behavior is significant for several 
reasons, as also outlined in Chapter 1.3.2. For instance, such ‘behavioral 
markers’ can enable us to understand the control policies adopted by users, 
allowing us to identify undesirable behaviors, such as suboptimal strategies 
of completing a task. Importantly, control policies are affected not just by the 
interface at hand, but the speed and accuracy demands imposed by tasks or 
situations. Therefore, evaluating and understanding control policies can 
enable us to monitor high-level user behavior and curate interventions 
through further instruction. Further, identifying behavioral changes over time 
gives us a sense of the effect of repeated practice on how a user responds 
to their prosthesis. Changes in these metrics provide a quantitative measure 
of the effect of different interfaces on user behavior and not just 
performance. Finally, identifying interface effects and desirable motor 
behaviors can together be used to inform the design of new interfaces. 
However, such a detailed analysis of user behavior is lacking in prosthesis 
control, and specifically closed-loop control. 

To this end, we propose analyzing the properties of user-generated 
myoelectric commands is appropriate. We believe that it is a suitable 
surrogate for more resource intensive measures of end-point kinematics 
(such as through motion capture) and offers valuable insights into users’ 
control. 

In summary, we aim to investigate skill acquisition in user-prosthesis 
interaction by empirically measuring the effects of interfaces and learning on 
speed-accuracy tradeoffs and the underlying control policies and motor 
acuity. We believe that this also enables us to better understand the role of 
feedback in user-prosthesis interaction. 

1.5. ORGANIZATION OF THE THESIS 

To achieve the above goals, we conducted three experimental studies, 
which resulted in the following three manuscripts –  

Study 1: Mamidanna, P., Dideriksen, J.L. and Dosen, S., 2021.  
The impact of objective functions on control policies in closed-loop 
control of grasping force with a myoelectric prosthesis.  
Journal of Neural Engineering, 18(5), p.056036. 

Here, we investigated how to measure the relevant behavioral markers of 
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control policies in force control (Q2), and how speed and accuracy demands 
at the task level influenced these policies. 

Study 2: Mamidanna, P., Dideriksen, J.L. and Dosen, S., 2022. 
Estimating Speed-accuracy tradeoffs to evaluate and understand 
closed-loop prosthesis interfaces.  
Journal of Neural Engineering 19(5) p.056012. 

Next, we studied how different interfaces affect skill acquisition through SAF 
(Q1) and develop metrics to quantify it, in terms of both control policies and 
acuity of user generated motor commands (Q2).  

Study 3: Mamidanna, P.*, Gholinezhad, S.*, Farina, D., Dideriksen, 
J.L. and Dosen, S.
Measuring and monitoring skill-learning in closed-loop myoelectric
prostheses using speed-accuracy tradeoffs.
*Equal contribution, manuscript under preparation.

Finally, we quantified learning induced changes in the SAF at both the level 
of task performance, and underlying behavior to understand how skill 
acquisition is facilitated by closed-loop interfaces (Q1). 

In the subsequent chapters, we summarize the central contributions of the 
three studies with respect to previous research and reinterpret them with the 
broader objectives presented through the research questions Q1 and Q2. In 
Chapter 2, we outline relevant background and state of the art in non-
invasive substitution feedback based closed-loop interfaces for prosthesis 
force control. Then, we present the major methodological choices which run 
across the three studies and their implications in Chapter 3. Chapter 4 
provides a summary of the main outcomes from each of the studies and their 
importance, while Chapter 5 provides an outlook of the contributions of this 
thesis and its limitations, as well as discuss potential future work that it 
engenders.  
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CHAPTER 2. BACKGROUND AND 
STATE OF THE ART 

2.1. SENSORY SUBSTITUTION FEEDBACK 

Grasping is arguably the primary function of hands, enabling us to apply 
“functionally effective forces” to manipulate objects (C. L. MacKenzie & 
Iberall, 1994). Both anticipatory (feedforward) and reactive (feedback) 
processes are required for successful object manipulation (Hermsdörfer et 
al., 2008). Recognizing this, several sensory substitution-based feedback 
interfaces have been developed to facilitate better grasp force control in 
myoelectric hand prostheses.  

Broadly, there are three major components to these feedback interfaces – 
(1) the information to be fed back to the user, (2) the encoding scheme, 
which converts the sensed information into an encoded stimulus, and (3) the 
stimulus delivery system which delivers this information to the user.

The most common feedback delivery systems have used vibro- or electro-
tactile stimulation or auditory signals to deliver feedback. Vibrotactile 
feedback is delivered through mechanical vibration of the skin using tactors, 
whereas electrotactile stimulation is delivered by stimulating afferent nerve 
endings within the skin through a local electrical current. The amplitude, 
frequency, pulse duration, shape, and duty cycle etc. of both the delivery 
systems can be varied, together with the number of tactors or electrodes, to 
deliver rich tactile sensations to the residual limb or other strategically 
selected areas of the skin. Similarly, auditory signals can be designed to 
provide a detailed yet intuitive feedback to be exploited by users.  

While practicalities of the interface are affected by the delivery system, it is 
the information and encoding scheme that determine their success, enabling 
users to interpret and include the provided feedback into their motor control 
processes. Several different variables have been tested to be fed back, 
starting with the most obvious – grasp force, either recorded at the fingers or 
approximated by the motor load within the prosthesis, implemented at least 
as far back as 1925 (see Childress, (1980) for a historical review). Other 
common choices include prosthesis aperture, closing velocity, and contact 
events (reviewed comprehensively in Antfolk et al., 2013; Schofield et al., 
2014; Svensson et al., 2017). 
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More recently, Dosen et al., (2015a) introduced a novel interface where they 
provided participants’ own myoelectric commands as feedback. Participants 
used a proportional control scheme where the amplitude of the EMG is 
mapped linearly to the prosthesis velocity, which in turn (linearly) determined 
the force that will be generated. Given such a control interface, they 
observed that transmitting the EMG amplitude itself as feedback facilitated 
better force control than when recorded force was transmitted as feedback. 
Interestingly, in effect, participants received not just an efference copy of 
their outgoing motor commands as feedback, but an approximation of the 
true sensory feedback (re-afference), by virtue of the coupling between 
EMG, prosthesis velocity, and force. Subsequently, EMG Feedback has 
been shown to facilitate better force control in functional settings even in the 
presence of control disturbances (Schweisfurth et al., 2016; Tchimino et al., 
2022).  

In this thesis, we further explore how feedback interfaces based on these 
two information streams (myoelectric command vs prosthesis force) enable 
participants to acquire skilled force control. We believe these represent two 
well-established force feedback interfaces and therefore provide the right 
point of comparison for a detailed analysis of the skill each of them afford. 

2.2. EVALUATING PROSTHESIS FORCE CONTROL 

Given the plentiful options for designing feedback (and by extension, closed-
loop) interfaces, evaluation of their effectiveness plays a crucial role in 
reducing the design space and optimizing interfaces. While standardized 
clinical tasks such as the box-and-blocks, clothespin relocation, and the 
Southampton Hand Assessment Procedure (SHAP) exist, they do not 
explicitly require participants to apply “economical” forces, and therefore do 
not provide a useful testbed to evaluate force control. 

Therefore, several tasks and paradigms have been introduced in the 
literature to evaluate prosthesis force control and the effect of interfaces on 
it. A popular paradigm has been that of force-matching, where participants 
are asked to apply a prespecified force on an object of interest (Chatterjee et 
al., 2008; Dosen et al., 2015a; Witteveen et al., 2015; Schweisfurth et al., 
2016 and so on). Others have designed implicit versions of force-matching, 
by exposing participants to objects of different sizes and weights and 
measuring applied forces in presence and absence of supplementary 
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feedback (Pylatiuk et al., 2006; Cipriani et al., 2008; Kim & Colgate, 2012; 
Thumser et al., 2018). Further, in the context of delicate objects, Clemente 
et al., (2016) developed the instrumented virtual eggs task, Markovic et al., 
(2018a) used a cup stacking task and Tyler, (2016) used a cherry picking 
task, a non-exhaustive list at best.  

Most of these studies focused on performance (some measure of task-
related accuracy) with and without feedback, and as mentioned in Chapter 
1.3.2., noticed that despite the overall positive effect of the supplementary 
feedback, there are instances where visual feedback, users’ expertise, or 
simplicity of tasks implies that substitution feedback is not necessary for high 
performance (Sensinger & Dosen, 2020). However, even when focusing on 
functional benefits of feedback alone, quantifying performance is not 
enough, and evaluating its role in the motor control and learning processes 
of users is important.  

Towards this end, Shehata et al., (2018b) and Engels et al., (2019) studied 
how different interfaces affected force control using the instrumented virtual 
eggs task, where the primary objective is to grasp and lift the virtual egg 
without exceeding a certain force. They evaluated the strength of the internal 
model developed, just noticeable differences in externally imposed control 
disturbances, and trial-by-trial adaptation rate to comprehensively 
characterize the internal models developed by participants using different 
feedback interfaces (auditory biofeedback, discrete event-based feedback, 
and their combinations).  

On the motor learning front, Bouwsema and colleagues in a series of 
experiments (Bouwsema et al., 2010, 2012, 2014) investigated learning 
related changes in performance and kinematics of reaching, opening and 
closing of the prosthesis, and object compression – the surrogate for fine 
force control, recorded using motion capture. Consequently, they delineated 
the timescales of learning for the various phases of a reach and grasp 
movement and informed how to structure practice towards developing an 
evidence-based rehabilitation program and facilitating user learning. 
However, these studies only evaluated open-loop control, i.e., without 
supplementary feedback. 
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2.3. MOTOR SKILL AND ITS CONSTITUENTS 

While the methods detailed above enable one to quantify task-level 
performance and certain aspects of motor control and learning processes in 
user-prosthesis interaction, as outlined in Chapter 1.3.3, we believe that the 
study of skill acquisition, adds complementary understanding. 

Motor skill has been notoriously hard to define, given the complexity and 
scope of such an inquiry (Christensen, 2019; Krakauer et al., 2019; Krakauer 
& Carmichael, 2022). In the broadest sense, motor skill is an acquired 
capability to successfully achieve a motor goal (Du et al., 2022). And skilled 
behavior is characterized by an ability to consistently select the appropriate 
action (action selection) and execute the action precisely (action execution). 
Applied to a batter (in cricket), such a definition can enable us to understand 
why expertise is often attributed to the ability to select the right shot as well 
as precisely execute it.  

In the context of grasp force control, skilled behavior correspondingly 
involves selecting the right force to apply and execute the movement. 
Accordingly, in this thesis we focus on action (motor) execution. At the level 
of motor execution, skill is characterized by the ability to execute movements 
accurately and precisely, even when moving quicky (Du et al., 2022; 
Shmuelof et al., 2012). This ability can be quantified using measures of task 
success (performance) and movement kinematics, which emphasize speed 
and accuracy at the level of performance and smoothness and stereotypy of 
the underlying movements. To this end, measuring the speed-accuracy 
tradeoff has been proposed as the preferred method to analyze all the above 
aspects of motor execution. 

2.3.1. FITTS’ LAW 

In his seminal experiments, Fitts noticed that when he asked participants to 
move a pen between two goal regions on a piece of paper, the movement 
durations grew logarithmically with the distance between the targets (Fitts, 
1954; Fitts & Peterson, 1964). This relationship was also modulated by the 
size of goal regions, and the weight of the pen they used. In other words, he 
noticed that there exists a tradeoff between movement speed and the 
accuracy demands (i.e., difficulty) of a task.  

In the information theoretic formulation that followed, Fitts introduced the 
idea that in carrying out goal-directed point-to-point movements (such as 
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moving our hands, or a computer cursor, from a given location to a goal 
location), information is transmitted through the human (musculoskeletal) 
channel. The difficulty of the movement can be measured as bits, and the 
channel throughput is measured in bits/s. A higher throughput thereby 
implies better efficiency of the human motor system in performing the task or 
a human-computer interface in enabling it.  

Its widespread applicability and empirical validation across a range of tasks, 
input devices, and user populations led to its recognition as a ‘law’ in human-
computer interaction (I. S. MacKenzie, 1992). The methodology of using a 
cursor-pointing type task, where goal locations are specified by target 
amplitude and target widths, to measure the throughput became a standard 
for evaluating different pointer-like interfaces. It subsequently had a 
tremendous impact on interface design (I. S. MacKenzie, 1992; Soukoreff & 
MacKenzie, 2004) and has been a common framework for evaluating online 
myocontrol using 1-d to 3-d cursor pointing tasks (Fimbel et al., 2006; Wurth 
& Hargrove, 2013; E. J. Scheme & Englehart, 2013; Borish et al., 2018, 
2020). 

Notably, Thumser et al., 2018 proposed an innovative method to determine 
speed-accuracy tradeoffs involved in grasping of everyday objects (termed 
Grasping Relative Index of Performance test, GRIP), by measuring ‘intrinsic’ 
(as opposed to extrinsic, specified difficulties manipulated by target 
amplitude and width) isometric forces that participants applied by grasping a 
force transducer upon seeing an object on the screen. By measuring both 
the intrinsic precision of force production and the throughput, they proposed 
to describe and compare the grasping ability afforded by different grasping 
devices, or between patient populations.  

While Fitts’ law measures an important aspect of skill – the relationship 
between movement difficulty and movement time, the movement times so 
measured are from an asymptotic (near-perfect) task success regime, i.e., 
the mean reaching errors are negligible. That is, while it provides a 
predictive model for mean reach time to almost always reach a target of 
specified difficulty successfully, it cannot predict the accuracy when reaching 
the target at a faster speed. Indeed, by asking participants to reach a target 
“as fast and as accurate as possible”, and making sure that the mean 
reaching error is close to zero, the participants’ own speed-accuracy tradeoff 
which dictates execution is sidelined.  

Therefore, the experimental and theoretical formalisms of Fitts’ law do not 
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provide the best testbed for investigating motor execution, where the focus is 
on how execution, mainly modulated by speed, affects task performance.  

2.3.2. SPEED-ACCURACY TRADEOFFS AND MOTOR ACUITY 

In this thesis, we will apply a more general framework to analyze speed-
accuracy tradeoffs. Broadly, it consists of an experimental paradigm which 
imposes time constraints on execution to control for speed, as opposed to 
the spatial constraints specified in Fitts type tasks. Multiple execution speeds 
are imposed to measure how performance changes across speeds. 
Consequently, true skill acquisition is inferred a systematic change in the 
SAF driven by learning. As also mentioned in Chapter 1.3.3, this eliminates 
the ambiguity when we have just two pairs of (speed, accuracy) 
measurements where both dimensions don’t change in the same direction – 
the two pairs could come from different points on the same SAF (where skill 
remains the same), or indeed from two different SAFs (where skill has 
changed).  

Reis et al., (2009) developed this framework to analyze changes in skill 
during repeated practice of a sequential visual isometric pinch task and 
investigated the effect of transcranial direct current stimulation over primary 
motor cortex in acquisition and retention of skill, in terms of a change in the 
SAF. Shmuelof et al., (2012, 2014) extended the framework and 
characterized the changes at the level of motor execution in an arc pointing 
task and coined the term ‘motor acuity’ to denote the learning induced 
reduction in trial-by-trial variability, across all speeds, in the cursor 
trajectories traced by participants. In addition, they noticed that there were 
small changes in the mean trajectory across days, as well as the trajectory 
smoothness thereby establishing behavioral markers of skill.  

While the studies from Bouwsema and colleagues (Bouwsema et al., 2010, 
2014) proposed to study skill as a combination of performance and 
visuomotor behavior, they measured the task performance at a single speed 
by asking participants to execute their movements as quickly and as 
accurately as possible. Similarly, while Shehata and colleagues (Shehata et 
al., 2018b and Engels et al., 2019) investigate low-level motor control 
processes and some intermediate behavior-level aspects, these have also 
not investigated how skill manifests as a change in the speed-accuracy 
tradeoffs and the behavioral changes that subserve it. 

Importantly, the present thesis builds on previous work and (1) investigates 
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closed-loop interfaces, and (2) skill acquisition enabled by them, which has 
not been investigated before. Moreover, we investigate (3) motor acuity at 
the level of myoelectric commands, as a surrogate to motion tracking based 
end-point kinematic analysis, but is easier to measure. The latter aspect has 
recently been investigated in (A. W. Franzke et al., 2021; A. W. Franzke, 
2023), who measured EMG feature space characteristics and how 
repeatability and separability of user generated myoelectric commands 
associated with real-time performance and found that EMG-amplitude 
related features better correlated with performance. However, these studies 
investigated the characteristics of multi-channel EMG time-domain features 
which were then fed to a linear-discriminant analysis classifier for gesture 
classification, a class of movements that is arguably different from 
proportional control using isometric contractions. 
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CHAPTER 3. METHODS 

In this chapter, we describe the salient details of the methodology used 
throughout the three studies and discuss some of the implications of these 
choices.  

3.1. EQUIPMENT 

Figure 3.1 shows the typical experimental setup used across the studies, 
with slight modifications in Study 1.  

Figure 3.1: Investigating motor skill in prosthesis force control. Modified with 
permission from Mamidanna et al., (2022). 
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The closed-loop user-prosthesis system 

Participants donned the Michelangelo prosthesis (OttoBock GmBH1) through 
a custom printed bypass socket. A wrist immobilization splint sat within the 
bypass socket such that participants could perform isometric wrist 
contractions. The prosthesis was capable of both grasping and wrist rotation, 
where the former could be achieved in two configurations – palmar and 
lateral grasp. Here, we only focused on palmar grasping, and did not use the 
other degrees of freedom. 

Two dry EMG electrodes (13E200, OttoBock GmBH2) were placed on the 
wrist flexor and extensor muscle by palpitating, visually observing the 
muscle contraction, and ensuring that the EMG signal is of sufficient 
amplitude. In case the signal amplitude was considered low, the gain of the 
electrode was increased accordingly. Analog EMG signals were amplified, 
rectified, and filtered, using a low-pass filter with a 3 Hz cutoff, by the 
electrodes. This processed linear envelope was acquired through the 
controller attached to the Michelangelo prosthesis at 100 Hz and was used 
as the input signal to the control interface (see below).  

Five C-2 tactors (EAI Inc3) were used to provide vibrotactile feedback to the 
users. They were placed around a cross section of the upper arm and held 
in place using a band. The placement of the tactors was chosen such that 
participants could feel the vibration of each individual tactor distinctly, and 
care was taken to ensure there were no unpleasant sensations.  

The entire closed-loop control system was designed in MATLAB Simulink, 
using the open-source testbench developed by Dosen et al., (2015c), and 
ran at 100 Hz on a Lenovo P52 workstation laptop. 

The box-and-blocks task 

In Studies 2 and 3, participants performed a modified box-and-blocks task 
where the objective was to transport objects from one side of the box to the 
other, but with additional requirements concerning force produced on the 
object and the speed at which they performed the task. On the other hand, in 
Study 1, the box-and-blocks task was not involved, and instead participants 
were seated and performed a force-matching task where the prosthesis was 

1 https://www.ottobock.com/de-de/product/8E500  
2 https://shop.ottobock.us/c/Electrode/p/13E200~550 
3 https://eaiinfo.com/product/c2/  

https://www.ottobock.com/de-de/product/8E500
https://shop.ottobock.us/c/Electrode/p/13E200%7E550
https://eaiinfo.com/product/c2/
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affixed to a table in front of the participants. 

In all the studies, participants were shown task instructions and were 
provided performance related feedback on a computer screen placed at 
comfortable viewing angle and distance. 

3.2. THE CONTROL AND FEEDBACK INTERFACES 

Designing (closed loop) prosthesis interfaces for force control depends 
critically on how user’s EMG signal is mapped to the prosthesis inputs, and 
the dynamics of the prosthesis which determines the generated force on the 
object given a certain input. In the subsequent sections, we will outline our 
choice of the EMG-to-prosthesis input mapping (the control interface) and 
how the relevant feedback variable – either self-generated myoelectric 
command (in the EMG Feedback interface) or prosthesis force (in the Force 
Feedback interface) – is conveyed to the user. 

Towards this end, we first characterized the input-output behavior of the 
Michelangelo prosthesis. To actuate the opening and closing of the palmar 
grasp, two independent input commands could be communicated to the 
prosthesis’ internal motor drivers. The input command for closing drives the 
closing speed of the prosthesis, such that it results in a decreasing aperture 
before object contact and increasing force after object contact. Similarly, the 
command for opening drives an increase in aperture with an instantaneous 
drop in force. The minimum and maximum magnitudes for these commands 
are set by the manufacturer. For convenience, we will refer to these as 
prosthesis inputs. Based on our characterization of the prosthesis’ force 
behavior (described below), we proceeded to design the interfaces.  

Here, we designed discretized interfaces, where the participants were only 
ever exposed to 6 discrete ‘levels’ of prosthesis force. That is, from the point 
of view of the participants, the prosthesis could apply 6 different levels of 
forces on objects, and this could be modulated using their muscle 
contractions. Notably, it is only the output (force) behavior that is discretized, 
while participants could still continuously modulate the prosthesis inputs. 
Such a discretized interface is appealing since it is quite simple to 
understand and intuitive to use. In our own experiments, we found that 
participants almost immediately understood how their muscle contractions 
affected the different force levels afforded by the interface. 
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Characterizing the prosthesis input - force relationship 

Figure 3.2 shows empirically measured prosthesis behavior. The gearing 
mechanisms, and non-backdrivability of force, where users can only up-
regulate the force applied on an object, a feature that enables users to relax 
their muscles once the force is applied, leads to a step-like force behavior in 
most commercial prostheses. To characterize this behavior, we performed 
several trials where starting from the prosthesis at a fully open position, we 
varied the prosthesis closing inputs as a ramp, consisting of a 5 s constant 
input followed by a 5 s ramp (Figure 3.2A, inset). During the constant input, 
the prosthesis aperture decreased until its fingers contacted with itself, 
resulting in an initial grasp force. Thereafter, increases in the input caused 
an increase in the force. Here, we chose 17 initial input magnitudes (0.05 – 
0.85x maximum input), and 3 slopes (corresponding an increase of 0.03, 
0.05, and 0.07 per second) with 3 repetitions per each combination (a total 

Figure 3.2: Characterizing the prosthesis input-output relationship. (A) Input to 
prosthesis was varied using a ramp profile, with 17 initial input magnitudes and 3 

slopes, and the corresponding force was recorded (inset); notice the step-like 
behavior. Normalized inputs and forces for each recorded step is plotted. (B) 

Change in prosthesis input to cause the next step, and the corresponding change in 
force at the next step is plotted relative to the input-outputs at ‘current’ step.  
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of 3 x 17 x 3 = 153 trials) and recorded the magnitudes of the input and force 
at the initial time point of each force step.  

Our observations revealed that, for constant slope profiles, once the object 
contact was established, the force increased in steps of approximately 10% 
of the maximum force, on average. Similarly, the increase in closing input 
required to induce this change was nearly 10% of the prosthesis's maximum 
input. Consequently, we discerned a linear relationship between the force 
and inputs of the prosthesis when the force exceeded 30% of the maximum 
force. In order to apply forces below this threshold, a bell-shaped input 
profile that allows the fingers to decelerate before contacting the object is 
required. However, forces in this range were hard to reproduce with the 
Michelangelo prosthesis. 

Given that the initial 30% of the force range was harder to reproducibly 
reach, and that 90 percentile of force steps were of the magnitude 
corresponding to 15% of the maximum force, we decided to design an 
interface with 6 discrete levels that can be reproducibly reached by the 
prosthesis. For convenience, both these variables can be considered to lie 
on a normalized scale (range of [0, 1]), where the maximum values are 
determined by the maximum input and force of the prosthesis, set by the 
manufacturer. Then, the boundaries of the discrete levels are given in Table 
3.1, such that if an input (colloquially, closing speed) in the range of a 
particular input level, say level 4, is applied (or maintained) as input to the 
prosthesis, then a force corresponding to level 4 is applied on the object. 

Piecewise-linear direct proportional control 

We then designed a control interface based on the acquired EMG envelope, 
and further processed it using a 2nd order Butter-worth low pass filter with a 

Level 0 1 2 3 4 5 6 

Myoelectric 
command 0.025 0.1 0.27 0.47 0.69 0.95 1 

Prosthesis 
input 0 0.25 0.42 0.59 0.76 0.9 1 

Force 0.05 0.31 0.45 0.58 0.73 0.9 1 

Table 3.1: the myoelectric command, prosthesis input and force ‘level’ boundaries 
for the discretized interface. 
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cutoff of 0.5 Hz to improve the responsiveness and further smooth the signal 
(following the results of Tchimino et al., (2021)). This processed EMG 
envelope is called the myoelectric command or amplitude. The myoelectric 
command captured using the electrode placed on the wrist flexors was used 
to close the prosthesis, while the command from the extensors was used to 
open it. 

The most common force control interface is that of proportional control, 
where the user’s muscle contraction strength (as detected by the amplitude 
of the EMG signal) is mapped linearly to the prosthesis speed (Fougner et 
al., 2012). This creates an intuitive interface, since grasping objects with a 
greater force requires a stronger muscle contraction. However, since 
myoelectric signals are characterized with variability that increases with the 
contraction strength, we designed a piece-wise linear map between the 
myoelectric command and prosthesis closing input such that the levels 
corresponding to higher contraction strengths are wider. To control hand 
opening, which in our tasks did not require fine modulation, we used a 
simple on-off control. 

For notational convenience, the myoelectric command can also be 
converted to a normalized scale. The minimum and maximum corresponded 
to 0% and 50% of the amplitude at maximum voluntary contraction (MVC) 
respectively. The MVC was calculated at the beginning of each experimental 
session, by asking participants to maximally contract their wrist flexors and 
extensors. This was repeated 3 times to obtain an average MVC amplitude 
for the flexor and extensor commands separately.  

Once normalized, the boundaries of the levels for the flexor command 
correspond to those shown in Table 3.1. Thereby, a contraction strength 
corresponding to a particular level of the myoelectric command causes a 
closing input of the same level, as described by the piece-wise linear map. 
On the other hand, for the extensor command, the participants needed to 
reach 0.4 on the normalized scale (20% MVC) to trigger prosthesis opening. 

Discretized feedback interface 

Finally, we designed the feedback interface using a spatial encoding scheme 
as shown in Figure 3.1, where the activation of a tactor indicated the level of 
the feedback variable. As explained before, we designed two interfaces, 
which only differed in the information that was delivered back to the 
participant – the level of either the myoelectric command (EMG Feedback 
interface), or the prosthesis force (Force Feedback). The spatial encoding 
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scheme was chosen since it is a very simple and intuitive scheme to learn, 
and often took less than 5 minutes for participants to fully understand.  

Since only the level of the variable was to be fed back, each of the five 
tactors vibrated at the same frequency – 200 Hz, and a gain that the 
participants felt was comfortable. The first five levels were indicated by 
activating one tactor per level (in a fixed order, posterior to anterior), while 
the sixth level was conveyed by activating all tactors simultaneously.  

Thereby, when using the EMG Feedback interface, participants received 
feedback about the level of the myoelectric command, as soon as they 
started to contract their muscle (above 0.025 on the normalized scale). 
Therefore, if a participant wished to apply a force level of 3, they could use 
the feedback to gradually modulate their muscle contraction from level 0 to 
3, and dwell in level 3 to affect the desired force on the object. In other 
words, this information could be used to predictively modulate their muscle 
contraction to reach the desired level of force. On the other hand, when 
using the Force Feedback interface, they received the force level as 
feedback as soon as the prosthesis established contact with the object. That 
is, until object contact, the participants had to rely on their own internal 
models of the prosthesis, (residual) proprioception, and incidental visual and 
auditory feedback, to modulate the myoelectric command.   

3.3. A TIMED FORCE-MATCHING TASK 

Given the interfaces above, participants performed force-matching tasks in 
all the three studies. In effect, their objective was to reach the target force, 
specified as one of the 6 possible levels (in fact, only levels 3, 4, and 5 were 
used in the experiments) using the closed-loop interface. In Study 1, this 
was performed while participants were seated and prosthesis fixed to a 
table, while in studies 2 and 3, they donned the prosthesis and performed 
the box-and-blocks task, during which they were required to apply the 
specified force on the blocks before transporting them. 

In addition, during studies 2 and 3, participants were required to adhere to 
time constraints, which allowed us to measure the speed-accuracy tradeoff. 
Here, we used a time-band methodology for this purpose (Wickelgren, 
1977). In such a ‘timed’ force matching task, the minimum and maximum 
time to complete the task was specified and shown to the participants using 
a bar on the screen. A red bar appeared as soon as participants started a 
particular trial (produce a myoelectric command larger than 0.025) and 
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turned green once the minimum time to task completion was reached. They 
were instructed to reach the target force while the bar was green. Once the 
maximum time was reached, the bar disappeared, and they could no longer 
modulate the prosthesis closing inputs. 

In effect, each trial proceeded as follows: the force and speed target levels 
were displayed to on the screen, and a cue signal (a beep sound) was 
provided to indicate that the participant was allowed to start performing the 
trial. They then contracted their wrist flexors to close the prosthesis and 
grasp the object, while receiving supplementary vibrotactile feedback. Once 
the desired force level or greater was applied, or maximum time was 
reached, the participants transported object, and released it by opening the 
prosthesis.  
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CHAPTER 4. SUMMARY OF FINDINGS 

In this chapter, we present the key takeaways associated with each of three 
studies conducted as part of this thesis (see Chapter 1.4.2) and (re-)interpret 
the results within the broader framework of motor learning and control. In 
essence, Study 1 investigated how to quantify and understand the control 
policies developed by participants for prosthesis force control. Subsequently, 
Study 2 and 3 focused on empirically measuring skill acquisition and how it 
is affected by interfaces and practice, by employing speed-accuracy 
tradeoffs to rigorously quantify performance and motor acuity. 

Taken together, in Studies 1 and 2 we developed metrics and methods to 
investigate the control policies and motor acuity of participants, in line with 
Q2, while throughout the three studies we investigated two different closed-
loop interfaces to understand how each interface facilitated skill acquisition, 
laying a blueprint for future studies in pursuit of Q1. 

4.1. IMPACT OF TASK OBJECTIVES ON CONTROL POLICIES 

As outlined in Chapter 1.3, skill acquisition involves the development of new 
control policies, and internal models that support it. While substitution 
feedback has been shown to facilitate the development and maintenance of 
internal models (Dosen et al., 2015; Shehata et al., 2018a,b), the control 
policies enabled by it have not been explicitly investigated before. We 
believe it is important to quantify and understand the control policies 
developed by users so that interventions can be curated to develop specific 
control policies or facilitate learning of better internal models.  

Concretely, here, we developed simple metrics to investigate the control 
policies developed by participants, specifically concerning the extent to 
which substitution feedback was included, under varying speed and 
accuracy requirements demanded by the task. We identified how 
feedforward and feedback policies emerged in a task-dependent manner 
and the performance they enabled.  

Varying task instructions to probe control policies 

Seventeen able-bodied participants used a proportional control scheme and 
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discretized Force Feedback, as explained in Chapter 3.2, to perform a force 
matching task with additional speed and accuracy requirements provided 
through verbal instructions. 

The participants were divided into two groups, called the exploratory and 
routine groups. For the first 90 trials, participants in the exploratory group 
were instructed to maximize accuracy (trial success) without paying any 
attention to speed. On the other hand, the routine group was asked to 
maximize accuracy but with an imposed time restriction by which they could 
not send control commands to the prosthesis 1s after object contact. After 
completing 90 trials in this manner, the exploratory group was asked to 
improve on their speed without sacrificing the accuracy for the next 90 trials, 
whereas the routine group was asked to keep maximizing success without 
sacrificing on the speed.  

Figure 4.1: Summary of experimental results, Study 1. (A) Performance of individual 
participants (small circles) and group averages (large circles) shows that only 

exploratory group were successful across the two instruction sets. Horizontal or 
vertical lines indicate standard deviation of observed completion times or success 

rates respectively, only the most informative is plotted. (B) Quartile plots (circle 
indicates median, lines indicated lower and upper quartiles) of time spent 

predictively and correctively (based on Force Feedback) modulating myoelectric 
commands, and the number of resulting force corrections enables us to understand 

the degree to which feedback was incorporated into participants’ control policies. 
Exploratory group demonstrated flexibility in this aspect, by incorporating feedback 

to different extents, depending on task objectives. 
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In this way, participants in the routine group were first forced to develop a 
feedforward policy through error-based adaptation across trials, whereas the 
exploratory group were not incentivized to develop any particular policy, only 
the one that maximizes task success. Upon altering the instructions, we 
aimed to find out which group were able to quickly modify their policies and 
successfully execute the task at a different speed. 

Behavioral markers of feedforward and feedback control policies 

Figure 4.1A shows how the performance of participants in both groups 
varied based on the instructions. Notably, success rates of the exploratory 
group remained high throughout, despite the large difference in the 
completion time between the two instruction sets. On the other hand, the 
routine group did not gain performance even after the enforced time 
restriction was lifted. 

We then determined three metrics (1) predictive time – time to object 
contact, (2) corrective time – time after object contact to trial end, and (3) 
number of force corrections, to gain insights into the control policies 
implemented by the participants and how these were shaped by instructions 
(Figure 4.1B). We reasoned that since Force Feedback would be available 
to the participants only after object contact, the period before and after this 
event most clearly indicate how participants included feedback into their 
actions. 

Further, we computed the number of force corrections to evaluate 
participants’ dependence on feedback to reach the target force, by counting 
the number of ‘plateaus’ in the force readings of each trial (similar to 
Shehata et al., 2018b). To distinguish whether the plateau was caused due 
to an intended corrective command from the participant or due to the 
discrete nature of the prosthesis itself (see Chapter 3.1), we verified if they 
co-occurred with an inflection point in the input commands of the participants 
(data not shown). We found that force plateaus longer than 250ms tended to 
coincide with intended corrective actions. Therefore, we defined the number 
of force corrections as the number of force plateaus longer than 250ms. 

Using these metrics, we were able to conclude that participants in the 
exploratory group initially developed a predominantly feedback policy (see 
corrective time and number of corrections in Figure 4.1B). The routine group, 
as expected, developed a feedforward policy, perhaps using the 1 s of 
feedback to adapt their actions on the next trial.  
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Interestingly, when the instructions were altered, the exploratory group could 
dramatically improve their speed (as much as to closely resemble the routine 
group, see predictive and corrective time) without sacrificing accuracy. 
Moreover, together with the low number of corrections, it is apparent that 
they were also able to learn a strong internal model to execute a feedforward 
policy. On the other hand, the routine group could not change their control 
policies to incorporate more feedback.  

Online modulation vs adaptation across trials 

Put differently, we examined two extreme strategies of using Force 
Feedback – to use it continuously for online modulation of motor commands 
vs across trials to develop a feedforward policy (akin to adaptation). We 
found that participants who initially used the former strategy consistently 
performed better, and also developed a more flexible policy that they could 
modify for faster speeds. While the latter, that corresponds to a purely 
repetitive error-based learning strategy, proved to be too rigid that 
participants could not successfully change when required. 

We believe that these results underscore the value of instruction in 
facilitating learning (Krakauer & Carmichael, 2022), especially when 
substitution feedback is involved, and inform how to design rehabilitation 
protocols. While we tested unguided exploration through our instructions, it 
would be interesting to consider guided exploration of the feedback, such as 
through coaching. The metrics developed here can be used to design such 
protocols, both at clinical and at-home levels, to guide users, and indeed, 
have been used to gain insights into the control policies developed by users 
in the remainder of this thesis. 

In summary, we proposed simple metrics to evaluate the control policies 
exhibited by users in a prosthesis force control task. We found that Force 
Feedback was flexibly included in exploratory group’s control policies, 
enabling them to switch between feedback driven and feedforward policies 
when required, while routine group developed a rigid feedforward policy that 
limited their performance. Therefore, while supplementary feedback can be 
critical in enabling acquisition of new control policies, facilitating such a 
development depends on creating the right environment for learning, for 
example through instruction. 
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4.2. SPEED-ACCURACY TRADEOFFS TO EVALUATE 
INTERFACES 

At the intersection (or rather, the union) of the research questions of interest, 
in Study 2 we investigated how skill is affected by the interface available to 
the user, by measuring the SAF each interface affords and acuity of the 
underlying motor (here, myoelectric) commands. 

Comparing interfaces is an important practical question, given the availability 
of several interfaces in the literature, even if we just consider the various 
feedback interfaces for force control (e.g., see Chapter 2 and tables 
provided in Sensinger & Dosen, 2020; Antfolk et al., 2013). While studies 
introducing a new (feedback) interface compare the proposed interface to a 
baseline, systematic comparisons between interfaces are rather few (e.g., 
Engels et al., 2019). In addition, interfaces are commonly evaluated at a 
single speed resulting in an average success and average completion time 
measure; and as explained in Chapter 1.3.3, if the two measures differ in 
opposite directions, it is infeasible to determine which interface affords better 
skill. 

Here, we investigated the skill (control policies, SAF, and motor acuity) 
afforded by two interfaces – Force and EMG Feedback, as outlined in 
Chapter 2.1 and 3.2, to determine how they differed and what that implies for 
evaluating interfaces.  

Investigating interfaces through the timed force-matching task 

Ten able-bodied participants and an individual with a limb difference took 
part in a 2-session cross-over experiment with a 1-week washout period. 
Each participant donned the Michelangelo prosthesis using a bypass socket 
and performed the timed force-matching task using the box-and-blocks 
setup. The closed-loop user-prosthesis interface they used consisted of 
proportional control, while the discretized feedback communicated through 
vibrotactile stimulation was either based on participants’ own EMG 
commands (EMG Feedback) or the force recorded by the prosthesis (Force 
Feedback). The order in which they were exposed to the interfaces was 
counter balanced. 

The timed force-matching task was repeated at 3 speeds, namely Fast (0 – 
2 s), Medium (2 – 4 s) and Slow (4 – 8 s). To help participants maintain the 
speed, a visual bar indicating time elapsed was shown on a screen.  
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Interface-specific effects on participants’ speed-accuracy tradeoffs 

First, we observed that all participants exhibited a wide range of success 
rates with execution speed being a crucial factor in how accurate they were 
(see Figure 4.2A). Success rate monotonically increased with speed, at both 
the population and individual levels, indicating the effectiveness of the timed 
force-matching task employed to measure SAFs.  

Interestingly, while the SAFs were significantly affected by the interface that 
participants used, the difference between interfaces originated in the 
Medium speed condition alone. This demonstrates that the effect of 
execution speed on performance is interface specific, where different 
interfaces may enable better or worse performance at different speeds.  

Figure 4.2: Summary of experimental results, Study 2. (A) Speed-accuracy tradeoffs 
of individual participants (small circles) and group means (large circles) demonstrate 

the execution-speed-specific effects of interfaces on user skill. (B) Quartile plots 
showing number of corrections, and repeatability and smoothness of myoelectric 

commands indicate that EMG Feedback enabled participants to build a successful 
control policy at all speeds and obtain higher motor acuity in executing it. 
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Kinematic measures of motor acuity and interface-specific effects 

In addition to measuring the SAF, we investigated motor acuity of the 
participants through (1) smoothness and (2) trial-by-trial variability of the 
myoelectric commands, and (3) analysed the number of corrections to 
investigate the control policies developed by them (see Figure 4.2B). 
Reduced execution variability and improved movement smoothness are a 
defining feature of skilled behavior (Sternad, 2018; Krakauer et al., 2019; Du 
et al., 2022). The former indicates motor acuity – the ability to perform the 
same action repeatedly and is computed using a point-wise standard 
deviation of time-normalized myoelectric commands. The latter, movement 
smoothness, has been proposed as a fundamental characteristic feature of 
well-trained motor behavior (Balasubramanian et al., 2015) and is here 
measured using the normalized integrated squared jerk. While studies that 
investigated motor acuity before considered end-point trajectories (e.g., 
cursor coordinates in Shmuelof et al., 2012), here we investigated 
myoelectric commands, since they are (1) easiest to measure, and available 
throughout a trial (e.g., unlike aperture, which is uninformative after object 
contact, except for highly pliable objects), and (2) the variable which is 
directly under the control of participants.  

Both feedback interfaces were successfully and flexibly included in 
participants’ control policies as indicated by the number of corrections. Next, 
we verified that observed changes in motor acuity were in agreement with 
performance changes, thereby establishing the validity of investigating 
myoelectric commands. Interestingly, execution level metrics also showed 
that EMG Feedback enabled smoother and less variable trajectories 
indicating it enabled participants to converge on a solution that they could 
repeatedly execute.  

EMG Feedback enabled better skill overall 

While previous studies that compared EMG Feedback with other feedback 
interfaces (see Chapter 2.1) have shown that such an online biofeedback-
based interface improves performance, here we empirically evaluated the 
SAF it affords participants. The SAF showed that EMG Feedback allows a 
tradeoff such that participants could rapidly make performance gains in the 2 
– 4 s range, a common range of movement times observed in prosthesis
force-matching tasks. These performance gains are enabled by better motor
acuity in terms of lower trajectory variability and smoothness. Overall, this
shows the effectiveness of EMG Feedback in promoting several aspects of
skilled behavior.



INVESTIGATING MOTOR SKILL IN CLOSED-LOOP MYOELECTRIC HAND PROSTHESES 

52 

SAFs to evaluate (closed-loop) interfaces 

A key takeaway from the current study is its implications for evaluating 
interfaces. Evaluating how competing interfaces enable skill is a pressing 
concern, given the rapid development of new interfaces. However, such a 
comparison is rather difficult, given that the interfaces may be tested using 
incomparable setups and metrics. Here, we showed that this maybe further 
complicated if the interfaces are tested at a single “comfortable speed”, as is 
commonplace. For example, here we showed that comparing the two 
interfaces only at the Fast or Slow conditions would result in an incorrect 
inference that the interfaces enable similar performance. Therefore, we 
propose that measuring SAFs is a better evaluation criterion. 

In summary, we established that the EMG Feedback interface afforded 
better force control across execution speeds, but this difference primarily 
manifested in the Medium speed condition. In addition, we proposed metrics 
to evaluate motor acuity by analyzing the properties of user-generated 
myoelectric commands and verified that these were indeed in agreement 
with performance level metrics. Taken together, we argue that evaluation of 
interfaces must take execution speed related effects into consideration and 
measuring the SAF (such as through the methodology we developed here) 
provides a holistic view of user skill, in terms of both performance and 
behavior. 

4.3. SPEED-ACCURACY TRADEOFFS TO MEASURE AND 
MONITOR USER SKILL 

Equipped with methods to analyze motor skill acquisition at both 
performance and behavioral levels, in Study 3 we sought to understand how 
this process was affected by repeated practice.  

Monitoring how users acquire and retain a skill is important to ensure 
positive training outcomes and long-term behavior. However, research on 
learning-induced changes in user-prosthesis interaction remains scarce (with 
some notable exceptions in Dijk et al., 2016; Strbac et al., 2017; 
Kristoffersen et al., 2019). Bouwsema et al., (2014) were one of the first to 
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focus on user training and found that performance and coordination 
improved with time but saturated within three sessions, while training on up 
to 3 different tasks. They noticed that grasp force control took longer to learn 
than gross coordination and suggest that clinical practice focus specifically 
on training grasp force control. Here, we investigated learning related 
changes, not just in performance at a single speed but in the SAF, across 
three days as participants used EMG Feedback. Given that EMG feedback 
promotes predictive modulation of myoelectric commands and enables 
faster grasping (Schweisfurth et al., 2016), we expected the highest gains in 
performance to occur at the faster speeds. 

Figure 4.3: Summary of experimental and modeling results, Study 3. (A) Speed-
accuracy tradeoffs of individual participants (small circles) and mean across 

participants (large circles) is shown. Improvements were not significantly different 
between the 4 tested speeds. Solid lines indicate the simplified power-law model fit 
to pooled participant data. (B) Quartile plots of the number of corrections, trial-by 
trial variability and smoothness quantify the changes in motor acuity across days. 
(Note: V.F, F., M., S., stand for Very Fast, Fast, Medium, and Slow, respectively).  
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Additionally, we built a 2-parameter power-law model of the SAF, such that 
changes in the parameters of the model could be monitored over time to 
understand the changes in skill. Since a change in skill can be inferred by a 
change in the SAF, it follows that monitoring the parameters that describe 
the SAF allows one to monitor skill. Moreover, previous studies (Reis et al., 
2009; Guiard et al., 2011; Guiard & Rioul, 2015) observed that this model 
could be further simplified to a single-parameter model that can be 
conveniently used to infer changes in the SAF. We therefore investigated if 
this would hold true in prosthesis force control as well, and if such a 
simplified model could be used to circumvent measuring SAF. 

Timed force-matching across multiple sessions 

Sixteen able-bodied participants and an individual with a limb difference 
(who also participated in Study 2) took part in a 3-session experiment, with 
at least 1 day and at most 2 days gap between each session. Similar to 
Study 2, participants were instructed to perform the timed force-matching 
task using the box-and-blocks setup. However, participants only used the 
proportional control + EMG Feedback interface. The timed force-matching 
task was repeated at 4 speeds to better capture the speed-accuracy tradeoff 
(i.e., one additional speed compared to Study 2). 

Performance improvements were identical across speeds 

First, we observed that much like in Study 2, participants displayed a wide 
range of performance that monotonically improved across execution speeds, 
in other words, a SAF (see Figure 4.3A). Moreover, this SAF improved 
across days. Interestingly, improvement across all speeds was similar, 
indicating that the shape of the SAF curve remained similar across days, a 
phenomenon also observed in studies which investigated SAF in natural 
movements (Reis et al., 2009; Shmuelof et al., 2012, 2014).  

Motor acuity and control policies across days 

We observed that the number of force corrections remained similar across 
days, indicating that participants largely executed the same control policies 
they acquired on Day 1 (Figure 4.3B, left), and therefore any improvements 
in motor acuity can be inferred as practice effects on execution. Mirroring the 
performance results, we observed that trial-by-trial variability of EMG 
commands improved across the three days (Figure 4.3B, middle), thereby 
lending more evidence to the validity of analyzing changes in myoelectric 
commands.  
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However, we observed that the smoothness of the commands slightly 
decreased across the days (Figure 4.3B, right). We believe that this may be 
due to the discretized nature of the task and the interface, where participants 
could learn to “navigate” the discrete levels of force using feedback (see 
Chapter 3). Under this assumption, it makes sense that over time 
participants learn a better start-stop behavior, where participants increase 
their muscle contraction to go from one level to the next, thereby making 
“less smooth” trajectories, but nevertheless a successful and repeatable 
strategy. Analogously, we can explain results from Study 2, where Force 
Feedback led to worse smoothness than EMG Feedback, in that Force 
Feedback only enables corrective actions, where participants need to wait 
longer to receive feedback regarding changes to recorded force, thereby 
making the trajectory even less smooth.  

Therefore, while smoothness of movements is a routinely employed marker 
of skilled behavior, the discretized nature of our task and interface could 
have favored behavior that led to jerkier movements. While EMG Feedback 
enabled participants to partly compensate for the jerkiness by providing a 
predictive signal, Force Feedback necessitated longer pauses to confirm 
force changes and thereby jerkier movements. An interesting future study 
would be to investigate how a continuous feedback interface (e.g., amplitude 
modulated EMG feedback) would affect smoothness. 

A power-law model of SAF 

To quantify changes in the SAF, we fit a two-parameter power-law model, 
𝑦𝑦 = 𝑎𝑎𝑥𝑥𝑏𝑏, where y denotes average success rate across trials, and x denotes 
the average completion time. We found that this model was able to capture 
the observed SAF data quite well across days, at the population level (model 
fit shown in Figure 4.3A, solid lines, average R2 of 0.86). However, the data 
at the individual participant level were too variable for meaningful fits 
(average R2 of 0.38), therefore, we only focused on the population-level 
model fits.   

In line with previous experimental studies of motor skill and human-computer 
interaction, we observed that the power-law model can be simplified to a 
one-parameter model where the exponent was kept constant (Reis et al., 
2009; Guiard et al., 2011), while changes in skill were reflected by changes 
in the scaling factor 𝑎𝑎. We found that by fixing the exponent at -0.55, there 
was no change in the average R2 across days. 

Skill inference through a simplified SAF model 
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So far in the thesis, we have focused on explicitly measuring the SAF to both 
measure and monitor skill. However, given that changes in skill can be 
inferred by changes in the parameters of the SAF model, and since we have 
shown that it is only the intercept that informs about skill, we proposed a 
method, based on Reis et al., (2009), to infer skill changes from trials where 
execution speed was not controlled (such as in the SAF experiment), but 
where participants could execute the movements at a single self-chosen 
comfortable speed. This would eliminate the need for repeated execution of 
the same task at different speeds but would come at the expense of 
rigorously quantifying skill and acuity.  

Through a case-study involving a single amputee, we measured the SAF 
through the timed force matching task and additionally asked the participant 
to perform a separate block of 64 trials at a comfortable speed. The SAF 
showed that the performance across days barely improved (+2.6% 
improvement in success rate across speeds). The single-speed trials on the 
other hand showed that the performance improved (89% to 96%) but at the 
expense of speed (1.95 s vs 2.96 s), thereby making skill inference 
infeasible, since the improved success could be explained as facilitated by a 
slower execution speed. 

Then, we estimated the scaling factor using the single-speed trials and found 
that the estimated 𝑎𝑎 decreased between the days, indicating an 
improvement in skill. Therefore, while skill inference through a simplified SAF 
model (given an interface for which the exponent had been predetermined) 
offers a way to measure skill, as opposed to performance and speed 
separately, we believe that measuring the SAF and associated motor acuity 
together is substantially more informative. Moreover, since it has only been 
investigated in a single amputee participant with a high level of skill, the 
method needs to be validated in a larger pool of participants. 

In summary, we found that SAF improved across the three days, with similar 
improvements across movement speeds. Motor acuity, in terms of the 
variability of myoelectric commands, also improved across the days and 
mirrored the performance improvements. We then built a power-law model of 
the SAF that could be used to infer skill improvements across days, without 
the need for measuring a SAF, and discussed the implications of such a 
method. Taken together, we believe that measuring and monitoring skill 
through SAFs and the corresponding changes in motor acuity provides a 
detailed overview of user performance and behavior.  
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CHAPTER 5. DISCUSSION 

Closed-loop myoelectric hand prostheses are a remarkable technology, that 
aim to reliably carry out user intended movements and provide users a 
sense of their prosthesis through supplementary feedback, thereby 
narrowing the divide between natural and bionic hand control. Effective use 
of these devices critically relies on facilitating and monitoring how users 
acquire skilled usage of them. 

In this thesis, we aimed to address two broad questions concerning the 
effect of closed-loop interfaces on skill acquisition and the ways to quantify 
it. Accordingly, we developed a framework to evaluate the skill afforded by 
an interface in prosthesis force control by measuring speed-accuracy 
tradeoffs, acuity of user generated myoelectric commands, and the resulting 
control policies. Using this framework, we quantified the effects of two 
closed-loop interfaces on skill acquisition, validating its utility and laying a 
blueprint for future investigations. 

5.1. OUTLOOK 

Skill vs performance: the utility of speed-accuracy tradeoffs 

An important advancement put forward in this thesis is quantifying and 
understanding the dissociation between skill and performance in prosthesis 
force control. We demonstrated that measuring skill through speed-accuracy 
tradeoffs is both theoretically appealing to study the motor learning 
processes in user-prosthesis interaction and has practical implications in 
comparing between interfaces and monitoring learning outcomes over time. 

Measuring SAFs gives us a comprehensive overview of the performance 
characteristics afforded by interfaces. Such a detailed characterization can 
aid in meta-analytic comparison of interfaces, and for the development of 
user-specific approaches (Jabban et al., 2022; Jones et al., 2022), where 
user priorities (such as reliable accuracy vs speed) can be satisfied when 
choosing an interface. In a similar vein, monitoring user skill using SAFs 
enables us to rigorously ensure training positive outcomes.  
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Estimating motor acuity by investigating EMG commands 

Investigating motor acuity is appealing since it opens a window into 
intermediate execution level variables that are directly controlled by the brain 
to achieve better task performance. Therefore, analyzing motor acuity is key 
to understanding how different interfaces are integrated into users’ motor 
control processes, and to monitor learning behavior.  

Here, we demonstrated that myoelectric commands provide a natural 
avenue for such an analysis, and that a reduction in their variability 
consistently indicated user skill. Therefore, they are a suitable surrogate to 
e.g., quantifying end-point kinematics of movements through motion
tracking. Consequently, investigating the motor acuity afforded by two
different interfaces – EMG vs Force Feedback, through variability and
smoothness of commands, and the acquired control policies, enabled us to
explain why EMG Feedback enabled better performance.

EMG vs Force Feedback: the role of (feedback) interfaces 

Another key outcome of the thesis is the comprehensive characterization of 
two closed-loop interfaces that use the same control algorithm, that of direct 
proportional control, but differ in the feedback variable provided to the user – 
discretized EMG biofeedback vs prosthesis force. Overall, we found that 
EMG Feedback enabled better feedback policies, which consequently led to 
lower variability in commands and higher performance. Interestingly, this 
difference originated in only one of the three tested execution speeds, 
demonstrating the intricacies involved in understanding how different 
(feedback) interfaces enable skill acquisition. 

Interfaces are at the heart of prosthetic technologies and play a crucial role 
in determining users’ skill and their journey towards acquiring it. We argue 
that the framework we developed here is a valuable addition to existing 
methods that enable us to carefully evaluate and understand this process, 
and to develop interfaces that optimally facilitate it. 

5.2. LIMITATIONS 

Here we consider some of the limitations of the key conclusions listed 
above. Firstly, despite the generality of the SAF in terms of applicability to 
any task to investigate motor execution of said task, one limitation is that it 
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may be time consuming. Specifically, SAF demands that multiple speeds be 
tested and each with enough trials to ensure validity. This therefore places 
limitations on the applicability of SAF outside the lab, which we believe is an 
important use case for determining a SAF – namely for skill monitoring. 
Future work on model-based skill monitoring may help alleviate this issue, as 
we demonstrated in Study 3. 

Methodologically, one facet of measuring the SAF that we have not fully 
explored is the number of execution speeds to evaluate it, which so far 
remains a free hyperparameter. While SAF in natural movements have been 
determined at anywhere between 3 to 10 speeds (Reis et al., 2009; Guiard 
et al., 2011; Shmuelof et al., 2012), here we observed that evaluating a 
single extra speed (from Study 2 to 3) led to small performance drops 
(averaged across speeds) indicating an increased learning burden to arrive 
at a control policy that they could then focus on executing reliably. Further, 
for modelling-based efforts, it becomes crucial to specify the number of 
speeds – since this naturally affects the estimated parameter values. 
Therefore, future work needs to inform about the effects of this 
hyperparameter more systematically. In a similar vein, a key limitation to 
Study 3 is the lack of validation of the proposed simplified skill inference 
method. While we have discussed the utility of such a method in Chapter 
4.3, it remains to be shown if estimating the model parameter using a single 
speed is enough, or perhaps two?  

Here, we investigated how interfaces affected prosthesis force control, and 
chose a force-matching (i.e., reaching a particular force) paradigm that has 
shown high construct validity across several studies. However, force control 
also involves other aspects such as the ability to adaptively modulate forces 
under a changing environment, e.g., when grasping an object whose weight 
was initially misjudged, which we have not investigated here. Further, we 
used a simple proportional control scheme to control prosthesis closing 
speed, to reflect the most commonly available control interface. Therefore, 
while EMG Feedback indeed enabled a better SAF and consistently lowered 
trial-by-trial variability compared to Force Feedback, it remains to be seen 
how more complex control interfaces, such as through multichannel 
regression, will affect the role of feedback.  

Finally, we acknowledge a lack of rigorous validation of the proposed 
methods in an amputee population. However, the case studies in a single 
individual with a limb difference indicated that both performance and 
behavioral outcomes closely matched their able-bodied counterparts, 
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providing preliminary evidence of the validity. Moreover, the simplicity of the 
interfaces we used implies that the results obtained from the able-bodied 
population should generalize to individuals with a limb difference. 

5.3. FUTURE WORK 

While understanding the role of feedback interfaces has been a consistent 
goal in the thesis, we have not yet evaluated the open-loop baseline, where 
users only have access to incidental feedback, using SAFs. We believe it is 
critical to establish this baseline, especially given open-loop interfaces are 
current state-of-the-art in commercial prostheses, and it as yet unknown how 
execution speed is impacted in this case. 

A natural extension of our work involves evaluating SAF in more complex 
tasks, such as those that involve combined wrist rotation and grasping. 
Simultaneous control of multiple degrees of freedom remains an open 
challenge, and the framework developed here could be used to understand 
which movements impose stronger tradeoffs, and whether SAF of the sum 
can be understood from the parts. This would involve, e.g., identifying the 
range of movement times that are meaningful to study the SAF, and 
developing new metrics to understand control policies, since the number of 
corrections exclusively deals with force control. 

At a broader level, we see two exciting opportunities to develop on and apply 
the methods proposed in this thesis: 

Benchmarking interfaces 

In the current landscape of user-prosthesis interfaces, we are faced with a 
wealth of fragmented knowledge and a lack of systematic comparisons 
between the available interfaces. This fragmentation arises from the diversity 
of tasks and the range of outcome measures that are reported, making side-
by-side comparisons challenging. We believe that the true potential of user-
prosthesis interfaces lies in the possibility for manufacturers, prosthetists, or 
even users to customize control schemes to suit their unique needs. Future 
research efforts should therefore prioritize benchmarking interfaces on a set 
of tasks that can reproducibly be setup and analyzed. We believe that 
characterizing the SAF across such a set of tasks is a necessary step 
towards this end.  
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Monitoring user skill and experience 

Recent increases in opportunities to log EMG data and make it available for 
research purposes opens up exciting possibilities for research on real-world 
skill acquisition (e.g., the 5 billion lines of at-home data from CoApt4). We 
believe that the methods we introduced in this thesis, to investigate motor 
acuity of myoelectric commands, and for skill inference through SAF models, 
can be further developed to study user behavior at a scale that was so far 
impossible.  


����� 

 

 
4 “CTRL-Shift-Data: The fundamental change in myoelectric controls research and 
development.” Perspective talk by Blair Lock, CoApt Inc., at the Myoelectric Controls 
Symposium, MEC22, August 2022, Canada. 
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