245 research outputs found

    Two-dimensional numerical modelling of wave propagation in soil media

    Get PDF
    Wave propagation in soil media is encountered in many engineering applications. Given that the soil is unbounded, any numerical model of finite size must include absorbing boundary conditions implemented at the artificial boundaries of the domain to allow waves to radiate away to infinity. In this work, a finite element model is developed under plane strain conditions to simulate the effects of harmonic loading induced waves. The soil can be homogeneous or multi-layered where the soil properties are linear elastic. It may overlay rigid bedrock or half-space. It may also incorporate various discontinuities such as foundations, wave barriers, embankments, tunnels or any other structure. For the case of soil media over rigid bedrock, lateral wave radiation is ensured through the implementation of the consistent transmitting boundaries, using the Thin Layer Method (TLM), which allow replacing the two semi-infinite media, on the left and right of a central domain of interest, by equivalent nodal forces simulating their effect. Those are deduced from an eigenvalue problem formulated in the two semi-infinite lateral media. In the case of soil media over half-space, the Thin Layer Method is combined to the Paraxial Boundary Conditions to allow the incoming waves to radiate away to infinity laterally and in-depth. The performance of this coupled model is enhanced by incorporating a buffer layer between the soil medium and the underlain half-space. For extensive analyses, the eigenvalue problem related to the TLM may become computationally demanding, especially for soil media with multi-wavelength depths. As the TLM involves thin sub-layers, in comparison to the wavelength, the size of the eigenvalue problem increases with increasing depth. A modified version of the TLM is proposed in this work to reduce the computational effort of the related eigenvalue problem. This dissertation work led to the development of a Fortran computer code capable of simulating wave propagation in two-dimensional soil media models with either structured or unstructured triangular mesh grids. This latter option allows considering soil-structure problems with geometrical complexities, different soil layering configurations and various loading conditions. The pre- and post-processing as well as the analysis stages are all user friendly and easy

    Dynamic soil-structure interaction analysis using the scaled boundary finite-element method.

    Full text link
    This thesis presents the development of a reliable and efficient technique for the numerical simulation of dynamic soil-structure interaction problems in anisotropic and nonhomogeneous unbounded soils of arbitrary geometry. Such a technique is indispensable in the seismic analysis of large-scale engineering constructions and, to my best knowledge, does not exist at present. The theoretical framework of the research is based on the scaled boundary finite-element method. The following advances are achieved: The scaled boundary finite-element method is extended to simulate the dynamic response of non-homogeneous unbounded domains. The scaled boundary finite element equations in the frequency and time domains are derived for power-type non-homogeneity frequently employed in geotechnical engineering. A high-frequency asymptotic expansion of the dynamic-stiffness matrix is developed. The frequency domain analysis is performed by integrating the scaled boundary finite-element equation in dynamic stiffness. In the time domain, the scaled boundary finite-element equation including convolution integrals is solved for the unit-impulse response at discrete time stations. A Padé series solution for the scaled boundary finite-element equation in dynamic stiffness is developed. It converges over the whole frequency range as the order of the approximation increases. The computationally expensive task of numerically integrating the scaled boundary finite-element equation is circumvented. Exploiting the sparsity of the coefficientmatrices in the scaled boundary finite-element equation leads to a significant reduction in computer time and memory requirements for solving large-scale problems. Furthermore, lumped coefficient matrices are obtained by adopting the auss-Lobatto-Legendre shape functions with nodal quadrature, which avoids the eigenvalue problem in determining the asymptotic expansion. A high-order local transmitting boundary constructed from a continued-fraction solution of the dynamic-stiffness matrix is developed. An equation of motion as occurring in standard structural dynamics with symmetric and frequency-independent coefficient matrices is obtained. This transmitting boundary condition can be coupled seamlessly with standard finite elements. Transient responses are evaluated by using a standard timeintegration scheme. The expensive task of evaluating convolution integrals is circumvented. The advances developed in this thesis are applicable in other disciplines of engineering and science to the analysis of scalar and vector waves in unbounded media

    Recent advances on the fast multipole accelerated boundary element method for 3D time-harmonic elastodynamics

    Get PDF
    International audienceThis article is mainly devoted to a review on fast BEMs for elastodynamics, with particular attention on time-harmonic fast multipole methods (FMMs). It also includes original results that complete a very recent study on the FMM for elastodynamic problems in semi-infinite media. The main concepts underlying fast elastodynamic BEMs and the kernel-dependent elastodynamic FM-BEM based on the diagonal-form kernel decomposition are reviewed. An elastodynamic FM-BEM based on the half-space Green's tensor suitable for semi-infinite media, and in particular on the fast evaluation of the corresponding governing double-layer integral operator involved in the BIE formulation of wave scattering by underground cavities, is then presented. Results on numerical tests for the multipole evaluation of the half-space traction Green's tensor and the FMM treatment of a sample 3D problem involving wave scattering by an underground cavity demonstrate the accuracy of the proposed approach. The article concludes with a discussion of several topics open to further investigation, with relevant published work surveyed in the process

    Advanced BEM-based methodologies to identify and simulate wave fields in complex geostructures

    Get PDF
    To enhance the applicability of BEM for geomechanical modeling numerically optimized BEM models, hybrid FEM-BEM models, and parallel computation of seismic Full Waveform Inversion (FWI) in GPU are implemented. Inverse modeling of seismic wave propagation in inhomogeneous and heterogeneous half-plane is implemented in Boundary Element Method (BEM) using Particle Swarm Optimization (PSO). The Boundary Integral Equations (BIE) based on the fundamental solutions for homogeneous elastic isotropic continuum are modified by introducing mesh-dependent variables. The variables are optimized to obtain the site-specific impedance functions. The PSO-optimized BEM models have significantly improved the efficiency of BEM for seismic wave propagation in arbitrarily inhomogeneous and heterogeneous media. Similarly, a hybrid BEM-FEM approach is developed to evaluate the seismic response of a complex poroelastic soil region containing underground structures. The far-field semi-infinite geological region is modeled via BEM, while the near-field finite geological region is modeled via FEM. The BEM region is integrated into the global FEM system using an equivalent macro-finite-element. The model describes the entire wave path from the seismic source to the local site in a single hybrid model. Additionally, the computational efficiency of time domain FWI algorithm is enhanced by parallel computation in CPU and GPU
    corecore