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Abstract

Wave propagation in soil media is encountered in many engineering applications. Given that

the soil is unbounded, any numerical model of finite size mustinclude absorbing boundary con-

ditions implemented at the artificial boundaries of the domain to allow waves to radiate away to

infinity.

In this work, a finite element model is developed under plane strain conditions to simulate

the effects of harmonic loading induced waves. The soil can be homogeneous or multi-layered

where the soil properties are linear elastic. It may overlayrigid bedrock or half-space. It may

also incorporate various discontinuities such as foundations, wave barriers, embankments, tun-

nels or any other structure.

For the case of soil media over rigid bedrock, lateral wave radiation is ensured through the im-

plementation of the consistent transmitting boundaries, using the Thin Layer Method (TLM),

which allow replacing the two semi-infinite media, on the left and right of a central domain of

interest, by equivalent nodal forces simulating their effect. Those are deduced from an eigen-

value problem formulated in the two semi-infinite lateral media.

In the case of soil media over half-space, the Thin Layer Method is combined to the Parax-

ial Boundary Conditions to allow the incoming waves to radiate away to infinity laterally and

in-depth. The performance of this coupled model is enhancedby incorporating a buffer layer

between the soil medium and the underlain half-space.

For extensive analyses, the eigenvalue problem related to the TLM may become computation-

ally demanding, especially for soil media with multi-wavelength depths. As the TLM involves

thin sub-layers, in comparison to the wavelength, the size of the eigenvalue problem increases

with increasing depth. A modified version of the TLM is proposed in this work to reduce the

computational effort of the related eigenvalue problem.

This dissertation work led to the development of a Fortran computer code capable of simulating

wave propagation in two-dimensional soil media models witheither structured or unstructured

triangular mesh grids. This latter option allows considering soil-structure problems with ge-

ometrical complexities, different soil layering configurations and various loading conditions.

The pre- and post-processing as well as the analysis stages are all user friendly and easy.

i



To Peace in Syria.

ii



Acknowledgements

I started this work with very little experience in the FiniteElement Method and without any

knowledge in FORTRAN coding. During this project I receivedhelp, support, constructive

discussions and encouragement from my supervisor Prof. Omar Laghrouche. What can I say?

Approachability, sincerity, honesty, dedication, commitment, friendship,.... really words are not

enough to express my gratitude, appreciation and admiration for my supervisor. Early morning

or late day office working hours, Omar was always there to answer my questions. All I can

say, I am indebted to you. I learnt from each single meeting ordiscussion we had. You will be

always my inspiration.

I would like to thank the Head of the IIE Prof. P. K. Woodward for his support. Dr A. El-

Kacimi is well acknowledged for the time spent in discussions and solving many problems

relating to FORTRAN coding. I would like also to express my gratitude and appreciation for

the following people who spent time in replying to my emails or talking to me on the phone;

Prof. E. Kausel, Prof. J. L. Tassoulas, Prof. B. Yang, Prof. E. Cheever, Prof. P. Avitabile, Prof.

D. Kammer, Dr. T. G. Davies, Dr M. Hussein, Dr S. Jones and Dr J.Park. My colleagues Dr G.

Kasangaki and P. Shrestha were always there for discussionsand for sharing general concerns.

Many thanks go to Dr J. Kennedy. My colleagues in the IIE with whom I shared good and bad

times. Great people I met in the UK who offered support and encouragement: thanks to Dr. N.

Fowdar and his family and thanks to Mr. Stephen Mull and his great family. I will never forget

you.

Even from a far distance, thousands of miles away, I can hear your prayers and I can sense

your faith and support, my beloved family. You provided continuous support and encourage-

ment during the period of my study which kept my hope and ambition in the highest level. My

father always inspired me to pursue my post-graduate studies, this is the best reward I may offer.

Coming home late, frustrated and confused by errors in the code, my son put the smile back on

my face and my wife assured me and lifted my spirits up. Thank you both for your patience and

understanding when I went to the University in the very earlymornings or even in the week-

ends. Thank you for keeping my life simple and enjoyable during tough times. I would not

imagine my life without both of you.

Thank you all so much for everything.

iii



Contents

Abstract ii

Dedication iii

Acknowledgements iv

Contents iv

List of Figures viii

List of Tables xiv

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 2

1.3 Contribution statement . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 3

2 Literature review 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Global Absorbing Boundary Conditions (ABC) . . . . . . . . . .. . . . . . . 7

2.2.1 The Boundary Element Method (BEM) . . . . . . . . . . . . . . . . .7

2.2.2 The consistent transmitting boundary conditions . . .. . . . . . . . . 10

2.2.3 The Scaled Boundary Finite Element Method (SBFEM) . . .. . . . . 12

2.2.4 Exact Non-Reflecting Boundary Conditions (NRBC) . . . .. . . . . . 15

2.3 Local Absorbing Boundary Conditions (ABC) . . . . . . . . . . .. . . . . . . 16

2.3.1 Absorbing layers at the boundaries . . . . . . . . . . . . . . . .. . . . 19

2.3.2 High-order local transmitting boundaries . . . . . . . . .. . . . . . . 22

2.3.3 Elementary boundaries (non-transmitting) . . . . . . . .. . . . . . . . 25

2.3.4 Infinite elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25

2.4 Brief summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30

iv



3 Wave propagation modelling in soil media over bedrock 31

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31

3.2 Treatment of the irregular region . . . . . . . . . . . . . . . . . . .. . . . . . 32

3.3 Treatment of the regular regions . . . . . . . . . . . . . . . . . . . .. . . . . 32

3.3.1 Virtual change of strain energy . . . . . . . . . . . . . . . . . . .. . . 35

3.3.2 Virtual work by the acceleration quantities . . . . . . . .. . . . . . . 36

3.3.3 Virtual work of external forces . . . . . . . . . . . . . . . . . . .. . . 39

3.4 The finite element model . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 42

3.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 44

4 Wave propagation in soil media over bedrock: validation & applications 45

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45

4.2 Effectiveness of the consistent transmitting boundaryconditions . . . . . . . . 45

4.2.1 Undamped case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46

4.2.2 Damped case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47

4.3 Non-symmetrical problem . . . . . . . . . . . . . . . . . . . . . . . . . .. . 52

4.3.1 Undamped case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52

4.3.2 Damped case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54

4.4 Dynamic behaviour of a soil layer over rigid bedrock: critical frequencies . . . 56

4.4.1 Undamped response . . . . . . . . . . . . . . . . . . . . . . . . . . .58

4.4.2 Damped response . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61

4.5 Dynamic behaviour of a soil layer over rigid bedrock: critical depths . . . . . . 63

4.5.1 Vertical loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63

4.5.2 Horizontal loading . . . . . . . . . . . . . . . . . . . . . . . . . . . .63

4.6 Dynamic behaviour of layered soil media over rigid bedrock . . . . . . . . . . 67

4.6.1 Dynamic behaviour of a two-layer soil profile . . . . . . . .. . . . . . 67

4.6.2 Dynamic behaviour of a multi-layered soil profile withlinear variation

of stiffness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71

4.7 Models with structured and unstructured mesh grids . . . .. . . . . . . . . . . 73

4.7.1 Structured triangular element mesh grids . . . . . . . . . .. . . . . . 73

4.7.2 Unstructured triangular element mesh grids . . . . . . . .. . . . . . . 76

4.7.3 An application with unstructured mesh grids . . . . . . . .. . . . . . 78

4.8 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 81

5 Wave propagation modelling in half-space soil media 82

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82

5.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 82

5.3 Treatment of the half-space . . . . . . . . . . . . . . . . . . . . . . . .. . . . 85

5.3.1 Treatment of the irregular region . . . . . . . . . . . . . . . . .. . . . 86

v



5.3.2 Treatment of the regular region . . . . . . . . . . . . . . . . . . .. . . 92

5.3.3 The half-space finite-element model . . . . . . . . . . . . . . .. . . . 96

5.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 97

6 Wave propagation in half-space soil media: validation & applications 98

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98

6.2 Wave propagation in homogenous half-space . . . . . . . . . . .. . . . . . . 98

6.2.1 Validation test example . . . . . . . . . . . . . . . . . . . . . . . . .. 98

6.2.2 Effect of the half-space model depth . . . . . . . . . . . . . . .. . . . 99

6.2.3 Effect of the model lateral extent . . . . . . . . . . . . . . . . .. . . . 103

6.3 Wave propagation in layered half-space . . . . . . . . . . . . . .. . . . . . . 106

6.3.1 Soil layer over half-space:Hlay = 0.5λR . . . . . . . . . . . . . . . . . 106

6.3.2 Soil layer over half-space:Hlay = λR . . . . . . . . . . . . . . . . . . 111

6.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116

6.4.1 Rigid surface foundation over homogenous half-space. . . . . . . . . 117

6.4.2 Rigid surface foundation over layered half-space . . .. . . . . . . . . 121

6.4.2.1 Soil layer over half-space: Hlay = B . . . . . . . . . . . . . . 121

6.4.2.2 Soil layer over half-space, Hlay = 2B . . . . . . . . . . . . . 124

6.4.3 Application to ground vibration reduction . . . . . . . . .. . . . . . . 126

6.5 Stability issues of the PBC . . . . . . . . . . . . . . . . . . . . . . . . .. . . 127

6.5.1 Performance of the modified PBC in homogenous half-space media . . 129

6.5.2 Performance of the modified PBC in layered half-space media . . . . . 129

6.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 134

7 Consistent transmitting boundary conditions with a reduced number of eigen-

modes 135

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135

7.2 Background and concept . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 135

7.3 Eigenvalue problem and wave nature of the solution . . . . .. . . . . . . . . . 137

7.3.1 Undamped case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138

7.3.2 Damped case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139

7.3.3 A method for selecting eigenmodes . . . . . . . . . . . . . . . . .. . 139

7.4 Modified consistent transmitting boundary conditions .. . . . . . . . . . . . . 142

7.4.1 Test example: undamped soil model . . . . . . . . . . . . . . . . .. . 143

7.4.2 Test example: damped soil model . . . . . . . . . . . . . . . . . . .. 144

7.5 Effect on computational time . . . . . . . . . . . . . . . . . . . . . . .. . . . 147

7.6 Efficiency of the modified consistent transmitting boundary conditions . . . . .148

7.6.1 Wave propagation in multi-layered soil profile . . . . . .. . . . . . . . 149

7.6.2 Surface rigid foundation on a stratum . . . . . . . . . . . . . .. . . . 150

vi



7.6.3 Wave reduction by empty trench . . . . . . . . . . . . . . . . . . . .. 152

7.7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 154

8 Some applications with unstructured triangular mesh grids 155

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155

8.2 Dynamic behaviour of soil media with non-horizontal profile . . . . . . . . . . 155

8.2.1 Dynamic behaviour of a soil layer over inclined bedrock . . . . . . . . 156

8.2.2 Dynamic behaviour of a two-layer soil medium with inclined interface

over horizontal bedrock . . . . . . . . . . . . . . . . . . . . . . . . .158

8.3 Harmonic vibration of a surface rigid foundation over soil media with non-

horizontal profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159

8.3.1 Rigid foundation over soil layer over inclined rigid bedrock . . . . . . 159

8.3.2 Rigid foundation over 2-layer soil medium with inclined interface over

horizontal bedrock . . . . . . . . . . . . . . . . . . . . . . . . . . . .162

8.3.2.1 Effect ofµ1/µ2 . . . . . . . . . . . . . . . . . . . . . . . .163

8.3.2.2 Effect ofH1/H2 . . . . . . . . . . . . . . . . . . . . . . . .167

8.4 Surface ground vibration reduction by wave barriers . . .. . . . . . . . . . . . 174

8.4.1 Vibration reduction by wave barriers of various shapes . . . . . . . . . 174

8.4.2 Vibration reduction by an inclusion . . . . . . . . . . . . . . .. . . . 177

8.5 Harmonic loads on railway embankments . . . . . . . . . . . . . . .. . . . . 179

8.5.1 Railway embankment . . . . . . . . . . . . . . . . . . . . . . . . . . .181

8.5.2 Other alternatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . .184

8.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 187

9 Conclusions and Prospects 188

Appendix: The Moore-Penrose Pseudoinverse 190

References 191

vii



List of Figures

2.1 Schematic diagram of an unbounded soil domain problem example. . . . . . . 6

2.2 Discretisation in the boundary element method for 3D unbounded volume. . . . 7

2.3 Schematic diagram for treating unbounded media by the TLM. . . . . . . . . . 10

2.4 Discretisation of the scaled boundary finite element method. . . . . . . . . . . 13

2.5 Schematic diagram of the absorbing layer method. . . . . . .. . . . . . . . . . 19

2.6 Schematic diagram of an infinite element in the local coordinates. . . . . . . . 26

2.7 Finite/infinite element for unbounded domains. . . . . . . .. . . . . . . . . . 28

3.1 Problem representation and idealisation. . . . . . . . . . . .. . . . . . . . . . 32

3.2 Regular region representation. . . . . . . . . . . . . . . . . . . . .. . . . . . 33

3.3 The structure of global matrices. . . . . . . . . . . . . . . . . . . .. . . . . . 39

3.4 The finite element model. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 43

4.1 Effectiveness of the consistent transmitting boundaries. . . . . . . . . . . . . . 46

4.2 Vertical surface displacements and corresponding errors: undamped soil. . . . . 48

4.3 Horizontal surface displacements and corresponding errors: undamped soil. . . 49

4.4 Vertical surface displacements and corresponding errors: damped soil. . . . . . 50

4.5 Horizontal surface displacements and corresponding errors: damped soil. . . . 51

4.6 Vertical and horizontal displacement contour plots: case of 10λR. . . . . . . . . 52

4.7 Vertical surface displacements and corresponding errors in the undamped soil

for a non-symmetrical problem. . . . . . . . . . . . . . . . . . . . . . . . .. 53

4.8 Vertical surface displacements and corresponding errors in the damped soil for

a non-symmetrical problem. . . . . . . . . . . . . . . . . . . . . . . . . . . .55

4.9 Linear elastic soil deposit over bedrock. . . . . . . . . . . . .. . . . . . . . . 57

4.10 Theoretical amplification factors for vertical (left)and horizontal (horizontal)

excitations for undamped and damped homogenous soil layer over bedrock. . . 58

4.11 Undamped vertical (left) and horizontal (right) displacements at the surface for

various applied frequencies. . . . . . . . . . . . . . . . . . . . . . . . . .. . 60

viii



4.12 Soil response amplification for vertical and horizontal excitations under un-

damped condition for homogenous soil layer over bedrock. . .. . . . . . . . . 60

4.13 Damped vertical (left) and horizontal (right) displacements at the surface for

various applied frequencies. . . . . . . . . . . . . . . . . . . . . . . . . .. . 62

4.14 Soil response amplification for vertical and horizontal excitations under damped

condition for homogenous soil layer over bedrock. . . . . . . . .. . . . . . . 62

4.15 Effect of soil layer depth in the undamped case for vertical excitation. . . . . . 65

4.16 Effect of soil layer depth in the undamped case for horizontal excitation. . . . . 66

4.17 Critical depth amplification for vertical and horizontal loading: theoretical (top)

and numerical (bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66

4.18 Horizontal (left) and vertical (right) surface displacements with their corre-

sponding relative error of 2-layer soil profile. . . . . . . . . . .. . . . . . . . 68

4.19 Vertical (left) and horizontal (right) surface displacements of a 2-layer soil pro-

file over bedrock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70

4.20 Resonance phenomena of homogeneous and 2-layer soil profiles. . . . . . . . . 70

4.21 Vertical (left) and horizontal (right) surface displacements and their correspond-

ing errors for domain length associated with linear variation of the stiffness. . . 72

4.22 Vertical (left) and horizontal (right) displacementsat the surface for homoge-

neous and linear variation of stiffness for the case of 8λR. . . . . . . . . . . . . 72

4.23 Effect of soil stiffness on the fundamental frequency.. . . . . . . . . . . . . . 73

4.24 Mesh grids used in the analysis. . . . . . . . . . . . . . . . . . . . .. . . . . 75

4.25 Effect of triangular element type on surface horizontal (left) and vertical (right)

displacements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75

4.26 Effect of triangular element size on surface horizontal (left) and vertical (right)

displacements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76

4.27 Structured quadrilateral versus unstructured triangular mesh grids. . . . . . . . 77

4.28 Horizontal (left) and vertical (right) surface displacements associated with struc-

tured and unstructured mesh grids. . . . . . . . . . . . . . . . . . . . . .. . . 77

4.29 Horizontal (left) and vertical (right) surface displacements associated with un-

structured mesh when extending the domain. . . . . . . . . . . . . . .. . . . . 78

4.30 Unstructured mesh grids for soil layer over inclined base. . . . . . . . . . . . . 79

4.31 Effect of base inclination on surface vertical displacements. . . . . . . . . . . . 80

5.1 Two dimensional half-space representation. . . . . . . . . .. . . . . . . . . . 83

5.2 Treatment of the half-space model. . . . . . . . . . . . . . . . . . .. . . . . . 86

ix



5.3 Half-space element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 90

5.4 Layered region over half-space. . . . . . . . . . . . . . . . . . . . .. . . . . . 93

5.5 Global matrices structure for half-space model. . . . . . .. . . . . . . . . . . 96

5.6 The finite element half-space model. . . . . . . . . . . . . . . . . .. . . . . . 97

6.1 Validation of wave propagation in homogenous half-space. . . . . . . . . . . . 99

6.2 Effect of half-space depth: vertical surface displacements and associated rela-

tive errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101

6.3 Effect of half-space depth: horizontal surface displacements and associated rel-

ative errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102

6.4 Vertical surface displacements and associated relative errors. . . . . . . . . . .104

6.5 Horizontal surface displacements and associated relative errors. . . . . . . . . .105

6.6 Effect of buffer layer thickness on vertical surface displacements:Hlay = 0.5λR. 108

6.7 Effect of buffer layer thickness on horizontal surface displacements:Hlay= 0.5λR.109

6.8 Effect of buffer layer thickness on vertical displacements at the soil-half-space

interface:Hlay = 0.5λR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110

6.9 Effect of buffer layer thickness on horizontal displacements at the soil-half-

space interface:Hlay = 0.5λR. . . . . . . . . . . . . . . . . . . . . . . . . . .111

6.10 Effect of buffer layer thickness on vertical surface displacements:Hlay = λR. . . 113

6.11 Effect of buffer layer thickness on horizontal surfacedisplacements:Hlay = λR. 114

6.12 Effect of buffer layer thickness on vertical displacements at the soil-half-space

interface:Hlay = λR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115

6.13 Effect of buffer layer thickness on horizontal displacements at the soil-half-

space interface:Hlay = λR. . . . . . . . . . . . . . . . . . . . . . . . . . . . .116

6.14 Problem representation and idealization. . . . . . . . . . .. . . . . . . . . . . 117

6.15 Effect of half-space depth on compliances of rigid foundation over homogenous

half-space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120

6.16 Comparison of compliances of surface rigid foundationover homogenous half-

space of depth of 0.5λP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120

6.17 Rigid foundation over layered-half-space. . . . . . . . . .. . . . . . . . . . . 121

6.18 Compliances of surface rigid foundation over layered half-space,Hlay = B. . . 122

6.19 Effect of the buffer layer thickness on compliances of surface rigid foundation

on layered half-space, Hlay=B. . . . . . . . . . . . . . . . . . . . . . . . . . .123

6.20 Vertical and horizontal compliances of surface rigid foundation over layered

half-space,Hlay = B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124

6.21 Compliances of surface rigid foundation over layered half-space,Hlay = 2B. . . 125

6.22 Effect of the buffer layer thickness on dynamic compliances of surface rigid

foundation on layered half-space, Hlay=2B. . . . . . . . . . . . . . . . . . . .125

6.23 Compliances of surface rigid foundation over layered half-space,Hlay = 2B. . . 126

x



6.24 Amplitude reduction factor for vibration reduction byan empty trench. . . . . .127

6.25 Effect of Poisson’s ratio and the buffer layer thickness on the performance of

homogenous half-space TLM-PBC model,ν = 0.35 andν = 0.4. . . . . . . . 130

6.26 Effect of Poisson’s ratio, modified matrix, and the buffer layer thickness on the

performance of homogenous half-space TLM-PBC model,ν = 0.35 andν = 0.4.131

6.27 Effect of Poisson’s ratio and the buffer layer thickness on the performance of

layered half-space TLM-PBC model; Hlay = 2B, ν = 0.35 andν = 0.4. . . . . 132

6.28 Effect of Poisson’s ratio, modified matrix, and the buffer layer thickness on the

performance of layered half-space TLM-PBC model; Hlay = 2B, ν = 0.35 and

ν = 0.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133

7.1 Variation of the exponential terms of the displacement beyond the lateral bound-

ary, Hamdanet al. [131]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141

7.2 Surface displacements in the undamped case and their corresponding errors:

1λR depth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145

7.3 Surface displacements in the undamped case and their corresponding errors:

4λR depth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145

7.4 Surface displacements in the damped case and their corresponding errors: 1λR

depth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146

7.5 Surface displacements in the damped case and their corresponding errors: 4λR

depth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146

7.6 Displacements variation with depth at the right lateralboundary, Hamdanet al.

[131]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147

7.7 Computational efficiency of the approach, Hamdanet al. [131]. . . . . . . . . . 148

7.8 Effect of reduced number of eigenmodes on the fundamental frequency of lay-

ered soil profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149

7.9 The finite element model of rigid foundation over soil deposit over rigid bedrock.150

7.10 Dynamic compliances of rigid foundation over a soil layer overlaying bedrock,

Hamdanet al. [131]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .151

7.11 Variation of normalised displacements with frequency. . . . . . . . . . . . . . 152

7.12 Effect of the number of eigenmodes on the screening efficiency of an empty

trench, Hamdanet al. [131]. . . . . . . . . . . . . . . . . . . . . . . . . . . .153

8.1 Schematic diagram of a soil layer over inclined bedrock.. . . . . . . . . . . . 156

8.2 Dynamic response of a soil layer over inclined rock: vertical response of volume

decrease (top left), horizontal response of volume decrease (top right), vertical

response of volume increase (bottom left) and horizontal response of volume

increase (bottom right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 157

xi



8.3 Schematic diagram of 2-layer soil profiles with inclinedinterface over horizon-

tal bedrock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158

8.4 Dynamic response of an inclined interface 2-layer soil over horizontal bedrock:

vertical response of volume decrease of upper layer (top left), horizontal re-

sponse of volume decrease of upper layer (top right), vertical response of vol-

ume increase of upper layer (bottom left) and horizontal response of volume

increase of upper layer (bottom right). . . . . . . . . . . . . . . . . .. . . . . 159

8.5 Compliances of surface rigid foundation over inclined rigid bedrock (volume

decrease). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160

8.6 Compliances of surface rigid foundation over inclined rigid bedrock (volume

increase). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161

8.7 Variation of displacements amplitude with frequency: vertical response of vol-

ume decrease (top left), horizontal response of volume decrease (top right),

vertical response of volume increase (bottom left) and horizontal response of

volume increase (bottom right). . . . . . . . . . . . . . . . . . . . . . . .. . . 161

8.8 Effect of soil interface inclination on compliances of surface rigid foundation. .162

8.9 Variation of normalised displacements amplitude with frequency. . . . . . . . .163

8.10 Normalised compliances of the surface rigid foundation for µ1/µ2=0.25. . . . . 164

8.11 Normalised compliances of the surface rigid foundation for µ1/µ2=0.5. . . . . 164

8.12 Normalised compliances of the surface rigid foundation for µ1/µ2=2. . . . . . 165

8.13 Normalised compliances of the surface rigid foundation for µ1/µ2=4. . . . . . 165

8.14 Variation of normalised displacements amplitudes underneath the foundation

for µ1/µ2=0.25, 0.5, 2 and 4, from top to bottom. . . . . . . . . . . . . . . . .166

8.15 Normalised compliances of the surface rigid foundation for H1/H2=0.25. . . . 168

8.16 Normalised compliances of the surface rigid foundation for H1/H2=0.333. . . . 168

8.17 Normalised compliances of the surface rigid foundation for H1/H2=0.6. . . . . 169

8.18 Normalised compliances of the surface rigid foundation for H1/H2=1. . . . . . 170

8.19 Normalised compliances of the surface rigid foundation for H1/H2=1.67. . . . 170

8.20 Normalised compliances of the foundation forH1/H2=3. . . . . . . . . . . . . 171

8.21 Normalised compliances of the surface rigid foundation for H1/H2=4. . . . . . 171

8.22 Variation of normalised displacements amplitudes underneath the foundation

for H1/H2=0.25, 0.333, 0.6 and 1. . . . . . . . . . . . . . . . . . . . . . . . .172

8.23 Variation of normalised displacements amplitudes underneath the foundation

for H1/H2=1, 1.67, 3 and 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . .173

8.24 Schematic diagrams of wave barriers and the problem configuration. . . . . . . 174

8.25 Effect of barrier shape on screening efficiency. . . . . . .. . . . . . . . . . . . 175

8.26 Effect of barrier inclination on reduction efficiency.. . . . . . . . . . . . . . . 175

8.27 Effect of L-shape barriers on screening efficiency. . . .. . . . . . . . . . . . . 176

xii



8.28 Effect of trapezium shape barriers on screening efficiency. . . . . . . . . . . . 176

8.29 Effect of normalised area of the barrier on the screening efficiency. . . . . . . . 177

8.30 Schematic diagram of surface vibration reduction by aninclusion. . . . . . . . 179

8.31 Comparison of the efficiency of soft and rigid mats on surface vibration reduction.179

8.32 2D configuration of railway embankment over soil layer resting on bedrock. . .181

8.33 Schematic diagrams of loads on railway embankments. . .. . . . . . . . . . . 181

8.34 Example of unstructured triangular mesh for low embankment: F=18Hz. . . . .182

8.35 Vibration reduction by railway embankment over soil layer resting on bedrock. 183

8.36 HCG-RW cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185

8.37 Embedded HCG-RW cases. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 186

8.38 Contour plots of the vertical displacements, F=18Hz. .. . . . . . . . . . . . . 186

xiii



List of Tables

4.1 Natural frequencies of the horizontal and vertical response of the soil layer. . . 59

7.1 Imaginary and real parts of wavenumbers for the undampedcase. . . . . . . . .139

7.2 Imaginary and real parts of wavenumbers for the damped case. . . . . . . . . . 140

8.1 Material properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 182

xiv



Abbreviations

TLM: Thin Layer Method

PBC: Paraxial Boundary Conditions

EDT: ElastoDynamics Toolbox

FEM: Finite Element Method

FDM: Finite Difference Method

BEM: Boundary Element Method

FMM: Fast Multipole Method

CQM: Convolution Quadrature Method

FFT: Fast Fourier Transformation

SBFEM: Scaled Boundary Finite Element Method

SBFEE: Scaled Boundary Finite Element Equation

NRBC: Non-Reflecting Boundary Conditions

FT: Fourier Transformation

ABC: Absorbing Boundary Conditions

PML: Perfectly Matched Layer

CALM: Caughey Absorbing Layer Method

DAA: Doubly Asymptotic Approximation

1D: One Dimension

2D: Two Dimensions

3D: Three Dimensions

xv



Publications

Journal papers:

• N. Hamdan, O. Laghrouche, A. El-Kacimi, P.K. Woodward. “Consistent transmitting

boundary conditions with a reduced number of eigenmodes forwave propagation in elas-

tic media” . Computers and Geotechnics: 53 (2013), 9-16.

• N. Hamdan, O. Laghrouche, A. El-Kacimi, P.K. Woodward. “Combined paraxial-consistent

boundary conditions finite element model for simulating wave propagation in elastic half-

space media” . Soil Dynamics and Earthquake Engineering, (2013) (accepted).

Conference papers:

• N. Hamdan N, O. Laghrouche, P.K. Woodward. “A Finite Element Model for Train In-

duced Vibration from Embankments” . Proceedings of the 12thInternational Conference

and exhibition on Railway Engineering, London, UK, Edited by A. Fordeet al. (2013).

• N. Hamdan N, O. Laghrouche, P.K. Woodward, A. El-Kacimi. “A coupled thin layer-

paraxial boundary condition model for simulating wave propagation in layered half-

space media” . Proceedings of the International Conference on Computational Mechanics

(CM13), Durham University, UK, Edited by A. Osmanet al. (2013).

• N. Hamdan , O. Laghrouche, A. El-Kacimi, P.K. Woodward, G. Medero. “Investigation of

the thin layer method for wave propagation in elastic media” . Proceedings of the 20th UK

Conference of the Association of Computational Mechanics in Engineering, University

of Manchester, UK, Edited by Z. J. Yang (2012).

• N. Hamdan , O. Laghrouche, A. El-Kacimi, P.K. Woodward, G. Medero. “Numerical

modelling of the dynamic behaviour of a soil deposit overlying bedrock” . Proceedings of

the 19th UK Conference of the Association of Computational Mechanics in Engineering,

Heriot Watt University, Edinburgh, UK, Edited by O. Laghroucheet al. (2011).

xvi



Chapter 1

Introduction

Wave propagation phenomenon is encountered in several engineering fields such as soil-structure

interaction, seismology, electromagnetics, fluid-structure interaction and in many other areas.

The domain in such problems is usually unbounded and for the sake of modelling, the un-

bounded domain must be represented by a bounded model of finite size. The domain is therefore

truncated at some distance and the infinite extent of the model is achieved by imposing special

boundary conditions which allow wave radiation towards thefar field, with minimal reflection

at the artificial boundaries.

A hybrid finite element model is presented in the context of this thesis by coupling the con-

sistent transmitting boundaries, known as the Thin Layer Method (TLM), applied at the lateral

boundaries of the domain, and the Paraxial Boundary Conditions (PBC), applied at the bottom

boundary of the model, to simulate wave propagation in soil media.

1.1 Motivation

A variety of commercial software packages, either in the frequency domain or in the time do-

main, are available to engineers and researchers to deal with wave propagation problems in

unbounded soil media and for soil-structure interaction problems.

For example, Lysmeret al. [1] developed a finite element program, called FLUSH, to deal

with seismic soil-structure interaction problems. FLUSH deals with soil layer or layered soil

media over rigid bedrock. Plane strain quadrilateral finiteelements are used for modelling the

bounded domain and the TLM is used at the lateral boundaries to simulate the horizontal semi-

infinite extent of the domain. Multiple nonlinear soil properties for equivalent linear analysis

can be used. This allows to use a different damping in each element.

More recently, Schevenelset al. [2] of KU Leuven, produced an educational toolbox in MAT-

1



LAB, ElastoDynamics Toolbox EDT version 2.1, which has the capability of dealing with wave

propagation in soil media with emphasis focused on site amplification problems. It also deals

with the computation of dispersive surface waves in layeredsoils and the calculation of the

forced response of the soil due to the application of harmonic and transient loadings. The TLM

and the direct stiffness matrix approach are coupled to solve problems in half-space media.

The motivation of this research project is to model wave propagation in unbounded soil media

by producing a numerical code which offers the potential to deal with different types of prob-

lems of practical interest to engineers. Indeed, models with structured or unstructured mesh

grids can be used to analyse wave propagation in soil media, homogenous or layered, over-

laying bedrock or half-space, and capable of containing discontinuities of complex geometries.

Furthermore, a more efficient version of the TLM, in terms of computational cost, is proposed

in this work by reducing the number of eigenmodes in the original method.

1.2 Outline of the thesis

An introduction and an outline of the dissertation are presented in the current chapter where a

statement of the contribution is also given.

A detailed survey on absorbing boundary conditions is presented in Chapter2. It covers differ-

ent methods and approaches for treating artificial boundaries. As this research work is related

to elastodynamic media, the literature review mainly focuses on this topic.

The TLM is adopted in this research in the frequency domain under plane strain conditions.

The theoretical background and mathematical formulation of the method are illustrated in detail

in Chapter3. The TLM is coded in FORTRAN in a numerical programme aiming to simulate

wave propagation in soil media overlaying rigid bedrock andextending to infinity in the hori-

zontal direction.

Parametric studies and validation tests are carried out in Chapter4. The continuity of the surface

displacements for symmetrical and non-symmetrical domains is first ensured. Then, the numer-

ical code is validated against the theory of 1D dynamic response of a soil deposit overlaying

bedrock in the following sections. The resonance phenomenon and the critical depth concept of

a soil layer over rigid bedrock are obtained by the numericalcode and the results are compared

with theoretical predictions. Simulating wave propagation in layered soil media is addressed

theoretically and numerically. Unstructured triangular mesh grids are also used to provide a

more practical tool to analyse soil-structure interactionproblems in the frequency domain.
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The TLM is coupled with the PBC in Chapter5 to simulate wave propagation in unbounded soil

media. This chapter starts by providing a literature reviewon the PBC as well as a discussion on

their efficiency and the potential improvements. The formulation of the PBC is also presented.

The stiffness matrix of half-space elements is derived and used, in combination with TLM, to

model the half-space effect.

Validation numerical examples are provided in Chapter6 for dealing with both half-space and

layered half-space models. The effect of the half-space depth is first discussed. Improvement of

the TLM-PBC coupled model is achieved by incorporating a buffer layer attached at the bottom

of the last soil layer with the same material properties of the half-space. The importance of this

artificial layer is shown in the application of a rigid foundation over layered half-space. Further

stability issues with respect to Poisson’s ratio are addressed in the following section. The chap-

ter ends by drawing concluding remarks derived from the presented numerical examples.

The idea of reducing the number of contributing eigenmodes within the context of the TLM

is introduced in Chapter7. Some modifications are first applied to the original approach taking

into account the change of the diagonal and modal matrices byreducing the diagonal length and

the number of columns, respectively. The effect of various wavenumbers in terms of transmit-

ting energy through the artificial boundary is investigated. The number of contributing eigen-

modes is reduced to half, quarter and only three, as suggested in the literature [3] for the last

case. Some applications are then presented demonstrating the efficiency of this concept for sev-

eral problems where the soil is underlain by rigid bedrock.

The benefits of incorporating unstructured mesh grids are exploited in Chapter8 where a de-

tailed parametric study is conducted using an automatic mesh generator. The flexibility of such

mesh grids is shown through the presented numerical examples. Applications are then presented

showing the flexibility offered to practitioners to deal with problems with complex geometries

where uniform or structured mesh grids are not practical.

Finally, conclusions of the current work are listed in Chapter 9. Potential future research ideas

are also highlighted.

1.3 Contribution statement

The main objectives of this thesis are as follow:

• Produce a numerical tool which enables engineers to simulate wave propagation in un-

bounded soil media with emphasis on dynamic soil-structureinteraction problems. The

package will allow engineers to employ structured as well asunstructured mesh grids as
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they may deal with complicated geometries including any type or shape of discontinuity

within the model. This is achieved by incorporating the ability to employ unstructured

triangular mesh grids generated by an automatic mesh generator.

• Explore the efficiency of the TLM-PBC coupled model for simulating wave propagation

problems in unbounded soil media, which is reported in the literature to suffer from poor

performance. Improvement is achieved here, especially in the case of layered half-space

models, by introducing a buffer layer which separates the location of the PBC from the

overlain domain. This technique is then applied to examine the behaviour of rigid foun-

dations over layered half-space media.

• Investigate the effect of reducing the number of contributing eigenmodes within the con-

text of the consistent transmitting boundaries in order to reduce the computational effort.

The original solution contains all wavenumbers, we aim to reduce that number and exam-

ine the efficiency of the procedure.
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Chapter 2

Literature review

2.1 Introduction

Wave propagation occurs in many engineering problems associated with soil-structure interac-

tion, oscillating machines, railway geotechnical engineering and geotechnical earthquake en-

gineering, and other fields. It has been intensively studiednumerically through the use of the

Finite Element Method (FEM) over the past four decades due tothe difficulties in formulat-

ing analytical solutions. This is related to several reasons; such as the complex geometry of the

problem and the size of the domain especially in the case of wave propagation within unbounded

domains. Even with the recent advances in computer systems,solutions to such problems are

not practical to achieve without treating the boundaries due to involvement of an infinite number

of degrees of freedom. Spurious or reflected waves at the boundaries of a numerical model are

one of the challenges to overcome when modelling wave propagation problems. Thus, when

modelling such problems an unbounded domain is usually replaced by a bounded domain with

special absorbing boundary conditions to allow wave transmission through the infinite extent

of the domain. Hence, studying dynamic soil-structure interaction or wave propagation in un-

bounded soil media using the (FEM) requires artificial boundaries to be placed at the boundaries

of the truncated domain. The purpose of the latter absorbingboundaries is to prevent or reduce

wave reflections to an acceptable engineering levels and allow wave transmission through the

artificial boundaries of the numerical model. The principleobjective of these methods is to

approximate the radiation and attenuation laws of the wavestowards infinity and apply the re-

sulting special conditions on the boundaries. It is worth mentioning that zero reflection is very

difficult to achieve. Eventually, the models are reduced in terms of size so that the computa-

tional resources required are reasonable.

Different names have been in use for these conditions such as; transmitting boundaries, non-

reflecting boundaries, absorbing layer method, silent boundaries and sometimes infinite ele-

ments. Let us call the special boundary conditions in this chapter as absorbing boundaries.
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Basically absorbing boundary conditions have been classified in the literature into two wide

categories; namely the global or nonlocal and local procedures. This classification is followed

in this chapter by expanding available methods within this categorization.

A brief summary of the global schemes is introduced in section 2.2. Four main approaches

are distinguished, the boundary element method, the consistent transmitting boundary method,

the scaled boundary finite element method and, finally, the exact non-reflecting boundary con-

ditions. In section2.3, local boundary conditions are presented and classified also in four cat-

egories namely; absorbing layers methods, high order localabsorbing boundary conditions,

elementary transmitting boundary conditions and finally the infinite elements. Many papers

appear in the literature aiming to review various types of absorbing boundary conditions em-

ployed in several disciplines and applications. Further information can be found in references

[4, 5, 6, 7].

In Figure 2.1, a general two-dimensional representation of an unboundedsoil medium with

some discontinuities is depicted. To model the problem, a domain of interest is chosen where

the presence of rigid bedrock at the base of the model, or the presence of a half-space, ver-

tical lateral boundaries, homogenous or in-homogenous soil can be encountered. Absorbing

boundary conditions would then be applied at the boundariesof the domain corresponding to

the adopted assumptions.

I IIIII
raft foundation

pile or barrier

tunnel

Figure 2.1: Schematic diagram of an unbounded soil domain problem example.

It should be indicated that in the context of the present literature survey, only absorbing bound-

ary conditions related to elastodynamics will be covered. In the following, a review on the
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available absorbing boundary conditions that can be implemented at the boundaries of the do-

main is presented in a chronological order.

2.2 Global Absorbing Boundary Conditions (ABC)

The nameglobal is gained because all boundary points are usually coupled when adopting the

global methods. Generally speaking, these boundaries are known as exact absorbing boundary

conditions owing to the fact that the solution at the artificial boundaries could be formulated in

an exact sense. The global boundaries are nonlocal in space,or time or in both, and in general

these boundaries are considered to perform better, in termsof absorption of the impinging

waves, than the local boundary conditions. These methods are known for their superior accuracy

compared to the local methods. However, they can be computationally expensive. A review of

such methods is presented in the following.

2.2.1 The Boundary Element Method (BEM)

The method gained its name because of discretising the boundary of the problem into elements

as it is shown in Figure2.2.

surface
S

V

∞∞

∞

Figure 2.2: Discretisation in the boundary element method for 3D unbounded volume.

The domain of interest is desctretised only at the boundaries leading to a reduction of the spa-

tial dimension by one and consequently in the total number ofdegrees of freedom. However,

a fundamental solution to the governing equations must be available. Difficulties are usually

encountered to compute the fundamental solution for anisotropic materials. Nonetheless, the

BEM is well suited for modelling unbounded domains if such a solution is available.
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The BEM is a numerical technique for solving initial value problems based on an integral equa-

tion formulation. The displacement field is obtained by the integral representation in terms of

boundary values and the equation is solved numerically. Boundary values are used to determine

displacements and tractions at any interior point of interest, as reported in reference [8].

This method was applied to various engineering applications such as; foundation engineering,

dynamic soil-structure interaction, wave propagation andvibration isolation, and many other

applications. A detailed review of the BEM including its formulation and applications could be

found in textbooks such as Brebbiaet al. [9], Manolis and Davies [10], Hall and Oliveto [11]

and in some review articles such as Beskos [12] and Liu et al. [13]. It is classified into two

categories, direct and indirect approaches. The displacements and tractions are used in the first

approach while only displacement quantities are used in thelatter. The numerical solution is ob-

tained by solving the integral boundary equation on those elements. Unlike the traditional FEM

and Finite Difference Method (FDM) where the discretisation is required in both the surface

and the interior of the domain, in the BEM the discretisationis only required on the boundary

of the problem, which leads to a reduction in the spatial dimension of the problem by one [10].

In other words, the volume integrals are transformed into surface integrals in 3D case and the

surface integrals are reduced into line integrals in the 2D case. Imposing absorbing boundary

conditions at the artificial boundaries is crucial in the case of the FEM and FDM while the radi-

ation conditions to infinity is automatically taken into account in the BEM. Elastic or inelastic

soil behaviour is possible to consider within the frameworkof this method in the frequency and

time domain analyses. The boundary elements can be represented by interpolating shape func-

tions between the nodes of the elements. Inhomogenous mediaare usually tackled in the BEM

by sub-dividing the medium into homogenous and sub-homogenous regions and then adding

together the subdivisions.

The direct integral representation in the time domain of thedisplacement fieldui of a homoge-

nous, isotropic and linear elastic body of volumeV, with surfaceS, is written as

ci j (ξ )ui (ξ , t) =
∫

S

[

Ui j (x,ξ , t) fi (x, t)−Fi j (x,ξ , t)ui (x, t)
]

dS(x) . (2.1)

The frequency domain representation has the following form

ci j (ξ )ui (ξ ,ω) =
∫

S

[

Ui j (x,ξ ,ω) fi (x,ω)−Fi j (x,ξ ,ω)ui (x,ω)
]

dS(x) , (2.2)

whereω denotes the circular frequency, pointx∈ S, pointξ ∈V ∪S, ci j has the value of Kro-

necker’sδi j in the case ofξ ∈V and the value of 0.5δi j in the case ofξ ∈ S, fi is the traction

vector,Ui j andFi j are the fundamental elastodynamic displacement and traction tensors, re-

spectively. The initial conditions and the body forces are set to zero, and the indicesi and j take
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the values of 1, 2 and 3 in the 3D case. The numerical solution procedures of equations (2.1)

and (2.2) are explained in reference [14].

In spite its advantages, the BEM is also characterised by some drawbacks. For example, densely

populated system matrices, generally speaking non-symmetrical, are usually obtained from this

technique. Furthermore, nonlinearity can be taken into account in the framework of the time

domain BEM via incorporating the nonlinear FEM. Only linearresponse is accounted for in

the frequency domain. Another merit of the time domain BEM isthat the sparse matrix, due

to the bounded support by the Green’s function, is inverted only once while in the frequency

domain boundary element method a full matrix is required to be inverted at each frequency. As

a consequence, the computational cost is reduced.

Several attempts have been proposed to reduce the computational effort of this technique. For

example, Fu and Bouchon [15] introduced a method which incorporates the discrete Green’s

function with the boundary integral volume equation for 2D anti-plane problem. The solution

used the average Fresnel-radius approximation to volume integrations to reduce the numerical

effort by making the coefficient matrix sparser. The global generalized reflection/transmission

matrix propagator method is adopted by Ge and Chen [16] in order to save computer memory

and cpu time required for solving the global matrix. The efficiency is further improved later

by Ge and Chen [17] through a direct computation of the global matrix propagator where the

calculation of the matrix propagator of each individual layer is omitted.

Bouchonet al. [18] proposed a sparse approximation of the fully populated matrix to reduce

the computational effort and memory required to solve the problem in 2D layered media. Their

reduction approach is based on keeping only the high magnitude entries of the fully populated

matrix. The development of the Fast Multipole Method (FMM) was able to speed up the solu-

tion process by reducing the memory requirement. This method depends on an iterative solution

approach for a system of boundary element equations in orderto speed-up the matrix-vector

multiplication during each iteration without building thewhole matrix [13]. Chaillatet al. [19]

formulated and applied a fast multi-level multipole boundary element methods for 3D elasto-

dynamic problems in the frequency domain. This is extended further by Chaillatet al. [20]

to multi-domain situations where alluvial basin is considered. An extension to include weakly

dissipative viscoelastic media has been carried out recently by Grassoet al. [21] where the

authors proposed a damping dependent modification to choosethe multiple truncation factor.

The dense matrices, which require more storage and computing effort, associated with the BEM

are tackled by Messner and Schanz [22]. A time stepping scheme, the Convolution Quadrature

Method (CQM), is employed in reference [22]. Acceleration of the BEM, in the time domain for

elastodynamic problems, is achieved by employing the CQM and Galerkin discretisation. Be-
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sides the FMM, there exist other approaches to tackle the problem of inefficiency of using only

the BEM. Some of these methods in the frequency domain are thepre-corrected Fast Fourier

Transformation (FFT), as in reference [23], and the use of hierarchical matrices proposed by

Benedetti and Aliabadi [24]. On the other hand, the plane wave time domain methodology in

2D is extended to 3D wave equation in elastodynamics by Takahashiet al. [25]. It is worth

noting that special integration schemes are used in the BEM to overcome the singularity of the

fundamental solution.

2.2.2 The consistent transmitting boundary conditions

The theoretical and mathematical formulations of the consistent transmitting boundary method,

or the Thin Layer Method (TLM), are presented in Chapter3 as this method is adopted through-

out this dissertation. It should be noted here that the nameconsistentis used as the exact so-

lution at the artificial boundaries is formulated with the finite elements and the effect of the

infinite extent on the bounded domain is replaced by the equivalent transmitting boundary con-

ditions. This section aims at providing an insight into the development of the TLM approach in

a chronological order.

The TLM is a semi-discrete numerical technique, developed by Waas [3], to model numeri-

cally wave propagation in unbounded layered soil domains. The unbounded medium is divided

into three regions, the central or irregular region which isbounded by two lateral regions on the

right and the left; the regular regions. The central region is treated by the conventional FEM.

This region is usually the region of interest, as it may contain buried structures such as founda-

tions or any other discontinuities.

rigid bedrock

∞ ∞

tunnel

discontinuity

Figure 2.3: Schematic diagram for treating unbounded mediaby the TLM.
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Figure2.3 illustrates the treatment of the 2D unbounded domain by the TLM technique. A

closed-form analytical solution, is adopted for the lateral or the layered regions. The semi-

infinite lateral regions are divided into horizontal layerswhich extend to infinity. The displace-

ment field is assumed to vary linearly with depth and exponentially in the horizontal direction.

Some assumptions have been made such as; the soil is resting over rigid bedrock, the soil

medium can be homogenous or layered, isotropic, linear elastic or viscoelastic and the material

properties of the horizontal layers do not vary within each layer. The thickness of each layer

should not exceed one-tenth of the shear wavelength. Waas [3] proposed a numerical technique

based on the separation the variables in order to satisfy thewave motion governed by the dif-

ferential equations in the horizontal direction. The free motion of the layered region consists of

a finite number of wave modes obtained by solving an algebraiceigenvalue problem. Having

obtained the displacements of the regular regions, the nodal forces on the boundary could be

obtained and imposed as external forces. The dynamic stiffness matrices of the semi-infinite

regions, which relate the nodal displacements and nodal forces, are then combined with the dy-

namic stiffness matrix of the irregular region and the unbounded domain can then be analysed.

The anti-plane shear, in-plane and axisymmetric cases are dealt with in the previous devel-

opments. This has resulted in the development of frequency domain consistent transmitting

boundary conditions.

The extension of the above method to the cylindrical transmitting boundaries was carried out

by Kausel [26] and Kauselet al. [27] to model the three dimensional case of axisymmetric

footings by generalising the approach of Waas [3]. The consistent transmitting boundaries of

the horizontal layers are obtained. The dynamic stiffness matrices of the consistent transmitting

boundaries are expanded into Fourier series and only two terms are considered in the applica-

tions provided in reference [26]. Kausel and Roësset [28] attempted to reduce the number of

equations involved in the solution and proposed the use of hyperelements, rectangular elements

of finite length. This leads to saving in computer storage andincreasing the mesh size. These

finite elements are based on an arbitrary expansion in one direction and employing closed-

form expansion in the other direction. The previous consistent transmitting boundaries are only

limited to circular foundations. Tassoulas [29] developed inhomogenous boundary conditions.

The solution process starts by computing the practical solution of the inhomogenous boundary

conditions then combining them with the semi-discrete modes which satisfy the corresponding

homogenous boundary conditions. Plane and axisymmetric elements are developed for inho-

mogenous boundaries such as the presence of base motion.

Cylindrical coordinates transmitting boundaries are developed by Lin and Tassoulas [30] to

handle three dimensional problems of dynamics of foundations of arbitrary geometry. Inho-

mogeneities in the neighbourhood of the circular foundation could also be considered. Kimet
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al. [31] later extended the approach to Cartesian coordinates in 3D. The consistent transmit-

ting boundaries technique is extended to three dimensions by Hanazatoet al. [32] considering

travelling waves, induced by traffic loads, towards the boundaries. The solution leads to an

eigenvalue problem of dimension six times the number of considered thin layers in the model.

The consistent transmitting boundary method is a very powerful method as it is based on a

semi-analytical finite element method by solving an eigenvalue problem. However, in the entire

previous development, it is applicable to vertical boundaries and this may not the case in real

engineering problems such as inclined boundaries as in soiland dam embankments. The debuts

of inclined consistent transmitting boundary appeared in reference [33] by Park and Tassoulas,

where they developed a nonvertical absorbing boundary condition for wave propagation in lay-

ered strata media to satisfy these problems. The consistentabsorbing boundary method was

adopted in their work in the frequency domain under plane strain and antiplane shear strain and

it was called thezigzagboundary condition.

Another limitation of the TLM is related to the assumption ofhorizontal layers. This was

tackled by Ikeda and Tassoulas [34] via employing the perturbation method which takes into

account non-parallel interfaces and also lateral inhomogeneities. Thus, an approximate treat-

ment of the system equation is obtained. In the solution presented in reference [34], only the

lowest-order and first-order terms of the perturbation series are included in the approximation.

Recently, Barbosa and Kausel [35] generalized the concept of the TLM to 3D problems where

the material is transversely isotropic. The solution is obtained by solving two eigenvalue prob-

lems, for Rayleigh and Love waves.

As it is shown, a lot of development has taken place in relation to the TLM owing to its high

level of accuracy. The restriction of the TLM for modelling unbounded domains only in the

horizontal direction inspired researchers to couple the method with other techniques to allow

simulating wave propagation in half-space media. A review of the methods simulating wave

propagation in half-space media by coupling the TLM and other techniques is presented in

Chapter5.

2.2.3 The Scaled Boundary Finite Element Method (SBFEM)

The scaled boundary finite element method or the less boundary element method is a rigorous

semi-analytical method and is spatially and temporally global. It is relatively a new technique

for modelling unbounded domains. The fundamental solutionis not required, as it is the case

for BEM, within the framework of the SBFEM as it is based on theFEM. It combines the

advantages of both BEM and FEM. So the boundaries are only discretised as in the BEM.
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It was called first by Song and Wolf [36], for anti-plane motion, the consistent infinitesimal

finite-element cell method in the frequency domain where a finite element cell or a bounded

cell, with the exterior boundary similar to the interior boundary, is added in the radial direction

to the structure-medium interface. The inverse Fourier transform is applied to the consistent

infinitesimal finite-element cell, obtained in reference [36], to transform the equation into the

time domain. This approach was later extended by Wolf and Song [37] to cover the in-plane

motion. The method was renamed in reference [38] to the SBFEM where the solution proce-

dure is based only on the finite element method with boundary discretisation as surface finite

elements reducing the dimension of the problem by one.

The discretisation technique associated with the SBFEM is explained in Figure2.4. Initially,

one may choose a scaling centre O, the origin of the Cartesiancoordinates, in such a manner

that the total boundarySmust be visible from the zone of the scaling centre. One dimensional

line elements are used to discretise the boundaryS. Then, shape functions in the local coordi-

nateη are used to interpolate the geometry of the elements on the boundary, in the same way

as in the conventional finite element procedure. A non-dimensional radial coordinateξ is intro-

duced to scale the boundary (from the scaling centre to a point on the boundary) to describe the

geometry of the domainV. The non-dimensional radial coordinate has zero value at the scaling

centre and a value of one at the boundaryS leading to representing the unbounded domain by

1≤ ξ < ∞. The coordinates of the scaled boundary element are represented by the radial and

circumferential coordinatesη andξ , respectively.

x

y

^

^

O

S

V

ξ

ξ

=1

>1

Figure 2.4: Discretisation of the scaled boundary finite element method.

In the SBFEM, the displacement and stress fields on the boundary of any problem are usually

expressed by semi-analytical solutions and subsequently the boundary condition at infinity will
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be expressed analytically. Thereby, shape functions are now used on the circumferential direc-

tion to interpolate the displacement field for each radial line connecting the scaling centre and

a node on the boundary surfaceS. Then, the governing differential equations are introduced

in the scaled boundary coordinates. The Galerkin’s weighted residual method or the principle

of virtual work method could be applied to the differential equations, in the circumferential

directionη, in order to formulate the Scaled Boundary Finite Element Equation (SBFEE) in

displacement in the ordinary coordinates which is an Euler-Cauchy ordinary differential equa-

tion. The SBFEE in terms of displacements is derived by Song and Wolf [38] for 2D and 3D as

follows

[E0]ξ 2{u(ξ )},ξξ +((s−1)[E0]− [E1]+ [E1]T)ξ{u(ξ )},ξ

+((s−2)[E1]T −[E2]){u(ξ )}+ω2[M0]ξ 2{u(ξ )}= 0, (2.3)

where matricesE0, E1, E2 andM are assembled by computing the elementary coefficient ma-

trices on the boundary of the domain andω is the driving frequency. Integers has a value of

either 2 or 3 for 2D and 3D, respectively. The SBFEE in the dynamic stiffness formulation is

derived in reference [38] and expressed as

([S∞(ω)]+ [E1]) [E0]−1([S∞(ω)]+ [E1]T)− [E2]− (s−2)[S∞(ω)]

−ω[S∞(ω)],ω +ω2[M0] = 0. (2.4)

Here, the term[S∞(ω)] expresses the dynamic stiffness matrix of the unbounded domain which

is proven to be symmetrical. For the derivation and the solution procedures of the SBFEE, the

reader is directed to references [39] and [40], respectively. Equation (2.3) is solved analytically

in reference [41] in the frequency domain in order to avoid the discretisation in theξ -direction.

The analytical solution is obtained by a power series. Consequently, the analytical solution

of the dynamic stiffness matrix is also obtained without numerical discretisation resulting in a

more attractive version of the SBFEM. Transformation of theSBFEE into the Bessel functions

is employed in the case of scalar coefficient matrices in reference [41]. As the number of the de-

grees of freedom on the boundaries increases the computational effort of the SBFEM becomes

significant. Improvements were made by employing the base functions reduction scheme where

an asymptotic expansion of the dynamic stiffness matrix is utilized to determine its value at high

frequencies ensuring the radiation condition. A more efficient technique is employed by Song

[42] where an asymptotic expansion is applied to equation (2.3) to obtain the displacement field

at high frequency and subsequently the dynamic stiffness matrix is determined.

Another attempt is also employed to avoid computing the dynamic stiffness matrix. It is
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achieved by Song and Bazyar [43] where Padé approximations of the dynamic stiffness ma-

trix are formulated directly from the SBFEE. The advantage of these approximations is their

rapid convergence in comparison to the power series. Choosing the order of the Padé series

is also suggested. Moreover, the reduced set of base functions supplied in reference [42] is

also adopted by Song and Bazyar [43]. Opting to increase the efficiency of the method, more

recently, a fundamental-solution-less boundary for wave problems is developed by Song and

Bazyar [44]. This is due to the time required to compute a set of the base functions which is the

most time consuming part of the implementation of the method. In their method, lumped coef-

ficients of the matrices and high order elements are obtainedby employing the Gauss-Lobatto-

Legendre shape functions with nodal quadrature. In fact, savings in the computer memory and

also in the cpu time are achieved by obtaining sparsity of thematrices via applying the partial

Schur decomposition.

2.2.4 Exact Non-Reflecting Boundary Conditions (NRBC)

This type of absorbing boundary conditions represents theoretically exact boundaries. However,

most of the time an integral transform is involved along the boundary and hence they are not

exact anymore. Givoli and Keller [45] employed the technique of reducing the wave equation to

derive an exact non-local reflecting circular artificial boundary condition for 2D time-harmonic

elastodynamic problems which has the form

−Ti (x) = Mi j u j (x) ≡ Σ∞
n=0

∫

Γ
mn

i j

(

x,x′
)

ui
(

x′
)

dx′, (2.5)

wheremn
i j stands for the Kernel andΓ represents the circular artificial boundary. The authors

used Helmholtz decomposition to write the displacements interms of the potentials. Plane

strain and stress problems are considered. The artificial boundary condition of expression (2.5)

is implemented at the boundaries of the computational domain within the finite element frame-

work. A few years later and by employing the Fourier Transformation, Grote and Keller [46]

developed an exact non-reflecting spherical boundary condition, local in time but nonlocal in

space, from the boundary conditions of reference [45]. High derivatives of displacements and

their time derivatives with respect to the polar coordinates are involved in these boundary con-

ditions. This is tackled by using boundary conditions whichinvolve only the first derivative of

the displacements with respect to the polar coordinates.

On the other hand, Grote and Keller [47] derived an exact non-reflecting spherical boundary

condition for time-dependent elastic wave equation in 3D. As in the previous exact boundary

conditions, they are local in time but nonlocal in space and also involve only the first derivatives

of the displacements and inner products with spherical harmonics of the displacement on the

artificial boundary. These boundary conditions are incorporated within the FEM and FDM by
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Grote [48] where the stability of the non-reflecting boundaries is also discussed through some

examples.

2.3 Local Absorbing Boundary Conditions (ABC)

In general, local absorbing boundary conditions are considered to be non demanding in terms

of computational cost and simple in terms of their mathematical formulations, but they do not

achieve the same level of accuracy compared to that of nonlocal methods. It was named ‘local’

because only spatial and temporal points near the boundary points are considered to be involved

in the condition. In other words, the response at any location and time depends on the response

at the neighbouring pointsspatially localand at some few previous time stepstemporally local.

Generally speaking, local ABC are preferred for transient wave problems instead of the non-

local procedures because of the high computational effort.They are usually approximate and

therefore spurious wave will be reflected at the artificial boundaries. Kausel and Tassoulas [49]

indicated that “however these boundaries may absorb the reflected waves theyare not perfect

absorbers as some echo may occur in the solution in addition to factious waves travelling along

those boundaries” . Hence, to obtain the required level of accuracy, local boundary conditions

must be applied far enough from the structure-soil interface and therefore increase the number

of degrees of freedom in the domain, and consequently the computational cost. On the other

hand, their mathematical formulation is relatively simplecompared to the global methods and

they are simple to implement in the FEM or FDM. Local ABC are usually formulated in the

time domain and therefore non-linearity of the soil within the finite domain can be modelled by

implementing non-linear constitutive models, while the far field is still modelled linearly.

The viscous boundary conditions, developed by Lysmer and Kuhlemeyer [50], are the first

local absorbing boundary conditions which appeared in the literature to handle elastodynamic

problems in the time domain. The idea consists to implement viscous dashpots at the bound-

aries in order to absorb the energy of the compression and shear waves. The dashpot constants

are related to the properties of the adjacent soil where the viscous boundaries are placed. These

boundary conditions are very simple and easy to implement and they work in both time and

frequency domains. The viscous boundary conditions of reference [50] are perfect absorbers

in the case of normal incidence of the incoming waves. However, if the incident waves are not

normal to the boundary they only absorb part of the energy. Infact, if a wave hits the boundary

at a small angle, large spurious reflections will be encountered. The formulation of the viscous

boundaries is given by

σ = aρcp
∂u
∂ t

and τ = bρcs
∂v
∂ t

, (2.6)

whereσ andτ are the normal and shear stresses on the boundary,ρ is the soil density,cp andcs

are the dilational and shear wave velocities,u andv are the normal and tangential displacements
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on the boundary, respectively. Parametersa andb, which had unit values on the original expres-

sions of (2.6), are the absorption parameters which were suggested by Whiteet al. [51] to take

into account the incident waves directions. They are determined by discretising the domain with

finite elements and then finding a linear relationship between the velocities and stresses at the

boundary. Due to their simplicity and easiness of implementation in a finite element framework,

the viscous boundary conditions have been implemented in commercial finite element packages

such as ABAQUS.

Another attempt was made by Ang and Newmark [52], where they proposed a new local bound-

ary condition for the FDM in the time domain which again worked well only in the case of

normal incidence of impinging waves. Their boundary conditions are equivalent to the vis-

cous boundary conditions. Engquist and Majda [53] introduced a new group of local boundary

conditions based on the FDM. The first order approximation issimilar in accuracy to those

of Ang-Newmark and Lysmer-Kuhlemeyer absorbers. Better accuracy is achieved by employ-

ing the second order approximations and even higher in the case of higher order boundaries

where more points in the neighborhood of the boundaries are considered. However, it should be

pointed out that higher order local boundaries loose the locality property when increasing the

number of points near the boundary. Improvements were suggested by Whiteet al. [51].

A new technique was proposed by Smith [54] which is based on cancelling the reflections

by averaging two complementary problems where a fixed Dirichlet boundary is assumed for the

first problem and a free Neumann boundary for the other. Smith’s approach was later modified

by Cundallet al. [55], and Kunar and Marti [56] to account for multiple reflections. The bound-

ary element method is employed in reference [57] to formulate the dynamic stiffness matrix of

the central medium while doubly-asymptotic boundary conditions, dashpots and coupled static

springs, are used. These boundary conditions are asymptotically exact for plane waves travel-

ling perpendicularly to the truncated boundaries at both high and low frequencies. However,

some errors are induced in the intermediate frequency range. This scheme is local in time but

nonlocal in space.

Paraxial boundary conditions, which transmit energy only in one direction, have been derived

by Engquist and Majda [53], and Clayton and Engquist [58] for the the scalar and elastic wave

equation, respectively. Their boundary conditions are based on the pseudo-differential oper-

ators for a general class of differential equations where a set of local approximate absorbing

boundary conditions with increasing order are obtained. The outgoing waves were separated

from the incoming waves by splitting the differential operator of the wave equation for elastic

waves and hence the paraxial boundaries are used to simulateonly the outgoing waves leading

to a reduction in the reflection at the boundaries. More details are provided in Chapter5 as
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these boundaries are also used in the context of this thesis.A transmitting boundary formula

was presented by Liao and Wong [59] that could be used in 2D or 3D and for convex artificial

boundaries. The extrapolation method, based on polynomialfitting, is used in their work.

Multi-directional boundary conditions for the multi-directional wave equation were constructed

by Higdon [60, 61] in both time and space, where the scalar wave equation was approximated by

the finite difference rather than finding the analytical solution. This family of absorbing bound-

ary condition is based on the discrete form of the wave equation. Those boundaries, unlike the

paraxial boundaries which are most suitable for normal incidence, are considered perfect ab-

sorbers for waves propagating at non-zero angle of incidence. Higdon non-reflecting boundary

of order j is expressed by

[

p

∏
j=1

(

(cosα j)
∂
∂ t

−c
∂
∂x

)

]

u= 0, (2.7)

whereα is the angle of incidence andc is the wave speed. It was demonstrated that for low

order of the above equation, good results were obtained for awide range of angles of incidence.

The derived boundaries are found to be perfect absorbers fora plane wave hitting the boundary

at a preselected angle of incidence. Absorbing boundary conditions for stratified media are also

introduced in reference [62] for acoustic and elastic waves.

Scandrettet al. [63] derived an approximate time-dependent absorbing boundary condition

employing the finite difference scheme for elastodynamic problems in two dimensional plane

strain. The limiting amplitude principle is used to derive the boundary conditions. The bound-

ary conditions of reference [63] are similar to the second order boundary conditions of Engquist

and Majda [53]. The difference is that they were derived in the rectangular coordinates while

polar coordinates are used in reference [63].

Cohen [64] proposed in his thesisextended paraxial boundary conditionsand compared the

proposed boundaries with the analytical and numerical solutions. In spite of the difference

between the viscous and paraxial boundaries, Cohen [64] proved that there is a relationship

between these boundaries by the equilibrium equation. The paraxial boundaries are classified

as dashpots to be applied at the length of an element rather than attaching dashpots from the

boundary nodes to a rigid base and same function is performedby both boundaries. Modifica-

tions to the PBC are also suggested in [64], it is worth mentioning that these modifications were

available before the publication of references [65, 66].

Bambergeret al. [67] introduced modifications to the first order absorbing boundary conditions

of reference [64] as the original boundaries are transparent boundaries forboth longitudinal and
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transverse waves at normal angles of incidence. Thus, the modifications extended the trans-

parency boundary conditions to include Rayleigh waves. Thenew absorbing boundaries are of

second order and they are transparent to the three types of waves.

The doubly asymptotic and the mutli-directional transmitting boundaries are combined by Wolf

and Song [68], by exploiting their advantages, where the doubly asymptotic is used for mod-

elling the low frequency limit or the static case. These boundary conditions are temporally

local and could be spatially either local or nonlocal depending on the implementation of the

static stiffness matrix.

In order to overcome the fact that boundary operators in someof the local boundary schemes

of order one or more lead to non-symmetric matrices, in addition to the dependency of the

accuracy on the static behaviour, Kellezi [69] formulated new local boundary conditions for

dynamic analysis in 2D and 3D. These boundaries are considered as doubly asymptotic and as

a generalisation of the viscous boundary conditions.

2.3.1 Absorbing layers at the boundaries

In this approach, a finite thickness layer is used as an envelop around the computational domain,

as it is shown in Figure (2.5), in order to reduce wave reflections at the boundaries.

computational
domainabsorbing

layer

Figure 2.5: Schematic diagram of the absorbing layer method.

This is achieved by incorporating some parameters which either force outgoing waves to slow

down or decay. If those parameters are chosen in such a case that minimal or zero reflection

will occur, the absorbing layer will be classified as a Perfectly Matched Layer (PML). A PML

is a high order absorbing boundary condition applied aroundthe circumference of the interior

domain. The principle of the PML is that once the outgoing waves enter the lossy layer, they
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will be transformed into evanescent waves with minmising the reflections at the boundaries.

The main idea of the method is to introduce an absorbing layerwith uniform thickness at the

boundary which will force the wave to attenuate exponentially according to a pre-defined decay

function. PML was originally introduced by Berenger [70] for electromagnetic problems and

it is extended later to elastic waves by Hastingset al. [71] where the wave energy is converted

into shear and compression waves with their energy decayingexponentially. PML was firstly

extended from electromagnetic to elastodynamics by Chew and Liu [72] using the FDM in the

frequency domain and by stretching the coordinates via a variable change in a manner to convert

the plane wave into an attinuative wave in the new complex coordinates. The new stretched co-

ordinates are a result of a complex variable change such asx= x
′
(a+ iα). In this case, a wave

travelling in a lossless medium will be also attinuative in the new coordinates and will have

the formeikax
′−kαx

′
. This type of transmitting boundary is classified by Tsynkov[6] between

local and nonlocal schemes. Some nonlocality is gained by anartificial enlargement of the

computational domain and there is no global integral relationship along the boundary. Collino

and Tsogka [73] introduced the PML in elastodynamics, for heterogenous anisotropic media,

for velocity stress formulation by decomposing each component of the unknown to orthogonal

and parallel components to the boundary. Further development to extend the formulation of the

PML to poroelastic media is achieved by Zenget al. [74]. Moreover, Zheng and Huang [75]

developed an anisotropic PML in the Cartesian, cylindricaland spherical coordinates for time

harmonic elastodynamic problems. The anisotropic PML could be used in the FEM and the

FDM in the time domain. The stability and well-posedness of the PML for elastic anisotropic

media is examined by Becacheet al. [76].

The concept of the PML is extended by Basu and Chopra [77] to time-harmonic, frequency

domain, elastodynamics Cartesian coordinates where a displacement-based symmetrical finite

element implementation is developed for plane strain and three dimensional wave motion. A

year later, Basu and Chopra [78] extended the PML technique and presented displacement-

based wave equations, for anti-plane and plane strain cases, and their implementations in the

FEM in the time domain to analyse transient problems. The finite element implementation of

the anti-plane case is symmetrical but it is not for the planestrain problems.

A further development is introduced by Basu [79] where the author extended his previous work

in [78], where implicit time integration was adopted, to implement explicit time integration for

the 3D elastic wave equation. This is made first by transforming the frequency domain equa-

tions as obtained by Basu and Chopra [77] to the time domain and second by incorporating an

explicit time integration scheme with special considerations. Kausel and Barbosa [80] proposed

a simple method for obtaining the finite element matrices of the PML in the frequency domain.

In their formulation, the stretched functions were applieddirectly to the mass and stiffness el-

20



ement matrices computed by the conventional FEM. Both anti-plane shear and in-plane cases

are considered and the authors stated that it would be applicable to the three-dimensional wave

equation.

Semblatet al. [81] proposed an absorbing layer method to be implemented at theboundaries of

the numerical model to reduce the spurious reflections from the boundaries. Damping proper-

ties of the proposed layer are estimated by Rayleigh/Caughey coefficients to express the attenu-

ation properties within the absorbing layer and they calledtheir methodthe Caughey Absorbing

Layer Method, CALM. Rayleigh damping is a combination of the stiffness and the mass of the

medium as shown in the equation

C = a0M +a1K , (2.8)

wherea0 anda1 are Rayleigh coefficients,K is the stiffness matrix andM is the mass ma-

trix. Caughey damping is expressed in a more general formulation and leads to the Rayleigh

formulation if a second order Caughey damping is considered(i.e. m=2)

C = M
m−1

∑
j=0

a j
(

M−1K
) j
. (2.9)

Typical values of Rayleigh coefficients are between 0.5 and 1.0. Damping ratio can be expressed

as

ζ =
a0

2ω
+

a1ω
2

, (2.10)

whereω stands for the circular frequency. The frequency of the minimum damping is deter-

mined from the Rayleigh coefficients and subsequently the minimum damping relationship is

used as

2ζmin=
a0

ωR
+a1ωR, (2.11)

and the predominant frequency is computed by

ωR =

√

a0

a1
. (2.12)

Thus, Rayleigh damping coefficients within the absorbing layer are determined. A 2D finite

element model in plane strain conditions was considered to examine the efficiency of the pro-

posed method in elastic media. The model was four times the length of the compression wave

in both directions. It was therefore found even if the efficiency of the absorbing layer method is

lower in comparison to other methods but still efficient enough to reduce the magnitude of the

reflected waves. A comparison between the CALM and PML is performed and the accuracy of

CALM is equivalent to a third-order PML accuracy. Nonetheless, the thickness of the absorb-

ing layer should be large enough to reduce the reflection and the method leads to an increase in

storage memory.
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2.3.2 High-order local transmitting boundaries

The accuracy limitation of the local absorbing boundary conditions, as explained at the begin-

ning of section2.3, is usually questioned. For more accurate results and as an alternative to the

low-order local absorbing conditions, high-order local absorbing boundary conditions usually

provide better accuracy, however, their implementation isnot straightforward. High-order ab-

sorbing boundary conditions emerged in the mid-1990s, where the accuracy of the absorbing

boundary is better than the low-order absorbing boundaries, however they are not necessarily

exact, but asymptotic. The level of the accuracy depends on their order. However, their imple-

mentation in a computer code is comparatively difficult. In the following, a brief review of the

different high-order local absorbing boundary is presented with emphasising on their accuracy

and implementation issues.

A series of arbitrarily high-order absorbing boundary conditions is introduced by Guddati and

Tassoulas [82] for the scalar wave equation in the Cartesian coordinates.High-order derivatives

are not involved in these boundary conditions, only the second-order derivatives are required.

These boundary conditions are based on the continued fraction approximation of the dispersion

relationship. The idea is to introduce auxiliary layers adjacent to the boundary.

A technique, based on Higdon transmitting boundaries, for modelling time-dependent waves

in unbounded media was proposed by Givoli and Neta [83]. The Higdon transmitting boundary

equation was reformulated by introducing special auxiliary variablesφ1,φ2, ...φ j−1 to be incor-

porated in the finite element and the finite difference approaches. The proposed formulations do

not require any higher order derivatives and permit the use of any order of Higdon boundaries.

In the reformulation process, equation (2.7) is replaced by

[

p

∏
j=1

(

∂
∂x

+
1

Cj

∂
∂ t

)

]

u= 0, (2.13)

whereCj denotes the parameters to be chosen and which represent phase speeds in thex-

direction. The auxiliary functions are introduced on the artificial boundary and the exterior

domain. These functions will be used only on the boundary andwill be defined on the exterior

domain. The auxiliary functions are given by

(

∂
∂x

+
1

C1

∂
∂ t

)

u= φ1. (2.14a)

(

∂
∂x

+
1

C2

∂
∂ t

)

φ1 = φ2. (2.14b)
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...

(

∂
∂x

+
1

Cj

∂
∂ t

)

φ j−1 = 0. (2.14c)

The set of equations (2.14) are equivalent to the original equation if they are used together and

only the first derivative of the displacement is involved. Tomake this set discretisable on the

boundary with respect toφ , the derivative with respect tox must be eliminated as indicated by

Givoli and Neta [83] and a new formulation will be obtained. It is given by

β j
∂u
∂ t

+
∂u
∂x

= φ1. (2.15)

β0
∂φ j

∂ t
−α j

∂ 2φ j−1

∂ t2 − ∂ 2φ j−1

∂y2 +λφ j−1 = φ j+1 , j = 1, ...., j −1. (2.16)

α j =
1

C2
j

− 1

C2
0

, β0 =
1

C1
, β j =

1
Cj

+
1

Cj+1
, λ =

f 2

C2
0

. (2.17)

φ0 ≡ u , φ j ≡ 0. (2.18)

A review of seven high-order nonlocal absorbing boundary conditions was provided by Givoli

[7]. Those high-order boundary conditions are applicable to the scalar wave equation, Maxwell

equations, Helmholtz equation, linearized shallow water equations, linear hyperbolic systems

and elastic wave equation. Only the boundary conditions related to the elastic wave equation

will be listed in this section.

An exact non-reflecting boundary condition, local in time but nonlocal in space, is derived

by Grote and Keller [47] for the 3D elastic wave in spherical surface. Only the first derivative

of the solution is involved in this boundary making the implementation simple. In their deriva-

tion, they started from the elastic wave equation and then decomposed the displacement field

into two types making a justification of the different two speeds of the compression and shear

wave speeds in the medium. This boundary condition was combined later in the framework of

the FEM and FDM by Grote [48] where the exact boundary conditions performed better than

those of reference [50]. These boundaries do not involve high order derivatives.

Although, several high-order local absorbing boundary conditions were developed for the scalar

wave equation, Maxwell’s equations and Helmholtz wave equation, it is not easy to extend these

high order absorbing boundary conditions to dynamic soil-structure interaction problems as re-
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ported by Bazyar and Song [84]. This is due to various reasons such as the complicated geom-

etry of the unbounded soil domain, the anisotropic behaviour of the materials and the presence

of corners and curved edges of the boundary. Thus, this has been tackled in reference [84] by

Padé approximation of the dynamic stiffness matrix of the unbounded domain, obtained by the

SBFEM, presented into a recursive formulation in time domain. The dynamic stiffness matrix

of the unbounded domain could also be obtained by the BEM.

Another technique is to construct a continued fraction solution of the dynamic stiffness ma-

trix as proposed in reference [84]. It is then followed by introducing auxiliary variables, in

order to eliminate the high-order derivatives in the high-order transmitting boundaries, to be

employed with the continued fraction solution for the development of a high-order local trans-

mitting boundary condition. The FEM is used in both frequency and time domains. The contin-

ued fraction solution is determined directly from the SBFEMleading to frequency independent

coefficients and symmetrical matrices. This method is proved to be very efficient for 2D prob-

lems, however it may fail for large scale problems which involve large number of degrees of

freedom. As a consequence, the method does not converge by increasing the order of the ex-

pansion. Ill-conditioned equations and instability issues have been encountered. The advantage

of the high-order absorbing boundaries based on the continued fraction is that the coefficient

matrices computed for lower orders are not required to be determined again if one is seeking to

increase the order of the continued fraction. This is not thecase as in Padé series of reference

[43]. Improvement of the continued fraction method is also achieved by Birket al. [85] where

the numerical procedure is improved by normalising the coefficient matrices of the continued

fraction using a matrix-valued scaling factor. A more robust solution is obtained which is also

suitable for 3D problems with many degrees of freedom.

Another approach, developed in the 1970s for dealing with acoustic problems, is based on

the Doubly Asymptotic Approximation (DAA) of the impedanceof the boundary in a such

way that the approximations will match asymptotically the boundary integrals at both high and

low frequency range, sometimes it is referred as early (short wavelength) and late time (long

wavelength), respectively. The development to elastodynamics found its way around 10 years

later by Underwood and Geers [57] where a first order DAA for linear soil-structure interaction

problems is proposed for linear elastic media and it is applicable to nonlinear behaviour of the

soil.

Mathews and Geers [86] used a first order DAA to model nonlinear ground shock where the

DAA is placed at some distance from the surface of the structure. To make things more obvi-

ous, the DAA relates the scattered force vector to the scattered displacement vector and approx-

imates the relationship for both ranges of frequencies, high and low.
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First and second order DAA1 and DAA2 are derived by Geers and Lewis [87] for isotropic

elastic media for transient elastodynamic problems using operator matching procedure. In their

procedure, they first derived the early time and the late timeapproximation equations. They

applied Laplace transform on these approximations. They introduced a trial equation of the

DAA1 and then reformulated this equation in an asymptotic form. To obtain DAA1, a matching

procedure between the transformed equation and the asymptotic equation is employed. Deriv-

ing DAA2 is similar to deriving DAA1. Qi and Geers [88] employed Biot’s equations to derive

DAA1 and DAA2 for poroelastic media using the operator matching method.

2.3.3 Elementary boundaries (non-transmitting)

In this type of boundaries, either prescribed displacements or stresses are placed at the bound-

aries of interest. Herein, when displacements are prescribed at the boundaries this will represent

a fixed end (for example a fixed end of rod where the displacement is not allowed or fixed base

like rigid bedrock). This case is referred as Dirichlet boundary condition and it is recognised as

(D) condition. On the other hand, if stresses are prescribedat the boundaries (i.e. displacements

are allowed), this represents the analogue of free end (in the case of rod or free surface condi-

tion). This is also known as Neumann condition and recognised as (N) condition. Now, if both

schemes are combined we will be able to solve problems with more than one degree of freedom

per boundary node. Smith [54] attempted to improve the performance of (D,N) boundaries as

they behave as perfect reflectors if energy is not transmitted as some energy may be trapped

in along those boundaries and eventually will dissipate with the presence of internal damping

in the medium. Where an approach was proposed to solve at least twice, one with respect to

(Dn,Nt) and the other with respect (Dt ,Nn), where the subscriptsn and t refer to normal and

tangential directions to the boundary at a point of interest, respectively. Smith’s refinement was

based on the fact that body waves will reflect with same amplitude and phase in the first situation

and with the same amplitude but opposite phase in the second reflection. Hence, the process

of adding these two solutions together will cancel the reflections. One disadvantage of this

scheme is when multiple reflections occur, they could not be fully dealt with by this method

and hence the solution deteriorates with time. This scheme is not suitable for the frequency

domain analysis.

2.3.4 Infinite elements

The term infinite element indicates an element which has at least one coordinate extending to

infinity. Ungless [89] developed in his master dissertation the first infinite element and named it

as an infinite finite element but has not been published. A few years later, Bettess [90] published

his work on infinite elements for treating fluid-structure interaction. Infinite elements are clas-

25



sified by Bettess as static and dynamic. It is worth mentioning that various infinite elements are

used in the literature for dealing with several types of problems such as; heat transfer problems,

hydrodynamics and seepage problems. For each individual problem, shape functions associated

with the infinite elements are derived by considering the farfield behaviour in the problem. As

this thesis is only concerned on wave propagation problems in elastodynamics, other applica-

tions will not be included here.

Bettess [90] pioneered the infinite elements with Zienkiewicz and otherco-workers [91, 92],

where he introduced a set of shape functions simulating the infinite extent of the elements.

These shape functions are based on the Lagrange polynomialsmultiplied by a decay function.

The mathematical formulations of these shape functions could be found in reference [90]. It

is worth mentioning that the decay function depends on an arbitrary distance which gives an

indication of the exponential decay, chosen by the analyst.It has an important influence on

the results. Hence, Bettess [90] indicated that the infinite element technique could lead tomis-

leading results at that stage, where an application of viscous flow problem in 2D was provided.

Bettess and Zienkiewicz [91] introduced the finite/infinite concept in dealing with several prob-

lems with unbounded surface waves. It was assumed that the variation of local coordinates in

η-direction lays from−1 to 1 as it is shown in Figure2.6.

ζ

η

∞2

3 4

51
(0,-1)

(0,0)

(0,1) (1,1)

(1,-1)

Figure 2.6: Schematic diagram of an infinite element in the local coordinates.

Saini et al. [92] employed the developed shape function in reference [91] to study hydro-

dynamic effects on concrete gravity dams. Chow and Smith [93] developed periodic infinite

elements based on the Serendipity family which were shown tobe more effective than the La-

grangian elements to deal with problems involving multiplewave types such as in geomechanic

and elastodynamic problems. In the formulations presentedin reference [93], three types of

shape functions were developed namely; extending to infinity in η-direction,ξ -direction and

in both directions where the Gauss-Laguerre integration scheme is used when integrating in the

infinite direction, while the Gauss-Legendre is used in the finite direction.
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The formulation of the infinite element is first achieved by transforming the coordinatesx and

y. For example, Yanget al. [94] used the following formulations

x=
5

∑
i=1

N
′
i xi and y=

5

∑
i=1

N
′
i yi . (2.19)

The shape functionsN
′
i are linear inξ and quadratic inη and are expressed as

N
′
1 =−1

2
(ξ −1)(η −1)η,

N
′
2 =−(ξ −1)(η −1)(η +1),

N
′
3 =−1

2
(ξ −1)(η +1)η, (2.20)

N
′
4 =

1
2

ξ (η +1),

N
′
5 =−1

2
ξ (η −1).

For example, displacement within the element is interpolated from the nodal displacements of

the element

u=
3

∑
i=1

Niui and v=
3

∑
i=1

Nivi , (2.21)

where the shape functionsNi are given by

N1 =
η(η −1)

2
×P(ξ ),

N2 =−(η −1)(η +1)×P(ξ ), (2.22)

N3 =
η(η +1)

2
×P(ξ ),

with P(ξ ) being a propagation function which contains the displacement amplitude decay factor

αL due to the geometric attenuation and the wave numberkL of the propagating waves. It is

given by

P(ξ ) = e−αLξ ×e−ikLξ . (2.23)

The propagation factor has a key role in constructing the infinite elements. It is expressed in

terms of local coordinates in expression (2.23). It is then expressed in a global sense and the

amplitude decay factor is given some values as proposed in reference [94] based on properties

27



of wave propagation. The location of the element is taken into account for the chosen value.

For example, in the case of a line source, zero value is suggested for shallow depths arguing

that Rayleigh waves do not decay on the free surface. A value of (1/2R), Rbeing the radial dis-

tance of the line source and the lateral boundary, is suggested in the regions where body waves

are dominant. Values of (1/2R) and (1/R) were proposed for the near surface and well below

the free surface elements in the case of a point load. It is very difficult to represent a region

with a predefined wavenumber as it is dependant on the velocity. The criteria for choosing the

wavenumber is based on the dominance of the type of the wave ina certain region. This means

that wavenumber associated with Rayleigh waves is selectedfor near surface elements while

wavenumbers associated with the shear and pressure waves are chosen for elsewhere. Figure

2.7depicts the problem representation by finite elements in thenear field and infinite elements

in the far field.

∞ ∞

∞

∞

∞∞

∞

Figure 2.7: Finite/infinite element for unbounded domains.

The variation inξ -direction was chosen arbitrarily to be 0, 2 and 30. Lagrangeinterpolation is

used in both directions but, a new coordinate is introduced in theξ -direction to scale the length

of the element. Regarding the construction of the shape functions, Lagrange polynomials are

used in theη-direction. A special shape function in the new direction isintroduced in which

an exponential term, a function of the wavenumber, is enforced. Three terms are involved in

the new shape function; the first term represents a polynomial with the new coordinate, a de-

cay function which depends on the arbitrarily chosen distance and an exponential term which

reflects the propagation of waves with respect to the new coordinate. Sommerfeld radiation

condition is therefore satisfied. The formulation of the infinite elements’ matrices would be

carried out in the same way as in FEM. For the numerical integration, Newton-Cotes formula is

used to overcome the large number of sampling points of the Gauss-Legendre method in order

to approximate the harmonic function.
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When analysing surface water problems, only one wave type isused in reference [91]. This is

not the case in elasticity problems where multiple types of waves may be encountered. This is

tackled by Chow and Smith [93], for static and periodic problems in geomechanics, where they

incorporated two wave types to determine the area where a single wave type will be dominant.

Arguing that Rayleigh waves are dominant near the surface and decay very quickly with depth,

it would be appropriate to use Rayleigh wavenumber at the lateral boundaries near the surface.

On the other hand, body waves will be dominant in depth and therefore body wavenumbers

would be used with the infinite elements at the base of the domain. Regarding the numerical

integration, Gauss-Legendre integration is used for infinite elements in the direction not extend-

ing to infinity while Newton-Cotes scheme is used in the direction extending to infinity.

Medina and Taylor [95] proposed a scheme for computing the element matrices of theinfinite

elements. It is based on Gauss-Laguerre quadrature in the infinite direction and Gauss-Legendre

in the finite direction. An element matrix is first expressed as an integration with respect to the

infinite and finite directions and then approximated numerically. The approximated expressions

contain the Gauss-Laguerre weights and some integration points which are required to evaluate

the expression of the element matrix. Thereafter, Medina and Taylor [95] introduced a criteria

which is basically based on element shape functions in orderto select the number of integration

points. Chuhan and Chongbin [96] extended this approach to problems dealing with foundation

dynamics. Galerkin weighted residual method was used first for the derivation of the system

dynamic equation and then the infinite elements were constructed. In a more recent attempt,

Yanget al. [94] introduced the idea of simulating wave propagation in semi-infinite media with

problems of ground borne vibrations induced by passing trains on the soil surface and proposed

a scheme for estimating the decay factor rather than use arbitrary values. Yanget al. [94] pro-

posed guidelines for choosing values for the amplitude decay factor based on the characteristics

of the waves within the domain. As Rayleigh waves are dominant near the surface and decay

very quickly with depth, the amplitude decay factor could beassigned a very small value, close

to zero, for this region. On the other hand, body waves are dominant at greater depths and

therefore a higher amplitude decay factor would be chosen.

The concept of coupled finite-infinite elements was extendedto cover various types of problems

such as dealing with unbounded surface waves [91], fluid wave propagation or dam-reservoir

interaction [92], elastodynamic and geomechanic problems [93, 95]. Yang and Hung [97] pro-

posed a 2.5D finite/infinite element approach to deal with ground borne vibrations induced by

moving loads. Yanget al. [98] conducted an extensive parametric study by adopting a 2D

finite-infinite approach for simulating wave propagation insoil media and examined the effect

of the loading depth, the shear modulus of the soil, the thickness of the soil layer, damping and

the loading in a tunnel.
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2.4 Brief summary

A literature review is carried out in this chapter to cover some of the research work related to the

development of absorbing boundary conditions for elastodynamic problems. These boundary

conditions play a major role in making finite-size computational models, based principally on

FEM, efficient in solving wave problems in unbounded media.

These absorbing boundary conditions are classified into local and nonlocal (global) bound-

ary conditions. In summary, while the nonlocal boundary conditions are more accurate, they

involve high computational effort in addition to associated difficulties at the implementation

level. Whereas the local absorbing boundary conditions aresimpler to implement and do not

involve high computational cost. However, they are not as accurate as the nonlocal boundary

conditions when used on similar models.

Given that the following chapter is based on a modelling approach in the frequency domain,

under plane strain condition, the Thin Layer Method is adopted as a method to ensure wave

radiation to infinity
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Chapter 3

Wave propagation modelling in soil media

over bedrock

3.1 Introduction

The Thin Layer Method (TLM) or the consistent transmitting boundary condition method, de-

veloped by Waas [3], is adopted in this work to simulate wave propagation in unbounded soil

media. The problem is formulated in the frequency domain under plane strain conditions. The

domain is divided into three regions. The region of interestusually contains foundations, tun-

nels, wave barriers or surface structures, which is the focus for analysis. It is called the irregular

soil domain. This zone will be treated by the finite element method and it will be discretised

into structured or unstructured mesh grids with two degreesof freedom per node. The base of

the model is assumed in the current analysis to be horizontaland resting on rigid bedrock. The

irregular region is bounded by two lateral regular regions extending to infinity with horizontal

layers, each assumed to be homogenous. The finite element model does not include the two

lateral semi-infinite regions and therefore efficient boundary conditions should be defined at

the boundaries of the computational domain to reduce the computational size and ensure wave

radiation to infinity. Figure3.1ashows a schematic diagram of the considered problem and its

idealisation within the context of FEM in Figure3.1b.
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region IIII II

(a) General diagram of 2D soil domain

∞ ∞

applied load

(b) Finite element treatment

Figure 3.1: Problem representation and idealisation.

3.2 Treatment of the irregular region

The irregular region (I) is modelled by the conventional finite element method. It is divided into

finite elements, quadrilateral or triangular, with two degrees of freedom per node, the horizontal

and vertical displacements. Each element adjacent to either the left or right vertical boundary

shares two nodes with the semi-infinite lateral sub-layers.As the irregular region is assumed

to be overlaying rigid bedrock the nodes at the base are fixed.Finite element matrices, mass

and stiffness matrices, are computed by the standard finite element method and the global mass

and stiffness matrices are obtained by assembling the elementary matrices. Assuming that a

harmonic load of frequencyω, is imposed at any location of the model, the dynamic equation

of the irregular region is expressed by

[

K −ω2M
]

u = F, (3.1)

whereK andM are the global stiffness and mass matrices,u is the nodal displacement vector

andF denotes to the nodal force vector. The level of discretisation, recommended in reference

[3], consists to constraint the element size not to exceed one-tenth of the shear wavelength.

3.3 Treatment of the regular regions

The regular or semi-infinite lateral layered regions (II) and (III), right and left, could not be

treated by the FEM. The reason for this is that they extend to infinity and therefore an infinite

number of elements and degrees of freedom would be involved;the problem will not be practical
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to solve. Therefore, a semi-analytical solution is employed in their corresponding model. The

region on the left is analogous to the one on the right, the only difference is the location of the

nodes, and for this reason the region on the right, as depicted in Figure3.2, is only considered.

It is assumed that material properties of each layer do not vary in the horizontal direction.

Each soil layer is divided into sub-layers with thicknessesnot exceeding on tenth of the shear

wavelength. Within each sub-layer the displacement field isassumed to vary linearly with depth.

In the horizontal direction, the displacement field is described by a plane wave propagating in

thex-direction with a given wavenumberk.
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Figure 3.2: Regular region representation.

The virtual work method, which is most suited for harmonic loading, was employed by Waas

[3] to deal with this region where the variables are also separated. The principle of virtual work

is based on energy equilibrium. It is achieved when the summation of the virtual work per-

formed by the actual strains and actual forces on the virtualdisplacements and strains vanishes,

otherwise the rate of virtual work should be considered.

Stressesσ and strainsε are related by the stress-strain matrix as in the following expression











σxx

σyy

σxy











=







λ +2µ λ 0

λ λ +2µ 0

0 0 µ

















εxx

εyy

γxy











, (3.2)

whereλ andµ are the Lamé coefficients and they are expressed by

λ =
Eν

(1+ν)(1−2ν)
and µ =

E
2(1+ν)

, (3.3)

with E being the elasticity modulus of the soil which is complex in the viscoelastic case andν
is Poisson’s ratio. Compression and shear wave velocities,cp andcs, are calculated respectively
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from the following expressions

cp =

√

λ +2µ
ρ

and cs =

√

µ
ρ
, (3.4)

whereρ represents the soil density. For linear viscoelastic materials, the Lamé coefficients are

of complex nature. The fraction of the critical damping,β , is used as a measure for material

damping. Therefore, complex Lamé modulii are expressed as

λ c = λ (1+ i2β ) and µc = µ(1+ i2β ).

The pressure and shear wave velocities will be also of complex values. All derivations are given

for linear elastic soil, however, complex Lamé coefficients, λ c andµc can replace the elastic

coefficients,λ andµ for viscoelastic materials.

Strains are expressed in terms of the displacements as follows











εxx

εyy

γxy











=











u,x
v,y

u,y+v,x











, (3.5)

whereu,x, for example, represents the derivative of the displacements fieldu with respect tox.

The derivation of the consistent transmitting boundary in this thesis is adopted from Laghrouche

[99] who employed the principle of virtual work and formulated the consistent transmitting

boundaries for 2D soil-structure interaction problems [100]. The principle of virtual displace-

ment indicates that work done by external forces,δWext, and internal forces,δWint , during an

arbitrary virtual displacement is equivalent to the changein strain energy and energy dissipated

by internal friction due to the virtual displacement. This is summarised in the following expres-

sion

δWext+δWint = δA, (3.6)

whereδA is the change in the virtual work by the acceleration quantities. However, the work

performed by the interior forces on a body is equivalent to the change of the deformation on

that body with an opposite sign,δWint =−δEd, and therefore

δEd+δA= δWext. (3.7)

In other words, the virtual work of a system of equilibrium forces vanishes on virtual displace-

ments. Next, we will compute these quantities, balance the equation for a single sub-layerj and

assemble for all sub-layers.
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3.3.1 Virtual change of strain energy

For any sub-layerj, the change in the strain energy can be written as

δEd =
∫

v

{

σT}{δε} dV

=
∫ ∞

0

∫ 2b

0

∫ 1

0
(δεxxσxx+δεyyσyy+δγxyσxy)dxdydz. (3.8)

The term{σT}{δε} represents the change in the strain energy in addition to theloss in energy

over the entire volume of the sub-layer due to the internal friction. If we consider a unit length

in z-direction, thez term in the integration will yield to a unit value. Using the stress-strain

and the strain-displacement relations described in equations (3.2) and (3.5), the variation of the

strain energy can be rearranged in a new form

δEd =

∫ ∞

0

∫ 2b

0
{δu,x [(λ +2µ)u,x+λv,y]+δv,y [λu,x+(λ +2µ)v,y]

+ δ (u,y+v,x)µ (u,y+v,x)}dxdy. (3.9)

As mentioned above, the displacement is assumed to vary linearly with respect to depth so if

we introduce linear shape functions in they-direction such that

{

Up
}

=

[

N(y) 0

0 N (y)

]























u j

u j+1

v j

v j+1























, N(y) =
[

1− y
2b

y
2b

]

, (3.10)

whereUp is the displacement vector at any point within the sub-layer. If we let

U =

{

u j

u j+1

}

and V =

{

v j

v j+1

}

. (3.11)

Substituting in equation (3.9) we obtain

δEd =

∫ ∞

0

∫ 2b

0
{δUT

,xNT(λ +2µ)NU,x+δUT
,xNTλN,yV +δVTNT

,yλNU,x

+ δVTNT
,y(λ +2µ)N,yV +δUTNT

,yµN,yU +δUTNT
,yµV,x (3.12)

+ δVT
,x NT µN,yU +δVT

,x NTµNV,x}dxdy.
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Using the integration by part scheme, the previous equationwill yield to

δEd =

[

δUT
∫ 2b

0
NT [(λ +2µ)NU,x+λN,yV]dy

]∞

0
+

[

δVT
∫ 2b

0
NT [µ(N,yU +NV,x]dy

]∞

0

−
∫ ∞

0
δUT

[

(λ +2µ)
∫ 2b

0
NTNdy

]

U,xxdx−
∫ ∞

0
δVT

[

µ
∫ 2b

0
NTNdy

]

V,xxdx

+
∫ ∞

0
δUT

[

µ
∫ 2b

0
NT
,yNdy

]

V,xdx−
∫ ∞

0
δUT

[

λ
∫ 2b

0
NTN,ydy

]

V,xdx (3.13)

+

∫ ∞

0
δVT

[

λ
∫ 2b

0
NT
,yNdy

]

U,xdx−
∫ ∞

0
δVT

[

µ
∫ 2b

0
NTN,ydy

]

U,xdx

+

∫ ∞

0
δUT

[

µ
∫ 2b

0
NT
,yN,ydy

]

Udx+
∫ ∞

0
δVT

[

(λ +2µ)
∫ 2b

0
NT

y N,ydy

]

Vdx.

The first and second terms in equation (3.13) can be written in a new expression with consider-

ing the stress-strain relationship described earlier in (3.2)

[

δUT
∫ 2b

0
NT [(λ +2µ)NU,x+λN,yV]dy

]∞

0
=

[

δUT
∫ 2b

0
NTσxxdy

]∞

0
. (3.14)

[

δVT
∫ 2b

0
NT [µ(N,yU +NV,x]dy

]∞

0
=

[

δVT
∫ 2b

0
NTσxydy

]∞

0
. (3.15)

Whenx approaches infinity,σxx andσxy will vanish while forx=0, expressions (3.14) & (3.15)

should be kept for further developments.

3.3.2 Virtual work by the acceleration quantities

The acceleration quantities or inertial forces are proportional to the actual displacement when

considering a harmonic loading. The virtual work of the acceleration quantities is expressed as

δA=
∫ ∞

0

∫ 2b

0
(ρüδu+ρ v̈δv)dxdy, (3.16)

and therefore

δA=
∫ ∞

0
{δUT

(

ρ
∫ 2b

0
NTNdy

)

Ü +δVT
(

ρ
∫ 2b

0
NTNdy

)

V̈}dx. (3.17)

Combining equation (3.10) with equation (3.17) we obtain the following matrices

A0 =

[

µ
∫ 2b

0 NT
,yN,ydy 0

0 (λ +2µ)
∫ 2b

0 NT
,yN,ydy

]

, (3.18a)
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A1 =

[

0 λ
∫ 2b

0 NTN,ydy−µ
∫ 2b

0 NT
,yNdy

−λ
∫ 2b

0 NT
,yNdy+µ

∫ 2b
0 NTN,ydy 0

]

, (3.18b)

A2 =

[

(λ +2µ)
∫ 2b

0 NTNdy 0

0 µ
∫ 2b

0 NTNdy

]

, (3.18c)

A3 =

[

0 λ
∫ 2b

0 NTN,ydy

µ
∫ 2b

0 NTN,ydy 0

]

, (3.18d)

M0 =

[

ρ
∫ 2b

0 NTNdy 0

0 ρ
∫ 2b

0 NTNdy

]

. (3.18e)

Computing the integrals inside the matrices in expressions(3.18) will explicitly show that these

matrices are function of Lamé coefficients as well as the thickness of each individual sub-layer,

except for matrixA3 which depends only on the material properties. MatrixM0 will vary with

both the thickness and density of the layer. These matrices are 4× 4, matricesA0, A2, A3

andM0 are symmetrical whileA1 is antisymmetrical. After integration, they are expressedas

follows

A0 =
1
2b













µ 0 −µ 0

0 λ +2µ 0 −(λ +2µ)
−µ 0 µ 0

0 −(λ +2µ) 0 λ +2µ













, (3.19a)

A1 =
1
2













0 −λ +µ 0 λ +µ
−µ +λ 0 λ +µ 0

0 −λ −µ 0 λ −µ
−λ −µ 0 −λ +µ 0













, (3.19b)
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A2 =
b
3













2(λ +2µ) 0 λ +2µ 0

0 2µ 0 µ
λ +2µ 0 2(λ +2µ) 0

0 µ 0 2µ













, (3.19c)

A3 =
1
2













0 λ 0 −λ
µ 0 −µ 0

0 λ 0 −λ
µ 0 −µ 0













, (3.19d)

M0 =
ρb
3













2 0 1 0

0 2 0 1

1 0 2 0

0 1 0 2













. (3.19e)

Back substituting these matrices into the left-hand side ofthe virtual work equation (3.7), the

equation for sub-layerj would be

δEd+δA =

∫ ∞

0
δuT (−A2u,xx−A1u,x+A0u+M0ü)dx

+ δuT
x=0(A2u,x+A3u)x=0 . (3.20)

Assembling for all sub-layers gives

δEd∗+δA∗ =

∫ ∞

0
δu∗T (−A∗

2u∗,xx−A∗
1u∗,x+A∗

0u∗+M∗
0ü∗

)

dx

+
(

δu∗T
x=0A∗

2u∗,x+A∗
3u∗

)

x=0
. (3.21)

The superscript symbol∗ refers to the global system. A typical assembling process, for example

matrixA∗
1, is shown in Figure3.3.
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[A] =

[A]

[A]

[A]

[A]

1

2

n-1

n

last two rows and columns are omitted
due to fixed base condition

element matrices
overlap

*
1

1

1

1

1

Figure 3.3: The structure of global matrices.

The index outside the square brackets refers to the sub-layer number. As the layered region is

assumed to be overlaying rigid bedrock, the last two degreesof freedom corresponding to the

last node at the base are discarded as it is fixed. As a result, the dimension of the layered system

matrices is 2n×2n wheren is the number of sub-layers. All matrices are complex, except M0,

for viscoelastic materials.

3.3.3 Virtual work of external forces

The work performed by the external forces on the central domain is expressed as

δWext = ~Fδ~u, (3.22)

where

F =























F1x

F2x

F1y

F2y























and δu=























δu1

δu2

δv1

δv2























. (3.23)

Therefore,

δWext = δUTFx+δVTFy = δuT
x=0 F. (3.24)

For the global system

δW∗
ext = {δu∗}T

x=0F∗. (3.25)
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Substituting in the virtual work equation of expression (3.15)

∫ ∞

0
{δu∗}T(−A∗

2u∗,xx−A∗
1u∗,x+A∗

0u∗+M∗
0ü∗)dx

+{δu∗}T
x=0

(

A∗
2u∗,x+A∗

3u∗
)

x=0
= {δu∗}T

x=0F∗. (3.26)

This equation is satisfied if both

−A∗
2u∗,xx−A∗

1u∗,x+A∗
0u∗+M∗

0ü∗ = 0, (3.27)

and
[

A∗
2u∗,x+A∗

3u∗
]

x=0
= F∗, (3.28)

are satisfied. Equation (3.27) will lead to a second order eigenvalue problem and nodal forces

will be determined from equation (3.28) as will be shown later. The external forces are assumed

to be harmonic and therefore the displacements are also harmonic in time. Therefore it is

possible to write

{u∗}= {u∗0}ei(ωt−kx), (3.29)

whereω is the frequency of the forcing load andk is the wavenumber. Substituting (3.29) into

(3.27) leads to
[

k2A∗
2+ ikA∗

1+A∗
0−ω2M∗

0
]

u∗0 = 0. (3.30)

Equation (3.30) is a second order eigenvalue problem ink and represents 2n homogeneous

equations. For a nontrivial solution, the determinant of the system matrix must be equal to

zero. One method to solve the quadratic eigenvalue problem is by reducing it into a first order

problem, hence the dimension of the problem will be increased to 4n and consequently 4n

eigenvalues,ks, with their corresponding eignevectors,Us, are obtained. It is shown that for

each eigenvalueks of the formκ1+ iκ2 there is a corresponding eigenvalue of the formκ1− iκ2.

This leads to the fact that half of the modes decay withx> 0, κ2 < 0, and therefore represent

waves travelling in the positivex-direction, and the other half decaying withx < 0, κ2 > 0,

representing waves travelling in the negativex-direction. The eigenvalues or wavenumbers are

retained in the diagonal matrixH, a 2n×2n matrix, which has the form

H =









k1
. . .

k2n









. (3.31)

The displacement field is therefore written as a combinationof all eigenmodes such that

{u∗}=
2n

∑
s=1

as{us}ei(ωt−ksx), (3.32)

40



where{us} is the eigenvector associated with the eigenvalueks, as is the mode shape participa-

tion factor.

The displacement field of the right region could be written as

UR =
2n

∑
s=1

as{us}= aU, (3.33)

with UR andas being vectors of dimension of 2n. The mode shapes are contained in the matrix

U of dimension 2n×2n. Let us now derive the nodal forces on the boundary of the right side

region, recalling equation (3.28) and performing the first derivative of equation (3.32) the force

vector could be written as

F∗ =
2n

∑
s=1

ase
i(ωt−ksx) [−iksA∗

2+A∗
3] . (3.34)

The derivative of expression (3.28) could be rearranged, by calling the diagonal matrixH which

contains the eigenvalues and their corresponding eigenvectors inV, as follows

u∗,x =−iVH



















































a1ei(ωt−k1x)

a2ei(ωt−k2x)

a3ei(ωt−k3x)

.

.

.

a2nei(ωt−k2nx)



















































. (3.35)

However, from equation (3.32) we can write



















































a1ei(ωt−k1x)

a2ei(ωt−k2x)

a3ei(ωt−k3x)

.

.

.

a2nei(ωt−k2nx)



















































= V−1u∗. (3.36)

The force vector acting on the lateral boundary of the domaincan be deduced by employing the

stress and strain compatibility conditions and thereaftersubstituting equation (3.35) and (3.36)

into (3.34) to obtain a 2n column force vector

F∗ =−
[

iA∗
2VHV −1+A∗

3

]

u∗x=0. (3.37)
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Matrix V contains the 2n eigenvectors columnwise as follows

V =
[

U1 . . . U2n

]

. (3.38)

Nodal forces are contained in vectorF∗. The displacement field is therefore written as a com-

bination of all mode shapes which leads to nodal forces on theright and left sides of the central

domain, respectively. Let us consider the right side boundary, its nodal forces vector is ex-

pressed as

FR =−RUR with R = iA∗
2VHV −1+A∗

3, (3.39)

whereUR is the nodal displacement vector of the right hand side vertical boundary. In the same

way, the nodal force vector of the left hand side vertical boundary is obtained. The correspond-

ing nodal displacement vector isUL

FL =−LUL with L =−iA∗
2V

′
H

′
V

′−1−A∗
3, (3.40)

with H
′
contains the 2n computed wavenumbers withκ2 > 0 andV

′
contains the corresponding

2n eigenmodes columnwise. The nodal displacement vectors of both lateral boundaries are

part of the global displacement vectorU. MatricesR andL are deduced form the eigenvalues

and eigenmodes. The modal dynamic stiffness matrices of thetransmitting boundaryR andL

relate the nodal displacements and the nodal forces at the right and left boundaries, respectively.

These matrices are of dimension 2n×2n and represent the effect of the semi-infinite extent of

the right and left lateral regular regions. Given that the displacementsUR andUL are unknown,

the associated forces will be combined with the ones of the irregular region to formulate the

system equation.

3.4 The finite element model

The consistent transmitting boundary conditions are derived in section3.3 and the unbounded

domain is replaced by a bounded domain on which these transmitting conditions are applied.

Therefore, the sought finite element model consists of combining the irregular region defined in

section3.2bounded by the lateral boundaries of the domain and rigid bedrock at the bottom, as

depicted in Figure3.4. Having obtained the consistent nodal forces on the lateralboundaries,

FR andFL , and as they are a function of the nodal displacements, we canrecall the dynamic

stiffness of the central domain, from (3.1), and assemble these vectors as follows

[

K −ω2M +R+L
]

u = F. (3.41)
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Figure 3.4: The finite element model.

As the external load is harmonic the displacement field is also harmonic, equation (3.41) will

yield to
[

K −ω2M +R+L
]

u0 = F0, (3.42)

with u0 and F0 are amplitudes ofu andF, respectively and the time variable is omitted by

considering a steady state problem. The system of equations(3.42) is linear and a direct solver

such as the Gauss elimination approach is used to solve the problem. The solution of the linear

system of equation (3.42) gives the horizontal and vertical displacements at each node of the

meshed region as complex numbers,u= ah+ ibh andv= av+ ibv, respectively. Their ampli-

tudes|u| =
√

a2
h+b2

h and|v| =
√

a2
v+b2

v are used in the analysis to represent the results in a

non-dimensional form by dividing the displacements by a factor a= 1m. Nonetheless, another

expression, normalised area, is used for exploiting the results in Chapters4 and7. It is evaluated

by computing the area under the relevant displacement curve, vertical or horizontal, at the soil

surface and normalised by a unit area for a non-dimensional representation. In addition to that,

the absolute relative error norm is used to quantify the difference between the displacements at

each node for different cases. It is given by

ε(%) = ‖v j
1−v j

2

v j
1

‖×100, (3.43)

where j denotes to the node number, 1 and 2 refer to displacement curves associated with those

cases. In other words, the error is computed in the same location for different displacement

curve.
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3.5 Concluding remarks

In this chapter, a finite element model is developed to solve steady state wave propagation

problems in soils media in two dimensions under plane strainconditions. The soil medium,

assumed to overlay rigid bedrock, is divided into three regions. The central domain or irregular

region, which is of interest, is meshed into finite elements.The two lateral domains or regular

regions extending to infinity are replaced by equivalent nodal forces they apply on the irregular

region. These nodal forces are computed through the solution of a second order eigenvalue

problem, which is reduced to a first order with doubling its size. The obtained FEM model

allows numerical modelling of wave propagation is soil media over rigid bedrock and subjected

to harmonic loads. The nodal displacements, especially at the soil surface, will be used in the

post processing stage of the results for validation and parametric study purposes.
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Chapter 4

Wave propagation in soil media over

bedrock: validation & applications

4.1 Introduction

This chapter aims to validate the implemented numerical model, developed in Chapter3, for

the simulation of wave propagation in soil media. The soil medium is assumed to be resting

on horizontal rigid bedrock. The ability of the numerical model to simulate wave propagation

and predict the dynamic behaviour of soil media will be examined. Several cases where the

analytical solution is available are considered. For othercases, judgement is used to justify the

results.

4.2 Effectiveness of the consistent transmitting boundarycon-

ditions

In order to examine the effectiveness of the implemented consistent transmitting boundary con-

ditions, the response of a soil domain is analysed with and without incorporating the lateral

forces to simulate the semi-infinite extent of the domain. Therefore, a soil domain of 6λR and

2λR, in length and depth respectively, is subjected in this example to a vertical harmonic load of

1kN in magnitude at the soil surface with a frequency of 20Hz.The soil layer has the following

properties; density of 1700kg/m3, elasticity modulus of 100MPa, Poisson’s ratio of 0.3 and a

damping ratio of 5%. The computational domain is meshed into4-node quadrilateral elements.

As the Rayleigh wavelength is 6.98m the element size is takenabout 0.7m. Figure4.1shows a

comparison between the vertical (left) and horizontal displacement (right) at the soil surface in

both cases of treated and untreated lateral boundaries (with and without the consistent transmit-

ting boundary conditions, respectively). The results are presented in a non-dimensional form

by normalising with respect to the unit displacementsa. The results clearly show that when the
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vertical boundaries are treated, to allow the waves to radiate away into infinity, the surface dis-

placement curves are smooth and wavy. However, when the lateral boundaries are not treated,

the incoming waves are reflected leading to spurious oscillations.

x/a

v/
a

-30 -20 -10 0 10 20 30
0

5E-06

1E-05

1.5E-05

2E-05 treated boundaries
untreated boundaries

x/a

u
/a

-30 -20 -10 0 10 20 30
0

8E-07

1.6E-06

2.4E-06

3.2E-06

4E-06 treated boundaries
untreated boundaries

Figure 4.1: Effectiveness of the consistent transmitting boundaries.

It is obvious from this example that treatment of the two lateral boundaries of the soil model

is necessary when dealing with wave propagation modelling so that the waves radiate away to

infinity with no or very little reflection.

Next, the continuity of the surface displacements is investigated when the length of the soil

model is increased. It is anticipated that the soil behaviour remains unchanged for any length

of the domain since the consistent transmitting boundariesshould simulate the infinite extent of

the domain. Both undamped and damped cases are dealt with.

4.2.1 Undamped case

The matrices of the eigenvalue problem of expression (3.30) could be real or complex depend-

ing on damping. Therefore, damped and undamped soil models lead to different eigenvalues

(wavenumbers,k) and eigenvectors. In the case of undamped soil model, wavenumbers could

be purely real or even take the zero value, while the damped case does not produce such values

(see section6.3).

The developed finite element model is used to analyse the previously considered example in the

frequency domain by changing the length of the domain from 1λR to 10λR. The Rayleigh wave-

length is meshed into 10 elements in the vertical and horizontal directions as recommended by

Laghrouche [99]. Other researchers considered 8 elements per Rayleigh wavelength, however

10 elements produces a smoother wave pattern. Herein, a fixeddepth of 2λR of the soil layer

and a fixed applied frequency of 20Hz are again used, and the length of the domain is varied

to check the continuity of the soil response. The efficiency of the method is also examined by
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computing the relative error at the nodes of the surface for two successive lengths of the domain.

First, the length of the model is considered to be 1λR then 2λR while keeping the depth con-

stant. When comparing the surface displacements it is clearthat this approach is very effective

as the continuity of the displacements is ensured with the relative error being less than 0.25%

as shown in Figure4.2.

The length of the model is increased to 4λR and a comparison with 2λR length is drawn. Waves

propagate through the boundaries and very little reflectionis encountered, the symmetry of the

displacement is clear and again the error does not exceed 0.9%. It could be seen that the highest

percentage of error is encountered close to the vertical boundaries of the domain, nonetheless it

is so small and insignificant.

The same trend is shown when the length of the domain is increased to 8λR and 10λR. The

relative error is less than 1.5% as shown in Figure4.2. Looking at the results, it could be

concluded that the consistent transmitting boundaries arevery effective to simulate wave prop-

agation in undamped soil media.

Surface horizontal displacements and their correspondingerrors when extending the length of

the computational domain are depicted in Figure4.3. At the point of application of the load, the

horizontal displacement is zero and therefore the error percentage at this point is not represen-

tative and hence its corresponding error is not included in the results.

It is obvious from the results corresponding to the horizontal displacements that the consis-

tent transmitting boundaries perform well as the continuity of the displacements is ensured and

the relative errors remain very low.

4.2.2 Damped case

The numerical tests carried out for the undamped case are reconsidered here with a damping

ratio of 5%. The results shown in Figures4.4 and 4.5, for the vertical and horizontal dis-

placements, respectively, lead to similar conclusions drawn for the undamped case. Indeed, the

relative error remains very low and the maximum error is about 1.8%, which is an acceptable

engineering accuracy.

Figure4.6 shows an example of contour plots of the vertical and horizontal displacements for

the case of length 10λR. It is obvious that both displacements are symmetrical withrespect

to the line of action of the vertical loading at the surface. In fact, as will be shown next, this

symmetry is maintained even for non-symmetrical domains.
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Figure 4.2: Vertical surface displacements and corresponding errors: undamped soil.
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Figure 4.3: Horizontal surface displacements and corresponding errors: undamped soil.
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Figure 4.4: Vertical surface displacements and corresponding errors: damped soil.
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4.3 Non-symmetrical problem

In the configurations of section4.2, the vertical load is applied such that the model is symmetri-

cal with respect to the line of action of the applied verticalload. Here, we assume that the load

is applied not necessarily in a symmetric manner and the efficiency of the numerical model is

examined by ensuring the continuity of the displacements atthe surface. This is carried out to

show that good results are obtained by the numerical code even when the applied load is close

to the lateral boundary of the domain where the energy transmits through the boundary.

4.3.1 Undamped case

In the current numerical tests, various non-symmetrical cases with no damping are considered

such that there is no symmetry in the model with respect to theline of action of the vertical

load. A first case consists of applying a vertical load at the top of the right lateral boundary

of a domain of 4λR length and 2λR depth. The same model is reconsidered where the domain

length is increased by 1λR to the right of the applied load such that the length becomes 5λR. The

top graphs of Figure4.7 show the vertical displacements for both cases and the corresponding

relative errors. It is clearly shown that the results are in very good agreement and the errors

are very low, except at the extreme nodes at the surface. Moreover, the results for the case of

length 5λR show symmetry with respect to the vertical load despite the fact that the problem

is not symmetrical. In fact, this shows that the transmitting boundary conditions are effective

in radiating the waves to infinity and are capable to simulatethe semi-infinite extent of the

model in the lateral direction. The length of the domain is further increased to 6λR, 8λR and

10λR. Further comparisons of the vertical displacements and evaluation of the relative errors

(Figure4.7) confirm the above stated conclusions. Here, only vertical surface displacements

are analysed. In fact analysis of the horizontal displacements leads to the same conclusions.

Moreover, a horizontal load could be used instead of a vertical one.
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Figure 4.7: Vertical surface displacements and corresponding errors in the undamped soil for a
non-symmetrical problem.
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4.3.2 Damped case

A damping ratio of 5% is introduced for all considered examples of the undamped case. In

the same way, the results are summarised in Figure4.8 for the surface vertical displacements

and relative errors, when the domain length is increased from 4λR to 10λR. Again, the results

show that the consistent transmitting boundaries are very effective in radiating the waves away

to infinity through the lateral boundaries. The relative errors are very low and they are even

lower in certain cases in comparison to the undamped case. The largest relative errors are again

encountered at the extreme nodes of the domain surface but they are still very acceptable in

terms of engineering accuracy.
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Figure 4.8: Vertical surface displacements and corresponding errors in the damped soil for a
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4.4 Dynamic behaviour of a soil layer over rigid bedrock:

critical frequencies

A rational approach is employed in sections4.2and4.3to provide a judgment on the numerical

results. This section is aimed at simulating the dynamic response of a homogeneous soil layer

over horizontal rigid bedrock, as an analytical solution for the natural frequencies is available.

It is based on a one-dimensional wave propagation theory. Itwill be first presented and then the

numerical results will be checked against this solution.

If a homogenous soil layer, of depthH, is subjected to a horizontal or vertical harmonic load, the

natural frequencies of the horizontal and vertical responses of the soil layer can be determined

from the following expressions

f h
n = (2n−1)

cs

4H
,n= 1,2,3, ........, (4.1)

f v
n = (2n−1)

cp

4H
,n= 1,2,3, ......... (4.2)

wherecp andcs are the compression and shear wave velocities respectively, f h
n and f v

n are the

natural frequencies of the horizontal and vertical responses andn is an integer. The superscripts

h andv refer, respectively, to the horizontal and vertical responses.

Consider an isotropic, linear elastic soil medium underlain by rigid bedrock as shown in Figure

4.9. A harmonic load applied at the top surface generates compression and shear waves which

propagate vertically within the soil layer, consequently causing displacements and deformations

in the soil deposit. An incident horizontal harmonic load, for example, generates a vertically

propagating shear wave in the soil layer. Once the propagating shear wave hits the fixed base

it reflects back into the domain with the same amplitude. However, the reflected wave doubles

its amplitude once hitting the free surface. The solution for the horizontal displacement can be

written as

u(y, t) = Aei(ωt+ksy)+Bei(ωt−ksy), (4.3)

whereω is the circular frequency of the harmonic load,ks =
ω
cs

is the horizontal wavenumber

andA andB are the amplitudes of the travelling waves upwards and downwards, respectively.

Boundary conditions in this case are zero displacements at the base and zero shear stresses at the

soil surface (free surface), and as consequence zero shear strains as well. A standing wave with

amplitude 2cosksy can be described by the previous equation. This leads to define the transfer

function or the amplification factorF1(ω) given by the ratio of the displacements between the
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surface and the base. It is given by

F1(ω) =
1

cosksH
. (4.4)

Ae

Be

( ω t +k y)

( ω t -k y)

x

y

H

rigid bedrock

free surface

i

i

S-wave

horizontal harmonic
load

s

s

Figure 4.9: Linear elastic soil deposit over bedrock.

Equation (4.4) represents the analytical transfer function for undampedsoil layer subjected to

horizontal excitation. Similarly, if the soil layer is subjected to a vertical harmonic load, the

associated transfer function could be derived and the compression wavenumberkp replacesks

in expression (4.4).

To understand the soil response due to the harmonic load, letus plot the magnitude of the

transfer function against the frequency considering a soilmedium of 10m depth with the same

material properties presented in section4.2. The natural frequencies for both the horizontal and

vertical loading can be determined from equations (4.1) and (4.2). The top graphs of Figure4.10

show the magnitude of the transfer function of the vertical and horizontal undamped response

of the soil layer, under vertical and horizontal harmonic loads. The results show that resonance

happens at certain frequencies, natural frequencies, where the response goes to infinity due to

the absence of damping. These frequencies are function of the properties and the depth of the

soil layer. However, this is not the case for practical applications where the presence of damp-

ing leads to energy dissipation. The transfer function for viscoelastic materials is derived by

introducing a damping ratio,β , in equation (4.3). The transfer function for the damped soil

layer subjected to horizontal excitation is expressed as

F2(ω) =
1

√

cos2ksH +(βksH)2)
. (4.5)
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Again, the compression wavenumberkp replacesks in expression (4.5) to obtain the transfer

function in the case of vertical excitation. More details about the derivation of the transfer func-

tions may be found in text books such as Kramer [101].

When evaluating the damped response of the same soil layer byconsidering 5% damping ratio

we obtain the bottom graphs of Figure4.10in the vertical and horizontal directions. Although

amplifications happen at natural frequencies, resonance ismore pronounced at the lower natural

frequencies, especially at the fundamental one. It is obvious that the magnitude of the transfer

functionF2(ω) reduces significantly for increasing frequency, thanks to the presence of damp-

ing, unlike in the undamped case where all natural frequencies lead to infinite amplification.

Next the dynamic response of the considered soil layer is investigated numerically to evaluate

its natural frequencies and compare them to those obtained theoretically.
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Figure 4.10: Theoretical amplification factors for vertical (left) and horizontal (horizontal) ex-
citations for undamped and damped homogenous soil layer over bedrock.

4.4.1 Undamped response

The dynamic response of a soil layer overlaying bedrock is analysed numerically here by the

developed finite element model. The same soil layer considered in section4.4is used in the nu-

merical simulations to examine the capability of the model to capture its dynamic response in
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n f v
n(Hz) f h

n (Hz)
1 7.04 3.8
2 21.1 11.3
3 35.2 18.8
4 49.2 26.3
5 63.3 33.8

Table 4.1: Natural frequencies of the horizontal and vertical response of the soil layer.

terms of the natural frequencies of the horizontal and vertical displacements. Those frequencies

are calculated using expressions (4.1) and (4.2) and are shown in Table4.1.

First, let us consider a vertical harmonic load applied at the soil surface with a range of fre-

quencies including the first two natural frequencies of the soil domain. As usual, the domain

is meshed into finite elements with size not exceeding one-tenth of the Rayleigh wavelength.

The top left graph of Figure4.11shows the vertical surface displacements for the frequencies

3, 7 and 10Hz. For the case of 3Hz, apart from a disturbance around the point of application of

the load, the rest of the soil surface shows no displacements. At 7Hz, however, significant dis-

placements take place along the whole surface. This frequency is very close to the fundamental

frequency of the soil medium, which is 7.04Hz, and hence resonance was expected. Then at

10Hz, while noticeable displacements occur, those are a lotsmaller in comparison to those cor-

responding to the frequency of 7Hz.

Similar numerical experiments are carried out with higher frequencies. The bottom left graph

of Figure4.11shows the vertical displacements corresponding to 15, 21 and 25Hz. Once again,

the displacements occurring for the 21Hz case are more important than those corresponding to

15 and 25Hz. In fact, at around 21Hz resonance takes place again which corresponds to the

second natural frequency.

To show this in a more obvious way, for each frequency rangingbetween 1 and 25Hz, the

areaA under the surface displacement curve is calculated and plotted in Figure4.12(left). The

areaA is normalised here with respect to a unit areaA0 for a non-dimensional representation.

Other authors such as Yanget al. [98] multiplied, for example, the vertical displacement by

the shear modulus and plotted it against the frequency. Figure 4.12 (left) clearly shows that

resonance occurs at the frequencies around 7 and 21Hz, whichare very close to the predicted

frequencies of 7.04 and 21.1Hz by expression (4.2).

For the case of natural frequencies of the horizontal loading, the same approach is followed.

The soil layer is subjected to a surface horizontal load withfrequency ranging from 0.5 to 20Hz.

The surface displacements for selected frequencies are shown in the right graphs of Figure4.11.

Once again, the displacements seem to be higher at certain frequencies.
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Figure 4.11: Undamped vertical (left) and horizontal (right) displacements at the surface for
various applied frequencies.
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Figure 4.12: Soil response amplification for vertical and horizontal excitations under undamped
condition for homogenous soil layer over bedrock.
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To show the resonance behaviour, the normalised areaA/A0 is evaluated for each loading fre-

quency and the results are plotted in Figure4.12(right). Once again, it is obvious that resonance

occurs at the frequencies around 4, 11 and 19Hz. Those frequencies are in very good agree-

ment with the values predicted by expression (4.1), which are 3.8, 11.3 and 18.8Hz (Table4.1).

The above numerical tests validate further the developed numerical model and show its ability

to capture the dynamic behaviour of soil media overlaying bedrock. Since previous numerical

simulations considered both undamped and damped cases of the soil, complementary numerical

tests are carried out with the introduction of a damping.

4.4.2 Damped response

The same cases analysed in the previous section are reconsidered here with the introduction of

a damping ratio of 5%. The results are presented in Figure4.13for the vertical and horizon-

tal loading. The left graphs represent the response of the soil layer due to a vertical harmonic

load while the right graphs show the response associated with the horizontal loading. The same

behaviour is shown as in the undamped case except that the level of displacement is less pro-

nounced in the presence of damping. A steady displacement, i.e. steady wave, is encountered

in the undamped case, while the pattern of the displacement is damped as we move away from

the point of application of the load. This is related to the effect of damping in the soil which is

an important property when considering dynamic analysis. Figure4.14shows the fundamental

frequencies for vertical and horizontal displacements, respectively, to be around 7Hz and 3.5Hz.

These values are in good agreement with the theoretical values of Table4.1.
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Figure 4.13: Damped vertical (left) and horizontal (right)displacements at the surface for vari-
ous applied frequencies.
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Figure 4.14: Soil response amplification for vertical and horizontal excitations under damped
condition for homogenous soil layer over bedrock.
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4.5 Dynamic behaviour of a soil layer over rigid bedrock:

critical depths

The depth of a soil layer over rigid bedrock has a significant effect on its dynamic behaviour

when it coincides with a critical value as it also leads to resonance. Such cases include; ma-

chine foundations where ground vibrations can be a major concern for neighbouring structures

and people. The case of a moving load such as a train over soil layer overlaying bedrock is

another example. In the following sections, analytical andnumerical analysis are presented to

investigate the effect of these critical depths.

4.5.1 Vertical loading

The critical depth formula associated with a vertical loading with a fixed frequencyf acting on

a soil layer is deduced from expression (4.2) as

Hv
n =

cp

4 f
(2n−1). (4.6)

Let us consider a vertical load of a magnitude 1kN with a frequency of 5Hz acting at the surface

of a soil layer with the same material characteristics of previous examples (sections4.2, 4.3

and4.4). The length of the domain is taken to be 8λR and its depth varied between 0.1λR and

4λR with λR being around 27.9m, in this case. The harmonic load is assumed to be applied on

the left boundary of the domain to make the results more readable. The effect of the soil layer

depth is shown in Figure4.15. In the case of shallow depths, 0.1λR and 0.2λR, the waves do

not seem to propagate. Propagation starts when increasing the depth of the soil layer and it is

more pronounced with depths greater than 0.5λR. In fact, resonance occurs when approaching

a depth of 0.5λR, which coincides with the first critical depth of the soil layer for the vertical

loading case determined from expression (4.6). Actually, if we consider the depth of 0.5λR of

the soil layer and compute the fundamental frequency of the vertical loading it will be around

5Hz. As it is shown in Figure4.15, waves do not propagate if the depth of the soil layer is less

than the first critical depth. From other cases of larger depths, we can see resonance happens at

the second critical depth of 1.51λR.

4.5.2 Horizontal loading

This time a horizontal surface load is considered with a frequency of 5Hz. The effect of the

soil layer depth is examined for a series of numerical examples for surface wave propagation.

Similar to the vertical load case, the critical depth formula associated with horizontal loading
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with a fixed frequencyf acting on a soil layer is deduced from expression (4.1) as

Hh
n =

cs

4 f
(2n−1). (4.7)

As in the case of vertical excitation, waves do not propagatewhen the depth of the soil layer

is less than the first critical depth associated with the horizontal loading, as in Figure4.16(top

left). The magnitude of the horizontal displacement increased with increasing the depth of the

soil layer and waves start to propagate for depths greater than 0.29λR. The first critical depth

associated with horizontal loading is computed from expression (4.7) to be around 0.27λR and

the second critical depth is around 0.8λR.

To compare the soil surface response for varying soil layer depth, the area underneath the

displacement curve is evaluated with a numerical integration approach and normalised with

respect to a unit area. These are shown in Figure4.17(bottom) against the normalised depth

of the soil layer. The top plots of Figure4.17present the theoretical prediction of amplifica-

tion in the horizontal and vertical directions against the normalized depth, with respect to the

Rayleigh wavelength of the soil layer. Amplification occursat certain depths which are the crit-

ical depths as depicted in the previous figure. It is clear that the numerical results predict very

well resonance and that the numerical critical depths coincide well with the theoretical values.

In practice, it is very important to avoid those depths or to change the applied frequency if pos-

sible when designing machine foundations or when running a moving load. The same trend is

found in the damped case but it is not included in this dissertation.

So in summary, the developed numerical model captures the dynamic behaviour of soil me-

dia over rigid bedrock, in the case of a fixed frequency, wherethe depth of the bedrock varies.

Indeed when the depth coincides with critical values determined by expressions (4.6) and (4.7)

for vertical and horizontal loadings, respectively, the soil layer shows resonance.
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Figure 4.15: Effect of soil layer depth in the undamped case for vertical excitation.
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Figure 4.16: Effect of soil layer depth in the undamped case for horizontal excitation.
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4.6 Dynamic behaviour of layered soil media over rigid bedrock

Up to this point, the soil medium is assumed to be a homogenoussingle layer. In spite of

this assumption being very helpful to simulate wave propagation in soil media, it is unusual

in engineering practice to encounter such a situation. Soilproperties usually vary with depth,

especially the stiffness, which could be due to the geological history of the soil, for example.

Moreover, soil layers usually deposit over each other with time and consolidate leading to form-

ing stiffer materials with depth, in general. Next, the response of two-layer and multi-layered

soil profiles are examined in the following sections.

4.6.1 Dynamic behaviour of a two-layer soil profile

In this section, the developed numerical model is employed to simulate wave propagation in

a two-layer soil profile consisting of a soft soil layer overlaying a stiff deposit. The material

properties of the soft soil layer are; 20MPa, 1550kg/m3 and 0.3 for elasticity modulus, density

and Poisson’s ratio, respectively, with no damping. Whereas Young’s modulus, soil density and

Poisson’s ratio for the stiff soil are assigned as 100MPa, 2000kg/m3 and 0.25. For the layers’

thicknesses, let us assume for simplicity thatH1=H2=5m. The two-layer medium is subjected

to a vertical surface load of 1kN with a frequency of 20Hz. To ensure that the consistent

transmitting boundaries allow the waves to radiate away towards infinity, the same approach

used for homogenous media is followed. The length of the domain is increased from 2λR to 8λR

while the total depth is kept, as mentioned above, unchangedat 10m. Horizontal and vertical

surface displacements are displayed in Figure4.18 for different lengths of the domain. It is

clearly shown that the results are in very good agreement andthat the consistent transmitting

boundaries allow the waves to radiate away at both lateral vertical boundaries. Comparison

between successive cases of length show low relative errorswhich do not exceed 2% and 3%

for the horizontal and vertical displacements, respectively.
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Figure 4.18: Horizontal (left) and vertical (right) surface displacements with their correspond-
ing relative error of 2-layer soil profile.

Let us now analyse the dynamic behaviour of the two-layer soil medium in terms of critical

frequencies, as was done for the homogenous single layer. Ifwe consider a wave hitting the

interface of the layered system, part of that incident wave will reflect back and the other part

will travel into the bottom layer. The transmitted wave through the bottom layer will reflect at

the bedrock and refract again at the two layer interface. Hadjian [102] estimated the fundamen-

tal period of a layered soil profile by an approximated relationship involving the thickness and

the fundamental period of each soil layer and two other parameters which represent the ratio

between the thicknesses of soil layers. Hadjian obtained a formula estimating the fundamen-

tal period of a layered soil profile which may be used in computer software. The equivalent

fundamental frequencies have the following expressions

f =
f1

√

π2

8

[

0.75+
(

f1
f2

)2(

1+2ρ1H1
ρ2H2

)

]

for
H1

H2
> 1. (4.8a)

f =
f1

[

1+β
(

f1
f2

)n(

1+ ρ1H1
ρ2H2

)n]1/n
for

H1

H2
≤ 1, (4.8b)
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whereβ = 1−0.2
(

ρ1H1
ρ2H2

)2
and n= 4−1.8ρ1H1

ρ2H2
. The fundamental frequenciesf1 and

f2 are related to the upper and the bottom layers, respectively. The fundamental frequency of the

soil profile considered in our analysis is estimated from equation (4.8b) to be 5.32Hz. It should

be indicated that the analytical solution derived in reference [102] has the ability to predict the

fundamental frequency of a two-layer soil with a marginal error. This could be generalised to

a layered soil profile and the fundamental period or frequency of the profile could be estimated

by using the Successive Use of Two−Layer solutions. It is worth mentioning that the induced

error is due to the fact of taking the first two terms in the cosine series expression.

Generally speaking, the fundamental period or frequency isthe most important dynamic char-

acteristic as the response will be at the first maxima. Moreover, undamped response was consid-

ered in the preceding formula, which is very practical. However, sometimes the second natural

frequency could be also of practical importance but the aforementioned solution cannot predict

this frequency.

Next, the developed numerical model will be checked againstthe above approximate solu-

tion. So, if we consider a soil domain of 30m length and 10m depth with the same material

properties given at the beginning of the current section. A 1kN load is applied at the surface

with different frequencies. Vertical and horizontal surface displacements are shown in Figure

4.19 for the considered frequencies. The same behaviour as in thecase of homogenous soil

layer over rigid bedrock of section4.4.1is observed; waves propagate when approaching the

fundamental frequency of the soil medium and amplification occurs. Waves do not propagate

when the frequency is lower than the fundamental frequency.The numerical model predicts the

fundamental frequency to be around 5Hz which coincides wellwith the approximated solution

of expression (4.8b).

A comparison between the homogenous layer response and the 2-layer soil profile response

is presented in Figure4.20 in terms of amplification by estimating the normalised area under

the vertical displacement curve at the surface. The homogenous soil layer has the material prop-

erties of the upper layer of the 2-layer system. The fundamental frequency of the homogeneous

layer is estimated to be around 3.3Hz and the numerical code predicts it to be around 3.4Hz.

Resonance occurs when the applied frequency coincides withthis fundamental frequency as it

is shown in Figure4.20.
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Figure 4.19: Vertical (left) and horizontal (right) surface displacements of a 2-layer soil profile
over bedrock.
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Figure 4.20: Resonance phenomena of homogeneous and 2-layer soil profiles.

In the 2-layer soil profile, the fundamental frequency has shifted to the right, or increased, due

to the impedance effect of the two layers. As the bottom layeris stiffer than the upper layer, its

fundamental frequency should be higher than the frequency of the overlain layer. In equation

(4.8b), given that the fundamental frequency of the bottom layer is higher than of that of the

upper layer and so the denominator decreases, which leads the fundamental frequency of the

soil system to increase. This explains the shift in the fundamental frequency when comparing

the homogenous case and the 2-layer soil profile, as it is shown in Figure4.20.
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4.6.2 Dynamic behaviour of a multi-layered soil profile withlinear varia-

tion of stiffness

Using the Successive Use of Two−Layer solutions, the fundamental frequency of a multi-

layered soil profile could be evaluated. The ability of the developed numerical model to simulate

wave propagation in a multi-layered soil deposit with different material properties is examined

next. As the 2-layer soil profile is validated against the approximated solution, a linear stiff-

ness relation will be adopted in the numerical model to simulate wave propagation in the soil.

However, the stiffness of the soil should not vary within each element. Nevertheless, the length

of each element is very small and therefore the effect of considering constant stiffness over a

small length may not have much effect. It is common practice to consider a homogeneous half-

space with an average shear modulus but it is more practical to vary the shear modulus of the soil

with depth as the homogeneous case underestimates the damping characteristics of the medium.

Here, a linear stiffness of the soil profile resting over horizontal rigid bedrock is assumed. A

linear variation of the shear modulus with depth is chosen such that

µ = µ0(1+αzi), (4.9)

whereα is the rate of linearity,µ is the shear modulus at a given depth,µ0 is a reference shear

modulus at the soil surface and zi is the depth below the soil surface. The rate of linearity is

chosen to be 1 and the reference shear modulus equals to 5.77MPa. Soil density and Poisson’s

ratio are assumed to be constant for simplicity. Hence, the soil deposit is assumed to be soft at

the surface and the stiffness is increased gradually to represent hard soil at the bottom. Having

obtained the shear modulus for each layer we assume the soil density and Poisson’s ratio to be

1550kg/m3 and 0.3, respectively. No damping is considered. A 1kN vertical load with 10Hz

frequency is applied at the soil surface. The length of the computational domain is changed

from 2λR to 8λR with a fixed depth of 2λR. The domain is divided into 20 layers with respect

to depth, each layer has its own constant stiffness derived from the previous equation. As it is

shown in Figure4.21, vertical and horizontal surface displacements are plotted when increas-

ing the length of the domain. Once again, the continuity of displacements for various lengths

of the domain and low relative error show the good performance of the consistent transmitting

boundary conditions to radiate the waves away to infinity. Ifwe assume that the soil layer is ho-

mogeneous and has the reference elasticity modulus of 20MPafor the previous computational

domain, the results of Figure4.22 show a completely different response for the vertical and

horizontal displacements at the soil surface in the case of homogeneous and linear variation of

the soil stiffness.
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Figure 4.21: Vertical (left) and horizontal (right) surface displacements and their corresponding
errors for domain length associated with linear variation of the stiffness.
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and linear variation of stiffness for the case of 8λR.
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A parametric study is performed to investigate the effect ofthe rateα has on the fundamental

frequency of a multi-layered soil profile. Three different values ofα have been assigned; 0,

0.5, and 1. A soil domain of 30m length and 10m depth is considered with 10 layers. The area

underneath the vertical displacement curve at the soil surface is plotted for several frequencies

and the three chosen values ofα. From Figure4.23, it is observed that the fundamental fre-

quency of the soil profile has shifted to the right. It is increased with increasing the soil stiffness.

Increasingα will increase the shear modulus of the soil and consequentlythe fundamental fre-

quency of the soil deposit. In summary, the fundamental frequency increases with increasing

the linearity coefficientα.
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Figure 4.23: Effect of soil stiffness on the fundamental frequency.

4.7 Models with structured and unstructured mesh grids

So far only uniform structured mesh grids consisting of 4-node quadrilateral elements were

used. Although such mesh grids are very simple to use but theyare not practical especially

when encountering complex geometries as it is the case of most engineering problems. The

purpose of choosing such meshes is for simplicity and thus itis very common to use in problems

with simple geometry. For problems of practical interest, the soil domain may contain some

discontinuities or structures such as foundations, tunnels or wave barriers of complex shapes.

Dealing with problems with a uniform structured mesh grid isdifficult if not impossible in some

cases. Therefore, using unstructured mesh grid is very important when solving such problems.

4.7.1 Structured triangular element mesh grids

A structured triangular grid is used first to mesh the domain and simulate wave propagation

in a soil medium before adopting an unstructured mesh. Herein, each quadrilateral element is
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divided into two triangular elements. Hence, a structured triangular element mesh grids is ob-

tained as shown in Figure4.24. Triangular elements are either right or left-angle. Quadrilateral

elements are replaced by triangular elements and consequently the stiffness and mass matrices

routines are changed in addition to the post processing routines. Nodal forces simulating the ef-

fect of the two semi-infinite lateral media on the central domain remain unchanged. In order to

satisfy the condition on the model size, the length of the element should be around one-fifteenth

of the Rayleigh wavelength in order to obtain the length of the hypotenuse aboutλR/10 or less.

It is found that a dimension of one-twentieth of the Rayleighwavelength of the triangular el-

ements gives reasonable results as the horizontal and vertical displacements converge towards

the quadrilateral element mesh solution. Here, a soil domain of 4λR in length and 2λR in depth

is considered. The soil has the following properties; density of 2000kg/m3, elasticity modulus

of 100MPa, Poisson’s ratio of 0.25 and a damping ratio of 2.5%. It is subjected to a vertical

surface harmonic load with a frequency of 20Hz. A higher number of nodes and consequently

much higher number of degrees of freedom in the computational domain are used by the above

mentioned discretisation. The number of elements in the central domain has increased by a

factor of 8. The run time in the case of quadrilateral elements was 3s whereas in the case of

triangular elements with one-twentieth of Rayleigh wavelength has increased to 15s, 5 times

higher, as more degrees of freedom and elements are involvedin the solution. Fortunately these

run times are so small that the increase is not of importance.

One drawback of the right and the left-angle triangular elements is that the shape is not uni-

form; in other words, the length of the hypotenuse is greaterthan the other lengths. It was

found that including triangular elements as in the top right(mesh type 1) or bottom left (mesh

type 2) of Figure4.24has produced non-symmetrical results and it is more pronounced in the

surface horizontal displacements, Figure4.25. The loss of symmetry is less pronounced when

decreasing the dimension of the finite element from one-tenth of the Rayleigh wavelength to

one-twentieth. This obviously leads to more finite elements, degrees of freedom and eventually

a higher computational cost.

As depicted in Figure4.25, mesh type 3, half of the triangle elements inclined to the left and the

other half to the right, is a symmetrical mesh and produces symmetrical displacements. In the

case of mesh grids 1 and 2, the displacements were found to be non-symmetrical, however both

meshes have shown that the results are close to the quadrilateral and to the mesh type 3 results.
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Figure 4.24: Mesh grids used in the analysis.
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To investigate the effect of mesh size on the accuracy of the solution, the mesh grid 3 is further

refined. The number of nodes is increased from 10 to 20 and 30 per Rayleigh wavelength. As it

is illustrated in Figure4.26, for the case of one-twentieth of the Rayleigh wavelength the results

are almost matching the quadrilateral element solution in the vertical direction but there is still

some discrepancy in the horizontal direction. Better agreement is obtained by adopting even

smaller elements with mesh size equal to one-thirtieth of the Rayleigh wavelength.
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Figure 4.26: Effect of triangular element size on surface horizontal (left) and vertical (right)
displacements.

4.7.2 Unstructured triangular element mesh grids

An automatic mesh generator such as the one introduced by Geuzaine and Remacle [103] is

used in the current section to generate an unstructured triangular element mesh grid. The mesh

generator produces a random grid for the computational domain with a specified element size

at the surface by the user, by setting the element size factor, and with element length within the

mesh grid less or equal to the specified size. Basically, the smaller the element size factor the

smaller is the length of the element. The benefit of the mesh generator consists in its practical-

ity to introduce many layers in the domain, include discontinuities with complex geometry and

even consider an inclined rigid bedrock or inclined soil layers.

If we consider a soil medium of length 30m and depth of 15m which has the same charac-

teristics presented in section4.7.1. A 1kN oscillating load of 20Hz frequency is applied at the

left boundary of the domain. An unstructured mesh grid with triangular elements is generated.

The horizontal and vertical directions are divided into 67 and 34 nodes, respectively. If a un-

structured mesh grid is adopted, 2599 nodes are required to construct 5064 elements. This mesh

is much denser in comparison to 1091 nodes and 1800 element for the structured quadrilateral

element mesh. Figure4.27shows the two types of meshing. Horizontal and vertical surface

displacements are plotted in Figure4.28. For the considered problem very good agreement is

achieved when comparing the results from both grids. However, the computational cost of the
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analysis increased due to the increase in the number of degrees of freedom in the model, for the

unstructured mesh.

Figure 4.27: Structured quadrilateral versus unstructured triangular mesh grids.
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Figure 4.28: Horizontal (left) and vertical (right) surface displacements associated with struc-
tured and unstructured mesh grids.

The length of the computational domain is increased from 15mto 30m. The horizontal and

vertical surface displacements are plotted in Figure4.29. The continuity of the displacement

field is clearly observed and hence the developed model is also effective with unstructured mesh

grids.
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Figure 4.29: Horizontal (left) and vertical (right) surface displacements associated with unstruc-
tured mesh when extending the domain.

4.7.3 An application with unstructured mesh grids

The merits of using unstructured mesh grids is exploited extensively in Chapter7 for various

applications. A test example is introduced in the current section to show the flexibility of the

numerical model, by incorporating unstructured triangular mesh grids, to deal with problems

where a traditional uniform structured mesh could be troublesome.

Several assumptions have been made in section4.4 to simplify the problem such as presum-

ing that the soil layer is resting on horizontal rigid bedrock. Usually, neither soil layers nor the

bedrock are horizontal. Therefore, it is worth investigating the effect of inclined rigid bedrock

on the dynamic behaviour of the soil layer. A parametric study was performed by Jones [104]

and Jones and Hunt [105] to investigate the effect of soil layer inclination overlaying half-space

on surface wave propagation due to an interior dynamic load.In what follows, a series of nu-

merical examples are used to investigate the effect of the base inclination of the soil domain on

wave propagation. A soil layer of 30m in length and 15m depth resting on rigid bedrock is con-

sidered. Young’s modulus, density, Poisson’s ratio and damping ratio of the soil are assumed

to be respectively; 100MPa, 1700kg/m3, 0.30 and 2.5%. The dynamic load is 1kN and applied

at the soil surface with a frequency of 20Hz. An unstructured3-node triangular element mesh

grid is employed where the base is considered first to be horizontal in order to obtain a refer-

ence solution which should match the solution when using 4-node quadrilateral elements. The

rigid bedrock is then inclined with an angleθ varied from 0◦ to 9◦. The main difference in the

case of inclined soil base model, in comparison to the case ofhorizontal base, is that we have

to solve two separate eigenvalue problems, as the two lateral boundaries of the computational

domain are different in terms of depths and node numbers. Figure4.30shows an example of

unstructured mesh grid for a soil layer over an inclined rigid bedrock, the semi-infinite lateral

regions on the right and the left are assumed to have horizontal layers extending into infinity.

Figure4.31depicts the effect of the angle of inclination on the vertical surface displacement.
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Figure 4.30: Unstructured mesh grids for soil layer over inclined base.

The right hand side depth of the soil layer is multiplied by the Rayleigh wavelength for better

interpretation of the results. For low angles of inclination, there is no dramatic change in the

surface vibration. With increasing the angle of inclination in such way that the shorter depth of

the soil domain approaches 1.6λR, the region of the shorter depth is first affected more than the

region corresponding to the larger depth. However, the latter region becomes more affected as

the angle of inclination is increased.
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Figure 4.31: Effect of base inclination on surface verticaldisplacements.
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4.8 Concluding remarks

In this chapter a parametric study is carried out primarily to validate the numerical model de-

veloped in Chapter3. The soil medium is assumed to rest over rigid bedrock and theconsistent

transmitting boundaries simulate the unbounded characterof the computational domain in the

horizontal direction. The main conclusions are as follows:

• It is clear that untreated lateral boundaries of a computational domain, representing a soil

medium, lead to erroneous dynamic response of the medium.

• The effectiveness of the consistent transmitting boundaries to radiate the incoming waves

away to infinity at the lateral boundaries of a given computational domain is checked by

considering different lengths. Indeed, both vertical and horizontal surface displacements

remain unchanged irrespective of the domain length, with relative errors remaining very

low, showing that the model simulates the infinite extent of the soil medium.

• The developed model is further validated by considering thedynamic behaviour of a soil

layer overlaying rigid bedrock, in terms of the natural frequencies or critical depths. The

model successfully captures the resonance effect due to thenatural frequencies of the

medium, for cases of fixed depth. Conversely, for a fixed frequency of the external load,

the model captures resonance due to the critical depths of the rigid bedrock.

• The latter validation is extended to the case of multi-layered soil profiles, particularly

to 2-layer soil media for which an approximate expression ofthe natural frequencies

is available. The developed model predicted frequencies provided by the approximate

theoretical approach.

• It is also shown that the developed model can incorporate theuse of structured or unstruc-

tured mesh grids. In fact the ability to use unstructured mesh grids offers more flexibility

in considering problems of engineering interest such as dealing with complex geome-

tries. In summary, all numerical analyses carried out in this chapter lead us to trust the

developed model and further extend it to deal with soil mediaover half-space.
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Chapter 5

Wave propagation modelling in half-space

soil media

5.1 Introduction

In Chapters3 and4, the soil medium is assumed to overlay rigid bedrock. As a consequence,

the nodes at the base of the computational domain are fixed. This model may represent real

engineering situations, in which the bedrock is at shallow or intermediate depths. However,

when this is not the case and the soil medium is either very deep or extends to infinity in both

lateral and vertical directions, the alternative model should be the half-space model. According

to Andrade [106] there is no exact representation of the half-space within the framework of

the FEM. An approach representing part of the half-space, below a domain of interest, as an

absorbing or paraxial boundary would be of practical use.

In this chapter, the Paraxial Boundary Condition (PBC) is combined to the TLM approach

to produce a model for half-space soil media.

5.2 Literature review

A first idea consisted to extend the TLM approach to the base ofthe computational domain and

formulate the appropriate matrices which represent the contribution of the half-space. Treating

the base of the domain with the same procedure used for the left and right lateral semi-infinite

regions will lead to a costly computational model because ofthe eigenvalue problem. Moreover,

following the TLM would require fixing certain nodes, for example at the two bottom corners

of the computational domain, to avoid rigid modes. As this approach seemed unpractical for

the considered applications, an alternative method is adopted. As mentioned above, it consists

to couple the TLM with the PBC. Figure5.1 shows a schematic diagram representating this

coupled model.
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Figure 5.1: Two dimensional half-space representation.

In the following, a survey is conducted to review different approaches combined with the TLM

to represent half-space media. Kausel and Roësset [107] used the stiffness matrix approach,

by employing the Haskell-Thompson transfer matrix technique, to derive the dynamic stiffness

matrix for layered media. This approach is based on isolating a specific layer and maintain-

ing equilibrium by applying external loads at the upper and lower interface of the layer with

different signs. As it was shown in Chapter3, an algebraic eigenvalue problem was derived

by applying the principle of virtual work on the wave equations to first compute the horizontal

layers’ matrices. Therefore, if one is seeking to model the unbounded domain by means of the

TLM with another approach, the computed global stiffness matrix should also be of a polyno-

mial form in the wavenumber. This could be achieved by using some polynomial approximation

of the impedance matrix.

An explicit closed-form of the Green’s function for a dynamic load acting on, or within, a

layered soil system is derived by Kausel and Peek [108]. It is achieved by first inverting the

stiffness matrix in the wavenumber domain, which is carriedout by performing a spectral de-

composition, and applying an integral transform to obtain the displacement vector. This has led

to obtain algebraic expressions for the dynamic stiffness matrix for layered media over rigid

base. A paraxial approximation for rigid base was derived byemploying the Green’s function

which relate stresses and displacements at any location in an elastic medium caused by a dy-

namic source at any other location. Hull and Kausel [109] extended this procedure to obtain

the Green’s function of layered media over half-space and thereafter derived paraxial approxi-

mations for the impedance of the half-space by using Taylor series to approximate its stiffness

matrix in a polynomial form. The impedance matrix of the half-space is then added to the stiff-

ness matrix of the irregular region to obtain a model for the soil layer over half-space. In fact,

83



PBC was first derived by Engquist and Majda [53].

Special formulations of the PBC for the half-space impedance matrix, derived by Kausel and

Roësset [107], were further developed in reference [106] as follows. A layered half-space is

truncated at the interface between the last layer and the underlain half-space. The tractions at

the interface contribute to the external virtual work part of the principle of virtual work ex-

pression. Considering that the bottom layer is divided intoelements and applying the virtual

work equation on the tractions at the bottom of the last layer, the dynamic stiffness matrices

of those elements, half-space elements, are deduced and hence are assembled with the stiffness

of the finite elements of the irregular domain. The edge nodesof the last layer have also some

contribution. For the lateral boundaries, the contribution of the half-space is accounted for and

implemented in the algebraic eigenvalue problem. Nodal forces and the dynamic stiffness ma-

trices of the regular regions are then computed and substituted back into the global dynamic

equation.

The half-space impedance matrix of Kausel and Roësset [107] was also used by Kayniaet

al. [110] to represent the soil media under the soil embankment. The authors used the disk

loads Green’s function to obtain the soil stiffness at the embankment-half-space interface which

was assembled with the dynamic stiffness matrix of the embankment. This was implemented

in a finite element code in the frequency domain to predict ground vibration induced by high

speed trains in a layered viscoelastic half-space.

The stability and the accuracy of the PBC and the doubly asymptotic approximation are dis-

cussed by Maeda and Kausel [111] for the anti-plane shear case. Improvement of the paraxial

boundary approximations is achieved by incorporating abuffer layerwith the same material

properties of the half-space at the interface between the soil medium of interest and the remain-

ing of the half-space. It is reported that it is not accurate to use only the paraxial approximation

for modelling half-space, adding a buffer layer is then necessary to improve its performance.

Further details are supplied next, in section6.5. Moreover, Kausel [112] investigated the physi-

cal interpretation of the PBC and its stability considerations which should be taken into account.

For example, setting the determinant of the exact stiffnessmatrix to zero leads to finding pairs

of wavenumbers which are all real. While, two pairs of roots,real or complex depending on the

value of the Poisson’s ratio, are obtained from the approximated matrix. Park [66] employed the

same technique for anti-plane shear case and in-plane wavesand proposed some improvements

to the approximated stiffness matrix, depending on the value of the Poisson’s ratio. An exten-

sive study was performed and a comparison between the exact and the approximated matrix was

carried out.
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The concept of the second-order paraxial boundary conditions is extended by Leeet al. [113]

to deal with water-saturated layered soil media over half-space. They first obtained the exact

dynamic stiffness matrix of the water-saturated half-space and then a second-order approxima-

tion of the exact stiffness matrix is computed. Both anti-plane shear problems and plane strain

problems are considered. The remaining steps of the procedure are identical to those presented

by Andrade [106]. As an application, the dynamic stiffness of rigid impermeable or permeable

strip foundations resting on water-saturated half-space is determined. This procedure is also

adopted in reference [114] where a second-order paraxial approximation for three-dimensional

wave motion in the Cartesian coordinates is determined by employing their previous derivations

presented in reference [113] for plane and anti-plane cases. It is transferred then intocylindri-

cal coordinates. The same steps in solving the problem are maintained leading to an eigenvalue

problem of dimension(6n+6) wheren is the number of layers in the model.

Another technique for modelling wave propagation in arbitrary unbounded domains is to com-

bine the TLM with high-order local absorbing boundary conditions which are expressed as

polynomial functions of the horizontal wavenumber to be implemented within the framework

of the TLM. The Continued Fraction Absorbing Boundary Conditions (CFABC), a high-order

local absorbing boundary condition developed by Zahid [115], Savadatti and Gudatti [116],

Savadatti and Gudatti [117] and other researchers, satisfies the latter condition as a quadratic

function of the horizontal wavenumber. Lee and Tassoulas [118] combined the CFABC with

the consistent transmitting boundary conditions where thestiffness of CFABC is determined by

the mid-point rule. For layered half-space media, the half-space may be represented by a suc-

cessive number of single layers of the CFABC where the accuracy is improved by increasing

the number of layers. Lee and Tassoulas [118] stated that in order to obtain perfect absorbers

for in-plane waves with a horizontal wavenumber, the CFABC layers could be used in pairs

where one layer is used to absorb compression waves and the other for absorbing shear waves.

Recently, Barbosaet al. [119] constructed an efficient model by combining the PML with TLM

to simulate wave propagation in layered half-space.

5.3 Treatment of the half-space

In this work, the treatment of the irregular and regular regions are presented in sections5.3.1

and5.3.2, respectively. First, elements of the half-space interface within the irregular region are

dealt with to form the elementary stiffness matrices. Then,the corner elements of the half-space

are considered in the eigenvalue problem of the TLM. Figure5.2 shows the representation of

the mentioned regions.
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Figure 5.2: Treatment of the half-space model.

5.3.1 Treatment of the irregular region

The FEM is adopted in the irregular region, which is assumed to be resting over rigid bedrock.

Now, half-space elements will replace the bedrock. Therefore it is needed to formulate these

elements in order to account for their contribution.

The impedance stiffness matrix for SV-P waves in a half-space opens downward (one may

reverse off-diagonal terms in the impedance matrix to represent half-space opens upward) is

developed in reference [107] and expressed as

K = 2kµ

[

1−s2

2(1− rs)

[

r −1

−1 s

]

−
[

0 −1

−1 0

]]

, (5.1)

where parametersr ands are given by

r =

√

1−
(

ω
kcp

)2

and s=

√

1−
(

ω
kcs

)2

, (5.2)

ω is the circular frequency of the dynamic load,µ is the shear modulus of the half-space,cp

andcs are respectively the compression and shear wave velocitiesin the half-space, andk is

the horizontal wavenumber. The impedance stiffness, an exact stiffness, is not a polynomial

function of the wavenumber. Hence, expanding it and retaining the first three terms of the

Taylor series aboutk = 0 yields a second order approximation with respect to the horizontal
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wavenumber of the form

K (k)≈ K (0)+kK
′
(0)+

1
2

k2K
′′
(0) , (5.3)

and subsequently

K = iωρcs

[

1 0

0 1/α

]

+µ
1−2α

α
k

[

0 1

1 0

]

+ iµ
cs

2ω
k2

[

−(2−α)/α 0

0 (1−2α)/α3

]

,

(5.4)

whereρ is the density of the half-space soil andα represents the ratio of the shear wave to

dilational wave velocities. Expression (5.4) is an algebraic expression ink and a second order

paraxial approximation of the half-space stiffness. It should be noted that reference [105] pro-

vides what appears to be an erroneous version of expression (5.4) inasmuch as the two diagonal

terms in the matrix that multipliesk2 are at variance of expression (5.4). However the correct

terms might have been implemented in the authors numerical work leading to the same results

obtained in this dissertation.

By expanding the impedance matrix aboutk= 0, the wavefronts of the incoming waves towards

the half-space are assumed to be parallel to the horizontal surface of the half-space. Thus, a suf-

ficient depth should be provided in order to allow the wavefronts to become horizontal when

hitting the surface of the half-space. This has been investigated in section6.2.2. Tractions and

displacements at the surface of the half-space are related in the following form

[

F̂x

iF̂y

]

= K

[

û

iv̂

]

, (5.5)

where the vertical traction and displacement are scaled by the imaginary number i to work with

a symmetrical matrix. Combining the previous equation and the second order formulation of

the impedance matrix of expression (5.4) and thereafter applying the Inverse Fourier Transfor-

mation (IFT) with respect tok yields

1
2π

∫ ∞

−∞
F̂xe

−ikxdk = iωρcs

[

∫ ∞

−∞
ûe−ikxdk

]

+
iµcs(α −2)

2ωα

[

1
2π

∫ ∞

−∞
k2ûe−ikxdk

]

(5.6)

− µ (1−2α)

α

[

1
2π

∫ ∞

−∞
ikv̂e−ikxdk

]

,
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and

1
2π

∫ ∞

−∞
F̂ye

−ikxdk = iωρcp

[

∫ ∞

−∞
v̂e−ikxdk

]

+
iµcs(1−2α)

2ωα3

[

1
2π

∫ ∞

−∞
k2v̂e−ikxdk

]

(5.7)

+
µ (1−2α)

α

[

1
2π

∫ ∞

−∞
ikûe−ikxdk

]

.

Taking into account Fourier transform properties on the previous two equations we obtain the

following relationships between tractions and displacements at the surface of the half-space

Fx = iωρcsu−
iµcs(α −2)

2ωα
u,xx+

µ (1−2α)

α
v,x , (5.8)

Fy = iωρcpv− iµcs(1−2α)

2ωα3 v,xx−
µ (1−2α)

α
u,x , (5.9)

whereu, u,x andu,xx represent the horizontal displacement and their first and second derivatives

with respect tox. The same applies to the vertical displacementv and its derivatives with respect

to x. Expressions (5.8) and (5.9) show the relationship between displacements, displacements

derivatives and the tractions at the surface of the half-space. In order to apply these tractions

at the interface boundary between the half-space and the irregular region, their signs must be

reversed. Thereafter, the principle of virtual work is applied by considering the external virtual

work by these traction forces

W =
∫ l

0
δuFn f

x dx+
∫ l

0
δvFn f

y dx, (5.10)

wheren f refers to the interface between the irregular region and half-space. Substituting the

tractions from equations (5.8) and (5.9), after reversing the signs of all terms, into the previous

equation and integrating by parts leads to
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W = −iωρcsu
∫ l

0
δuudx− µ (1−2α)

2α

∫ l

0
δuv,xdx

+
µ (1−2α)

2α

∫ l

0
δu,xvdx− iµcs(α −2)

2ωα

∫ l

0
δu,xu,xdx

− iωρcpv
∫ l

0
δvvdx+

µ (1−2α)

2α

∫ l

0
δvu,xdx (5.11)

− µ (1−2α)

2α

∫ l

0
δv,xudx− iµcs(α −2)

2ωα3

∫ l

0
δv,xv,xdx

− µ (1−2α)

2α
δuv|l0+

µ (1−2α)

2α
δvu|l0

+
iµcs(α −2)

2ωα
δuu,x|l0+

iµcs(α −2)
2ωα3 δvv,x|l0.

The integration boundaries 0 andl represent the surface of the half-space over the entire domain,

which could be subdivided into half-space elements and the integration will be performed on

these 2-node elements (see Figure5.3). If we introduce a linear interpolation functionN for the

displacement field in thex-direction, the displacements at any pointp, located between nodes

A and B (Figure5.3), will be written as

Up =

[

N (x) 0

0 N (x)

]























u j

u j+1

v j

v j+1























where N(x) =
[

1− x
∆x

x
∆x

]

, (5.12)

where∆x = x j+1− x j represents the length of an individual half-space element and Up is the

displacement vector for the half-space element. It is givenby its components

U =

{

u j

u j+1

}

and V =

{

v j

v j+1

}

, (5.13)

with

u= NU and v= NV. (5.14)

Variations of the nodal displacements within each element are given by

δu= NδU and δv= NδV. (5.15)

The first derivative of the nodal displacements with respectto x are given by

u,x = N,xU and v,x = N,xV. (5.16)
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The domain from 0 tol includes many elements as shown in Figure5.3

A Bu

v

u

v

j

j

j+1

j+1

Half-space

x

y

Figure 5.3: Half-space element.

Considering the relationship between the displacements and the shape functions, and then sum-

ming for all half-space elements will lead to

W =
n

∑
j=1

(−iωρcsδUT
[

∫ x2

x1

NTN dx

]

U

− iωρcpδVT
[

∫ x2

x1

NTN dx

]

V

− iµcs(1−2α)

2ωα3 δVT
[

∫ x2

x1

NT
,xN,xdx

]

V

− µ (1−2α)

2α
δUT

[

∫ x2

x1

NTN,xdx

]

V

− µ (1−2α)

2α
δVT

[

∫ x2

x1

NT
,xN dx

]

U

+
µ (1−2α)

2α
δVT

[

∫ x2

x1

NT
x N,xdx

]

V (5.17)

+
µ (1−2α)

2α
δVT

[

∫ x2

x1

NTN,xdx

]

U

− iµcs(α −2)
2ωα

δUT
(

∫ x2

x1

NT
,xN,xdx

)

U)

− µ (1−2α)

2α
δU V|x2

x1
+

µ (1−2α)

2α
δV U|x2

x1

+
iµcs(α −2)

2ωα
δU U,x|x2

x1
+

iµcs(1−2α)

2ωα3 δVV,x|x2
x1
,

wheren is the number of the half-space elements. Integral terms in the virtual work equation are

understood to define finite elements and their stiffness matrix can be calculated and assembled
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into the global dynamic stiffness matrix of the irregular region by means of standard direct

stiffness techniques. The stiffness matrix of a 2-node half-space element has the form

K =

[

K11 K12

KT
12 K22

]

, (5.18)

with

K11 = iωρcs

∫ x2

x1

NTNdx+
iµcs(α −2)

2ωα

∫ x2

x1

NT
,xN,xdx, (5.19a)

K12 =
µ (1−2α)

2α

∫ x2

x1

NTN,xdx− µ (1−2α)

2α

∫ x2

x1

NT
,xN dx, (5.19b)

K22= iωρcp

∫ x2

x1

NTNdx+
iµcs(α −2)

2ωα3

∫ x2

x1

NT
,xN,xdx. (5.19c)

The entries of equation (5.18) are determined by integrating the terms over the length of the

half-space element in equations (5.19). The first entry in the stiffness matrix for a half-space

element is computed and given by

K11 =
iωρcs∆x

6

[

2 1

1 2

]

+
iµcs(α −2)

2ωα∆x

[

1 −1

−1 1

]

. (5.20)

Other terms have been obtained in the same way and are assigned additional notations to sub-

stitute back into the impedance matrix.

C1 =
iωρcs∆x

6
,C2 =

iωρcp∆x

6
,C3 =

iµcs(α −2)
2ωα∆x

,

C4 =
µ (1−2α)

2α
,C5 =

iµcs(1−2α)

2ωα3∆x
. (5.21)

Substituting back into the stiffness matrix leads to

Khs=













2C1+C3 0 C1−C3 C4

0 2C2+C5 −C4 C2−C5

C1−C3 −C4 2C1+C3 0

C4 C2−C5 0 2C2+C5













. (5.22)

The half-space 2-node element matrixKhs, of dimension 4×4, represents a typical half-space

element stiffness matrix. It is a function of the propertiesof the half-space material, the length

of the element and the frequency of the applied load. So far, the semi-infinite extent, far field,
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of the domain with respect to depth is represented by the impedance matrix of the half-space.

Hence, in order to model the unbounded domain, the stiffnessmatrix of the half-space should be

assembled with the irregular region global matrix as they share nodes at the interface between

the half-space and the bottom boundary of the irregular region.

5.3.2 Treatment of the regular region

Half-space elements, located beneath the irregular region, are dealt with in section5.3.1. The

bottom node at each lateral boundary has also contribution into both the irregular and the regu-

lar regions. Figure5.4illustrates the treatment of the regular region over half-space.

If we derive the displacements in equation (5.14) and back substitute them in expressions (5.8)

and (5.9) the horizontal and vertical tractions at the half-space and regular region interface are

obtained

Fx = iωρcsU(y)e−ikx− ik
µ (1−2α)

α
V(y)e−ikx+k2 iµcs(α −2)

2ωα
U(y)e−ikx, (5.23)

Fy = iωρcpV(y)e−ikx+ ik
µ (1−2α)

α
U(y)e−ikx+k2 iµcs(1−2α)

2ωα3 V(y)e−ikx, (5.24)

whereU(y) andV(y) are the mode shapes assuming that the horizontal and vertical displace-

ment fields are described by;

u(x,y) =U(y)e−ikx and v(x,y) =V(y)e−ikx. (5.25)

Let us consider the regular region on the right, at the half-space-last layer interface; (x = 0,

y= H). Expressions (5.23) and (5.24) could be re-arranged in the following form

[

Fx

Fy

]

= {k2 iµcs

2ωα3

[

(α −2)α2 0

0 (1−2α)

]

+ ik
µ (1−2α)

α

[

0 −1

1 0

]

+

[

iωρcs 0

0 iωρcp

]

}
[

U(H)

V(H)

]

. (5.26)

Expression (5.26) is an algebraic equation ink and it is used to solve the modes of wave prop-

agation of the regular region over half-space to express thecontribution of the half-space into

the regular region. It is similar to the algebraic equation of the regular region over rigid base

derived in section3.3.3in Chapter3.
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Figure 5.4: Layered region over half-space.

The matrix factors in equation (3.30), which are 4×4, are similar to 2×2 matrices of expression

(5.26). A relationship between the tractions and the displacements at the top of the half-space

is extracted in equation (5.26). Comparing this equation with an equivalent equation fromthe

regular region over rigid bedrock leads us to deduce the following half-space matrices

Ahs
2 =

iµcs

2ωα3

[

(α −2)α2 0

0 (1−2α)

]

, (5.27a)

Ahs
1 =

µ (1−2α)

α

[

0 −1

1 0

]

, (5.27b)

Chs=

[

iωρcs 0

0 iωρcp

]

. (5.27c)

These 2×2 matrices reflect the contribution of the corner nodes at theinterface of the half-space

and the overlain regular regions, into the regular region. Basically, they are associated with the

last two degrees of freedom of that node. Assembling previous matrices with the matrices

derived in Chapter3, section3.3.3and which represent the contribution of the horizontal layers

over rigid bedrock, we obtain the regular region system matrices over half-space. Here, the

dimension of the global matrices is 2(n+1)×2(n+1). In the case of rigid bedrock, the last

two rows and columns of the global matrices are omitted due tothe base fixity. In the half-space

case, we must consider the whole matrix and add the contribution of the half-space into the last

two rows and columns. The eigenvalue problem of equation (3.30) is replaced by the following

93



eigenvalue problem
[

k2A2+ ikA1+C
]

u0 = 0, (5.28)

where

A2 = A∗
2+Ahs

2 , A1 = A∗
1+Ahs

1 and C = A∗
0−ω2M∗

0+Chs. (5.29)

Global matricesA2, A1 andC are 2(n+1)×2(n+1) matrices. The matrices with the super-

script ∗ symbol represent the contribution of the regular region without the contribution of the

half-space. The eigenvalue problem of expression (5.28) is of second order. It is reduced to a

first order problem with the dimension being doubled to 4(n+1)×4(n+1). The eigenvalues

of interestks, s= 1, ..,2n+2, are stored in the diagonal matrixH as

H =









k1
. . .

k2n+2









. (5.30)

The corresponding eigenmodesu0
s are stored in the modal matrixV columnwise. The displace-

ment vector at the lateral vertical boundary is a linear combination of the 2(n+1) eigenvectors

corresponding to the 2(n+1) eigenvalues

{

uG
}

=
2n+2

∑
s=1

as
{

u0
s

}

e(iωt−ksx), (5.31)

where
{

u0
s

}

is the eigenvectors andas is a vector of dimension 2(n+1) which represents the

mode shape participation factors. Thus, the displacement field at the right side lateral boundary

is expressed as

UR =
2n+2

∑
s=1

as
{

u0
s

}

= aU. (5.32)

Next, the consistent nodal forces of the transmitting boundary conditions of the half-space

model are derived as follows. If we consider the last four terms in equation (5.17)

− µ (1−2α)

2α
δU V +

µ (1−2α)

2α
δV U

+
iµcs(α −2)

2ωα
δU U,x+

iµcs(1−2α)

2ωα3 δV V,x , (5.33)

the displacements corresponding to the last node are

Un+1 = u(0,H) =
2n+2

∑
s=1

us
2n+1as and Vn+1 = v(0,H) =

2n+2

∑
s=1

vs
2n+2 as, (5.34)
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and hence

U,x(0,H) =−ika2n+1ei(ωt−k2n+1x) and V,x (0,H) =−ika2n+2ei(ωt−k2n+2x). (5.35)

Substituting back into the equations (5.33) yields into

W = −δUn+1
µ (1−2α)

2α
Vn+1+δVn+1

µ (1−2α)

2α
Un+1

− δUn+1

(

ik
iµcs(α −2)

2ωα

)

Un+1−δVn+1

(

ik
iµcs(1−2α)

2ωα3

)

Vn+1. (5.36)

The nodal forces acting at the lateral vertical boundary of the right side of the domain are

expressed as

Fhs
R =

[

ikAhs
2 +Ahs

3

]

{u}y=H
x=0 , (5.37)

whereAhs
2 being the matrix which was given in expression (5.27a) andAhs

3 is a 2×2 matrix

given by

Ahs
3 =

µ (1−2α)

2α

[

0 1

−1 0

]

. (5.38)

Matrix Ahs
1 ia a skew symmetric matrix and obeys the relationshipAhs

1 =
[

Ahs
3

]T
-
[

Ahs
3

]

. The

forces and displacements associated with the regular region-half-space interface are therefore

expressed as

Fhs
R =

{

Fx(n+1)

Fy(n+1)

}

and uhs
R =

{

Un+1

Vn+1

}

. (5.39)

Half-space matricesAhs
1 , Ahs

2 , Ahs
3 andChs should be assembled into the matrices of the regular

regionA∗
1, A∗

2, A∗
3 andC∗ to form the global matrices. The assembling of these matrices is

depicted in Figure5.5. Equation (5.37) has the same form of equation (3.37) for the regular

region over rigid bedrock. Assembling the matrices of thesetwo equations produces the nodal

forces vector at the right lateral boundary of the form

FR =
[

ikA2VHV −1+A3
]

{u}y=H
x=0 , (5.40)

whereFR represents the global forces at the right lateral boundary,A2 andA3 represent the

global matrices of the regular region over half-space. The dimensions of these matrices are also

2(n+1)×2(n+1).

The modal matrix, columnwise matrix of dimension of 2(n+1)×2(n+1), is given by

V =
[

U1 . . . U2n+2

]

. (5.41)
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Figure 5.5: Global matrices structure for half-space model.

The dynamic stiffness matrixR, which is obtained from expression (5.40), relates the nodal

forces to the nodal displacements at the specified boundary.Hence, the nodal forces applied at

the right side regular region has the following form

FR =−RUR where R = iA2VHV −1+A3, (5.42)

whereUR is the nodal displacement vector of the regular region on theright side boundary. The

left side boundary is treated in the same manner as for the right side lateral boundary. The nodal

forces of the left lateral boundary is expressed as

FL =−LUL where L =−iA2V
′
H

′
V

′−1
−A3, (5.43)

whereL is the dynamic stiffness matrix of the left regular region and it relates the nodal forces

to the nodal displacements. In such a way, the dynamic stiffness matrices of the regular regions

are obtained and the unboundedness of the domain is modelled.

5.3.3 The half-space finite-element model

Figure5.6shows a schematic diagram of a soil medium overlaying half-space. For this model,

the impedance matrix of the half space elements, expressed in equation (5.22), is assembled

to the global dynamic stiffness matrix of the irregular region. The effect of the two regular

regions is modelled by the consistent transmitting boundaries, obtained from expressions (5.42)

and (5.43), in terms of nodal forces applied on the lateral boundariesof the irregular region.

As these forces are functions of the nodal displacements of the lateral boundaries, which are

unknown, the matricesR andL are also assembled to the global dynamic stiffness matrix ofthe
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irregular region. The finite element final system to solve is the expressed by

[

K −ω2M +R+L
]

u0 = F0. (5.44)

ei ω t

∞ ∞

half-space

{F }R{F }L

Fo

∞
{F }HS

Figure 5.6: The finite element half-space model.

This system is linear and a direct solver is used to compute the nodal displacements, in the same

way followed for the system (3.42) corresponding to a soil medium overlaying bedrock. The

same methodology is also followed for the post-processing of the results.

5.4 Concluding remarks

In this chapter, the PBC is presented for modelling the semi-infinite extent of a soil domain with

respect to depth. This is based on the expansion of the half-space stiffness matrix into Taylor’s

series, for which only three terms are retained. As a result,a second order matrix with respect to

the wavenumber is obtained leading to the stiffness matrices of the half space elements, which

are assembled into the global matrix of the irregular region, while the contribution of the corner

elements of the half-space are involved in the eigenvalue problem for the consistent transmitting

boundaries.

The ability of this TLM-PBC coupled model to simulate wave propagation in half-space soil

media is investigated in the next chapter, where the use of a buffer layer in introduced and its

effect on the performance of the model also analysed.
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Chapter 6

Wave propagation in half-space soil

media: validation & applications

6.1 Introduction

This chapter is dedicated to the validation of the numericalmodel developed in Chapter5,

for simulating wave propagation in half-space soil media. In this model, the TLM is coupled

with the PBC to allow the waves to propagate away to infinity laterally and with respect to

depth. The concept of the buffer layer is introduced in the model and its performance is investi-

gated through numerical analysis. Applications dealt withincluding harmonic vibration of rigid

surface foundation overlaying homogenous or layered half-space media and ground vibration

reduction using wave barriers.

6.2 Wave propagation in homogenous half-space

Simulation of wave propagation in a homogenous half-space is performed in the following

sections where the coupled model is first validated. The samerational approach, adopted in

Chapter4 by extending the length of the domain, is used here for extending the depth and the

length of the domain, for which the relative error is computed.

6.2.1 Validation test example

The combined TLM-PBC half-space model is validated againstthe analytical solution, through

a specific test example obtained by personal communication with Jones [104]. The analytical

solution is based on coupling the Green’s function of a homogenous layer and a homogenous

half-space. The author has investigated in his PhD thesis the effect of an inclined soil layer over

half-space from interior loads after validation of the method against surface loading. Hyperele-

ments were used in his analysis.
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In this numerical test, a homogenous half-space domain has the following properties; density of

1700kg/m3, elasticity modulus of 100MPa, Poisson’s ratio of 0.3 and a damping coefficient of

5% is used. A harmonic load of 1N is applied at the soil surfacewith a frequency of 25Hz. The

soil domain is truncated at 3λR in depth and 10λR in length with the assumption that the soil

domain extends to infinity in both depth and lateral directions with the same properties. The

horizontal and vertical displacements at the surface of thedomain are computed and plotted

in Figure6.1. The results obtained from the presented TLM-PBC are in verygood agreement

with the analytical and numerical results provided by reference [104]. Minor differences appear

between the curves but overall the results are very similar.
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Figure 6.1: Validation of wave propagation in homogenous half-space.

Next, the effect of the depth of the soil model is studied and the efficiency of the coupled TLM-

PBC is investigated. A minimum practical depth of the half-space model will be proposed based

on the numerical results.

6.2.2 Effect of the half-space model depth

Jones [104] indicated that the minimum depth of the soil layer over the half-space should be

5λS in order to get convergent results towards the analytical solution. As the analytical solution

is not available to us, the depth of the soil layer is increased from 1λR to 5λR and the relative er-

ror of the surface displacements related to two successive depths is estimated. A homogeneous

half-space is taken in this case by considering the same material properties used in section6.2.1.

A harmonic load of 1kN in magnitude is applied at the surface of the domain with a frequency

of 20Hz. Figures6.2 and6.3 show, respectively, the surface vertical and horizontal displace-

ments with their corresponding errors for the homogeneous soil domain when varying its depth.

The results show that the error percentage is around 3−3.5% in the case of 1λR and 2λR depths.

Increasing the depth to 3λR reduces the error with the maximum difference, when compared to
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2λR, is about 0.5% for the horizontal displacement. However, the relative error percentage is

decreased dramatically to less than 0.15% and 0.1% for 4λR and 5λR depths. It is obvious that

a depth of 2λR for the soil domain to represent a half-space is already satisfactory. If one seeks

very accurate results for simulating wave propagation in homogenous half-space, the soil layer

depth may be taken higher, > 4λR. However, as the depth of 2λR produced acceptable differ-

ences, from an engineering point of view, it is retained hereto represent the half-space model. It

is worth indicating that the depth of 2λR of the half-space is around 1λP for the assumed mate-

rial properties but this may not be always the case when changing the material properties. This

is due to the dependance of wavelengths on Poisson’s ratio. In the following,λP will be used as

a measure of the depth as it was used in other references such as [66], for the sake of comparison.

The justification of high error percentage associated with shallow depths, 1λR, of the homoge-

nous half-space is as follows. It is known that the Rayleigh wave carries out most of the energy

compared to shear and pressure waves. Therefore, if the half-space is not deep enough in such

a way that Rayleigh waves hit the paraxial boundaries, spurious waves will reflect back. Now,

if the depth of the domain is large enough to prevent Rayleighwaves from approaching the PB,

body waves will travel deeper and might hit the boundary. Again, reflections of body waves may

lead to spurious reflections in the domain. Therefore, the location of the paraxial boundaries

should be deep enough to prevent body waves from reflecting. As the pressure wave has the

longest wavelength, the depth of the homogenous half-spacewill be expressed in terms of its

wavelength rather than Rayleigh wavelength. These two wavelengths and their ratio are largely

affected by Poisson’s ratio. For example, if we consider thetwo extreme values of Poisson’s

ratio; 0.01 and 0.49, for any material properties the ratio of the pressure and the Rayleigh wave-

lengths varies from 1.6 to 7.9, respectively, while this ratio is around 2 for the case of Poisson’s

ratio of 0.3. This indicates that expressing the depth in terms of the Rayleigh wavelength might

not be appropriate as it will underestimate the depth associated with values of Poisson’s ratio

more than 0.35. In other words, if the depth is expressed in terms of the Rayleigh wavelength,

2λR is sufficient for Poisson’s ratios less than 0.3. For Poisson’s ratios greater than 0.3, the ratio
λP
2λR

> 1 and therefore 2λR will not be enough. A thickness of 5λS is recommended in reference

[104] to be considered beneath the load, which was applied withinthe half-space and not at the

surface. If we consider the depth to be around 5λS, as proposed in reference [104], the ratio

of λP
5λS

> 1 for Poisson’s ratios greater than 0.48 and again it is not deep enough to absorb the

propagating waves towards the paraxial boundaries. It is worth noting that the thickness of 5λS

provided in the previous reference is equivalent to 5λS for the used Poisson’s ratio of 0.44. In

summary, the depth is next expressed in terms of the pressurewavelength to avoid the likely

effect associated with Poisson’s ratio.
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Figure 6.2: Effect of half-space depth: vertical surface displacements and associated relative
errors.
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Figure 6.3: Effect of half-space depth: horizontal surfacedisplacements and associated relative
errors.
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6.2.3 Effect of the model lateral extent

The performance of the half-space finite element model is examined when extending the lateral

boundaries of the computational domain, in the same way followed for the soil layer over rigid

bedrock in section4.2. The half-space material properties are the same used in theprevious sec-

tion. The depth of the domain is maintained at 2λR, which is equivalent to 1λP for this specific

example, and the length is extended from 2λR to 10λR. A 1kN harmonic load with 20Hz fre-

quency is applied at the surface of the domain. Surface displacements are plotted and compared

for each two successive domain lengths. Figures6.4 and6.5 show the vertical and horizontal

displacements at the surface with their relative errors when increasing the domain length. The

relative error does not exceed 0.5% and 1% for the vertical and horizontal displacements, re-

spectively. This confirms again the good performance of the combined TLM-PBC model to

simulate wave propagation in half-space soil media.
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Figure 6.4: Vertical surface displacements and associatedrelative errors.
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Figure 6.5: Horizontal surface displacements and associated relative errors.
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6.3 Wave propagation in layered half-space

The homogenous half-space model, considered in section6.2, could be of engineering inter-

est. But, in general, layered half-space media are even moreinteresting. Next, the coupled

TLM-PBC finite element model is numerically assessed to check its validity in simulating wave

propagation in half-space layered media. Moreover, the concept of “buffer layer” will be intro-

duced and used to improve the performance of the coupled model.

For wave propagation modelling in layered half-space media, Cohen [64] proposed introduc-

ing an interface element between the interior region and theparaxial boundary, within a FDM

approach. Maeda and Kausel [111] investigated the accuracy of the paraxial boundaries in the

case of anti-plane shear. They recommended the introduction of a buffer layer between the ir-

regular region and the half-space with a minimum thickness of 0.5λS to obtain accurate results.

The concept of adding a buffer layer was first introduced by Seale [65]. Its influence on the ap-

proximated impedance matrix was investigated by Park [66], where the thickness of the buffer

layer was considered as a function of the pressure wavelength. A comparison between the ap-

proximated and the exact impedance matrix was also carried out. Next the dynamic behaviour

of a soil layer overlaying half-space will be investigated by looking at the displacements at the

surface as well as the soil-half-space interface, when a buffer layer is introduced.

The previously mentioned authors of references [65, 66] used the exact stiffness matrix to model

the buffer layer, while in this work it is modelled by the FEM in which it is treated as part of the

irregular region. For the sake of this study, a parameterγ is introduced. It represents the buffer

layer thickness with respect to the pressure wavelengthλP in the half-space.

6.3.1 Soil layer over half-space:Hlay = 0.5λR

A soil layer with a unit shear modulus and Poisson’s ratio of 0.25 is considered to overlay a

half-space with Poisson’s ratio of 0.3 such thatcshs =
√

3cs. Both the soil layer and half-space

have 5% damping ratio. Let us consider an external excitation of 1Hz is applied at the surface.

The length of the domain is taken to be 10λR and the depth of the soil layer is 0.5λR. For gener-

alisation, the depth of the model is increased also to 1λR in section6.3.2. It is worth mentioning

here that, in the first case, the depth of the model is very close to the first critical depth, if the

soil layer was over rigid bedrock, but it is higher in the second model. In the following analysis,

the PBC are implemented at the base of the model and the consistent transmitting boundaries

are used on the lateral boundaries of the model.

To achieve a good discretisation level, each Rayleigh wavelength is meshed into 10 elements.

Figures6.6 to 6.9 show the displacements, with their relative errors, at the surface and at the
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soil-half-space interface, respectively, withγ = 0 andγ 6= 0. It is obvious from the results that

the presence of the buffer layer affects the displacements even at low values ofγ. Indeed asγ
increases, the displacements converge towards those of what is believed corresponding to the

half-space model. Introducing a buffer layer, even if it is of low thickness such as 0.11λP,

makes the solution follow those of greater thicknesses. High discrepancy is found between the

displacements when comparing the case ofγ = 0 andγ = 0.11, this case is not included in the

following figures. However, the difference is reduced dramatically when comparing the dis-

placements in the case ofγ = 0.11 andγ = 0.25. Very similar results results are obtained when

increasing the thickness of the buffer layer and the error issignificantly reduced. All discussions

are made for both surface and soil-half-space interface displacements. Good results are found

for buffer layer thickness of 0.5λP where the error percentage is less than 5%. More precise

results could be obtained if we increase the thickness, for example the error percentage is less

than 0.5% for the case of thickness 1λP. It is also noticed that the error percentage is slightly

higher near the lateral boundaries of the model.

As it is clearly shown, the use of PBC does not allow to model layered half-space media and that

a buffer layer must be used between the soil layer and the half-space. To conclude, a buffer layer

of 0.5λP thickness leads to good results and if better accuracy is sought it could be increased to

1λP.
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Figure 6.6: Effect of buffer layer thickness on vertical surface displacements:Hlay = 0.5λR.
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Figure 6.7: Effect of buffer layer thickness on horizontal surface displacements:Hlay = 0.5λR.
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Figure 6.8: Effect of buffer layer thickness on vertical displacements at the soil-half-space
interface:Hlay = 0.5λR.
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Figure 6.9: Effect of buffer layer thickness on horizontal displacements at the soil-half-space
interface:Hlay = 0.5λR.

6.3.2 Soil layer over half-space:Hlay = λR

In this case, the soil layer depth is increased to 1λR with same material properties as in the

previous analysis. This depth exceeds the critical depth, when comparing with soil layer over

rigid bedrock.

Figures6.10to 6.13summarise the numerical results for the current analysis, as was previously

done. They show very similar trend to the case ofHlay = 0.5λR. The vertical and horizontal

displacements at the surface and at the soil-half-space interface are in good agreement in the
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case of truncating the half-space at 0.5λP with the maximum relative error being around 5%.

Again, more accurate results are obtained when increasing the buffer layer thickness to 1λP.

These two cases show that no matter what is the depth of the soil layer, a buffer layer is required

to reduce the reflections associated to the paraxial boundaries. The results confirm that a mini-

mum thickness of the buffer layer of 0.5λP is sufficient to obtain good results. The performance

of the coupled model significantly improved by adding a buffer layer. In fact, this comes to an

additional computational cost of the analysis due to the increase in the number of elements, in

the irregular region, and the number of sub-layers, in the regular lateral regions, in the model.

The effectiveness of the buffer layer will be further examined in the next section by considering

applications related to rigid surface foundations subjected to harmonic vibration and surface

vibration reduction by wave barriers.
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Figure 6.10: Effect of buffer layer thickness on vertical surface displacements:Hlay = λR.
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Figure 6.11: Effect of buffer layer thickness on horizontalsurface displacements:Hlay = λR.
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Figure 6.12: Effect of buffer layer thickness on vertical displacements at the soil-half-space
interface:Hlay = λR.
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Figure 6.13: Effect of buffer layer thickness on horizontaldisplacements at the soil-half-space
interface:Hlay = λR.

6.4 Applications

An interesting application when studying soil-structure interaction is the harmonic vibration of

surface or embedded foundations. Next, the dynamic behaviour of surface rigid foundations

overlaying either homogenous or layered half-space is investigated by using the coupled TLM-

PBC model. It is worth mentioning that Andrade [106] investigated the dynamic behaviour of

surface and embedded foundations resting only on homogenous half-space media. Here both

homogenous and layered half-space media are considered.
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6.4.1 Rigid surface foundation over homogenous half-space

It is shown in section6.2.2that the soil domain should be taken deep enough in the case of

homogenous half-space to obtain good quality results. A more practical case is considered here

and compared to published results in terms of dynamic compliances of rigid foundations when

the forcing frequencies are very low. This is given special importance as the poor behaviour of

PBC is associated with this range of frequencies.

Luco and Westmann [120] dealt with the foundation dynamics by the theory of singular in-

tegral equations where they reduced the problem into dealing with the numerical solution of

two Fredholm integral equations. More recently, Lee and Tassoulas [118] coupled the contin-

ued fraction absorbing boundaries with the consistent transmitting boundaries and compared

their results with those of references [106] and [120]. In this section, the results obtained by the

coupled TLM-PBC are compared with the results of references[118, 120].

Figures6.14aand6.14bdepict the problem configuration of a rigid massless surfacefoundation

overlaying homogenous half-space and the corresponding finite element model. The consistent

transmitting boundaries are applied at the lateral boundaries of the domain and the impedance

stiffness matrix is used at the base of the soil to represent the paraxial boundaries. The width

of the foundation is taken equal to 2B and the depth of the soil is 4.667B, as taken in reference

[118]. A value of 0.25 is assigned to Poisson’s ratio and a unit value is assignedto the soil den-

sity and shear modulus. The damping ratio is considered to be0.5%. It should be mentioned

that a Poisson’s ratio of 0.5 is valid for the results of reference [120] and also no damping was

considered in their test examples. The low value of the damping is introduced to stabilize the

solution.

Homogeneous half-space

2B Rigid foundation

(a) Rigid foundation over half-space

consistent
transmitting
boundary

consistent
transmitting
boundary

paraxial boundary conditions

2B

(b) Finite element representation

Figure 6.14: Problem representation and idealization.

The dynamic compliances of foundations are explained in detail in many publications. Here, a

brief description is given. The dynamic compliances of the foundation relate the external loads
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to their associated displacements. The relation between the external loads and the displacements

is expressed as






Uv

Uh

Bφr






=

1
πµ







Cvv

Chh Chr

Chr Crr

















Fv

Fh

Mr/B











, (6.1)

whereFv andFh are the vertical and horizontal forces with their corresponding displacements,

respectively,Uv andUh, Mr is the rocking moment with the corresponding rocking angle of

rotationφr , andµ is the shear modulus of the soil. The results are expressed interms of the

vertical and horizontal compliances of the foundationCvv andChh as functions of the normalised

frequencya0 = ωB/cs.

Andrade [106] investigated the effect of the soil depth when it varied between 1B and 8B. It is

reported that for normailsed frequencies≥ 0.4, the results converge rapidly leading to similar

responses in the cases of 3B and 8B. For the sake of validation and consistency, the half-space

in this section is truncated at a depth of 4.667B. It is common practice to express the size of

the model in terms of the wavelength and here it is first expressed in terms of the half width

of the foundationB and then it is expressed in terms of the pressure wavelengthλP. To obtain

an acceptable discretisation level, the irregular domain of depth 4.667B is meshed with 4-node

square elements of size less than one-tenth of the Rayleigh wavelength while the remaining do-

main, up to 0.25λP is meshed into elongated elements (narrow element width andlarge vertical

size) because of the long wavelengthλP at low frequencies. It is worth noting that the maximum

element size is always less than one-tenth of the Rayleigh wavelength. Moreover, the size of

the elongated elements is maintained within acceptable limits.

Figure6.15depicts the vertical and horizontal compliances of the rigid foundation when taking

the depth of the half-space equal to 4.667B and when increasing this depth gradually to 1λP.

As it is shown in the previous figure, good agreement is found between the current approach

for values of normalised frequencies greater than 0.2. Discrepancy occurs for lower values of

frequencies and poor performance is noticed. This was justified in reference [106] to be due to

the approximation of the exact stiffness matrix of the half-space and more specifically due to

the fact of including only the first three terms of the approximated stiffness. The performance is

improved when increasing the depth of the model to 0.1λP and it is much better for the cases of

0.5λP and 1λP. The error is less than 2.5% for these cases. Therefore, the depth of 0.5λP of the

homogeneous half-space is used for the comparison with published results, which are presented

in Figure6.16.

Overall, the results of the current model compare well to those of references [118, 120]. It

should be indicated here that some differences in the results might be due to the discretisation
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level and the properties of the rigid foundation. Previous authors considered 8 elements by

shear wavelength and in the current analysis at least 10 elements are considered by Rayleigh

wavelength at each considered frequency.
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Figure 6.15: Effect of half-space depth on compliances of rigid foundation over homogenous
half-space.
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Figure 6.16: Comparison of compliances of surface rigid foundation over homogenous half-
space of depth of 0.5λP.

120



6.4.2 Rigid surface foundation over layered half-space

In this section, a soil layer over half-space is considered,in which the material properties of the

soil layer are different from those of the underlain half-space. In order to assess the validity of

the paraxial boundaries, two different depths of the soil layer are considered for which published

solutions are available in the literature. Tzong and Penzien [121] computed the impedance

matrix of the half-space and analysed a soil layer overlaying half-space. Thus, we will consider

in the following a soil layer of two different depths,B and 2B.

6.4.2.1 Soil layer over half-space: Hlay = B

Figure6.17shows a rigid strip foundation overlaying a soil layer over half-space as well as the

model configuration by the finite element method. Poisson’s ratio and the damping ratio of the

soil layer and of the half-space are taken 0.333 and 0.05, respectively. The characteristics of the

soil layer and of the half-space are determined by takingcshs =
√

3cssoil with the assumption of

unit value for the soil density in both media. The surface foundation is subjected to a harmonic

load and the dynamic compliances of the foundation are computed for various normalised fre-

quencies. First, the half-space is truncated at a depthH = B, where the PBC are implemented.

Rigid foundation2B

Soil layer

Half-space

H layer

(a) Rigid foundation over layered half-space

Buffer layer

H layer

2B

consistent
transmitting
boundary

consistent
transmitting
boundary

paraxial boundary conditions

Buffer layer

(b) Finite element representation

Figure 6.17: Rigid foundation over layered-half-space.

The vertical and horizontal dynamic compliances of the foundation are shown in Figure6.18.

It is obvious from the results that the performance of the PBCis very poor not only at low

frequency range, as reported in the literature, but all overthe frequency range. Let us recall

that the response in the case of homogeneous half-space was much better and discrepancy only

occurred at low frequency range. In fact this shows that using only the PBC is not sufficient

to represent a layered half-space, as stated in reference [111]. It is believed that the half-space

model adopted here is not deep enough. To overcome this, the half-space is truncated at an

appropriate depth by incorporating a buffer layer with an adequate thickness.
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Figure 6.18: Compliances of surface rigid foundation over layered half-space,Hlay = B.

In the first instance, the dynamic compliances are computed when implementing the approxi-

mate impedance matrix directly at the soil layer-half-space interface,γ = 0. From Figure6.18,

it is clear the results are not of good quality if no buffer layer is used. There is a large dis-

crepancy not only in the low frequency range but also across the whole computed normalised

frequency range. Previous work [66] and [111], in addition to the numerical results presented

in subsections6.3.1and6.3.2, prompted this work to investigate the effect of adding a buffer

layer with this application of rigid foundation over layered half-space.

Next, a buffer layer of different thicknesses is consideredbetween the soil layer and the trun-

cated half-space. It has the same material properties as thehalf-space and is modelled by mesh-

ing it into finite elements by considering at least 10 elements by Rayleigh wavelength of the

half-space. The thickness of the buffer layer is consideredto be proportional to the pressure

wavelength of the half-space. It is worth noting here that itis very difficult to avoid the use of

elongated elements in the mesh of the buffer layer. Hence, the aspect ratio, which represents the

ratio of the longest to the smallest element is maintained aslow as possible. For large depths,

corresponding to the lowest frequency, the aspect ratio is taken between 5 and 10 and it is kept

around 1 for higher frequencies. A maximum value of 10 for theaspect ratio is suggested

by Liu and Quek [122] for displacement analysis. It is noticed from Figure6.19 that signif-

icant improvement in the results is already observed when adding a buffer layer with a small
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thickness of 0.1λP. The thickness of the buffer layer is able to absorb a considerable amount

of energy and damp out the transmitted waves, hence reducingthe magnitude of the reflected

waves. The thickness of the buffer layer was subsequently increased from 0.1λP to 1λP and

found to give improved quality results. The numerical results of Figure6.19indicate that very

slight improvement is achieved by further increasing the thickness of the buffer layer beyond

0.5λP. Indeed the results for 0.5λP are almost identical to those of 1λP. Hence, the case of

0.5λP is considered when comparing to the results of references [118] and [121] as depicted in

Figure6.20. It is clear that great improvement is achieved when using a buffer layer of thick-

ness 0.5λP. Very similar results to those of references [118] and [121] are obtained over all the

provided normalised frequency range, including the low frequency range.
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Figure 6.19: Effect of the buffer layer thickness on compliances of surface rigid foundation on
layered half-space, Hlay=B.
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Figure 6.20: Vertical and horizontal compliances of surface rigid foundation over layered half-
space,Hlay = B.

6.4.2.2 Soil layer over half-space, Hlay = 2B

In this section, the soil layer depth is increased to 2B. The performance of the paraxial bound-

aries is again examined. The problem is treated in the same manner as in section6.4.2.1. Figure

6.21displays the vertical and horizontal compliances of the foundation in the case of imple-

menting the PBC immediately under the soil layer. There is large discrepancy in the results for

normalised frequencies up to 1.5 when comparing to the results of references [118] and [121].

As was discussed in the previous section, using only the paraxial boundaries is not enough to

model the problem correctly and in order to improve the performance of the model, a buffer

layer of thickness of 0.1, 0.25, 0.5 and 1λP is attached at the bottom of the soil layer and the

associated results are plotted in Figure6.22. As the thickness of the buffer layer increases the

response converges towards the solution of the problem. Including a buffer layer of thickness

of 0.5λP leads to good quality results for the whole range of normalised frequencies. Figure

6.23shows a comparison of the results of the coupled model when attaching a buffer layer of

thickness 0.5λP with the results of reference [118] and [121]. Indeed, they are in very good

agreement.
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Figure 6.21: Compliances of surface rigid foundation over layered half-space,Hlay = 2B.
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Figure 6.22: Effect of the buffer layer thickness on dynamiccompliances of surface rigid foun-
dation on layered half-space, Hlay=2B.
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Figure 6.23: Compliances of surface rigid foundation over layered half-space,Hlay = 2B.

6.4.3 Application to ground vibration reduction

The developed coupled model is used here for the case of ground vibration reduction by an

empty trench. It is presented due to the fact that the presence of discontinuities within the

model produces multiple reflections and refractions. Thus,the waves’ amplitudes will vary

within the homogenous half-space. Let us consider a soil domain of 20λR length and 4λR

depth subjected to a surface vertical harmonic load on the middle of the domain and with a

frequency of 31Hz. It should be noted that the 4λR depth of the model is very close to 0.5λP.

Soil properties, in this example, are adopted from Yang and Hung [123]. An empty trench is

installed at a distance of 5λR from the harmonic load. The vertical displacements at the surface

of the domain are computed, respectively, with and without the presence of the trench. The

amplitude reduction factor which relates the ratio betweenthe displacements after installing

the trench to the ratio of the displacements without the trench is computed for a distance of

5λR after the trench. The results are compared with several results presented in the literature

as in references [124, 125, 126], and presented in Figure6.24. The same trend is observed

when comparing the coupled model results with the mentionedresults from the literature. It is

worth indicating that different numerical approaches are used in these references. A constant

element-base boundary is used in reference [124], an advanced direct boundary element method

is used in reference [125] and the commercial software ABAQUS with infinite elements is used
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in reference [126].
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Figure 6.24: Amplitude reduction factor for vibration reduction by an empty trench.

6.5 Stability issues of the PBC

It is demonstrated in the previous sections that the buffer layer eliminates wave reflection and

improves the performance of the paraxial boundaries. It is also reported that there is negative

energy associated with certain Poisson’s ratio values. This in turn will produce a supply of

energy rather than dissipation of energy as reported by Maeda and Kausel [111]. Therefore,

modelling half-space only with the approximated stiffnessmatrix is not sufficient as part of the

energy will reflect back into the domain. It is worth noting that in the case of homogenous

half-space many authors adopted large soil depths to allow the response to converge towards

the exact solution.

Cohen [64] and Cohen and Jennings [127] presented an alternative approach different from

the one employed in reference [58] to derive the paraxial boundary conditions for scalar and

linear wave equations. They started from the one dimensional wave equation seeking a solution

of the differential equation in such a manner to allow the waves to travel only in one direction,

to represent the boundary where waves only impinge through it. This was extended to 2D scalar

wave equation deriving what they call silent boundary conditions. In their silent boundaries, a

term of (csto
cp
2 ) which is similar to (1−2α) in equation (5.4) is also found. A negative stiff-

ness term is encountered in the case of Poisson’s ratiosν ≥ 1/3, which leads to conclude that

the PBC are unstable for this range of Poisson’s ratios. The authors proposed to eliminate that

term to avoid the negative energy. Seale [65] and Kausel [112] also explored the stability of the

paraxial boundaries by examining the characteristic equation of the PBC by setting the determi-
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nant of equation (5.4) to zero. They concluded that for Poisson’s ratioν ≥ 1/3 the half-space is

too stiff leading to instability issues. Also, for Poisson’s ratioν < 0.110394 poor performance

is exhibited.

Meade [128] obtained three approximations for the artificial boundaries in time and harmonic

analyses for the scattering of elastic waves by inhomogenous obstacles under plane strain condi-

tions. Their third approximation depends on six coefficientmatrices where two of them are pos-

itive semi-definite, dissipative boundary, for any point atthe boundary if and only ifcs/cp ≥ 0.5

which impliesν ≤ 1/3.

As it is shown, Poisson’s ratio has a key role in the performance of the paraxial boundaries.

It is also reported that the PBC exhibit poor performance at low frequencies which is shown in

section6.4.2. Also, it was shown in section6.2.2that the convergence was achieved by increas-

ing the depth of the homogenous half-space. In the following, we will address the effect of the

buffer layer thickness and Poisson’s ratio on the performance of the PBC. As the second term

in equation (5.4) brings a negative energy, and hence leads to reflected wavesinto the irregular

domain, this term is omitted. The modified matrix is expressed as

K = iωρcs

[

1 0

0 1/α

]

+µ
1−2α

α
k

[

0 1

1 0

]

+ iµ
cs

2ω
k2

[

−(2−α)/α 0

0 (1−2α)/α3

]

, for ν < 1/3. (6.2a)

K = iωρcs

[

1 0

0 1/α

]

+µ
1−2α

α
k

[

0 1

1 0

]

+ iµ
cs

2ω
k2

[

−(2−α)/α 0

0 0

]

, for ν ≥ 1/3. (6.2b)

Now, the stiffness matrix of the 2-node half-space element of expression (5.22) is modified

according to the new approximated impedance matrix of expression (6.2b). Moreover, the reg-

ular region matrices should also be modified. Thus, following the procedure of deriving the

half-space elementary stiffness matrix we obtain

Khs
modi f ied=













2C1+C3 0 C1−C3 C4

0 2C2 −C4 C2

C1−C3 −C4 2C1+C3 0

C4 C2 0 2C2













. (6.3)
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Let us proceed now to deal with the regular regions. Modification of the impedance matrix

yields to only modifying the matrixAhs
2 given in equation (5.27a) and will be replaced by (6.4)

Ahs
2modi f ied

=
iµcs

2ωα3

[

(α −2)α2 0

0 0

]

. (6.4)

Now, the modified PBC combined with the TLM is used. A sensitivity analysis is carried out in

the following section to examine the above mentioned modifications for the stability of the PBC.

Improvement brought to the performance of the method in homogenous and layered half-spaces

is outlined below.

6.5.1 Performance of the modified PBC in homogenous half-space media

To assess the modifications introduced in section6.5, let us recall the example illustrated in

section6.4.1. Figure6.25shows the effect of Poisson’s ratios of 0.35 and 0.4 on the dynamic

compliances of the foundation. It is clear that there is someinconsistency in the response, for

example, for thicknesses of the buffer layer less than 0.5λP. However, the cases of 0.5λP and

1λP seem to produce similar results. The inconsistency in the results is reduced, as it is shown

in Figure6.26, when applying the modifications presented in section6.5.

6.5.2 Performance of the modified PBC in layered half-space media

The example presented in section6.4.2.2is revisited again by applying the modification pre-

sented in section6.5. The results are plotted in Figures6.27and6.28. Again, a similar trend

to the homogenous half-space response is noticed. The difference is significantly reduced by

applying the presented modifications. Although, the difference is reduced, it seems sufficient to

apply a thickness of a buffer layer of 0.5λP and without modifying the matrix.
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Figure 6.25: Effect of Poisson’s ratio and the buffer layer thickness on the performance of
homogenous half-space TLM-PBC model,ν = 0.35 andν = 0.4.
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Figure 6.26: Effect of Poisson’s ratio, modified matrix, andthe buffer layer thickness on the
performance of homogenous half-space TLM-PBC model,ν = 0.35 andν = 0.4.
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Figure 6.27: Effect of Poisson’s ratio and the buffer layer thickness on the performance of
layered half-space TLM-PBC model; Hlay = 2B, ν = 0.35 andν = 0.4.
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Figure 6.28: Effect of Poisson’s ratio, modified matrix, andthe buffer layer thickness on the
performance of layered half-space TLM-PBC model; Hlay = 2B, ν = 0.35 andν = 0.4.
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6.6 Concluding remarks

The coupled TLM-PBC model developed in Chapter5 for wave propagation in half-space soil

media is numerically validated in the current chapter through various test examples. The main

conclusions are as follow:

• To model wave propagation in homogenous half-space soil media, the model thickness

of at least one pressure-wavelength should be considered toachieve good quality results.

For thicknesses below the indicated one, the model would induce spurious reflections at

the half-space base, where the PBC is used. This is due to the derivation of the PBC based

on an approximation of the impedance of the half space.

• For wave propagation in layered half-space soil media, it isshown that the coupled TLM-

PBC model is not capable to properly simulate such problems without introducing a buffer

layer, at the irregular region-half-space interface. The latter layer is of the same properties

of the half-space and of at least half of the pressure-wavelength thickness. For even better

quality results, the thickness of the buffer layer may be further increased to one pressure-

wavelength.

• Test examples related to the dynamics of rigid foundations overlaying half space showed

that the discrepancy associated with low dimensionless frequencies, in the case of homo-

geneous half-space, was eliminated by taking a thickness of0.5λP of the half-space. In

the case of surface foundations over layered half-space, a buffer layer of at least 0.5λP

thickness must be inserted.

• Instability of the PBC for Poisson’s ratio greater than 1/3 is illustrated and an attempt

to overcome it was presented. This is based on a deliberate omission of a term in the

half-space impedance expansion.

The introduction of the buffer layer obviously leads to an increase of the computational cost

related to the coupled TLM-PBC as it involves more nodal points in both the finite element

model of the irregular region and in the eigenvalue problem associated with the regular regions.

The computational burden becomes even more obvious when modelling large domains and

covering wide ranges of frequencies.
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Chapter 7

Consistent transmitting boundary

conditions with a reduced number of

eigenmodes

7.1 Introduction

In the formulation of the consistent transmitting boundaries presented in Chapter3, within the

TLM model, and in Chapter5, within the coupled TLM-PBC, all eigenmodes deduced from the

second order eigenvalue problem were included in the computation of the lateral nodal forces

simulating the effect of the right and left regular regions.In this chapter, the effect of reducing

the number of participating eigenmodes in the formulation of the lateral forces is investigated.

First, the wave nature of the exponential terms involving the wavenumbers obtained from the

eigenvalue problem is analysed. Then modified transmittingboundary conditions are formu-

lated and assessed. Last, guidelines are provided on the useof dominant eigenmodes in the

newly formulated transmitting boundary conditions.

7.2 Background and concept

Waas [3] indicated that in seismology scientists usually tackle expensive eigenvalue problems

by calculating the dispersion curves for the Love waves, which describe the relationship be-

tween the frequency of the wave and its wavenumber. The fundamental mode and only one or

two higher modes are usually considered. This latter idea isexplored here in the context of the

TLM and analogy with structural dynamics practice, where only a few lower modes are usually

taken into account, is briefly reviewed.

With the development of advanced computers, analysts are able to compute the structural re-

sponse for large computational models with many degrees of freedom. However, sometimes
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the capability of computers is not sufficient when considering very large soil problems. This is

tackled by employing the modal reduction schemes, the mode superposition method, Ritz vec-

tor and the Quasistatic Ritz vector method, to reduce the size of the problem. These methods

are different in essence but their objective is based on reducing the size of the global dynamic

stiffness matrix to a smaller size and hence saving the time required for the global matrix inver-

sion. More details about the modal reduction schemes could be found in reference [129]. The

mode superposition method for dynamic analysis of structures is based on selecting a reduced

number of vibrating modes depending on the frequency range of interest. Basically, the reduced

number of modes is obtained by retaining only a few corresponding eigenfrequencies.

López and Cruz [130] investigated the effect of higher modes and determined therequired

number of modes to be included in the elastic design for dynamic analysis of buildings sub-

jected to horizontal shaking. To quantify the validity of reducing the number of modes, the

authors calculated the relative error when using all modes and when using a reduced number.

Significant reduction in the error percentage is found when including two or three modes rather

than only the first one. A simplified formula is provided in reference [130] to keep the relative

error low.

Within the context of the TLM, it is obvious that the computational time needed for computing

the eigenmodes is significant in comparison to the time needed for the whole analysis. In other

words, if more sub-layers are included in the regular regionmodel then many nodes should be

used with respect to depth. Hence the size of the diagonal matrix (3.31) and the modal matrix

(3.38) will be larger. As it was explained in Chapter3, 4n eigenvalues and their corresponding

eigenvectors are computed when considering a rigid base model. For example, for a square soil

domain model of 4λR in both depth and length, with a discretisation level of ten elements per

Rayleigh wavelength, would require 41 nodes on each lateralboundary. This leads therefore to

computing 160 eigenvalues with their corresponding eigenvectors. The time needed for com-

puting the eigenvalues is 3s and for computing the eigenvectors is 4s, whereas the time needed

for the assembling process and the solution is only 2s. Thesetimes are estimated on 1.95GB and

1.99GHz computer. This is a small size problem but gives an idea on how cpu time is allocated

to the different steps of the analysis.

Next, the eigenvalue problem related to the TLM is revisitedand the eigenvalues are analysed

for both damped and undamped soil models.
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7.3 Eigenvalue problem and wave nature of the solution

The eigenvalue problem presented in expression (3.30) is of second order. It is reduced into

a first order problem by introducing a change of variable. This leads to double the size of the

problem. This is a convenient and straightforward procedure, but computationally expensive,

for solving the second order eigenvalue problem. Briefly, the change of variable consists to

introduceq such that

q= iku, (7.1)

and construct vectorQ defined by

Qt = {qt ,ut}. (7.2)

The eigenvalue problem becomes

[A −λ I ]Q = 0, (7.3)

whereI is the identity matrix and matrixA is given by

A =

[

A∗−1
2 A∗ A∗−1

2

(

A∗
0−ω2M∗)

I 0

]

. (7.4)

MatricesA∗
0, A∗

1, A∗
2 andM∗ are all defined in Chapter3. It is obvious from the structure of

matrix A that the size of the eigenvalue problem has doubled. The “new” eigenvalues areλ ,

rather thank, and the “new” eigenmodes areQ rather thanu. For a soil medium overlaying rigid

bedrock, the “new” eigenvalue problem is of dimension 4n, n being the number of sub-layers in

the regular regions.

The displacement field in the right regular region is writtenas a linear combination of all eigen-

modes obtained from the solution of the “new” eigenvalue problem of expression (7.3) for

ks = κ1+ iκ2, with κ2<0. It is given by

{u∗}=
2n

∑
s=1

as{u0
s}ei(ωt−ksx). (7.5)

Expression (7.5) represents a combination of waves which are harmonic in time and propagating

horizontally in the positivex-direction. The wave types included in the solution (7.3) depend

basically on the wavenumbersks and several cases occur as reported by Waas [3]:

1. If the wavenumber is complex;k = κ1+ iκ2, (κ1 6= 0 andκ2 6= 0), then the motion is

expressed as

{u}= a{u0}ei(ωt−κ1x)eκ2x, (7.6)

which represents a propagating wave in thex-direction with increasing or decaying am-

plitude depending on the sign of the imaginary partκ2.
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2. If the wavenumber is real;k= κ1, (κ1 6= 0 andκ2=0), the motion is of the form

{u}= a{u0}ei(ωt−κ1x), (7.7)

which represents a wave travelling in thex-direction with a constant amplitude. This type

of wave could not occur in the damped case as waves attenuate with distance from the

source of vibration.

3. If the wavenumber is imaginary;k= iκ2, (κ1 = 0 andκ2 6= 0), the motion is expressed by

{u}= a{u0}eiωteκ2x. (7.8)

This is a wave which varies exponentially in thex-direction but does not propagate.

4. Finally, if the wavenumber is zero;k=0, (κ1 = 0 andκ2 = 0), the motion is independent

of x and is expressed by

{u}= a{u0}eiωt . (7.9)

This is a standing wave which could occur only in the undampedcase and at certain

frequencies. Wavenumbers of this type may not exist if damping is included.

As it is already mentioned, the 2n computed eigenvalues, or wavenumbers, with negative imagi-

nary part,κ2<0, describe waves propagating in the positivex-direction with decaying amplitude.

On the other hand, the other 2n eigenvalues with positive imaginary part,κ2>0, describe waves

propagating in the negativex-direction with decaying amplitude. The nature of the motion is

dependent on the type of the wavenumber which in turn dependson the presence of damping,

while the number of eigenmodes is dictated by the numbern of the sub-layers in the regular

region. Next, numerical tests are carried out to present allpossible types of wavenumbers under

undamped and damped conditions.

7.3.1 Undamped case

In the absence of damping, matricesA∗
0, A∗

1 andA∗
2 of equation (3.30) are real. However, com-

plex eigenvalues with their corresponding complex eigenvectors are obtained. Wavenumbers in

the undamped case could be complex, real or imaginary. To illustrate this, an example of a soil

model of 30m in length and 10m in depth subjected to 1kN harmonic load of frequency 4Hz

is considered. Half of the computed wavenumbers corresponding to the right regular region,

which represent propagating waves in the positivex-direction, are tabulated in Table7.1.
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n −κ2 κ1

1 5.87080419324460 9.917485262926976E-017
2 5.33650965620063 3.881378380881605E-016
3 4.49195670821783 3.949369079082468E-016
4 3.56305391411867 -2.301572451243074E-016
5 2.67829245388722 -3.162047183676384E-016
6 1.94832270565977 1.098055607470449E-015
7 1.86566456158340 4.302016737950528E-016
8 1.48721791823830 -5.434680040119120E-016
9 1.37395295938099 6.144048557706494E-016
10 1.88588115836173 0.179724211854971
11 0.214597481226497 0.136645469801204
12 0.214597481226497 -0.136645469801204
13 1.38096361328397 -0.165447605369872
14 1.38096361328398 0.165447605369872
15 0.585679087665297 0.218039747282778
16 1.88588115836173 -0.179724211854970
17 0.944222978139081 -0.239727753648631
18 0.944222978139080 0.239727753648632
19 0.585679087665298 -0.218039747282780
20 -2.857625564527434E-015 2.807184179997326E-002

Table 7.1: Imaginary and real parts of wavenumbers for the undamped case.

As it is shown in Table7.1, three types of wavenumbers are present in the undamped case. In

the case of complex wavenumbers, they appear in pairs; with positive and negative imaginary

parts. This is obvious, for example forn=10 and 16, andn=11 and 12. However, forn=20 it is

purely real.

7.3.2 Damped case

When damping is included, matricesA∗
0, A∗

1 andA∗
2 are complex. The same soil domain consid-

ered in section7.3.1is used here with a damping ratio of 2.5%. All wavenumbers have nonzero

imaginary parts as shown in Table7.2. In the damped case, complex wavenumbers, do not

appear in pairs unlike the undamped case.

7.3.3 A method for selecting eigenmodes

In expression (7.5) of the displacement field, all eigenmodes are taken into account, where each

mode is weighted with the factoras. In the formulation of the dynamic stiffness matricesR

andL , however, the factorsas do not intervene and therefore all modes contribute equally. For

selecting a few eigenmodes, the proposed approach in this work consists to rank the 4n eigen-
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n −κ2 κ1

1 5.87080985908597 1.132953268934870E-004
2 0.585807164510774 0.218799159581013
3 5.33651580200005 1.228893478633891E-004
4 0.585628316991176 -0.217271582172299
5 4.49196383961546 1.425887915195512E-004
6 8.601496723589494E-003 2.893149720468033E-002
7 3.56306263791666 1.744117008670624E-004
8 0.214541166835173 0.139164575546165
9 2.67830387627921 2.283166631093965E-004
10 0.214942166524979 -0.134160625328525
11 1.88593597347341 0.179940663880394
12 1.88584822782740 -0.179503429069688
13 1.94832770335401 9.976496579846834E-005
14 1.86566906375030 8.994782045994271E-005
15 1.38104948346212 0.165918179384498
16 1.38092482056506 -0.164970460501847
17 1.48721825497958 3.581384569191966E-006
18 1.37395549300977 4.451500541061514E-005
19 0.944318538411235 0.240198990875966
20 0.944175109977053 -0.239249458815423

Table 7.2: Imaginary and real parts of wavenumbers for the damped case.

values with increasing imaginary partκ2 then display the magnitude of the exponential term

exp(iksx) of expression (7.5) with distance beyond the lateral boundary.

As a test case, a soil domain of 8λR in length and 4λR in depth is used. The shear modulus,

density and Poisson’s ratio are 40MPa, 1700kg/m3 and 0.25, respectively. Damping is taken

into account by consideringβ =5%. Time harmonic motions are considered for the frequency

of 20Hz, which is much greater than the first cut-off frequency of the soil layer. The soil do-

main is discretized into 40 sub-layers,n= 40, by considering 10 linear elements per Rayleigh

wavelength. The eigenvalue problem leads to the computation of 160 eigenvalues with their

corresponding eigenmodes. Half of the modes, which are related to the right lateral boundary

(κ2 < 0), are ranked as stated above. The magnitude of the exponential terms exp(iksx), with

s= 1,80, is displayed as a function of the log-scale of the dimensionless distancex/a, wherea

is a unit distance.

Figure7.1displays the magnitude of the exponential terms corresponding to the ranked eigen-

valuesks, Hamdanet al. [131]. For clarity purpose some wavenumbers are skipped as their

effect is either identical or very close to those already displayed.
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Figure 7.1: Variation of the exponential terms of the displacement beyond the lateral boundary,
Hamdanet al. [131].

141



The first obvious remark is that all modes decay with the distancex. For the adopted ranking,

the first modes present a less pronounced decay in comparisonto the later modes. For example,

the first eight modes, while decaying, the magnitude of exp(iksx) is still greater than 0 by the

distancex/a=40. The following modes, 9≤ s≤ 16, decay with a higher rate and some of which

decay to 0 byx/a≈10. For the last modes, the decay is very sharp and the magnitude reaches

the zero value at very low distance. The other obvious remarkis related to the magnitude of the

exponential term which is around 1 for the first modes and thenreduces with increasing ranking

to become insignificant at the last modes,|exp(iksx)|< 0.0006. In other words, the modes with

the smallest imaginary part present a significant response in terms of the magnitude of the ex-

ponential term and consequently a large distance beyond thelateral boundary is affected. With

increasing the magnitude of the imaginary part of the wavenumbers the affected zone beyond

the lateral boundary as well as the magnitude of the exponential terms are significantly reduced.

It is noticeable that the sharp decrease in the response of the exponential term and the very

small affected zone beyond the lateral boundary are relatedto wavenumbers with minor influ-

ence. Those with major influence on the response, however, are to be investigated and will

be called dominant modes. In what follows various numbers ofthese dominant modes are

considered,n, n/2 and eventually 3. The solutions corresponding to these cases are compared

to the solution of reference in which all 2n modes are included in the dynamic stiffness matrices.

The aim is to reduce the dimension of the modal matrix by reducing the number of modes

and consequently reducing the related computational effort. More importantly, reducing the

number of modes will lead to significant time saving in the analysis especially for soil domains

with large number of sub-layers. This is a common practice instructural dynamics and seismol-

ogy where analysts include only a few modes of vibration. However, the question of accuracy

emerges such as what is the allowable percentage of error or to what extent is the solution is

acceptable? Yoon [129] indicated that “it is often advantageous and sometimes necessary to

transform a set of the system equations of complex FE model into a set of reduced equations

with a smaller number of degrees of freedom, the accuracy is inevitably affected, but the reduced

accuracy is adequate from an engineering standpoint”. This will be dealt with in this work to

validate the modified consistent transmitting boundaries formulated next.

7.4 Modified consistent transmitting boundary conditions

Selecting only some of the eigenmodes in the formulation of the consistent transmitting bound-

aries requires some mathematical alterations of expressions (3.37) and (3.39). Assume a number

m of eigenmodes is selected, withm< 2n. In such case, the diagonal matrixH containingm

eigenvalues remains square of dimensionm×m, the modal matrixV containing the eigenmodes
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becomes rectangular of dimension 2n×m. Seeking its inverse leads to an over-determined sys-

tem and the inverse matrix is replaced by the pseudoinverse,or the Moore-Penrose inverse,

which is denoted byV†. Recalling equation (3.28)

F∗ =
[

A∗
2u∗

,x+A∗
3u∗]

x=0
, (7.10)

and substituting the displacement vector derivatives withrespect tox gives

F∗ =−
[

iA∗
2VHV −1+A∗

3VV−1
]

u∗
x=0. (7.11)

If the modal matrix is square then the productVV−1 is the identity matrix. However, if the

modal matrix is rectangular, the pervious product does not lead to the identity matrix, see Ap-

pendixA. Thus, the contribution of this product must be taken into account in the formulation of

the matrixR corresponding to the dynamic stiffness of the right regularregion. The dimension

of the dynamic stiffness matrixR is still 2n×2n. It is given by

R = iA∗
2VHV †+A∗

3VV†, (7.12)

whereH contains the selectedmwavenumbers, withκ2 < 0, andV contains their corresponding

eigenmodes columnwise. The dynamic stiffness matrix of theleft regular region is formulated

in the same manner leading to

L =−iA∗
2V

′
H

′
V

′†−A∗
3V

′
V

′†, (7.13)

whereH
′
contains the selectedmwavenumbers, withκ2 > 0, andV

′
contains their correspond-

ing eigenmodes columnwise. The diagonal matricesH andH
′
are of dimensionm×m.

Next, the computed wavenumbers are ranked in an ascended manner with respect to their imag-

inary partκ2. The solutions corresponding to the casesm= n andm= n/2 are computed and

compared to the reference solution for which all eigenmodesare taken into account,m= 2n, in

the formulation of the matricesR andL .

7.4.1 Test example: undamped soil model

Two depths of a soil domain, 1λR and 4λR are considered in order to show if there is any effect

on the response when considering small and large sizes eigenvalue problems. The soil domain

has the following characteristics:ρ =2000kg/m3, E =100MPa andν =0.25. Figures7.2and7.3

show a comparison of the surface displacements when using all eigenvalues and when selecting

only half or quarter. In total, 40 and 160 eigenvalues with their corresponding eigenvectors are

computed for the considered depths. For the lower depth, 10 and 5 eigenvalues are chosen in
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the current analysis for each lateral region when reducing the number of eigenmodes. As it is

shown in Figure7.2, the results are not in good agreement in terms of surface displacements.

The relative error graphs show high values for both horizontal and vertical displacements ex-

ceeding 10%.

In the case of 4λR depth, where a total of 160 eigenmodes are calculated, 40 and20 modes are

used in the determination of the modified transmitting boundaries. A comparison of the surface

vertical and horizontal displacements in Figure7.3shows that the results are relatively of better

quality, in comparison to the case of 1λR depth, as the relative error is below 10% when half of

the modes are used.

7.4.2 Test example: damped soil model

The previous example is used in this section with the introduction of damping and the same

procedure is followed. Figures7.4 and7.5 show the vertical and horizontal displacements at

the surface with their corresponding errors for 1λR and 4λR domain depths, respectively, when

using all computed eigenmodes, half or only a quarter.

Similar conclusions are also drawn for the damped soil model. In the case of low depth model,

using the modified transmitting boundaries lead to large discrepancies when comparing to the

reference surface displacements, where all modes do contribute in the transmitting boundaries.

In fact using half or a quarter of the modes for the case of 1λR depth lead to only use 10 or 5

modes, which are low numbers as the total number is 20 for eachlateral boundary. For 4λR

depth, however, the total number of modes is 80 and using halfor a quarter, lead to use 40 and

20 respectively, and consequently provide better quality results.

From here, it is concluded that for small depth domains, it isnot worth considering the mod-

ified transmitting boundaries as this leads to spurious reflections on the lateral boundaries and

the number of sub-layers is not important anyway to make any savings in the computational

time. For large depth domains, however, for which the numberof sub-layers is important, it

is shown that the modified transmitting boundaries lead to engineering quality results. Fur-

thermore, using the modified version of the transmitting boundaries for such cases leads to

significant computational savings
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Figure 7.2: Surface displacements in the undamped case and their corresponding errors: 1λR

depth.
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depth.
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Figure 7.4: Surface displacements in the damped case and their corresponding errors: 1λR

depth.
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Figure 7.5: Surface displacements in the damped case and their corresponding errors: 4λR

depth.
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Figures7.6aand7.6bshow the variations of the horizontal and vertical displacements with the

normalised depth, z/λR, when different numbers of modes are used. Those are 2n, n, n/2 and

3 modes. The results show that the responses for the cases using n andn/2 dominant modes

is in good agreement with the case where all 2n modes are used, with the case ofn modes

giving better accuracy. The response corresponding to the use of only 3 modes with the lowest

imaginary parts shows large discrepancies in comparison tothe reference case. This shows

that using very few modes does not allow enough energy radiation to infinity and hence causes

waves to reflect at the lateral boundaries.
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Figure 7.6: Displacements variation with depth at the rightlateral boundary, Hamdanet al.
[131].

7.5 Effect on computational time

The effect of reducing the number of contributing eigenmodes on the computational effort is

investigated. If a selected number of eigenmodes is used, itis therefore not necessary to com-

pute all 4n eigenvectors of the eigenvalue problem (3.30). This obviously allows a significant

reduction of the computational cost especially for large-depth computational domains. Figure

7.7ashows an example of cpu time used to compute the eigenmodes.

As the modifications introduced in section7.4 affect the dynamic stiffness matrices of the lat-

eral boundary, the determination of these matrices is also altered but in favour of saving some

computational time as less columns are included in each matrix. Consequently, matrix inver-

sion is also affected. The alteration in terms of run time depends, now, on the pseudoinverse.
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Figure7.7bshows the cpu time used to compute the dynamic stiffness matrix R corresponding

to the right lateral boundary and eventuallyL corresponding to the left boundary, for different

numbers of selected eigenmodes when the number of sub-layers is increased.
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Figure 7.7: Computational efficiency of the approach, Hamdan et al. [131].

It is clear from the results of Figure7.7that, when considering a high number of sub-layers and

taking into account all eigenmodes, the computational costcorresponding to the computation

of the eigenmodes and/or the computation of the dynamic stiffness matrices tends to increase

exponentially. Reducing the number of contributing eigenmodes significantly reduces the com-

putational time. For example, at high numbers of sub-layers, halving the number of contributing

modes leads to around 50% saving in computational time. Thisis obvious from the previous

figure where, for example, the run time required to compute either the eigenvalues or the dy-

namic stiffness matrices is reduced from 100s when using alleigenvectors in the solution to 50s

when reducing this number by half. Better reduction is achieved for further reduction in the

number of eigenmodes. The calculations were performed using a Fortran 77 code with double

precision variables on an Intel(R) Xeon(R) 2.33 GHz processor with 1.95 GB of RAM under

Microsoft Windows Server 2003.

7.6 Efficiency of the modified consistent transmitting bound-

ary conditions

As demonstrated in the previous section, the computationalcost is significantly reduced when

using a reduced number of eigenmodes, when considering large depth soil media. To further

assess the efficiency of the modified transmitting boundaries, examples of practical interest are

dealt with next.
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7.6.1 Wave propagation in multi-layered soil profile

Let us revisit the example presented in section4.6.2for simulating wave propagation in a soil

profile with linear variation of stiffness, provided in expression (4.9) whereα is the rate of

linearity. In Chapter4, the fundamental frequency of the soil medium was estimatedby consid-

ering the area under the surface displacement curve and all computed modes were used in the

formulation of the transmitting boundary conditions. The purpose of reconsidering this exam-

ple is to investigate whether the finite element model with the modified transmitting boundaries

would lead to similar results.

In an attempt to reproduce the results of Figure4.23, the same numerical simulations are carried

out again but this time with the modified transmitting boundaries. Figure7.8shows the results

for the normalised area as a function of frequency, for various values of the linearity coefficient,

when 2n, n, n/2 and only 3 eigenmodes are used. It is clear thatusing the modified transmitting

boundaries with half or a quarter of the eigenmodes leads to similar results obtained with the

unmodified transmitting boundaries, i.e. with 2n modes. However, using only 3 modes leads to

discrepancies in the results at high frequencies. At the same time, if we are after the fundamen-

tal frequency of the soil medium, the results show that it is possible to predict it even with only

3 modes accounted for in the modified transmitting boundaries.
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Figure 7.8: Effect of reduced number of eigenmodes on the fundamental frequency of layered
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Actually, great discrepancy for including only three modesis found especially in the high fre-

quency region. The explanation of this is as follows. In the case of low frequencies, more

precisely lower than the fundamental one, waves do not propagate and the response is similar

to the static response. As the frequency increases and approaches the fundamental one, waves

start to propagate all over the domain as it is demonstrated in sections4.4.1 and 4.4.2. In-

cluding only the first three smallest wavenumbers produced significant difference in the surface

displacements in sections7.4.1and7.4.2. Accordingly, the surface area is affected by this dis-

crepancy leading to the difference at frequencies higher than the fundamental frequency of the

soil profile. Overall and based on the numerical results, reducing the number of eigenmodes to

include onlyn andn/2 at each lateral boundary produced good agrement compared to includ-

ing all modes. Including only the smallest 3 eigenmodes is not sufficient enough to generate

very accurate results especially for frequencies higher than the fundamental frequency of the

medium.

7.6.2 Surface rigid foundation on a stratum

A rigid surface strip foundation is assumed to be resting over a homogenous soil layer overlay-

ing bedrock. The foundation has a width of 2B, where 2B = H andH being the depth of the

soil layer. The soil medium has shear modulus and density of unit value, a Poisson’s ratio of

0.3 and a damping ratio of 0.05. For the sake of validation, the numerical example presented

by Tassoulas [29] is used in this section. Figure7.9illustrates a schematic diagram of the finite

element model.

H

∞∞

rigid bedrock

e
iωt

consistent transmitting
boundaries

µ=1 ρ=1 ν=0.3 β=0.05

rigid foundation2B

Figure 7.9: The finite element model of rigid foundation oversoil deposit over rigid bedrock.

The centre of the foundation is subjected to a unit time-harmonic load with a wide range of

frequenciesω. The vertical and horizontal displacementsµ|v| andµ|u| are computed under the
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load and displayed for various dimensionless frequency valuesωH/2πcs, wherecs is the shear

wave velocity of the soil medium. The computational domain is divided into 10 sub-layers,

n= 10, with equal thicknesses not exceeding a tenth of the Rayleigh wavelength corresponding

to the highest applied frequency. The highest applied frequency was 0.1Hz which corresponds

to a Shear wavelength of 10m, which is equivalent to the layerdepth. A total of 20 wavenum-

bers are computed and used to compute the lateral boundariesnodal forces using the consistent

transmitting boundaries.

Figure7.10 shows the real and imaginary parts of the horizontal and vertical dynamic com-

pliances against the dimensionless frequency when using the modified consistent transmitting

boundaries with 10 and 5 modes, which correspond ton andn/2 respectively. The case with

only 3 modes is also considered. In comparison to the resultsinvolving the consistent trans-

mitting boundaries, with all 2n modes, the results show very similar variations and an overall

acceptable agreement. Although the case with only 3 modes produces roughly similar results,

it leads to the largest discrepancies, while the case withn modes leading to the closest results.

Overall, the same trend is generated even when reducing the number of eigenmodes to only the

first three ones. However, if accurate solutions are sought more eigenmodes must be included

in the analysis.
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Figure 7.10: Dynamic compliances of rigid foundation over asoil layer overlaying bedrock,
Hamdanet al. [131].
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Increasing the number of wavenumbers in the analysis ton produces a closer response to the

reference solution. In the vertical response, there is a slight shift in the response towards the

left, which is a decrease in the fundamental frequency of thesoil stratum. However, reducing

the number of eigenmodes generated the same response with amplifying or de-amplifying the

response. The horizontal compliances of the foundation results show that there is no change

in the fundamental frequency but the curve for each case has shifted up indicating the stiffness

of the soil has decreased. The variation of the normalised displacements under the centre of

the foundation are also displayed in Figure7.11. To sum up, the general trend is produced

when reducing the number of wavenumbers in the analysis. Using only the first three lowest

wavenumbers leads to the discrepancy but the trend is very acceptable.
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Figure 7.11: Variation of normalised displacements with frequency.

7.6.3 Wave reduction by empty trench

A soil domain of 30λR in length and 3λR in depth subjected to a time-harmonic load at the soil

surface centre is considered here. The characteristics of the soil are 40MPa, 1700kg/m3, 0.25

and 2.5% for the shear modulus, density, Poisons’ ratio and damping ratio, respectively. The

associated Rayleigh wavelength is around 7.1m. An empty trench is installed at 5λR from the

dynamic load to reduce the effect of transmitted waves towards the right part of the domain.

This kind of problem is typical and was dealt with by many authors, such as Segolet.al [132],

Laghrouche and Le Houedec [99, 100], and Ahmad and Al-Hussaini [125]. To investigate the

wave barrier effectiveness, the amplitude reduction factor and the average amplitude reduction

factor could be used. The amplitude reduction factor,Ar , evaluates the effectiveness locally and

is defined as the ratio between the amplitude of the displacement at the surface after installing

the trench to the amplitude of the surface displacement at the same point before installing the

trench. The average reduction factor, however, is a global measure as it considers the effect of

the wave barrier over a certain distanceX of the protected area beyond the wave barrier. It is

152



given by

Ār =
1
X

∫ X

0
Ardx. (7.14)

This example is used to determine the effectiveness of the wave barrier when using the consis-

tent transmitting boundaries and the modified version. The soil medium is subdivided into 30

sub-layers (n=30) and hence a total of 60 eigenmodes are obtained for each of the lateral bound-

aries. First, the amplitude reduction factor is computed from the point of application of the load

for normalised depthd/λR and widthb/λR of the trench taken as 1 and 0.1, respectively. A

distance of 10λR is considered after the trench. It is computed for the cases corresponding to

m= 2n, n andn/2. The case involving only 3 eigenmodes is also considered and the results are

displayed in Figure7.12a. The figure clearly shows that the results forn andn/2 eigenmodes

are in very good agreement with those obtained when all 2n eigenmodes are included. This

indicates that the corresponding modified consistent transmitting boundaries perform as well as

the original version which uses all eigenmodes. However, the results associated with including

only 3 modes deteriorates in the vicinity of the vertical lateral boundary of the domain. This

indicates partial wave reflection at the boundary.
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Figure 7.12: Effect of the number of eigenmodes on the screening efficiency of an empty trench,
Hamdanet al. [131].

The average amplitude reduction factorĀr given in expression (7.14) is computed for various

normalised depths when its width is fixed,b/λR=0.1. The results shown in Figure7.12billus-

trate the variation of̄Ar with d/λR when considering both the consistent transmitting boundaries

and the proposed modified version withn, n/2 and 3 eigenmodes in the formulation. The results

are in very good agreement again with the reference solution. Nonetheless, there is some dif-

ference in the case of including only 3 wavenumbers, though the results follow the same trend.

Overall, there is good agreement when considering the average amplitude reduction factor even

when using only 3 modes unlike the case of computing the amplitude reduction factor. This

may be due to the fact that the oscillation effect around the reference solution seen in Figure

7.12acancels when using the integral in expression (7.14). In fact, the provided results compare
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very well to those provided in reference [126] obtained by the finite element package Abaqus.

7.7 Concluding remarks

The TLM is revisited in this chapter with the aim to reduce itscomputational cost. For a Carte-

sian computational domain withn sub-layers, a second-order eigenvalue problem of dimension

2n is reduced to the first order with the dimension doubled to 4n, as a consequence. The ob-

tained solution leads to the evaluation of the dynamic stiffness matrices with 2n eigenmodes

included in each of the force vectors applied on the lateral boundaries to allow the radiation of

waves away to infinity.

The proposed modified version of the consistent transmitting boundaries involves fewer eigen-

modes with dominant effect. Those are defined as the modes whose eigenvalues have the small-

est imaginary part. The modal matrices become rectangular and hence pseudoinverse matrices

are used in the formulation of the modified consistent transmitting boundaries.

It is shown that computing a selected number of eigenmodes significantly reduces the com-

putational cost of the model especially for problems with large depths, in terms of the wave-

length, and when a wide range of frequencies is to be covered.For the test problems considered

in this chapter, the modified consistent transmitting boundaries performed like the unmodified

version when the most dominant eigenmodes are included in the dynamic stiffness matrices.

Using only the first 3 modes, performs well except in the vicinity of the lateral boundaries of

the computational domain where wave reflection occurs leading to erroneous solutions.
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Chapter 8

Some applications with unstructured

triangular mesh grids

8.1 Introduction

This chapter is devoted to some applications exploiting thebenefits of the numerical tool, de-

veloped throughout this dissertation, with unstructured triangular mesh grids. The advantages

of using unstructured mesh grids include the possibility ofemploying available mesh genera-

tor packages and the flexibility they offer to include complex geometries and discontinuities.

This obviously makes the numerical tool more attractive fordealing with problems of practi-

cal interest as well as offering possibilities for further developments. The dynamic behaviour

of non-horizontal soil profiles is first analysed. It is followed by applications of surface rigid

foundations over non-horizontal profiles. Various shapes of wave barriers are then introduced

to examine surface vibration reduction. This chapter closes by presenting stationary harmonic

loading of several configurations of railway embankments where structured mesh grids can be

difficult to obtain. The soil-foundation, the soil-slab andthe soil-barrier interfaces are assumed

to be in fully bonded contact.

8.2 Dynamic behaviour of soil media with non-horizontal pro-

file

The fundamental frequency of a soil layer over horizontal rigid bedrock can be estimated from

expressions (4.1) and (4.2). However, for cases where the bedrock is inclined the previous

expressions are not valid anymore. Therefore, numerical solutions are the alternative for such

cases and for many problems of practical engineering interest. In the case of 2-layer soil profile,

approximated solutions are also available and presented inexpressions (4.8a) and (4.8b). If the

layers interface is inclined, the fundamental frequency ofthe system will be affected and again
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numerical solutions can be used. Therefore, the effect of inclined rigid bedrock and inclined

soil layer interface over horizontal bedrock on the fundamental frequency of the soil deposit

is investigated next. It is worth indicating that two separate eigenvalue problems are solved

here, one for each lateral regular region, due to the difference of geometry for the two lateral

boundaries.

8.2.1 Dynamic behaviour of a soil layer over inclined bedrock

A numerical example was presented in section4.7.3to demonstrate the ability of the numerical

code to simulate wave propagation in the case of soil layer over inclined rigid bedrock. A more

detailed parametric study is performed here by exploiting the benefits of the numerical model

with unstructured triangular mesh grids.

A homogenous soil domain of length and depth of 30m and 12m, respectively, and with the

same properties used in section4.2is revisited. A damped case is considered by taking a damp-

ing ratio of 5%. Two configurations of the model are illustrated in Figure8.1. The bedrock is

assumed to be horizontal for the reference solution where the fundamental frequencies of the

vertical and horizontal loadings are respectively 5.9Hz and 3.1Hz. The bedrock is inclined by

angles of 10◦, 15◦ and 20◦ leading to a decrease in the volume of the soil layer, for the case of

Figure8.1a, due to the decrease of the depth of the right side lateral boundary by∆H = X tanθ ,

with X being the length of the domain.

θ

H

H- H∆

(a) Soil layer over inclined base (volume decrease)

θ

H
H+ H∆

(b) Soil layer over inclined base (volume increase)

Figure 8.1: Schematic diagram of a soil layer over inclined bedrock.

Following the analysis of section4.4, the frequency of the applied load is varied and the area un-

der the surface displacement curves is computed for both vertical and horizontal loading cases.

The top plots of Figure8.2 show the normalised area corresponding to the vertical (left) and

horizontal (right) responses of the inclined soil model forseveral angles of base inclination,

which lead to a reduction in the volume of the soil domain. It is clear that there is a shift in

the vertical and horizontal fundamental frequencies for each angle of inclination. The funda-
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mental frequencies are increased. This was anticipated as the average depth of the soil layer is

decreased, the fundamental frequency should increase due to the decrease in the denominators

of expressions (4.1) and (4.2).

The bedrock is then inclined by the same angles but with increasing the volume of the soil

layer due to increasing the right side depth of the layer by∆H. The corresponding results are

plotted in the bottom graphs of Figure8.2. Again, as expected, the fundamental frequencies of

the soil layer decrease as the average depth of the soil increases. It is clear that the fundamental

frequency of the vertical response has increased from 5.9Hz, for θ = 0◦, to around 12Hz, for

θ = 20◦, in the case of “volume decrease” where as it is decreased from 5.9Hz, forθ = 0◦,

to around 3.8Hz, forθ = 20◦, in the case of “volume increase”. The same observation is also

noticed in the case of the of horizontal loading.
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Figure 8.2: Dynamic response of a soil layer over inclined rock: vertical response of volume
decrease (top left), horizontal response of volume decrease (top right), vertical response of
volume increase (bottom left) and horizontal response of volume increase (bottom right).
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8.2.2 Dynamic behaviour of a two-layer soil medium with inclined inter-

face over horizontal bedrock

Up to now, horizontal layering of the soil medium is assumed.For example, Jones and Hunt

[105] examined the effect of a soil layer inclination over half-space on the surface vibrations

induced by an internal loading. A stepwise fashion method was employed in their simulation

to mesh the interface between the inclined layer and the underlain half-space. There is no need

for such meshing as unstructured mesh grids are employed here. An approximated solution for

estimating the fundamental frequency of a 2-layer soil profile was presented in section4.6.1

and is used here to obtain the reference solution for horizontal layers. In the current section,

the same example is revisited but with considering an inclined interface between the layers.

Hence, the dynamic behaviour of the 2-layer soil profile is re-examined. The configurations of

the model are illustrated in Figure8.3. The upper layer is first inclined with angles of 5◦ and

7.5◦, respectively. This leads to a decrease of the right side thickness of the upper layer for the

left figure and an increase in the case of the right side figure,respectively. The fundamental

frequencies of the vertical and horizontal responses of thesoil profile are displayed in the upper

diagrams of Figure8.4, left and right, respectively.
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Figure 8.3: Schematic diagram of 2-layer soil profiles with inclined interface over horizontal
bedrock.

It is obvious that the fundamental frequencies are affectedby the inclination of the interface, in

comparison to the horizontal interface case. Those are increased in the top graphs and decreased

in the bottom graphs. However, there is no noticeable changerelated to the two angles of

inclination, which are very close to each other. Further inclination with larger angles would

probably affect the frequencies.
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Figure 8.4: Dynamic response of an inclined interface 2-layer soil over horizontal bedrock:
vertical response of volume decrease of upper layer (top left), horizontal response of volume
decrease of upper layer (top right), vertical response of volume increase of upper layer (bottom
left) and horizontal response of volume increase of upper layer (bottom right).

8.3 Harmonic vibration of a surface rigid foundation over

soil media with non-horizontal profile

Similar soil profiles are considered in this section with a surface rigid foundation subjected to

a harmonic loading. The effect of bedrock and soil layer interface inclination on the dynamic

compliances are investigated for various inclination angles.

8.3.1 Rigid foundation over soil layer over inclined rigid bedrock

An application related to the harmonic vibration of rigid foundations resting over a soil layer

overlaying horizontal rigid bedrock was presented in section7.6.2. The same example is revis-

ited again here but with considering an inclined bedrock. The dynamic response of the rigid

foundation is examined by comparing its behaviour with the reference case, with the horizontal

bedrock. The angle of inclination is increased leading to a decrease or an increase in the depth

of the right lateral boundariy. The dynamic compliances of the foundation are computed and

plotted against the dimensionless frequency; both terms are defined in section7.6.2.
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Figure8.5shows the horizontal and vertical compliances for the case where bedrock inclination

leads to a volume decrease (Figure8.1a). For the case where the bedrock inclination leads to

an increase of volume (Figure8.1b), the compliances results are reported in Figure8.6. For the

first case, the results of Figure8.5show the response of the foundation shifts to the right as the

angle of inclination increases. This was expected as the real part of the compliance represents

the stiffness and inertia of the soil, while the imaginary part represent the soil damping. As the

soil volume decreases, the soil resonance frequency increases. For the second case, Figure8.6,

the main remark is that as the depth of the right lateral boundary increases, the resonance fre-

quency of the soil decreases. The other remark is that the amplitude of the horizontal resonance

for the inclined base cases are much higher than for the reference case. This is more obvious,

as shown in Figure8.7, when plotting the normalised amplitudes of the vertical and horizontal

displacements.
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Figure 8.5: Compliances of surface rigid foundation over inclined rigid bedrock (volume de-
crease).
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Figure 8.6: Compliances of surface rigid foundation over inclined rigid bedrock (volume in-
crease).
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Figure 8.7: Variation of displacements amplitude with frequency: vertical response of volume
decrease (top left), horizontal response of volume decrease (top right), vertical response of
volume increase (bottom left) and horizontal response of volume increase (bottom right).
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8.3.2 Rigid foundation over 2-layer soil medium with inclined interface

over horizontal bedrock

In this section, the effect of a soil interface inclination between two layers over horizontal

bedrock on surface foundation compliances is examined. Theinterface is inclined in the same

manner as in section8.2.1. The total depth of the soil profile satisfies (H/B=4), whereB is the

half width of the foundation. The shear modulus of the bottomlayer is twice the shear modulus

of the upper layer. The soil densities, Poisson’s ratios anddamping ratios are considered the

same for both layers, (ρ1/ρ2=1), (ν1/ν2=1) and (β1/β2=1). The interface is thereafter inclined

by 5◦, 10◦ and 15◦ and the compliances of the foundation are plotted in Figure8.8. It is obvious

from Figure8.9that the interface inclination does not have significant effect on the natural fre-

quency of the soil profile. The variations of the complianceswith the dimensionless frequency

remain practically unchanged for all inclinations considered.
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Figure 8.8: Effect of soil interface inclination on compliances of surface rigid foundation.
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Figure 8.9: Variation of normalised displacements amplitude with frequency.

8.3.2.1 Effect ofµ1/µ2

Israil and Ahmad [133] presented a parametric study, using BEM, for the dynamic behaviour

of strip foundations overlaying a homogenous half-space, or a soil layer over half-space and a

soil layer over bedrock. The authors examined the effect of the material damping, the relative

stiffness between the soil layer and the half-space and the effect of stratum depth considering

only vertical loading. A similar parametric study is carried out in the current work to investigate

the dynamic response of surface strip footings over 2-layersoil media with inclined interface

overlaying bedrock. Horizontal and vertical excitations are considered. In the current section

the effect of the relative stiffness between the two layers is studied.

Both layers are assumed to have the same thickness in this section, H1/H2=1. The two layers

have 0.3 Poisson’s ratio and 0.05 damping coefficient. The ratio between their relative stiff-

nesses is taken 0.25, 0.5, 2 and 4. The dynamic compliances ofthe foundation are computed

and plotted in Figures8.10to 8.13for several angles of inclination of the interface between the

two layers. The case ofµ1/µ2=1 is excluded as it represents a homogenous layer over bedrock.

From the graphs of Figures8.10to 8.13, it is clear that very minor changes occur in the dynamic

compliances of the foundation, for all cases of relative stiffness, when the angle of inclination

is changed from 0◦ to 15◦ in increments of 5◦. As mentioned before, probably this is due to

the fact that the angles of inclination of the interface are not large enough to induce significant

changes in the dynamic compliances. The normalised displacements underneath the foundation

also confirm these remarks (Figure8.14).

163



Dimensionless frequency

R
e[

N
or

m
al

is
ed

V
er

tic
al

C
om

pl
ia

nc
e]

0 0.2 0.4 0.6 0.8 1
-0.2

0

0.2

0.4

0.6

0.8
θ=0
θ=5
θ=10
θ=15

ο

ο
ο

ο

Dimensionless frequency

-I
m

[N
or

m
al

is
ed

V
er

tic
al

C
om

pl
ia

nc
e]

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2
θ=0
θ=5
θ=10
θ=15

ο

ο

ο

ο

Dimensionless frequency

R
e[

N
or

m
al

is
ed

H
or

iz
on

ta
lC

om
pl

ia
nc

e]

0 0.2 0.4 0.6 0.8 1
-0.2

0

0.2

0.4

0.6

0.8

1
θ=0
θ=5
θ=10
θ=15

ο

ο
ο

ο

Dimensionless frequency
-I

m
[N

or
m

al
is

ed
H

or
iz

on
ta

lC
om

pl
ia

nc
e]

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8
θ=0
θ=5
θ=10
θ=15

ο

ο

ο

ο

Figure 8.10: Normalised compliances of the surface rigid foundation forµ1/µ2=0.25.
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Figure 8.11: Normalised compliances of the surface rigid foundation forµ1/µ2=0.5.
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Figure 8.12: Normalised compliances of the surface rigid foundation forµ1/µ2=2.
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Figure 8.13: Normalised compliances of the surface rigid foundation forµ1/µ2=4.
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Figure 8.14: Variation of normalised displacements amplitudes underneath the foundation for
µ1/µ2=0.25, 0.5, 2 and 4, from top to bottom.
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8.3.2.2 Effect ofH1/H2

The fundamental frequency of a layered soil strata is a function of the material properties and

the thicknesses of the layers, as it was shown in expressions(4.8a) and (4.8b). In fact the thick-

nesses of the soil layers have a major effect in the fundamental frequency of the soil profile.

They appear in the denominator in the form of(ρ1H1)/(ρ2H2) and each layer thickness is in-

cluded in the termsf1 and f1/ f2, implicitly. Therefore, the effect of the ratio of the relative

thicknesses of the two layers on the dynamic compliances of the foundation overlaying a 2-

layer soil profile with an inclined interface over bedrock isinvestigated here. Poisson’s ratio,

damping ratio and soil densities are considered the same forboth layers. The only difference

in material properties is the ratio of the relative stiffness, µ1/µ2, it is taken as 0.25. The total

depth of the stratum is kept constant as 4B. The ratio of the layer thicknessesH1/H2 is varied

to take the values; 0.25, 0.333, 0.6, 1, 1.67, 3 and 4. For eachratio, the interface is inclined by

the angles 5◦, 10◦ and 15◦ in a way to decrease the volume of the upper layer. The dynamic

compliances of the foundation are shown in Figures8.15-8.21.

The results show that the interface inclination has an influence on the dynamic compliances,

especially at low values ofH1/H2. For example, forH1/H2=0.25, the real and imaginary parts

of the dynamic compliance decrease when the angle of inclination θ increases. Moreover,

the peak values show slight shifts with respect to the dimensionless frequency. The indicated

changes are also obvious forH1/H2=0.333 andH1/H2=0.6. However, forH1/H2=1, 1.67, 3

and 4, the interface inclination leads to very little changein comparison to the previous cases.

Once again, these conclusions are confirmed by the results ofthe normalised displacements

underneath the foundation, shown in Figures8.22and8.23, where the effect of the interface

inclination is clearer forH1/H2<1.
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Figure 8.15: Normalised compliances of the surface rigid foundation forH1/H2=0.25.
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Figure 8.16: Normalised compliances of the surface rigid foundation forH1/H2=0.333.
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Figure 8.17: Normalised compliances of the surface rigid foundation forH1/H2=0.6.
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Figure 8.18: Normalised compliances of the surface rigid foundation forH1/H2=1.
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Figure 8.19: Normalised compliances of the surface rigid foundation forH1/H2=1.67.
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Figure 8.20: Normalised compliances of the foundation forH1/H2=3.
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Figure 8.21: Normalised compliances of the surface rigid foundation forH1/H2=4.
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Figure 8.22: Variation of normalised displacements amplitudes underneath the foundation for
H1/H2=0.25, 0.333, 0.6 and 1.
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Figure 8.23: Variation of normalised displacements amplitudes underneath the foundation for
H1/H2=1, 1.67, 3 and 4.

173



8.4 Surface ground vibration reduction by wave barriers

Various shapes of wave barriers are considered in the following section to show the flexibility

of the numerical model in dealing with complex geometries. Then, the case of wave reduction

by an inclusion, soft or rigid embedded mat, is considered.

8.4.1 Vibration reduction by wave barriers of various shapes

Wave reduction, either by empty or in-filled trenches, is almost dominated by the use of rectan-

gular shape trenches, wave impedance blocks or by installing piles. They have proved success-

ful in achieving the desired level of ground vibration reduction. However, other shapes have

not been usually considered due to either installation difficulties or other practical considera-

tions. This section aims to investigate the efficiency of rectangular inclined barriers, triangular

barriers, L-shape barriers and trapeziums barriers as illustrated in Figure8.24a.
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Figure 8.24: Schematic diagrams of wave barriers and the problem configuration.

First, a rectangular concrete in-filled trench is used to provide an idea about its effectiveness

on wave reduction and to be used for comparison to various wave barriers. The length and the

depth of the domain are taken 14λR and 3λR, respectively, (Figure8.24b). The load is applied

at a distance of 3λR from the centre of the barrier and 1λR from the left lateral boundary of the

domain with a frequency of 20Hz. A zone of 10λR is permitted after the barrier’s centre, it is

reported in reference in [125] that good screening effect is achieved for a zone of 10λR after the

trench. The soil density, shear modulus and Poisson’s ratioare 1700kg/m3, 20MPa and 0.25,

respectively, with a damping ratio of 2.5%. The vibration reduction at the surface of the model is

assessed by computing the average amplitude reduction factor as a global measure. For in-filled

concrete trenches, Ahmad and Al-Hussaini [125] proposed a normalised depth of the trench of

1.2; except for normalised width less than 0.3 as it achieves less than 40% reduction (see Figure

8.25a). The normalised dimensions, with respect to the Rayleigh wavelength, of the rectangular

barrier are varied as in Figure8.25aand their screening effects are assessed. Next, the barrieris

inclined by an angle of 5◦, 10◦ and 15◦ toward and outward the point of application of the load.
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The reason for choosing such low angles is that this could happen during the installation process

as it is not always guaranteed to maintain the vertical orientation when digging the trench in the

field and thus it is worth investigating the influence of its inclination on its screening effects.

The normalised depth of the barrier is then increased to 2 fora normailsed width of 0.4 and

the results are shown in Figures8.26aand8.26b, respectively. In the diagrams, the caseθ=0◦

refers to a vertical barrier. The results show that the performance of the barrier is not affected

by the inclination and almost the same reduction level is achieved for all cases.

Normalised depth

A
ve

ra
ge

am
pl

itu
de

re
du

ct
io

n
fa

ct
or

0 0.5 1 1.5 2
0.2

0.4

0.6

0.8

1
w=0.3
w=0.4
w=0.5
w=0.6

(a) Rectangle barrier

Normalised depth

A
ve

ra
ge

am
pl

itu
de

re
du

ct
io

n
fa

ct
or

0 0.5 1 1.5 2
0.2

0.4

0.6

0.8

1
w=0.3
w=0.4
w=0.5
w=0.6

(b) Triangle barrier

Figure 8.25: Effect of barrier shape on screening efficiency.
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(b) Inclined barrier (c) in Figure8.24a

Figure 8.26: Effect of barrier inclination on reduction efficiency.

The triangular shape barrier is then used where the base and the depth of the triangle are varied.

The results are plotted in Figure8.25bwhere the same trend is obtained for all cases. This type

of barriers reduces considerably the vibration level. However, the achieved reduction level is

lower than for the rectangular barrier of the same width. If this type is used then the depth of

the barrier could be increased to achieve better reduction level. For example, a level of around

60% is achieved for a triangular shape barrier with a normalised width of 0.5 and a depth of

2. The same level is achieved by rectangular barriers of 0.5 width and 1.2 depth. In spite of

the larger depth of the triangular barrier, it requires lessarea compared to the rectangular barrier.
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The L-shape in-filled trench, which could be considered as a retaining wall, is used here and

it achieved between 40% to 60% reduction level in both cases of its shape as shown in Figure

8.27. The base of the barrier, the normalised embedded widthe, does not have significant effect.

Maintaining low normalised embedded width,e≈ 0.4, is enough to achieve a reduction level of

around 50%.
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(a) L-shape barrier (e) in Figure8.24a
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(b) L-shape barrier (f) in Figure8.24a

Figure 8.27: Effect of L-shape barriers on screening efficiency.
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(a) Trapezium shape barrier (h) in Figure8.24a
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(b) Trapezium shape barrier (g) in Figure8.24a

Figure 8.28: Effect of trapezium shape barriers on screening efficiency.

Trapezium blocks are used then by reversing their position.The narrow normalised base is

taken as 0.2 and the large base is increased according to the angle θ . Good reduction level

is obtained by using this type of trenches, see Figure8.28, due to their large contact surface.

However they are difficult to build on site and engineers may prefer in this case to increase the

dimensions of the rectangular trench to obtain a similar level of reduction, as it is more practical.

For comparison purpose, the normalised area of the barriers, with respect to a unit area of the

Rayleigh wavelength, is calculated and plotted in Figure8.29against the average amplitude re-

duction factor for all shapes, excluding the inclined ones.A level of 60% reduction is achieved
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in the case of rectangular barriers for normalised area of around 0.6. However, the triangular

barriers reduced the vibration by 40% for normalised area ofaround 0.4. The level of reduc-

tion could be increased by maintaining a normalised width of0.4 and increasing the normalised

depth to more than 1.2. This is also obtained by the L-shape barriers but with higher normalised

area, 0.8 to 1.2. The trapezium blocks reduced the vibrationto the same level achieved by the

rectangular barriers but with higher normalised area; between 0.6 and 0.8.
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Figure 8.29: Effect of normalised area of the barrier on the screening efficiency.

The numerical results showed that good level of vibration reduction could be obtained by using

for example triangular barriers. For a normalised width anddepth of 0.5 and 1.2, respectively,

reduction levels of around 50% and 36% are achieved for rectangular and triangular barriers.

The corresponding normalised areas are 0.6 and 0.3, respectively. Nonetheless, the reduction

level achieved by the triangular barrier could be increasedto 50% by increasing its depth to 2.

In spite of that, its normalised area, 0.5, is still less thanthe area of the rectangular barrier.

8.4.2 Vibration reduction by an inclusion

Elastic slab mats have been in use for vibration mitigation from railway systems. For example,

Cui and Chew [134] investigated the effectiveness of a floating slab on reducing the transmit-

ted forces to the ground due to a stationary harmonic load anda moving load. They indicated

that the floating slab is very effective for frequencies larger than 1.5 of the designed resonance

177



frequency. Hussein and Hunt [135] modelled floating-slab tracks on rigid foundations by ac-

counting for moving loads. Xin and Gao [136] investigated the efficiency of an elastic layer

inserted between slab track and bridge on the transmitted vibration to the bridge. They con-

cluded that there is amplification in the vibration level associated with certain frequencies. The

effect of the slab stiffness on the rail and the slab displacement is also studied in the previous

reference. In fact, the application of an embedded mat givessimilar results obtained for the

floating slab where an increase in the vibration level is encountered below a certain frequency.

In fact, this depends on the depth of the mat as it shown in the following analysis. The mat

reduces the vibration level and an intersection frequency is identified depending on the depth of

the mat.

To examine this, a soil domain of 8λR and 3λR in length and depth (as depicted in Figure8.30),

respectively, is used in the analysis with the same materialproperties as in the previous section.

The domain is subjected to a surface harmonic load of 10Hz frequency. A mat, of soft or rigid

material properties, of length of 1λR and thickness of 0.5m is installed at various normalised

depths. The density, elasticity modulus and Poisson’s ratio of the soft mat are 150kg/m3, 1MPa

and 0.25 while concrete properties are used for the rigid mat. The area under the displacement

curves at the surface of the model is computed and normalisedwith a unit area as shown in

Figure8.31. It is clear from the left graph of Figure8.31 that there is a reduction before a

certain depth of the rigid mat then amplification takes place. In fact, amplification happened at

a normalised depth of around 0.5 which is close to the critical depth of the domain. In the case

of the soft mat, amplification happened before the critical depth and reduction occurred with

depths around the critical depth of the model. In other words, reduction in the vibration level is

achieved for normalised depths of the rigid mat of less than 0.45 while amplification happened

in the case of soft mat. In addition, the rigid mat amplified the response between 0.5 and 1 of

the normalised depth while reduction is achieved in the caseof soft mat. Similar response is

found after a normalised depth of 1 for both mats.
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Figure 8.30: Schematic diagram of surface vibration reduction by an inclusion.

Next, normalised depths of 0.5 and 0.75 are considered and the frequency of the harmonic load

is varied. The only difference from the previous case is the imposed frequency. As it is shown

in right graph of Figure8.31, for the case of 0.5 normalised depth, amplification occurs.For

the soft mat case, a slight reduction level is achieved before a frequency of 5Hz after which the

response is amplified. The case of 0.75 normalised depth showed that the response is amplified

in the case of rigid mat and reduced, to achieve around 35% reduction level, in the case of soft

mat.
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Figure 8.31: Comparison of the efficiency of soft and rigid mats on surface vibration reduction.

8.5 Harmonic loads on railway embankments

The high demand for railways as a major transport mode has given rise to various issues with

ground induced vibration being one of them. Some challengesare usually encountered such

as crossing soft soil deposits, passing through urban areas, and the level of induced vibrations.
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High level of vibration and amplification could happen in case of coincidence of the passing

frequency with the natural frequency of the soil deposit or if the depth of the strata is close to

the critical depth. A very popular type of railway lines is the embankment structure. Typical

railway embankments are of low and intermediate heights with slopes of 35◦. This leads to an

increase of the base of the low embankment by a factor of 1 fromeach side compared to the

top width. This factor is increased to 2 in the case of intermediate height embankment,i.e. the

width of the base of low height embankment is around 21m whereit is around 35.6m in the case

of intermediate height embankment. In other words, the surface of the occupied land is three

times and five times the width of the top of the embankment in the case of low and intermediate

height embankments, respectively. As a matter of fact, thisis costly where, indeed, it becomes

one of the important factors to consider when passing through urban areas. The purpose of

the current section is to examine the level of vibration induced by surface harmonic loads in

addition to present some alternatives where savings in boththe amount of fill materials required

for the embankment and the occupied space are significantly reduced. More specifically, the

effect of the embankment geometry on surface vibrations. Anintroduction is first given about

various configurations of possible railway embankments. Numerical results are then presented

in sections8.5.1and8.5.2.

The developed finite element model is used here to simulate vibrations induced by harmonic

loads on several configurations of the railway embankments,10 cases are studied. Figure8.32

depicts the schematic diagrams of these cases. The first caserepresents a low embankment, and

it is shown in Figure8.32a. The soil layer underlain low embankment is improved by installing

Constant Modulus Columns (CMC) as it is depicted in Figure8.32d. An additional two cases

correspond to intermediate height embankment. Highly Compacted Geomaterials with Retain-

ing Walls (HCG-RW) are used in Figures8.32band8.32e, instead of traditional embankments.

Constant Modulus Columns are used to stiffen the underlain soil. The last two cases represent

embedded HCG-RW as it is shown in Figures8.32cand8.32f. For each case, two lines of har-

monic loads of magnitude 83kN are applied at the surface to simulate two passing trains, in this

work only harmonic stationary loads are considered. Each line consists of two axis point loads.

Examples of the geometries used in the low embankment and thelow HCG-RW are shown in

Figure8.33.
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Figure 8.32: 2D configuration of railway embankment over soil layer resting on bedrock.
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Figure 8.33: Schematic diagrams of loads on railway embankments.

8.5.1 Railway embankment

A medium-stiff low height embankment is first considered. The height of the embankment is

taken as 5m where it is inclined with an angle of 35◦ leading to 7m width at the top and 21m at

the embankment-underlain soil layer interface as it was depicted in Figure8.33. It is a typical

and common practical case. The numerical model is used to simulate the behaviour of the do-

main under stationary harmonic loading. The domain is meshed into 3-node triangular elements

with element size less than one-tenth of the Rayleigh wavelength in each layer. Distances of

3λR and 0.5λR are taken beyond the lower edges of the embankment on the right and left sides,
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respectively. The embankment is assumed to be overlaying a soil layer of 4λR in depth which

rests on rigid bedrock. Typical unstructured triangular mesh grids of the low embankment and

the underlain soil, for a load frequency of 18Hz, is presented in Figure8.34. Material charac-

teristics are tabulated in Table8.1.

ρ (kg/m3) µ (MPa) ν β (%)
Embankment 1700 18.8 0.33 2.5
Soft soil 1500 7.4 0.35 2.5
HCG 2000 83.3 0.20 1.0
CMC/RW 2500 6521×106 0.15 1

Table 8.1: Material properties

The vertical displacements curves at the surface are computed for the 3λR distance beyond the

right side edge of the embankment. Comparing, for example, two displacement curves does not

give a general and obvious idea about the response. Hence, the area underneath each vertical

displacement curve, for each applied frequency, is computed and used for comparison purpose

as it gives better indication about the level of vibration. Figure 8.35ashows the results for a

range of frequencies up to 26Hz. Next, the soil layer underneath the embankment is stiffened

by installing CMC, of 10m depth, 0.5m of width and at intervals of 1.5m. As it is shown in

Figure8.35a, both cases exhibit high level of vibration for low frequencies, up to 3Hz, where it

is dramatically reduced to very low levels with increasing the frequency.

Figure 8.34: Example of unstructured triangular mesh for low embankment: F=18Hz.

To distinguish the difference in response for both cases, the area underneath the vertical dis-

placements curves of the low embankment over stiffened soilis normalised by the area under

the vertical displacement of low embankment. The results are shown in Figure8.35b. It is clear

that the level of vibration is reduced when considering the CMC. However, there is an ampli-

fication associated with some frequencies. In fact it is related to the fundamental frequency of
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the low embankment, which is around 10.4Hz, by considering the embankment as a soil layer

over rigid base. An interesting example was presented by Adam and Schmid [137] where the

BEM is used to describe the semi-infinite extent of the domain. It consisted of a railway em-

bankment supported by a vertical retaining wall only from one side due to a restriction in the

nearby property. They computed the response on the surface of the embankment and also for

some distance beyond the vertical wall. Resonance occurredin both cases for frequencies close

to the fundamental frequency of the embankment. Their modelwas based on a half-space one.

The height of the embankment is further increased to 10m to consider an intermediate height

embankment. The length of the base of the embankment is also increased in this case to be-

come 35.6m. This case does not represent only an increase in the volume of the fill materials

required to construct the embankment but also significant increment in the area of the occu-

pied land by the embankment. In addition to that, the distance needed after the embankment

where regulatory design codes allow constructing residential buildings is as well affected. The

soil under the intermediate height embankment is again stiffened by CMC. The area under the

vertical displacement curves of the latter case is normalised by the area under the displacement

curve of the intermediate height embankment. The results are shown in Figure8.35. As for the

low embankment height, there is amplification in the response associated with the fundamental

frequency of the intermediate height embankment which is around 5.2Hz.
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Figure 8.35: Vibration reduction by railway embankment over soil layer resting on bedrock.

As depicted in Figure8.35, two main remarks are observed. The first one that the area un-

der the vertical displacement curve is decreasing with increasing the frequency for the four

cases. In other words, low frequencies generate significantlevel of vibrations in comparison

to frequencies higher than 3Hz. The other remark is that whennormalising the area under the

displacement curve two peaks appear which are associated with the fundamental frequency of

the embankment. De-amplification is more pronounced in the case of intermediate height em-

bankment. This may be justified by the effect of the height of the embankment where waves are

damped and reduced in magnitude.
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8.5.2 Other alternatives

It is difficult sometimes to construct an embankment due to, for example, the presence of ex-

isting buildings and infrastructures where space is very limited and restrictions apply. The high

price of the land is also another important factor even in thecase of low heights. Other alter-

natives could be used instead of the embankment with an additional treatment. This treatment

could be achieved by improving the soil with geosynthetic materials or as it is done here by

applying HCG. For example, a method consisting to constructan embankment of HCG and

supported by RW could be used. This will save two-thirds of the base size of the embankment

required to construct a low embankment and 80% in the case of an intermediate height em-

bankment. In terms of area, a saving of half of the area is obtained if the low embankment is

replaced by HCG-RW while two-thirds are saved if an intermediate height HCG-RW replaces

the intermediate height embankment. Here, the low embankment is replaced by HCG-RW, with

the material properties assumed in Table8.1. The soil under the HCG-RW structure is also

stiffened by CMC and the results are presented in Figures8.36aand8.36b. Again, the level of

vibration decreased by increasing the load frequency, for the studied range of frequencies. In

the case of CMC, there is an amplification in the response and it is corresponding to the natural

frequency of the HCG-RW structure, around 16.7Hz. The intermediate embankment is also re-

placed with HCG-RW with the same height. In addition, CMC areinstalled in the soil under the

intermediate height HCG-RW with CMC. The results are depicted in Figures8.36cand8.36d.
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Figure 8.36: HCG-RW cases.

Another common case is the embedded HCG-RW as the one depicted in Figure8.32c. It is han-

dled as in previous cases with and without CMC. The low heightis only considered in this case.

The results are presented in Figure8.37. The purpose of such example is to give an indication

about the response when considering such a structure with and without CMC. It is clear that

the case of embedded HCG-RW with a strengthened soil medium by CMC gives better level of

reduction of vibration as the normalised area is lower than for the case of only embedded HCG-

RW. Amplification does also appear at the fundamental frequency of the HCG-RW structure.

Contour plots of the vertical displacements of several cases are shown in Figure8.38. It is

clear that the displacement level decreased in the strengthened soil case both underneath the

embankment and beyond it. The contour plots show symmetrical profiles, with respect to the

vertical axis of symmetry of the embankment, despite the fact the problems are not symmetrical,

thanks to the good performance of the transmitting boundaryconditions.
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Figure 8.37: Embedded HCG-RW cases.
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Figure 8.38: Contour plots of the vertical displacements, F=18Hz.
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8.6 Concluding remarks

Various numerical examples are analysed in this chapter using the TLM model with unstruc-

tured mesh grids. The main remarks deduced from the results are listed below.

• The fundamental frequency of soil media with non-horizontal profile is determined nu-

merically. It is shown that there is a significant change in the fundamental frequency of

soil layer over inclined base. This is also confirmed by the application of rigid founda-

tion over soil layer over inclined bedrock. The fundamentalfrequency of a 2-layer soil

medium with inclined interface over horizontal bedrock is slightly affected by the angle

of inclination. In the case of rigid foundation over 2-layersoil medium with inclined

interface over horizontal base, the relative thicknesses of the soil layers has a noticeable

effect, for ratios less than 1, on the dynamic behaviour of the foundation.

• Vibration reduction by various shapes of wave barriers is also studied. Triangular wave

barriers could be used as they lead to similar reduction levels of the rectangular barriers. A

reduction in the area of the barrier is also achieved. Other types of barriers also achieved

good reduction level but with a significant increase in the area of the barriers in addition

to installation difficulties.

• The vibration induced by stationary harmonic loads representing railway loads is also

investigated. Various configurations of railway embankments are used showing the flexi-

bility of the numerical model when using unstructured triangular mesh grids.

In summary, the developed model is capable to simulate wave problems in a two-dimensional

configurations thanks to the flexibility offered by unstructured mesh grids and to the good per-

formance of the implemented transmitting boundary conditions.
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Chapter 9

Conclusions and Prospects

A numerical model for simulating wave propagation in soil media due to the effect of harmonic

loads has been developed in the current work. The model is two-dimensional under the as-

sumption of plane strain condition. The soil medium can be homogeneous or layered and it

may overlay rigid bedrock or half-pace. A more attractive version of the finite element model

is developed where unstructured mesh grids are employed to mesh the irregular region. This

attracts practitioners as they are usually interested in dealing with models of complex geome-

tries. Furthermore, the TLM is modified in this dissertationwhere a faster version is proposed

by reducing the contributing number of eigenmodes in the solution. This has led to a more

efficient model in terms of computational cost. Major conclusions are summarised below.

• For soil media overlaying rigid bedrock, a finite element model has been developed in

which wave radiation to infinity through the vertical lateral boundaries, is ensured through

nodal forces which are derived using the thin layer method (TLM).

• For soil media over half-space, the TLM has been coupled withthe paraxial boundary

condition to create a model capable of simulating wave radiation with respect to both

lateral directions and depth.

• Both models, soil media over bedrock and soil media over half-space, have been validated

through the consideration of various test examples investigating the dynamic behaviour,

in terms of natural frequencies, critical depths, surface foundation compliances and other

useful comparisons to past published work.

• Various parametric studies have allowed us to deduce guidelines such that the developed

numerical tools lead to correctly model problems of practical interest, particularly in the

case of soil media over half space. In fact, for this case a minimum depth for the ho-

mogeneous half space and a minimum thickness of a buffer layer in the case of layered

half-space are required in the finite element model.

• Practical engineering problems usually include complex geometries. In order to make

the developed numerical tool flexible, unstructured mesh grids based on linear triangular
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finite elements are incorporated. As shown in this dissertation work, it allows considering

discontinuities of various shapes as well as non horizontallayering of soil profiles or non

horizontal rigid bedrock.

• For large-size soil domains, in terms of the Rayleigh wavelength, and for wide ranges of

analysis frequencies, the developed models lead to high computational effort. In order to

reduce this effort, a modified version of the transmitting boundary conditions has been

proposed. It was shown to lead to good quality results if the included eigenmodes are

carefully selected.

What is achieved in this dissertation shows that a lot of workremains to be done. Some obvious

tasks are identified as follows:

• Enhancement of the PBC could be achieved by improving the approximate impedance

matrix of the half-space. This could be done by taking more terms in the Taylor series

approximating the impedance matrix to prevent the generation of negative energy in the

model.

• The proposed model could be extended to develop a numerical tool based on anti-place

shear and axisymmetric cases. Extending to three-dimensional cases would be even more

attractive as it allows dealing with more practical problems. Modifying the corresponding

transmitting boundaries could also be formulated for thesecases to reduce the computa-

tional effort.

• Last, investigating more effective ways to absorb wave energy at the artificial boundaries

of the computational domain would be another option, especially if it leads to better

quality results and low computational cost.
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Appendix: The Moore-Penrose
Pseudoinverse

The solution of a linear systemAx= b is straightforward if the matrixA is square. However,

if A is rectangular, the Moore-Penrose pseudoinverse or the genralised inverse simplifies the

problem by treating it in a least square manner. It was studied first by Moore in 1922. Years

later, Penrose [138] rediscovered Moore’s work, which was named: the Moore-Penrose pseu-

doinverse.

The Moore-Penrose pseudoinverse of a complex rectangular matrix A of dimension(m× n)

is denoted byA†(n×m). It satisfies some of the characteristic properties of inverses. Penrose

[138] summarised some of the characteristics of the pseudoinverse as in the following

AA†A= A. (1)

A†AA† = A†. (2)

(AA†)∗ = AA†. (3)

(A†A)∗ = A†A. (4)

The∗ refers to the conjugate transpose of the matrix.

A†A= (A∗A)†A∗A. (5)

AA† = (AA∗)†AA∗. (6)

Penrose [138] showed that the unique matrix,A†, satisfies equations (1) and (3). The general

solution of the linear systemAx= b is

x= A†b+(I −A†A)y, (7)

wherey ia an arbitrary vector.
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