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Abstract

Wave propagation in soil media is encountered in many eeging applications. Given that
the soil is unbounded, any numerical model of finite size rmedtide absorbing boundary con-
ditions implemented at the artificial boundaries of the don@allow waves to radiate away to
infinity.

In this work, a finite element model is developed under plar&rs conditions to simulate
the effects of harmonic loading induced waves. The soil @hdmogeneous or multi-layered
where the soil properties are linear elastic. It may overigigl bedrock or half-space. It may
also incorporate various discontinuities such as foundatiwave barriers, embankments, tun-
nels or any other structure.

For the case of soil media over rigid bedrock, lateral wadateon is ensured through the im-
plementation of the consistent transmitting boundarisgguthe Thin Layer Method (TLM),
which allow replacing the two semi-infinite media, on the beid right of a central domain of
interest, by equivalent nodal forces simulating their &ffé’hose are deduced from an eigen-
value problem formulated in the two semi-infinite lateraldiae

In the case of soil media over half-space, the Thin Layer Mietls combined to the Parax-
ial Boundary Conditions to allow the incoming waves to réeliaway to infinity laterally and
in-depth. The performance of this coupled model is enhabgedcorporating a buffer layer
between the soil medium and the underlain half-space.

For extensive analyses, the eigenvalue problem relatdtetdltM may become computation-

ally demanding, especially for soil media with multi-wasegjth depths. As the TLM involves

thin sub-layers, in comparison to the wavelength, the sizeeoeigenvalue problem increases
with increasing depth. A modified version of the TLM is propdsn this work to reduce the

computational effort of the related eigenvalue problem.

This dissertation work led to the development of a Fortranmater code capable of simulating
wave propagation in two-dimensional soil media models wither structured or unstructured
triangular mesh grids. This latter option allows considgrsoil-structure problems with ge-
ometrical complexities, different soil layering configtioms and various loading conditions.
The pre- and post-processing as well as the analysis stegya#l aser friendly and easy.
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Chapter 1
Introduction

Wave propagation phenomenon is encountered in severaleergig fields such as soil-structure
interaction, seismology, electromagnetics, fluid-suetinteraction and in many other areas.
The domain in such problems is usually unbounded and for ake sf modelling, the un-
bounded domain must be represented by a bounded model efdirét. The domain is therefore
truncated at some distance and the infinite extent of the hi®dehieved by imposing special
boundary conditions which allow wave radiation towardsftrefield, with minimal reflection

at the artificial boundaries.

A hybrid finite element model is presented in the context of thesis by coupling the con-
sistent transmitting boundaries, known as the Thin Layethigiet (TLM), applied at the lateral
boundaries of the domain, and the Paraxial Boundary CamditfPBC), applied at the bottom
boundary of the model, to simulate wave propagation in selia.

1.1 Motivation

A variety of commercial software packages, either in thgudency domain or in the time do-
main, are available to engineers and researchers to ddalwane propagation problems in
unbounded soil media and for soil-structure interactiabfgms.

For example, Lysmeet al. [1] developed a finite element program, called FLUSH, to deal
with seismic soil-structure interaction problems. FLUS&hAI$ with soil layer or layered soll
media over rigid bedrock. Plane strain quadrilateral fielements are used for modelling the
bounded domain and the TLM is used at the lateral boundarigisiulate the horizontal semi-
infinite extent of the domain. Multiple nonlinear soil profes for equivalent linear analysis
can be used. This allows to use a different damping in eachegie

More recently, Schevenett al. [2] of KU Leuven, produced an educational toolbox in MAT-



LAB, ElastoDynamics Toolbox EDT version® which has the capability of dealing with wave
propagation in soil media with emphasis focused on site dicgtion problems. It also deals
with the computation of dispersive surface waves in layes@it and the calculation of the
forced response of the soil due to the application of harmand transient loadings. The TLM
and the direct stiffness matrix approach are coupled teesmgblems in half-space media.

The motivation of this research project is to model wave pgapion in unbounded soil media
by producing a numerical code which offers the potentialdgaldvith different types of prob-
lems of practical interest to engineers. Indeed, models siituctured or unstructured mesh
grids can be used to analyse wave propagation in soil medimpfenous or layered, over-
laying bedrock or half-space, and capable of containingasiisnuities of complex geometries.
Furthermore, a more efficient version of the TLM, in terms o@fhputational cost, is proposed
in this work by reducing the number of eigenmodes in the nabmethod.

1.2 Outline of the thesis

An introduction and an outline of the dissertation are pnéeset in the current chapter where a
statement of the contribution is also given.

A detailed survey on absorbing boundary conditions is prieskin ChapteR. It covers differ-
ent methods and approaches for treating artificial bouadars this research work is related
to elastodynamic media, the literature review mainly f@susn this topic.

The TLM is adopted in this research in the frequency domanteuiplane strain conditions.
The theoretical background and mathematical formulatidheomethod are illustrated in detail
in Chapter3. The TLM is coded in FORTRAN in a numerical programme aimiogimulate
wave propagation in soil media overlaying rigid bedrock artending to infinity in the hori-
zontal direction.

Parametric studies and validation tests are carried outap@r4. The continuity of the surface
displacements for symmetrical and non-symmetrical domiaifirst ensured. Then, the numer-
ical code is validated against the theory of 1D dynamic raspmf a soil deposit overlaying
bedrock in the following sections. The resonance phenomand the critical depth concept of
a soil layer over rigid bedrock are obtained by the numegdode and the results are compared
with theoretical predictions. Simulating wave propagaiio layered soil media is addressed
theoretically and numerically. Unstructured triangulagsi grids are also used to provide a
more practical tool to analyse soil-structure interacpooblems in the frequency domain.



The TLM is coupled with the PBC in Chapt&to simulate wave propagation in unbounded soil
media. This chapter starts by providing a literature revaemthe PBC as well as a discussion on
their efficiency and the potential improvements. The foatioh of the PBC is also presented.
The stiffness matrix of half-space elements is derived a&dipin combination with TLM, to
model the half-space effect.

Validation numerical examples are provided in Chaptésr dealing with both half-space and
layered half-space models. The effect of the half-spacthdgfirst discussed. Improvement of
the TLM-PBC coupled model is achieved by incorporating ddsuayer attached at the bottom
of the last soil layer with the same material properties eftiblf-space. The importance of this
artificial layer is shown in the application of a rigid fouriden over layered half-space. Further
stability issues with respect to Poisson’s ratio are adee e the following section. The chap-
ter ends by drawing concluding remarks derived from thegresl numerical examples.

The idea of reducing the number of contributing eigenmodiisinvthe context of the TLM
is introduced in Chaptef. Some modifications are first applied to the original appnda&ing
into account the change of the diagonal and modal matricesducing the diagonal length and
the number of columns, respectively. The effect of varioasemumbers in terms of transmit-
ting energy through the artificial boundary is investigat&étle number of contributing eigen-
modes is reduced to half, quarter and only three, as sughmsthe literature 3] for the last
case. Some applications are then presented demonstitaiefficiency of this concept for sev-
eral problems where the soil is underlain by rigid bedrock.

The benefits of incorporating unstructured mesh grids apéodrd in ChapteB where a de-
tailed parametric study is conducted using an automati¢igeserator. The flexibility of such
mesh grids is shown through the presented numerical examfplications are then presented
showing the flexibility offered to practitioners to deal wjpproblems with complex geometries
where uniform or structured mesh grids are not practical.

Finally, conclusions of the current work are listed in Cleayt Potential future research ideas
are also highlighted.

1.3 Contribution statement

The main objectives of this thesis are as follow:

e Produce a numerical tool which enables engineers to simwave propagation in un-
bounded soil media with emphasis on dynamic soil-strudntegaction problems. The
package will allow engineers to employ structured as wellrestructured mesh grids as
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they may deal with complicated geometries including angtgpshape of discontinuity
within the model. This is achieved by incorporating the iotlo employ unstructured
triangular mesh grids generated by an automatic mesh genera

Explore the efficiency of the TLM-PBC coupled model for simtirhg wave propagation
problems in unbounded soil media, which is reported in tieediure to suffer from poor
performance. Improvement is achieved here, especiallyarcase of layered half-space
models, by introducing a buffer layer which separates tkatlon of the PBC from the
overlain domain. This technique is then applied to exanedsehaviour of rigid foun-
dations over layered half-space media.

Investigate the effect of reducing the number of contrinyigigenmodes within the con-
text of the consistent transmitting boundaries in ordeethuce the computational effort.
The original solution contains all wavenumbers, we aim tluce that number and exam-
ine the efficiency of the procedure.



Chapter 2

Literature review

2.1 Introduction

Wave propagation occurs in many engineering problems ededavith soil-structure interac-
tion, oscillating machines, railway geotechnical engrimggand geotechnical earthquake en-
gineering, and other fields. It has been intensively studigderically through the use of the
Finite Element Method (FEM) over the past four decades dueedifficulties in formulat-
ing analytical solutions. This is related to several reasench as the complex geometry of the
problem and the size of the domain especially in the case & wabpagation within unbounded
domains. Even with the recent advances in computer syssahgjons to such problems are
not practical to achieve without treating the boundariestdunvolvement of an infinite number
of degrees of freedom. Spurious or reflected waves at thedaoies of a numerical model are
one of the challenges to overcome when modelling wave padgagproblems. Thus, when
modelling such problems an unbounded domain is usuallycepl by a bounded domain with
special absorbing boundary conditions to allow wave trassion through the infinite extent
of the domain. Hence, studying dynamic soil-structureraxtdon or wave propagation in un-
bounded soil media using the (FEM) requires artificial baurres to be placed at the boundaries
of the truncated domain. The purpose of the latter absoitbngdaries is to prevent or reduce
wave reflections to an acceptable engineering levels and allave transmission through the
artificial boundaries of the numerical model. The principlgective of these methods is to
approximate the radiation and attenuation laws of the wemeards infinity and apply the re-
sulting special conditions on the boundaries. It is wortmtim®ing that zero reflection is very
difficult to achieve. Eventually, the models are reducecemnmts of size so that the computa-
tional resources required are reasonable.

Different names have been in use for these conditions sudnaasmitting boundaries, non-
reflecting boundaries, absorbing layer method, silent batias and sometimes infinite ele-
ments. Let us call the special boundary conditions in thisptér as absorbing boundaries.



Basically absorbing boundary conditions have been classifi the literature into two wide
categories; namely the global or nonlocal and local proeiuThis classification is followed
in this chapter by expanding available methods within thigegorization.

A brief summary of the global schemes is introduced in sacZ@ Four main approaches
are distinguished, the boundary element method, the densisansmitting boundary method,
the scaled boundary finite element method and, finally, tlaetaxon-reflecting boundary con-
ditions. In sectior2.3, local boundary conditions are presented and classifiediafour cat-
egories namely; absorbing layers methods, high order lalesbrbing boundary conditions,
elementary transmitting boundary conditions and finally hfinite elements. Many papers
appear in the literature aiming to review various types afoabing boundary conditions em-
ployed in several disciplines and applications. Furthérimation can be found in references
[4,5,6,7].

In Figure 2.1, a general two-dimensional representation of an unbousdédnedium with
some discontinuities is depicted. To model the problem,raaio of interest is chosen where
the presence of rigid bedrock at the base of the model, or ibgepce of a half-space, ver-
tical lateral boundaries, homogenous or in-homogenouscani be encountered. Absorbing
boundary conditions would then be applied at the boundafi¢ise domain corresponding to
the adopted assumptions.

elly

tunnel raft foundation

i O | I

pile or barrier

Figure 2.1: Schematic diagram of an unbounded soil domaiblem example.

It should be indicated that in the context of the presentdttee survey, only absorbing bound-
ary conditions related to elastodynamics will be coverea.the following, a review on the



available absorbing boundary conditions that can be imeidad at the boundaries of the do-
main is presented in a chronological order.

2.2 Global Absorbing Boundary Conditions (ABC)

The namegglobal is gained because all boundary points are usually coupleshwadopting the
global methods. Generally speaking, these boundariesangrkas exact absorbing boundary
conditions owing to the fact that the solution at the ar@ficioundaries could be formulated in
an exact sense. The global boundaries are nonlocal in spatiae or in both, and in general
these boundaries are considered to perform better, in tefrafsorption of the impinging
waves, than the local boundary conditions. These methedswafvn for their superior accuracy
compared to the local methods. However, they can be conmuddly expensive. A review of
such methods is presented in the following.

2.2.1 The Boundary Element Method (BEM)

The method gained its name because of discretising the laoyinfithe problem into elements
as itis shown in Figur@.2

7 0o

Figure 2.2: Discretisation in the boundary element metloo@D unbounded volume.

The domain of interest is desctretised only at the bounsléegding to a reduction of the spa-
tial dimension by one and consequently in the total numbelegiees of freedom. However,
a fundamental solution to the governing equations must béadole. Difficulties are usually
encountered to compute the fundamental solution for amipmt materials. Nonetheless, the
BEM is well suited for modelling unbounded domains if suclolugon is available.



The BEM is a numerical technique for solving initial valu®plems based on an integral equa-
tion formulation. The displacement field is obtained by thiegral representation in terms of
boundary values and the equation is solved numericallynBary values are used to determine
displacements and tractions at any interior point of irggr&@s reported in referencd| |

This method was applied to various engineering applicatguch as; foundation engineering,
dynamic soil-structure interaction, wave propagation wibdation isolation, and many other
applications. A detailed review of the BEM including itsfimulation and applications could be
found in textbooks such as Brebleaal. [9], Manolis and Davies]0], Hall and Oliveto [L1]
and in some review articles such as Besktd pnd Liu et al. [13]. It is classified into two
categories, direct and indirect approaches. The displentnand tractions are used in the first
approach while only displacement quantities are used itattex. The numerical solution is ob-
tained by solving the integral boundary equation on thoseehts. Unlike the traditional FEM
and Finite Difference Method (FDM) where the discretisati® required in both the surface
and the interior of the domain, in the BEM the discretisai®only required on the boundary
of the problem, which leads to a reduction in the spatial disien of the problem by ond ().

In other words, the volume integrals are transformed intfase integrals in 3D case and the
surface integrals are reduced into line integrals in the @8ec Imposing absorbing boundary
conditions at the artificial boundaries is crucial in theecabthe FEM and FDM while the radi-
ation conditions to infinity is automatically taken into acnt in the BEM. Elastic or inelastic
soil behaviour is possible to consider within the framewairkhis method in the frequency and
time domain analyses. The boundary elements can be repgddgninterpolating shape func-
tions between the nodes of the elements. Inhomogenous @edisually tackled in the BEM
by sub-dividing the medium into homogenous and sub-hommgenegions and then adding
together the subdivisions.

The direct integral representation in the time domain ofdisplacement field; of a homoge-
nous, isotropic and linear elastic body of volumewith surfaceS, is written as

cij (&) ui(&,1) = /S[Uij (%, &,1) fi (x,t) = Fj (%, &, t)ui (x,t)] dS(x) . (2.1)
The frequency domain representation has the following form
G (£)u (8. 0) = [ Uy (6£,0) i (x @) = Fj (0 &, @) (x @)] dS),  (2.2)

wherew denotes the circular frequency, pok¥ S, pointé € VUS ¢j has the value of Kro-
necker’sgj in the case of <V and the value of BJ;j in the case of < S fj is the traction
vector,U;; andF;j are the fundamental elastodynamic displacement anddratgnsors, re-
spectively. The initial conditions and the body forces atg s zero, and the indicesand j take



the values of 1, 2 and 3 in the 3D case. The numerical solutioceplures of equation&.Q)
and @.2) are explained in referencé4.

In spite its advantages, the BEM is also characterised by stvawbacks. For example, densely
populated system matrices, generally speaking non-syrnualetare usually obtained from this
technique. Furthermore, nonlinearity can be taken int@awctin the framework of the time
domain BEM via incorporating the nonlinear FEM. Only lineasponse is accounted for in
the frequency domain. Another merit of the time domain BENh&t the sparse matrix, due
to the bounded support by the Green'’s function, is invertdgt once while in the frequency
domain boundary element method a full matrix is requirede@nverted at each frequency. As
a consequence, the computational cost is reduced.

Several attempts have been proposed to reduce the conopalagifort of this technique. For
example, Fu and Bouchoi§] introduced a method which incorporates the discrete Cseen
function with the boundary integral volume equation for 2Riglane problem. The solution
used the average Fresnel-radius approximation to volutegrations to reduce the numerical
effort by making the coefficient matrix sparser. The globeheralized reflection/transmission
matrix propagator method is adopted by Ge and ChAéhih order to save computer memory
and cpu time required for solving the global matrix. The éficy is further improved later
by Ge and Chenl7] through a direct computation of the global matrix propagathere the
calculation of the matrix propagator of each individualdais omitted.

Bouchonet al. [18] proposed a sparse approximation of the fully populatedisntd reduce
the computational effort and memory required to solve tloblem in 2D layered media. Their
reduction approach is based on keeping only the high madm#utries of the fully populated
matrix. The development of the Fast Multipole Method (FMMjsaable to speed up the solu-
tion process by reducing the memory requirement. This nuedlepends on an iterative solution
approach for a system of boundary element equations in ¢odgpeed-up the matrix-vector
multiplication during each iteration without building thdole matrix [L3]. Chaillatet al. [19]
formulated and applied a fast multi-level multipole bourydelement methods for 3D elasto-
dynamic problems in the frequency domain. This is extendethér by Chaillatet al. [20]

to multi-domain situations where alluvial basin is conséde An extension to include weakly
dissipative viscoelastic media has been carried out rgcbgptGrassoet al. [21] where the
authors proposed a damping dependent modification to chtbesaultiple truncation factor.
The dense matrices, which require more storage and congpeffort, associated with the BEM
are tackled by Messner and SchaBZ2][ A time stepping scheme, the Convolution Quadrature
Method (CQM), is employed in referenc2. Acceleration of the BEM, in the time domain for
elastodynamic problems, is achieved by employing the CQW@alerkin discretisation. Be-



sides the FMM, there exist other approaches to tackle thagmoof inefficiency of using only
the BEM. Some of these methods in the frequency domain arpréieorrected Fast Fourier
Transformation (FFT), as in referenc23], and the use of hierarchical matrices proposed by
Benedetti and AliabadiZ4]. On the other hand, the plane wave time domain methodology i
2D is extended to 3D wave equation in elastodynamics by Tedtaket al. [25]. It is worth
noting that special integration schemes are used in the BEdé¢rcome the singularity of the
fundamental solution.

2.2.2 The consistent transmitting boundary conditions

The theoretical and mathematical formulations of the @&ast transmitting boundary method,
or the Thin Layer Method (TLM), are presented in Chatas this method is adopted through-
out this dissertation. It should be noted here that the neonsistenis used as the exact so-
lution at the artificial boundaries is formulated with theitBnelements and the effect of the
infinite extent on the bounded domain is replaced by the etprt transmitting boundary con-

ditions. This section aims at providing an insight into tleeelopment of the TLM approach in

a chronological order.

The TLM is a semi-discrete numerical technique, developetiVhas B], to model numeri-
cally wave propagation in unbounded layered soil domaihg. hbounded medium is divided
into three regions, the central or irregular region whichasnded by two lateral regions on the
right and the left; the regular regions. The central reg®treated by the conventional FEM.
This region is usually the region of interest, as it may conbairied structures such as founda-
tions or any other discontinuities.

N discontinuity |

Dtunnel

rigid bedrock

Figure 2.3: Schematic diagram for treating unbounded magthe TLM.
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Figure 2.3 illustrates the treatment of the 2D unbounded domain by the Technique. A
closed-form analytical solution, is adopted for the laterathe layered regions. The semi-
infinite lateral regions are divided into horizontal laye#sich extend to infinity. The displace-
ment field is assumed to vary linearly with depth and expaaliyin the horizontal direction.
Some assumptions have been made such as; the solil is reséngigid bedrock, the soill
medium can be homogenous or layered, isotropic, lineatielasviscoelastic and the material
properties of the horizontal layers do not vary within eamyel. The thickness of each layer
should not exceed one-tenth of the shear wavelength. \Bapsojposed a numerical technique
based on the separation the variables in order to satisfwéve motion governed by the dif-
ferential equations in the horizontal direction. The fregtion of the layered region consists of
a finite number of wave modes obtained by solving an algelgigienvalue problem. Having
obtained the displacements of the regular regions, thelrodas on the boundary could be
obtained and imposed as external forces. The dynamicessgfmatrices of the semi-infinite
regions, which relate the nodal displacements and noda¢$oare then combined with the dy-
namic stiffness matrix of the irregular region and the unimad domain can then be analysed.
The anti-plane shear, in-plane and axisymmetric caseseak @ith in the previous devel-
opments. This has resulted in the development of frequenayath consistent transmitting
boundary conditions.

The extension of the above method to the cylindrical trattemgi boundaries was carried out
by Kausel p6] and Kauselet al. [27] to model the three dimensional case of axisymmetric
footings by generalising the approach of Wa3ls [The consistent transmitting boundaries of
the horizontal layers are obtained. The dynamic stiffnesioes of the consistent transmitting
boundaries are expanded into Fourier series and only twastare considered in the applica-
tions provided in referencef]. Kausel and Roésse28] attempted to reduce the number of
equations involved in the solution and proposed the use pétglements, rectangular elements
of finite length. This leads to saving in computer storageianttasing the mesh size. These
finite elements are based on an arbitrary expansion in oreetain and employing closed-
form expansion in the other direction. The previous coesisransmitting boundaries are only
limited to circular foundations. Tassoul&9] developed inhomogenous boundary conditions.
The solution process starts by computing the practicaktieolwf the inhomogenous boundary
conditions then combining them with the semi-discrete nsasleich satisfy the corresponding
homogenous boundary conditions. Plane and axisymmetrmezits are developed for inho-
mogenous boundaries such as the presence of base motion.

Cylindrical coordinates transmitting boundaries are tyed by Lin and Tassoulag8(] to

handle three dimensional problems of dynamics of foundatiaf arbitrary geometry. Inho-
mogeneities in the neighbourhood of the circular foundatiould also be considered. Kieat
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al. [3]] later extended the approach to Cartesian coordinates infBB consistent transmit-
ting boundaries technique is extended to three dimensiphtabazatcet al. [32] considering
travelling waves, induced by traffic loads, towards the lolawies. The solution leads to an
eigenvalue problem of dimension six times the number of ic@ned thin layers in the model.

The consistent transmitting boundary method is a very pvernethod as it is based on a
semi-analytical finite element method by solving an eigkrezaroblem. However, in the entire
previous development, it is applicable to vertical bouretaand this may not the case in real
engineering problems such as inclined boundaries as iasdilam embankments. The debuts
of inclined consistent transmitting boundary appeare@farence 33] by Park and Tassoulas,
where they developed a nonvertical absorbing boundaryitondor wave propagation in lay-
ered strata media to satisfy these problems. The cons@sorbing boundary method was
adopted in their work in the frequency domain under plarerstind antiplane shear strain and
it was called thezigzagboundary condition.

Another limitation of the TLM is related to the assumptionhadrizontal layers. This was
tackled by Ikeda and Tassoul&&4] via employing the perturbation method which takes into
account non-parallel interfaces and also lateral inhomeigies. Thus, an approximate treat-
ment of the system equation is obtained. In the solutiongortesl in reference3f], only the
lowest-order and first-order terms of the perturbationeseaire included in the approximation.

Recently, Barbosa and Kaus8H generalized the concept of the TLM to 3D problems where
the material is transversely isotropic. The solution isagied by solving two eigenvalue prob-
lems, for Rayleigh and Love waves.

As it is shown, a lot of development has taken place in refattothe TLM owing to its high
level of accuracy. The restriction of the TLM for modellinghounded domains only in the
horizontal direction inspired researchers to couple théhotewith other techniques to allow
simulating wave propagation in half-space media. A reviéwhe methods simulating wave
propagation in half-space media by coupling the TLM and oteehniques is presented in
Chapterb.

2.2.3 The Scaled Boundary Finite Element Method (SBFEM)

The scaled boundary finite element method or the less boymtiment method is a rigorous
semi-analytical method and is spatially and temporallyglolt is relatively a new technique
for modelling unbounded domains. The fundamental solugsarot required, as it is the case
for BEM, within the framework of the SBFEM as it is based on #&M. It combines the
advantages of both BEM and FEM. So the boundaries are ontyetised as in the BEM.

12



It was called first by Song and WolIB§], for anti-plane motion, the consistent infinitesimal
finite-element cell method in the frequency domain where igefielement cell or a bounded
cell, with the exterior boundary similar to the interior balary, is added in the radial direction
to the structure-medium interface. The inverse Fouriersfia@m is applied to the consistent
infinitesimal finite-element cell, obtained in referen8€][ to transform the equation into the
time domain. This approach was later extended by Wolf andy$81 to cover the in-plane
motion. The method was renamed in referer®® fo the SBFEM where the solution proce-
dure is based only on the finite element method with boundesgretisation as surface finite
elements reducing the dimension of the problem by one.

The discretisation technique associated with the SBFEMpéagned in Figure2.4. Initially,
one may choose a scaling centre O, the origin of the Cartesiardinates, in such a manner
that the total boundar$ must be visible from the zone of the scaling centre. One dgioeal
line elements are used to discretise the boun&arhen, shape functions in the local coordi-
naten are used to interpolate the geometry of the elements on tinedaoy, in the same way
as in the conventional finite element procedure. A non-dsimral radial coordinaté is intro-
duced to scale the boundary (from the scaling centre to & paoithe boundary) to describe the
geometry of the domaiM. The non-dimensional radial coordinate has zero valuesadc¢hling
centre and a value of one at the bound&itgading to representing the unbounded domain by
1 < & < . The coordinates of the scaled boundary element are reypeesby the radial and
circumferential coordinateg and¢&, respectively.

< >

x>

Figure 2.4: Discretisation of the scaled boundary finitenelet method.

In the SBFEM, the displacement and stress fields on the boydany problem are usually
expressed by semi-analytical solutions and subsequémrtllgaundary condition at infinity will
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be expressed analytically. Thereby, shape functions aseused on the circumferential direc-
tion to interpolate the displacement field for each radra lconnecting the scaling centre and
a node on the boundary surfaBe Then, the governing differential equations are introduce
in the scaled boundary coordinates. The Galerkin’s wedyhgsidual method or the principle
of virtual work method could be applied to the differentigjuations, in the circumferential
directionn, in order to formulate the Scaled Boundary Finite Elemenidign (SBFEE) in
displacement in the ordinary coordinates which is an EGlauchy ordinary differential equa-
tion. The SBFEE in terms of displacements is derived by Sawigvsolf [38] for 2D and 3D as
follows

[EQE2{u(&)} e +((s—1)[EY—[EY+[EYT)E{u(é)} ¢
+((s—2)[EYT  —[EX{u(é)}+w M E{u(&)} =0, (2.3)

where matrice€?, E1, E2 andM are assembled by computing the elementary coefficient ma-
trices on the boundary of the domain amds the driving frequency. Integerhas a value of
either 2 or 3 for 2D and 3D, respectively. The SBFEE in the dyigsstiffness formulation is
derived in reference3B] and expressed as

([S*(@)]+[EY) [E”H([S*(w)]+[EY") — [E?] - (5—2)[S"(w)]
— WS (W) FwWMY=0. (2.4)

Here, the termiS™(w)] expresses the dynamic stiffness matrix of the unboundechuotowhich

is proven to be symmetrical. For the derivation and the smiytrocedures of the SBFEE, the
reader is directed to referenc&9] and [4Q], respectively. Equatior2(3) is solved analytically
in reference41] in the frequency domain in order to avoid the discretigatiothe -direction.
The analytical solution is obtained by a power series. Cagusetly, the analytical solution
of the dynamic stiffness matrix is also obtained without euical discretisation resulting in a
more attractive version of the SBFEM. Transformation of $#~EE into the Bessel functions
is employed in the case of scalar coefficient matrices imeefee 41]. As the number of the de-
grees of freedom on the boundaries increases the commabétiort of the SBFEM becomes
significant. Improvements were made by employing the baseifons reduction scheme where
an asymptotic expansion of the dynamic stiffness matriiized to determine its value at high
frequencies ensuring the radiation condition. A more efittechnique is employed by Song
[42] where an asymptotic expansion is applied to equaoB) (o obtain the displacement field
at high frequency and subsequently the dynamic stiffnessxmsidetermined.

Another attempt is also employed to avoid computing the dyoastiffness matrix. It is
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achieved by Song and Bazyat3 where Padé approximations of the dynamic stiffness ma-
trix are formulated directly from the SBFEE. The advantafjghese approximations is their
rapid convergence in comparison to the power series. Chgdke order of the Padé series
is also suggested. Moreover, the reduced set of base fusctigpplied in referencel] is
also adopted by Song and BazydB]. Opting to increase the efficiency of the method, more
recently, a fundamental-solution-less boundary for wawdblems is developed by Song and
Bazyar f44]. This is due to the time required to compute a set of the hasetibns which is the
most time consuming part of the implementation of the mettwdheir method, lumped coef-
ficients of the matrices and high order elements are obtdigeninploying the Gauss-Lobatto-
Legendre shape functions with nodal quadrature. In fagtnga in the computer memory and
also in the cpu time are achieved by obtaining sparsity ohth&rices via applying the partial
Schur decomposition.

2.2.4 Exact Non-Reflecting Boundary Conditions (NRBC)

This type of absorbing boundary conditions representg étigally exact boundaries. However,
most of the time an integral transform is involved along tberdary and hence they are not
exact anymore. Givoli and Kelledb] employed the technique of reducing the wave equation to
derive an exact non-local reflecting circular artificial bdary condition for 2D time-harmonic
elastodynamic problems which has the form

T (X) = Myjuj (X) = z;;;o/rmﬂ- (%X) i (X) dX, (2.5)

wherenﬂ. stands for the Kernel and represents the circular artificial boundary. The authors
used Helmholtz decomposition to write the displacementeims of the potentials. Plane
strain and stress problems are considered. The artificialdery condition of expressioR.6)

is implemented at the boundaries of the computational domvéhin the finite element frame-
work. A few years later and by employing the Fourier Transfation, Grote and Keller4[g]
developed an exact non-reflecting spherical boundary tondiocal in time but nonlocal in
space, from the boundary conditions of refererd®.[High derivatives of displacements and
their time derivatives with respect to the polar coordisatee involved in these boundary con-
ditions. This is tackled by using boundary conditions whinlolve only the first derivative of
the displacements with respect to the polar coordinates.

On the other hand, Grote and Kelle¥7] derived an exact non-reflecting spherical boundary
condition for time-dependent elastic wave equation in 3B.iAthe previous exact boundary
conditions, they are local in time but nonlocal in space dad iamvolve only the first derivatives
of the displacements and inner products with spherical baits of the displacement on the
artificial boundary. These boundary conditions are incaafeal within the FEM and FDM by
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Grote 8] where the stability of the non-reflecting boundaries i®ascussed through some
examples.

2.3 Local Absorbing Boundary Conditions (ABC)

In general, local absorbing boundary conditions are cameitito be non demanding in terms
of computational cost and simple in terms of their mathecaaformulations, but they do not
achieve the same level of accuracy compared to that of naleethods. It was named ‘local’
because only spatial and temporal points near the boundarisfare considered to be involved
in the condition. In other words, the response at any lonaitd time depends on the response
at the neighbouring pointgpatially localand at some few previous time stépmporally local
Generally speaking, local ABC are preferred for transieatavproblems instead of the non-
local procedures because of the high computational effidiey are usually approximate and
therefore spurious wave will be reflected at the artificialtaaries. Kausel and Tassould9|[
indicated that however these boundaries may absorb the reflected wavearept perfect
absorbers as some echo may occur in the solution in additiéadtious waves travelling along
those boundariés Hence, to obtain the required level of accuracy, local bampdonditions
must be applied far enough from the structure-soil interfacd therefore increase the number
of degrees of freedom in the domain, and consequently thg@gtational cost. On the other
hand, their mathematical formulation is relatively simptempared to the global methods and
they are simple to implement in the FEM or FDM. Local ABC areialty formulated in the
time domain and therefore non-linearity of the soil withie finite domain can be modelled by
implementing non-linear constitutive models, while theffeld is still modelled linearly.

The viscous boundary conditions, developed by Lysmer ankldtaeyer 0], are the first
local absorbing boundary conditions which appeared initbeature to handle elastodynamic
problems in the time domain. The idea consists to implemistbus dashpots at the bound-
aries in order to absorb the energy of the compression arat sfaves. The dashpot constants
are related to the properties of the adjacent soil whereifwous boundaries are placed. These
boundary conditions are very simple and easy to implemedttlagy work in both time and
frequency domains. The viscous boundary conditions ofeefe p0] are perfect absorbers
in the case of normal incidence of the incoming waves. Howéivihe incident waves are not
normal to the boundary they only absorb part of the energfadt) if a wave hits the boundary
at a small angle, large spurious reflections will be encaedteThe formulation of the viscous

boundaries is given by

ov
E7
whereo andr are the normal and shear stresses on the boungl&syhe soil densityg, andcs

are the dilational and shear wave velocitieandv are the normal and tangential displacements

o= apcp% and T = bpcs (2.6)
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on the boundary, respectively. Parameteasdb, which had unit values on the original expres-
sions of @.6), are the absorption parameters which were suggested bie@tlal. [51] to take
into account the incident waves directions. They are detexdby discretising the domain with
finite elements and then finding a linear relationship bebhntée velocities and stresses at the
boundary. Due to their simplicity and easiness of impleraton in a finite element framework,
the viscous boundary conditions have been implementechmercial finite element packages
such as ABAQUS.

Another attempt was made by Ang and Newm&® | where they proposed a new local bound-
ary condition for the FDM in the time domain which again watkeell only in the case of
normal incidence of impinging waves. Their boundary cdondi are equivalent to the vis-
cous boundary conditions. Engquist and Maj8g introduced a new group of local boundary
conditions based on the FDM. The first order approximatiosingilar in accuracy to those
of Ang-Newmark and Lysmer-Kuhlemeyer absorbers. Betteuzy is achieved by employ-
ing the second order approximations and even higher in tee chhigher order boundaries
where more points in the neighborhood of the boundariesarsidered. However, it should be
pointed out that higher order local boundaries loose thalitycproperty when increasing the
number of points near the boundary. Improvements were stegey Whiteet al. [51].

A new technique was proposed by Smi&¥] which is based on cancelling the reflections
by averaging two complementary problems where a fixed Detdboundary is assumed for the
first problem and a free Neumann boundary for the other. Ssvaghproach was later modified

by Cundallet al. [55], and Kunar and Martig6] to account for multiple reflections. The bound-
ary element method is employed in referensd fo formulate the dynamic stiffness matrix of

the central medium while doubly-asymptotic boundary ctads, dashpots and coupled static
springs, are used. These boundary conditions are asywcgitptexact for plane waves travel-

ling perpendicularly to the truncated boundaries at botfn land low frequencies. However,

some errors are induced in the intermediate frequency rahgie scheme is local in time but

nonlocal in space.

Paraxial boundary conditions, which transmit energy onlgme direction, have been derived
by Engquist and MajdabB], and Clayton and Engquist§| for the the scalar and elastic wave
equation, respectively. Their boundary conditions areetham the pseudo-differential oper-

ators for a general class of differential equations wheretatlocal approximate absorbing

boundary conditions with increasing order are obtainede dlitgoing waves were separated
from the incoming waves by splitting the differential operaof the wave equation for elastic

waves and hence the paraxial boundaries are used to siroulgtthe outgoing waves leading

to a reduction in the reflection at the boundaries. More Betae provided in Chapteés as
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these boundaries are also used in the context of this thadiansmitting boundary formula
was presented by Liao and Worsf] that could be used in 2D or 3D and for convex artificial
boundaries. The extrapolation method, based on polyndittiag, is used in their work.

Multi-directional boundary conditions for the multi-datonal wave equation were constructed
by Higdon [60, 61] in both time and space, where the scalar wave equation viaex@mated by
the finite difference rather than finding the analytical solu This family of absorbing bound-
ary condition is based on the discrete form of the wave egnafihose boundaries, unlike the
paraxial boundaries which are most suitable for normaldecce, are considered perfect ab-
sorbers for waves propagating at non-zero angle of incieled@don non-reflecting boundary
of order|j is expressed by

Llj ((cosaj)%—c(%)] u=0, (2.7)

wherea is the angle of incidence ardis the wave speed. It was demonstrated that for low
order of the above equation, good results were obtainediad@range of angles of incidence.
The derived boundaries are found to be perfect absorbeesgdl@ane wave hitting the boundary
at a preselected angle of incidence. Absorbing boundargitions for stratified media are also
introduced in referencép] for acoustic and elastic waves.

Scandrettet al. [63] derived an approximate time-dependent absorbing boynctamdition
employing the finite difference scheme for elastodynamabf@ms in two dimensional plane
strain. The limiting amplitude principle is used to deribe tboundary conditions. The bound-
ary conditions of referenc&8] are similar to the second order boundary conditions of Eingjq
and Majda $3]. The difference is that they were derived in the rectangaterdinates while
polar coordinates are used in referengg.

Cohen p4] proposed in his thesiextended paraxial boundary conditioasd compared the
proposed boundaries with the analytical and numericaltispis. In spite of the difference
between the viscous and paraxial boundaries, CoBdnhpgroved that there is a relationship
between these boundaries by the equilibrium equation. &ha&xpal boundaries are classified
as dashpots to be applied at the length of an element ratheratitaching dashpots from the
boundary nodes to a rigid base and same function is perfooypédth boundaries. Modifica-
tions to the PBC are also suggesteddd]| it is worth mentioning that these modifications were
available before the publication of referenc8s, [66].

Bambergeet al. [67] introduced modifications to the first order absorbing bargaonditions
of reference§4] as the original boundaries are transparent boundaridsotbrlongitudinal and
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transverse waves at normal angles of incidence. Thus, thificadions extended the trans-
parency boundary conditions to include Rayleigh waves. ridve absorbing boundaries are of
second order and they are transparent to the three typesiewa

The doubly asymptotic and the mutli-directional transmgftooundaries are combined by Wolf
and Song 8], by exploiting their advantages, where the doubly asytipis used for mod-
elling the low frequency limit or the static case. These laaug conditions are temporally
local and could be spatially either local or nonlocal depegan the implementation of the
static stiffness matrix.

In order to overcome the fact that boundary operators in sointfee local boundary schemes
of order one or more lead to non-symmetric matrices, in &udito the dependency of the
accuracy on the static behaviour, Kelle@B] formulated new local boundary conditions for
dynamic analysis in 2D and 3D. These boundaries are comrsider doubly asymptotic and as
a generalisation of the viscous boundary conditions.

2.3.1 Absorbing layers at the boundaries

In this approach, a finite thickness layer is used as an emaetund the computational domain,
as it is shown in Figure'5), in order to reduce wave reflections at the boundaries.

computational

absorbing domain

layer

Figure 2.5: Schematic diagram of the absorbing layer method

This is achieved by incorporating some parameters whi¢teeforce outgoing waves to slow
down or decay. If those parameters are chosen in such a atsaitiimal or zero reflection
will occur, the absorbing layer will be classified as a Pdlyelatched Layer (PML). A PML
is a high order absorbing boundary condition applied ardheccircumference of the interior
domain. The principle of the PML is that once the outgoing @&aenter the lossy layer, they
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will be transformed into evanescent waves with minmising tiflections at the boundaries.
The main idea of the method is to introduce an absorbing leytér uniform thickness at the
boundary which will force the wave to attenuate exponegtadcording to a pre-defined decay
function. PML was originally introduced by Bereng&iQ[ for electromagnetic problems and
it is extended later to elastic waves by Hastiegsl. [71] where the wave energy is converted
into shear and compression waves with their energy decaypgnentially. PML was firstly
extended from electromagnetic to elastodynamics by ChelnLan[72] using the FDM in the
frequency domain and by stretching the coordinates viaialarchange in a manner to convert
the plane wave into an attinuative wave in the new complexdinates. The new stretched co-
ordinates are a result of a complex variable change sugk=as(a-+ia). In this case, a wave
travelling in a lossless medium will be also attinuative lie hew coordinates and will have
the formeikax/—kax/. This type of transmitting boundary is classified by Tsynkélvbetween
local and nonlocal schemes. Some nonlocality is gained baraficial enlargement of the
computational domain and there is no global integral reteship along the boundary. Collino
and TsogkaT3] introduced the PML in elastodynamics, for heterogenousadropic media,
for velocity stress formulation by decomposing each coneppof the unknown to orthogonal
and parallel components to the boundary. Further developtaextend the formulation of the
PML to poroelastic media is achieved by Zeeigal. [74]. Moreover, Zheng and Huan@%|
developed an anisotropic PML in the Cartesian, cylindrasad spherical coordinates for time
harmonic elastodynamic problems. The anisotropic PML @¢dd used in the FEM and the
FDM in the time domain. The stability and well-posednesshefPML for elastic anisotropic
media is examined by Becacbeal. [76].

The concept of the PML is extended by Basu and Chopvatp time-harmonic, frequency
domain, elastodynamics Cartesian coordinates where &d&spent-based symmetrical finite
element implementation is developed for plane strain argktdimensional wave motion. A
year later, Basu and Chopr@f extended the PML technique and presented displacement-
based wave equations, for anti-plane and plane strain,casdgheir implementations in the
FEM in the time domain to analyse transient problems. Théefieliement implementation of
the anti-plane case is symmetrical but it is not for the plstn@in problems.

A further development is introduced by Bast®] where the author extended his previous work
in [78], where implicit time integration was adopted, to implemexplicit time integration for
the 3D elastic wave equation. This is made first by transfogine frequency domain equa-
tions as obtained by Basu and Choprd][to the time domain and second by incorporating an
explicit time integration scheme with special consideradi Kausel and Barbos8(] proposed

a simple method for obtaining the finite element matricesiefRML in the frequency domain.
In their formulation, the stretched functions were applig@ctly to the mass and stiffness el-
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ement matrices computed by the conventional FEM. Both@atie shear and in-plane cases
are considered and the authors stated that it would be apf#ito the three-dimensional wave
equation.

Semblatt al. [81] proposed an absorbing layer method to be implemented afttinedaries of
the numerical model to reduce the spurious reflections flerbbundaries. Damping proper-
ties of the proposed layer are estimated by Rayleigh/Caugbefficients to express the attenu-
ation properties within the absorbing layer and they cathair methodhe Caughey Absorbing
Layer Method CALM. Rayleigh damping is a combination of the stiffnessd éime mass of the
medium as shown in the equation

C=aM +aK, (2.8)

whereag anda; are Rayleigh coefficient¥ is the stiffness matrix ant¥ is the mass ma-
trix. Caughey damping is expressed in a more general fotioaland leads to the Rayleigh
formulation if a second order Caughey damping is consid@redn=2)

m—1 .
cC=MY a (M XK). (2.9)
3 @)

Typical values of Rayleigh coefficients are betweéndhd 10. Damping ratio can be expressed

as
_ A aw
bt 2
where w stands for the circular frequency. The frequency of the mum damping is deter-
mined from the Rayleigh coefficients and subsequently thermim damping relationship is

used as

(2.10)

ap
2lmin= — + a1 R, 2.11
min R 1 ( )

and the predominant frequency is computed by

dog
= a (2.12)

Thus, Rayleigh damping coefficients within the absorbingeteare determined. A 2D finite
element model in plane strain conditions was considereddmae the efficiency of the pro-
posed method in elastic media. The model was four times tigtHeof the compression wave
in both directions. It was therefore found even if the efficig of the absorbing layer method is
lower in comparison to other methods but still efficient egioto reduce the magnitude of the
reflected waves. A comparison between the CALM and PML isgoeréd and the accuracy of
CALM is equivalent to a third-order PML accuracy. Nonetlsslethe thickness of the absorb-
ing layer should be large enough to reduce the reflectiontanchethod leads to an increase in
storage memory.
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2.3.2 High-order local transmitting boundaries

The accuracy limitation of the local absorbing boundaryditons, as explained at the begin-
ning of sectior?.3, is usually questioned. For more accurate results and aseginaive to the
low-order local absorbing conditions, high-order locas@ibing boundary conditions usually
provide better accuracy, however, their implementatiamoisstraightforward. High-order ab-
sorbing boundary conditions emerged in the mid-1990s, ke accuracy of the absorbing
boundary is better than the low-order absorbing boundahni@sever they are not necessarily
exact, but asymptotic. The level of the accuracy dependb@narder. However, their imple-
mentation in a computer code is comparatively difficult. He following, a brief review of the
different high-order local absorbing boundary is presgémtéh emphasising on their accuracy
and implementation issues.

A series of arbitrarily high-order absorbing boundary dtods is introduced by Guddati and
Tassoulasg?2] for the scalar wave equation in the Cartesian coordindtegh-order derivatives
are not involved in these boundary conditions, only the sdaarder derivatives are required.
These boundary conditions are based on the continueddneapiproximation of the dispersion
relationship. The idea is to introduce auxiliary layersaaent to the boundary.

A technique, based on Higdon transmitting boundaries, fodefling time-dependent waves
in unbounded media was proposed by Givoli and N88h [The Higdon transmitting boundary
equation was reformulated by introducing special auxiliariablespy, ¢, ...¢;—1 to be incor-
porated in the finite element and the finite difference apgrea. The proposed formulations do
not require any higher order derivatives and permit the Gisep order of Higdon boundaries.
In the reformulation process, equatidh?) is replaced by

P /o 190
L|1<5(+aﬁ)] u=0, (2.13)

whereC; denotes the parameters to be chosen and which represemt gieeds in the-
direction. The auxiliary functions are introduced on thefiaral boundary and the exterior
domain. These functions will be used only on the boundaryvatide defined on the exterior
domain. The auxiliary functions are given by

2. 10y,
OX Ct ot

o 10
(E(JFC_ZE) o= o (2.14b)

o (2.14a)

22



o 10
(Eﬁﬁﬁ) ¢ 10, (2.14c)

The set of equation(14) are equivalent to the original equation if they are useetiogr and
only the first derivative of the displacement is involved. make this set discretisable on the
boundary with respect t@, the derivative with respect tomust be eliminated as indicated by
Givoli and Neta 83] and a new formulation will be obtained. It is given by

Ju Jdu
BJE.F& =@ (2.15)
00 0001 T 0 g =11 2.16
1 1 1 1 1 f2
a.:___ , —_— R = — _— 5 )\:—. 217
e a3 h=¢ B Ci Cin C2 (17)
m=u , @ =0. (2.18)

A review of seven high-order nonlocal absorbing boundaryddoons was provided by Givoli
[7]. Those high-order boundary conditions are applicablé¢écstalar wave equation, Maxwell
equations, Helmholtz equation, linearized shallow watgragions, linear hyperbolic systems
and elastic wave equation. Only the boundary conditioreted|to the elastic wave equation
will be listed in this section.

An exact non-reflecting boundary condition, local in timd bonlocal in space, is derived
by Grote and Keller47] for the 3D elastic wave in spherical surface. Only the fiestichtive

of the solution is involved in this boundary making the immpkntation simple. In their deriva-
tion, they started from the elastic wave equation and theomposed the displacement field
into two types making a justification of the different two epe of the compression and shear
wave speeds in the medium. This boundary condition was aoedtdater in the framework of
the FEM and FDM by Grote48] where the exact boundary conditions performed better than
those of referencebl)]. These boundaries do not involve high order derivatives.

Although, several high-order local absorbing boundaryditions were developed for the scalar

wave equation, Maxwell’s equations and Helmholtz wave &qguoait is not easy to extend these
high order absorbing boundary conditions to dynamic soilesure interaction problems as re-
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ported by Bazyar and Song4]. This is due to various reasons such as the complicated-geom
etry of the unbounded soil domain, the anisotropic behavabthe materials and the presence
of corners and curved edges of the boundary. Thus, this leastaekled in referencefl] by
Padé approximation of the dynamic stiffness matrix of theaumded domain, obtained by the
SBFEM, presented into a recursive formulation in time demadihe dynamic stiffness matrix

of the unbounded domain could also be obtained by the BEM.

Another technique is to construct a continued fraction tswhuof the dynamic stiffness ma-
trix as proposed in referenc84]. It is then followed by introducing auxiliary variables) i
order to eliminate the high-order derivatives in the higers transmitting boundaries, to be
employed with the continued fraction solution for the depehent of a high-order local trans-
mitting boundary condition. The FEM is used in both frequead time domains. The contin-
ued fraction solution is determined directly from the SBFEdding to frequency independent
coefficients and symmetrical matrices. This method is ptdeebe very efficient for 2D prob-
lems, however it may fail for large scale problems which Imedarge number of degrees of
freedom. As a consequence, the method does not convergerepasmng the order of the ex-
pansion. lll-conditioned equations and instability isshave been encountered. The advantage
of the high-order absorbing boundaries based on the cadifmaction is that the coefficient
matrices computed for lower orders are not required to berohéthed again if one is seeking to
increase the order of the continued fraction. This is notctee as in Padé series of reference
[43]. Improvement of the continued fraction method is also eehd by Birket al. [85] where
the numerical procedure is improved by normalising the fameht matrices of the continued
fraction using a matrix-valued scaling factor. A more rd®aution is obtained which is also
suitable for 3D problems with many degrees of freedom.

Another approach, developed in the 1970s for dealing withusitic problems, is based on
the Doubly Asymptotic Approximation (DAA) of the impedanoé the boundary in a such
way that the approximations will match asymptotically tleeibdary integrals at both high and
low frequency range, sometimes it is referred as early (shavelength) and late time (long
wavelength), respectively. The development to elastoayesfound its way around 10 years
later by Underwood and Geers1q where a first order DAA for linear soil-structure interaoti
problems is proposed for linear elastic media and it is apple to nonlinear behaviour of the
soil.

Mathews and Geers$3f] used a first order DAA to model nonlinear ground shock whaee t
DAA is placed at some distance from the surface of the stractlio make things more obvi-
ous, the DAA relates the scattered force vector to the sealttdisplacement vector and approx-
imates the relationship for both ranges of frequencies) aigd low.
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First and second order DA®and DAA, are derived by Geers and Lewi87] for isotropic
elastic media for transient elastodynamic problems usfrggator matching procedure. In their
procedure, they first derived the early time and the late aym@roximation equations. They
applied Laplace transform on these approximations. Thepdaced a trial equation of the
DAA 1 and then reformulated this equation in an asymptotic foronoldtain DAA, a matching
procedure between the transformed equation and the asyopgoiation is employed. Deriv-
ing DAA is similar to deriving DAA. Qi and Geersg8] employed Biot’s equations to derive
DAA 1 and DAA, for poroelastic media using the operator matching method.

2.3.3 Elementary boundaries (non-transmitting)

In this type of boundaries, either prescribed displacemenstresses are placed at the bound-
aries of interest. Herein, when displacements are presteabthe boundaries this will represent
a fixed end (for example a fixed end of rod where the displacem@ot allowed or fixed base
like rigid bedrock). This case is referred as Dirichlet bdary condition and it is recognised as
(D) condition. On the other hand, if stresses are prescab#te boundaries (i.e. displacements
are allowed), this represents the analogue of free end €icdlke of rod or free surface condi-
tion). This is also known as Neumann condition and recoginése(N) condition. Now, if both
schemes are combined we will be able to solve problems witle th@n one degree of freedom
per boundary node. Smitld4] attempted to improve the performance of (D,N) boundarges a
they behave as perfect reflectors if energy is not transthétesome energy may be trapped
in along those boundaries and eventually will dissipaté whe presence of internal damping
in the medium. Where an approach was proposed to solve attv@as, one with respect to
(Dn,N;) and the other with respect {IN,), where the subscripts andt refer to normal and
tangential directions to the boundary at a point of intenestpectively. Smith’s refinement was
based on the fact that body waves will reflect with same aogi#iatnd phase in the first situation
and with the same amplitude but opposite phase in the se@fledtion. Hence, the process
of adding these two solutions together will cancel the réfdes. One disadvantage of this
scheme is when multiple reflections occur, they could notullg tealt with by this method
and hence the solution deteriorates with time. This schenm®t suitable for the frequency
domain analysis.

2.3.4 Infinite elements

The term infinite element indicates an element which hasaat lene coordinate extending to
infinity. Ungless B9] developed in his master dissertation the first infinite edlah@and named it
as an infinite finite element but has not been published. A feavgy/later, Bettes9(] published
his work on infinite elements for treating fluid-structuréeiraction. Infinite elements are clas-
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sified by Bettess as static and dynamic. It is worth mentigiiat various infinite elements are
used in the literature for dealing with several types of peois such as; heat transfer problems,
hydrodynamics and seepage problems. For each individablem, shape functions associated
with the infinite elements are derived by considering thdiéd behaviour in the problem. As
this thesis is only concerned on wave propagation problenesaistodynamics, other applica-
tions will not be included here.

Bettess 90] pioneered the infinite elements with Zienkiewicz and otbetworkers 91, 92],
where he introduced a set of shape functions simulatingrtfieite extent of the elements.
These shape functions are based on the Lagrange polynamiétiplied by a decay function.
The mathematical formulations of these shape function&ddoe found in referencedp). It

is worth mentioning that the decay function depends on aitranp distance which gives an
indication of the exponential decay, chosen by the anallgstas an important influence on
the results. Hence, Bette€)() indicated that the infinite element technique could leathis-
leading results at that stage, where an application of uséiow problem in 2D was provided.
Bettess and Zienkiewic®[] introduced the finite/infinite concept in dealing with sealgrob-
lems with unbounded surface waves. It was assumed that tlaioa of local coordinates in
n-direction lays from-1 to 1 as it is shown in Figur2.6.

(O 53
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3 0 4wy

n

Figure 2.6: Schematic diagram of an infinite element in tlcallcoordinates.

Saini et al. [92] employed the developed shape function in referer®d® fo study hydro-
dynamic effects on concrete gravity dams. Chow and Sn8igh developed periodic infinite
elements based on the Serendipity family which were shovioe tamore effective than the La-
grangian elements to deal with problems involving multipbere types such as in geomechanic
and elastodynamic problems. In the formulations preseintedference 93], three types of
shape functions were developed namely; extending to igfinity-direction, & -direction and

in both directions where the Gauss-Laguerre integratiberse is used when integrating in the
infinite direction, while the Gauss-Legendre is used in thigdfidirection.
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The formulation of the infinite element is first achieved nsforming the coordinatesand
y. For example, Yangt al. [94] used the following formulations

5 5
x=9 N and y= N-'y-. (2.19)
2 N

The shape functiorN{ are linear iné and quadratic im and are expressed as

/ 1

Ny = —é(f -1)(n—-21)n,

Ny = —(£ —1)(n —1)(n +1),

/

N =~ 3(E~1)(n +1)n, (2.20)
Ny = 5€(0+1),

/ 1
N5 = —éé(n -1).

For example, displacement within the element is intergoldtom the nodal displacements of
the element

3 3
u=9Y Niui and v= 9 Nwv, (2.21)
i; 14 i; 1 VI
where the shape functioh are given by
-1
N =T b,
Nz = —(n—1)(n+1) xP({), (2.22)
+1
N3 — % X P(g),

with P(&) being a propagation function which contains the displacgrmeplitude decay factor
oL due to the geometric attenuation and the wave nurkperf the propagating waves. It is
given by

P(E) = e 0t x g ks, (2.23)

The propagation factor has a key role in constructing thaiitefielements. It is expressed in
terms of local coordinates in expressidh3d. It is then expressed in a global sense and the
amplitude decay factor is given some values as proposeddreree 9§4] based on properties
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of wave propagation. The location of the element is taken &uicount for the chosen value.
For example, in the case of a line source, zero value is steg)éx shallow depths arguing
that Rayleigh waves do not decay on the free surface. A vdl(le/@R), R being the radial dis-
tance of the line source and the lateral boundary, is sugd@sthe regions where body waves
are dominant. Values of (PR) and (I/R) were proposed for the near surface and well below
the free surface elements in the case of a point load. It ig dificult to represent a region
with a predefined wavenumber as it is dependant on the vglddite criteria for choosing the
wavenumber is based on the dominance of the type of the waveentain region. This means
that wavenumber associated with Rayleigh waves is seldotatkar surface elements while
wavenumbers associated with the shear and pressure wavelaaen for elsewhere. Figure
2.7 depicts the problem representation by finite elements iméae field and infinite elements
in the far field.

Figure 2.7: Finite/infinite element for unbounded domains.

The variation iné -direction was chosen arbitrarily to be 0, 2 and 30. Lagrantggpolation is
used in both directions but, a new coordinate is introdundbe ¢ -direction to scale the length
of the element. Regarding the construction of the shapeifurs; Lagrange polynomials are
used in then-direction. A special shape function in the new directiomisoduced in which
an exponential term, a function of the wavenumber, is eefibrcThree terms are involved in
the new shape function; the first term represents a polyriomitia the new coordinate, a de-
cay function which depends on the arbitrarily chosen distaand an exponential term which
reflects the propagation of waves with respect to the newdooate. Sommerfeld radiation
condition is therefore satisfied. The formulation of thenité elements’ matrices would be
carried out in the same way as in FEM. For the numerical iatémmn, Newton-Cotes formula is
used to overcome the large number of sampling points of thes§&shegendre method in order
to approximate the harmonic function.
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When analysing surface water problems, only one wave typeead in referencedfl]. This is
not the case in elasticity problems where multiple types afes may be encountered. This is
tackled by Chow and Smitt®], for static and periodic problems in geomechanics, wheeg t
incorporated two wave types to determine the area wheregéesivave type will be dominant.
Arguing that Rayleigh waves are dominant near the surfadedanay very quickly with depth,
it would be appropriate to use Rayleigh wavenumber at tlegdaboundaries near the surface.
On the other hand, body waves will be dominant in depth ancetbee body wavenumbers
would be used with the infinite elements at the base of the @doniegarding the numerical
integration, Gauss-Legendre integration is used for itgfi@iements in the direction not extend-
ing to infinity while Newton-Cotes scheme is used in the dicgcextending to infinity.

Medina and Taylor35] proposed a scheme for computing the element matrices ahfimie
elements. Itis based on Gauss-Laguerre quadrature infthiggrdirection and Gauss-Legendre
in the finite direction. An element matrix is first expresseda integration with respect to the
infinite and finite directions and then approximated nunadiyc The approximated expressions
contain the Gauss-Laguerre weights and some integratiotspghich are required to evaluate
the expression of the element matrix. Thereafter, MedinaTaylor [95] introduced a criteria
which is basically based on element shape functions in dodszlect the number of integration
points. Chuhan and Chongbi@d] extended this approach to problems dealing with foundatio
dynamics. Galerkin weighted residual method was used brsthie derivation of the system
dynamic equation and then the infinite elements were cortstlu In a more recent attempt,
Yanget al. [94] introduced the idea of simulating wave propagation in sefinite media with
problems of ground borne vibrations induced by passingsran the soil surface and proposed
a scheme for estimating the decay factor rather than usgagbvalues. Yangt al. [94] pro-
posed guidelines for choosing values for the amplitudeyl&szor based on the characteristics
of the waves within the domain. As Rayleigh waves are dontinaar the surface and decay
very quickly with depth, the amplitude decay factor couldagsigned a very small value, close
to zero, for this region. On the other hand, body waves areirgimh at greater depths and
therefore a higher amplitude decay factor would be chosen.

The concept of coupled finite-infinite elements was extetdedver various types of problems
such as dealing with unbounded surface wa@ds, [fluid wave propagation or dam-reservoir
interaction P2], elastodynamic and geomechanic proble8%; p5]. Yang and Hung97] pro-
posed a 2.5D finite/infinite element approach to deal witlugdbborne vibrations induced by
moving loads. Yanget al. [98] conducted an extensive parametric study by adopting a 2D
finite-infinite approach for simulating wave propagatiors@il media and examined the effect
of the loading depth, the shear modulus of the soil, the tlesk of the solil layer, damping and
the loading in a tunnel.
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2.4 Brief summary

A literature review is carried out in this chapter to covansoof the research work related to the
development of absorbing boundary conditions for elastadyic problems. These boundary
conditions play a major role in making finite-size computatil models, based principally on
FEM, efficient in solving wave problems in unbounded media.

These absorbing boundary conditions are classified intal lasd nonlocal (global) bound-

ary conditions. In summary, while the nonlocal boundarydibons are more accurate, they
involve high computational effort in addition to assocthtifficulties at the implementation

level. Whereas the local absorbing boundary conditionsiangler to implement and do not
involve high computational cost. However, they are not asigte as the nonlocal boundary
conditions when used on similar models.

Given that the following chapter is based on a modelling apgh in the frequency domain,

under plane strain condition, the Thin Layer Method is add@s a method to ensure wave
radiation to infinity
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Chapter 3

Wave propagation modelling in soil media
over bedrock

3.1 Introduction

The Thin Layer Method (TLM) or the consistent transmittirgubdary condition method, de-
veloped by Waas3], is adopted in this work to simulate wave propagation inaurimed soil
media. The problem is formulated in the frequency domaireuptane strain conditions. The
domain is divided into three regions. The region of intetestally contains foundations, tun-
nels, wave barriers or surface structures, which is thesfémuanalysis. It is called the irregular
soil domain. This zone will be treated by the finite elementhrod and it will be discretised
into structured or unstructured mesh grids with two degaédseedom per node. The base of
the model is assumed in the current analysis to be horizanthtesting on rigid bedrock. The
irregular region is bounded by two lateral regular regiaxteeding to infinity with horizontal
layers, each assumed to be homogenous. The finite elemem @&k not include the two
lateral semi-infinite regions and therefore efficient banydconditions should be defined at
the boundaries of the computational domain to reduce theuatational size and ensure wave
radiation to infinity. Figure8.1lashows a schematic diagram of the considered problem and its
idealisation within the context of FEM in FiguBelh
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applied load
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(a) General diagram of 2D soil domain (b) Finite element treatment

Figure 3.1: Problem representation and idealisation.

3.2 Treatment of the irregular region

The irregular region (I) is modelled by the conventionaltérelement method. It is divided into
finite elements, quadrilateral or triangular, with two degg of freedom per node, the horizontal
and vertical displacements. Each element adjacent torefibdeft or right vertical boundary
shares two nodes with the semi-infinite lateral sub-lay&sthe irregular region is assumed
to be overlaying rigid bedrock the nodes at the base are fikedte element matrices, mass
and stiffness matrices, are computed by the standard fieiessit method and the global mass
and stiffness matrices are obtained by assembling the atanyematrices. Assuming that a
harmonic load of frequencyp, is imposed at any location of the model, the dynamic eqoatio
of the irregular region is expressed by

[K—w™M]u=F, (3.1)

whereK andM are the global stiffness and mass matricess the nodal displacement vector
andF denotes to the nodal force vector. The level of discretsatiecommended in reference
[3], consists to constraint the element size not to exceedamte-of the shear wavelength.

3.3 Treatment of the regular regions

The regular or semi-infinite lateral layered regions (lIfdtil), right and left, could not be
treated by the FEM. The reason for this is that they extendfioity and therefore an infinite
number of elements and degrees of freedom would be invollegiroblem will not be practical
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to solve. Therefore, a semi-analytical solution is emptbiyetheir corresponding model. The
region on the left is analogous to the one on the right, thg difference is the location of the
nodes, and for this reason the region on the right, as deliictéigure3.2, is only considered.

It is assumed that material properties of each layer do not wathe horizontal direction.
Each soil layer is divided into sub-layers with thicknessesexceeding on tenth of the shear
wavelength. Within each sub-layer the displacement fieddssimed to vary linearly with depth.
In the horizontal direction, the displacement field is dissat by a plane wave propagating in
thex-direction with a given wavenumbé&r

X ulx J
' N : X
t> A 1 g L{/ A oBop 2b
I A b Vi y
l!l- i j+1
H—F Y
* n-1 Ant Ho1 Py S/
k n M Hoop
yi Rigid bedrock
(a) horizontal layers (b) single layer representation

Figure 3.2: Regular region representation.

The virtual work method, which is most suited for harmoniadng, was employed by Waas
[3] to deal with this region where the variables are also sepdrd he principle of virtual work

is based on energy equilibrium. It is achieved when the sutiomaf the virtual work per-
formed by the actual strains and actual forces on the vidisalacements and strains vanishes,
otherwise the rate of virtual work should be considered.

Stressew and straing are related by the stress-strain matrix as in the followkgession

Oyx A+2u A 0 Exx
Oy ¢ = A A4+2u O &y ¢ (3.2)
Oxy 0 0 H Yy

whereA andu are the Lamé coefficients and they are expressed by

Ev E

A= drvasay M HEaanyy

(3.3)

with E being the elasticity modulus of the soil which is complexhe viscoelastic case and
is Poisson’s ratio. Compression and shear wave velootijes)dcs, are calculated respectively
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from the following expressions

Cp=4/ A J;Zu and cs= %, (3.4)

wherep represents the soil density. For linear viscoelastic nasgithe Lamé coefficients are

of complex nature. The fraction of the critical dampiifl,is used as a measure for material
damping. Therefore, complex Lamé modulii are expressed as

AC=A(1+i2B) and  u°=p(1+i2p).

The pressure and shear wave velocities will be also of convalleies. All derivations are given
for linear elastic soil, however, complex Lamé coefficieit$ and ¢ can replace the elastic
coefficientsA andu for viscoelastic materials.

Strains are expressed in terms of the displacements aw/ollo

Exx U x
&y (= Vy ; (3.5)
Yy Uy+Vx

whereuy, for example, represents the derivative of the displacésifezid u with respect tox.

The derivation of the consistent transmitting boundanpia thesis is adopted from Laghrouche
[99] who employed the principle of virtual work and formulatdtetconsistent transmitting
boundaries for 2D soil-structure interaction problem@(. The principle of virtual displace-
ment indicates that work done by external forc@8y:, and internal forcesOW;, during an
arbitrary virtual displacement is equivalent to the chaingsrain energy and energy dissipated
by internal friction due to the virtual displacement. TlEsummarised in the following expres-
sion

OWext + OWint = OA, (3.6)

wheredA is the change in the virtual work by the acceleration questitHowever, the work
performed by the interior forces on a body is equivalent ®¢hange of the deformation on
that body with an opposite sig¢\M; = —dEd, and therefore

SEd+ 5A = Wy (3.7)

In other words, the virtual work of a system of equilibriunndes vanishes on virtual displace-
ments. Next, we will compute these quantities, balancedatson for a single sub-laygrand
assemble for all sub-layers.
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3.3.1 Virtual change of strain energy

For any sub-layer, the change in the strain energy can be written as

SEd = /{aT}{ae} dv

o 20 41
- /0/0 /0(5sxxaxx+55yyayy+5%<y0xy)dxdydz (3.8)

The term{a " }{5¢} represents the change in the strain energy in addition tto#ssn energy
over the entire volume of the sub-layer due to the internetiém. If we consider a unit length
in z-direction, thez term in the integration will yield to a unit value. Using theess-strain
and the strain-displacement relations described in egu&.2) and @.5), the variation of the
strain energy can be rearranged in a new form

o r2b
SEd — /0 [ {BUx[(A + 200 U+ vy + vy st (A +200)vy)

+ O(uy+Vy) U (uy+vy) dxdy (3.9)

As mentioned above, the displacement is assumed to varlyneith respect to depth so if
we introduce linear shape functions in tadirection such that

uj
_| Ny O Uj+1 B
{Up}—[ 0 N(y)] :/T , N(y)—[l—z—yb %} (3.10)
Vi+1

whereU, is the displacement vector at any point within the sub-lalfeve let

u={ Y and v={ 11 (3.11)
Uj+1 Vi1

Substituting in equatior3(9) we obtain
o r2b
SEd — /0 /0 {BUTNT (A +2)NUx + SUINTANV + 8V TNTANU
+ OVTINL(A + 2NV + SU TNTUNyU + SU TNV, (3.12)

+ OV INTUNYU + 8VINT uNV, Jdxdy
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Using the integration by part scheme, the previous equatithiyield to

00

2b ® 2b
SEd = lauT /0 NT[(A +2u)Nu,x+/\N,yV]dy} + [6VT /0 NT[u(N,yU+N\(X]dy}
0 0

0 r 2b 0 2b
- / sUT | (A +2u)/ NTNdy} U7xxdx—/ VT {u/ NTNdy} Viodx
0 I 0 0 0

co r 2b 00 i 2b )
+ / suT | NI,Ndy} Vydx— / SUT (A [ NTNydy| Vydx (3.13)
0 L 0 ’ 0 L 0 ]

0 2b [ M 2b 7
+ / VT {A / NI,Ndy} Uydx— / T u [ NTNydy| Udx
0 o ’ 0 " Jo ]

0 2b 00 2b
n / 5UT{u/ NTyN.ydy}UdH/ VT {(qu)/ NyTN.ydy}de
0 0 R 0 0 '

The first and second terms in equati@il@ can be written in a new expression with consider-
ing the stress-strain relationship described earlieBiB) (

2b ® 2b ad
{6UT /0 NT[(A +2u)NU7x+)\N7yV]dy} :[6UT /0 NTaxxdy} . (3.14)
0 0
T 2b T " T 2b T -
{5v /0 N [u(N,yu+Nv,x]dy} :[5v /O N nydy} . (3.15)
0 0

Whenx approaches infinitygyy and ayy will vanish while forx=0, expressions3(14) & (3.195
should be kept for further developments.

3.3.2 Virtual work by the acceleration quantities

The acceleration quantities or inertial forces are propoal to the actual displacement when
considering a harmonic loading. The virtual work of the d&@ion quantities is expressed as

o r2b
SA = / / (pUidU—+ pUdV) dxdy (3.16)
0 0

and therefore
P 2b . 2b .
6A:/ (3uT (p/ NTNdy) U+ovT (p/ NTNdy) Vidx (3.17)
0 0 0
Combining equation3.10 with equation 8.17) we obtain the following matrices

Ag= (3.18a)

IJfOZbNI/vady 0
0 (A +24) [g°NINydy |’
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- 0 A JENTNydy— p [Z°NTNdy 2 18h
—A Jo NyNdy+p Jo"N'N,ydy 0
A +2u) [Z°NTNd 0
py— | Ao A , (3.18¢)
0 M5 N'Ndy
0 A [NTN,d
Pa=| Jo"N"Nydy | (3.18d)
M Jo N'Nydy 0
2b T
NTN
Mo— | PJo dy " OT . (3.18¢€)
0 pJo N'Ndy

Computing the integrals inside the matrices in expresg@18) will explicitly show that these
matrices are function of Lamé coefficients as well as thektigss of each individual sub-layer,
except for matrixAz which depends only on the material properties. Makfix will vary with
both the thickness and density of the layer. These matriceg a 4, matricesAg, Az, Az
andMg are symmetrical whilé\; is antisymmetrical. After integration, they are expresasd
follows

U 0 —u 0
Aozi 0 A+2u 0 —(A+2u) , (3.19a)
2b | —pu 0 U 0
0 —(A+2u) 0  A+2u
0 —A+u 0 A+
AL THFA O AR 0 (3.19D)
2 0 —A—u 0 A—U

—A—U 0 —A+u O
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2A+2u) 0 A+4+2u O
0 2u 0

AZZE’ : (3.19¢)
3| A+2u 0 2(A+2u) O
0 U 0 2U
0OA 0 -A
1l p O —p O
Az =— , 3.19d
*"2l0A 0 -A (3-19d)
u 0 —u O
2 010
pb| 0 2 01
Mo=— 3.19%e
° 3|1020 (3-19€)
010 2

Back substituting these matrices into the left-hand sidéefvirtual work equation3.7), the
equation for sub-layey would be

SEd+ A = /OooéuT(—A2u7XX—A1u,X+Aou+Mou)dx
+ dUg_o(Aux+Agu), . (3.20)
Assembling for all sub-layers gives
OEd" 4+ 0A" = /OOOGU*T (=AU, — ATUS + AJU" + Mgu*) dx
+ (5u*I:0A§uj‘X+A§u*) . (3.21)

x=0

The superscript symbdlrefers to the global system. A typical assembling procesgxXample
matrix A3, is shown in Figure3.3,
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last two rows and columns are omitted
due to fixed base condition

Figure 3.3: The structure of global matrices.

The index outside the square brackets refers to the sub+tayeber. As the layered region is
assumed to be overlaying rigid bedrock, the last two degréégedom corresponding to the
last node at the base are discarded as it is fixed. As a rdsatfjrhension of the layered system
matrices is B x 2n wheren is the number of sub-layers. All matrices are complex, ek
for viscoelastic materials.

3.3.3 Virtual work of external forces

The work performed by the external forces on the central dioisa@xpressed as

SWey: = F 5, (3.22)
where
F]_X 5U1
o
Fo) and  ou={ °% \ (3.23)
Fiy ovq
Fzy 5V2
Therefore,
Myt = U TR+ VTR = duy_oF. (3.24)
For the global system
OWey = {0U" }xoF ™. (3.25)
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Substituting in the virtual work equation of expressi8rild
/Ooo{éu*}T(—Aiufxx— ATUS A+ AJU 4+ MU )dx
H{BU o (AU +AZUY) = {8u i oF". (3.26)
This equation is satisfied if both
—AjUy — ATUS + AT+ Mou* =0, (3.27)

and

[AsUS AU =F, (3.28)
are satisfied. Equatior8327) will lead to a second order eigenvalue problem and nodakfor
will be determined from equatio3 (28 as will be shown later. The external forces are assumed
to be harmonic and therefore the displacements are alsoon&rn time. Therefore it is
possible to write

{u} = {uge (@Ko, (3.29)

wherew is the frequency of the forcing load akds the wavenumber. Substituting.29 into
(3.27 leads to
[K2A3 +iKAT + Ay — w?M§) U = 0. (3.30)

Equation 8.30 is a second order eigenvalue problemkimnd representsr2homogeneous
equations. For a nontrivial solution, the determinant & $lystem matrix must be equal to
zero. One method to solve the quadratic eigenvalue prolddiy reducing it into a first order
problem, hence the dimension of the problem will be incréasedn and consequentlyrd
eigenvaluesks, with their corresponding eignevectotds, are obtained. It is shown that for
each eigenvaluks of the formk; + k2 there is a corresponding eigenvalue of the ferm- i k.
This leads to the fact that half of the modes decay with 0, k> < 0, and therefore represent
waves travelling in the positive-direction, and the other half decaying with< 0, k2 > 0,
representing waves travelling in the negatiéirection. The eigenvalues or wavenumbers are
retained in the diagonal matrkt, a 2n x 2n matrix, which has the form

Ky
H— . (3.31)

k2n
The displacement field is therefore written as a combinaifall eigenmodes such that
2n .
{u} = Zas{us} e(@t—ien, (3.32)
S—=
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wherg{us} is the eigenvector associated with the eigenvéilues is the mode shape participa-
tion factor.
The displacement field of the right region could be written as

2n
Ur =) as{us} =au, (3.33)
s=1

with Ur andag being vectors of dimension oh2 The mode shapes are contained in the matrix
U of dimension & x 2n. Let us now derive the nodal forces on the boundary of the sgle
region, recalling equatior8(28 and performing the first derivative of equatid32 the force
vector could be written as

2n .
F*— Zase'(“’tksx) [—iksA3 -+ A3]. (3.34)
S=

The derivative of expressio.28 could be rearranged, by calling the diagonal mattiwhich
contains the eigenvalues and their corresponding eigamngaV, as follows

( alei(wt*hx)
azei(wt*kzx)
agel (@t —ksx)

Ui = —iVH . . (3.35)

J (cot—konX
aznel( 2N ) )

However, from equatior3(32 we can write

( age @k )
azei(wt*kzx)
asei(wt*ksx)
=Vv~lu. (3.36)
\ a2nei(wt_k2nx) J

The force vector acting on the lateral boundary of the doroaimbe deduced by employing the
stress and strain compatibility conditions and thereafdastituting equatior8(35 and @3.36)
into (3.34) to obtain a & column force vector

F* = — [iIAsVHV ~1+ A%] ui_o. (3.37)
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Matrix V contains the & eigenvectors columnwise as follows
V=|U; .. UZn]. (3.38)

Nodal forces are contained in vectef. The displacement field is therefore written as a com-
bination of all mode shapes which leads to nodal forces ongieand left sides of the central
domain, respectively. Let us consider the right side boondes nodal forces vector is ex-
pressed as

FR=—-RUr  with R=iAVHV 14+A} (3.39)

whereUR is the nodal displacement vector of the right hand sideeartioundary. In the same
way, the nodal force vector of the left hand side verticalrmtary is obtained. The correspond-
ing nodal displacement vectorli

! i

FL=—-LU_ with L=—iAVHV 1_-A} (3.40)

with H' contains the & computed wavenumbers wii > 0 andV’ contains the corresponding
2n eigenmodes columnwise. The nodal displacement vector®tbf lateral boundaries are
part of the global displacement vectdr MatricesR andL are deduced form the eigenvalues
and eigenmodes. The modal dynamic stiffness matrices dfdhemitting boundarir andL
relate the nodal displacements and the nodal forces atghteamd left boundaries, respectively.
These matrices are of dimension 2 2n and represent the effect of the semi-infinite extent of
the right and left lateral regular regions. Given that theptiicementtlg andU, are unknown,
the associated forces will be combined with the ones of ttegudar region to formulate the
system equation.

3.4 The finite element model

The consistent transmitting boundary conditions are @drin sectior8.3and the unbounded
domain is replaced by a bounded domain on which these traisgnéonditions are applied.
Therefore, the sought finite element model consists of coim@ithe irregular region defined in
section3.2bounded by the lateral boundaries of the domain and rigiddoddat the bottom, as
depicted in Figure8.4. Having obtained the consistent nodal forces on the |laterahdaries,
Fr andF_, and as they are a function of the nodal displacements, weetatl the dynamic
stiffness of the central domain, fror.(), and assemble these vectors as follows

[K—w’M+R+LJu=F. (3.41)
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Figure 3.4: The finite element model.

As the external load is harmonic the displacement field is REmonic, equatior3(41) will
yield to
[K — w?™ +R+L] ug = Fo, (3.42)

with ug and Fg are amplitudes oti andF, respectively and the time variable is omitted by
considering a steady state problem. The system of equdBo43 is linear and a direct solver
such as the Gauss elimination approach is used to solvedb&epr. The solution of the linear
system of equation3(42 gives the horizontal and vertical displacements at eade wd the
meshed region as complex numbars; a, + ib, andv = a, + iby, respectively. Their ampli-
tudes|u| = /a2 + b2 and|v| = \/aZ +bZ are used in the analysis to represent the results in a
non-dimensional form by dividing the displacements by adiaa = 1m. Nonetheless, another
expression, normalised area, is used for exploiting thdtem Chapterd and?. Itis evaluated

by computing the area under the relevant displacement cuevical or horizontal, at the soil
surface and normalised by a unit area for a non-dimensiepaésentation. In addition to that,
the absolute relative error norm is used to quantify theediffice between the displacements at
each node for different cases. It is given by

v -V

]
Vi

(%) = | | x 100, (3.43)

wherej denotes to the node number, 1 and 2 refer to displacemergsassociated with those
cases. In other words, the error is computed in the sameidockr different displacement
curve.

43



3.5 Concluding remarks

In this chapter, a finite element model is developed to soleady state wave propagation
problems in soils media in two dimensions under plane sttamditions. The soil medium,

assumed to overlay rigid bedrock, is divided into threeaesgi The central domain or irregular
region, which is of interest, is meshed into finite elemeiitse two lateral domains or regular
regions extending to infinity are replaced by equivalentahéarces they apply on the irregular
region. These nodal forces are computed through the solofi@ second order eigenvalue
problem, which is reduced to a first order with doubling iesi The obtained FEM model
allows numerical modelling of wave propagation is soil naeoler rigid bedrock and subjected
to harmonic loads. The nodal displacements, especiallyeastil surface, will be used in the
post processing stage of the results for validation andnpeiréc study purposes.
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Chapter 4

Wave propagation in soil media over
bedrock: validation & applications

4.1 Introduction

This chapter aims to validate the implemented numericalehateveloped in Chapted, for
the simulation of wave propagation in soil media. The soilmm is assumed to be resting
on horizontal rigid bedrock. The ability of the numerical debto simulate wave propagation
and predict the dynamic behaviour of soil media will be exasdi Several cases where the
analytical solution is available are considered. For otlases, judgement is used to justify the
results.

4.2 Effectiveness of the consistent transmitting boundargon-
ditions

In order to examine the effectiveness of the implementedistent transmitting boundary con-
ditions, the response of a soil domain is analysed with artdout incorporating the lateral
forces to simulate the semi-infinite extent of the domainer€fore, a soil domain ofX% and
2AR, in length and depth respectively, is subjected in this gano a vertical harmonic load of
1kN in magnitude at the soil surface with a frequency of 20Hze soil layer has the following
properties; density of 1700kgAnelasticity modulus of 100MPa, Poisson’s ratio 08 @nd a
damping ratio of 5%. The computational domain is meshed4ntode quadrilateral elements.
As the Rayleigh wavelength is 6.98m the element size is takent 0.7m. Figurd.1shows a
comparison between the vertical (left) and horizontal ldispment (right) at the soil surface in
both cases of treated and untreated lateral boundarigsgwit without the consistent transmit-
ting boundary conditions, respectively). The results aes@nted in a non-dimensional form
by normalising with respect to the unit displacement$he results clearly show that when the
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vertical boundaries are treated, to allow the waves to tadiaay into infinity, the surface dis-
placement curves are smooth and wavy. However, when thalléeundaries are not treated,
the incoming waves are reflected leading to spurious osottig.

treated boundaries AE-06 treated boundaries
------------ untreated boundaries ------------ untreated boundaries

2E-05
1.5E-05F
(]

= 1E-05

5E-06 |

-30 -20 -10 0 10 20 30 -30 30

x/a x/a

Figure 4.1: Effectiveness of the consistent transmittiogrizaries.

It is obvious from this example that treatment of the tworat®oundaries of the soil model
is necessary when dealing with wave propagation modellintat the waves radiate away to
infinity with no or very little reflection.

Next, the continuity of the surface displacements is ingastd when the length of the soill
model is increased. It is anticipated that the soil behaviemains unchanged for any length
of the domain since the consistent transmitting boundahesld simulate the infinite extent of
the domain. Both undamped and damped cases are dealt with.

4.2.1 Undamped case

The matrices of the eigenvalue problem of expressB8Jj could be real or complex depend-
ing on damping. Therefore, damped and undamped soil mogiadstb different eigenvalues
(wavenumbersk) and eigenvectors. In the case of undamped soil model, waveers could
be purely real or even take the zero value, while the dampseldaes not produce such values
(see sectio.d).

The developed finite element model is used to analyse théjpigy considered example in the
frequency domain by changing the length of the domain fragt 10Ag. The Rayleigh wave-
length is meshed into 10 elements in the vertical and hotéairections as recommended by
Laghrouche 99]. Other researchers considered 8 elements per Rayleigblevayth, however
10 elements produces a smoother wave pattern. Herein, adeqti of 2r of the soil layer
and a fixed applied frequency of 20Hz are again used, and tigghlef the domain is varied
to check the continuity of the soil response. The efficienicshe method is also examined by
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computing the relative error at the nodes of the surfaceNorstuccessive lengths of the domain.

First, the length of the model is considered to g then 2R while keeping the depth con-
stant. When comparing the surface displacements it is the&this approach is very effective
as the continuity of the displacements is ensured with tladive error being less thanZb%
as shown in Figurd.2

The length of the model is increased trdand a comparison withXk length is drawn. Waves
propagate through the boundaries and very little refleégi@mcountered, the symmetry of the
displacement is clear and again the error does not exc8@6l 0t could be seen that the highest
percentage of error is encountered close to the verticaldamies of the domain, nonetheless it
is so small and insignificant.

The same trend is shown when the length of the domain is isetkto g and 1. The
relative error is less than.83% as shown in Figurd.2 Looking at the results, it could be
concluded that the consistent transmitting boundariesemeeffective to simulate wave prop-
agation in undamped soil media.

Surface horizontal displacements and their corresponelirays when extending the length of
the computational domain are depicted in Figu@ At the point of application of the load, the

horizontal displacement is zero and therefore the errargmeage at this point is not represen-
tative and hence its corresponding error is not includetaerésults.

It is obvious from the results corresponding to the horiabdisplacements that the consis-
tent transmitting boundaries perform well as the continaftthe displacements is ensured and
the relative errors remain very low.

4.2.2 Damped case

The numerical tests carried out for the undamped case anaeselered here with a damping
ratio of 5%. The results shown in Figurds4 and 4.5, for the vertical and horizontal dis-
placements, respectively, lead to similar conclusions/drir the undamped case. Indeed, the
relative error remains very low and the maximum error is 4ldo8%, which is an acceptable
engineering accuracy.

Figure4.6 shows an example of contour plots of the vertical and hotaafisplacements for
the case of length M. It is obvious that both displacements are symmetrical wepect
to the line of action of the vertical loading at the surface fdct, as will be shown next, this
symmetry is maintained even for non-symmetrical domains.
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Figure 4.4: Vertical surface displacements and correspgretrors: damped soil.
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Figure 4.5: Horizontal surface displacements and corredipg errors: damped soil.
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Figure 4.6: Vertical and horizontal displacement contdats case of 18r.

4.3 Non-symmetrical problem

In the configurations of sectiah?2, the vertical load is applied such that the model is symmetri
cal with respect to the line of action of the applied vertioald. Here, we assume that the load
is applied not necessarily in a symmetric manner and thaesffig of the numerical model is
examined by ensuring the continuity of the displacementseasurface. This is carried out to
show that good results are obtained by the numerical codewlien the applied load is close
to the lateral boundary of the domain where the energy traashmough the boundary.

4.3.1 Undamped case

In the current numerical tests, various non-symmetrica¢savith no damping are considered
such that there is no symmetry in the model with respect tditleeof action of the vertical
load. A first case consists of applying a vertical load at thedf the right lateral boundary
of a domain of 4Agr length and 2r depth. The same model is reconsidered where the domain
length is increased byAk to the right of the applied load such that the length becomgsbhe
top graphs of Figurd.7 show the vertical displacements for both cases and thesponeling
relative errors. It is clearly shown that the results areenyvgood agreement and the errors
are very low, except at the extreme nodes at the surface. dMergthe results for the case of
length 5\g show symmetry with respect to the vertical load despite #uot that the problem
is not symmetrical. In fact, this shows that the transngtfioundary conditions are effective
in radiating the waves to infinity and are capable to simulagesemi-infinite extent of the
model in the lateral direction. The length of the domain idHer increased toXg, 8Ar and
10Ar. Further comparisons of the vertical displacements antliatran of the relative errors
(Figure4.7) confirm the above stated conclusions. Here, only vertiogefase displacements
are analysed. In fact analysis of the horizontal displacemkeads to the same conclusions.
Moreover, a horizontal load could be used instead of a \&rtice.
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4.3.2 Damped case

A damping ratio of 5% is introduced for all considered exasspbf the undamped case. In
the same way, the results are summarised in FiguBéor the surface vertical displacements
and relative errors, when the domain length is increased #dr to 10Ag. Again, the results
show that the consistent transmitting boundaries are \iéggteve in radiating the waves away
to infinity through the lateral boundaries. The relativeoesrare very low and they are even
lower in certain cases in comparison to the undamped caselafdest relative errors are again
encountered at the extreme nodes of the domain surface éytte still very acceptable in
terms of engineering accuracy.
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4.4 Dynamic behaviour of a soil layer over rigid bedrock:
critical frequencies

A rational approach is employed in sectighand4.3to provide a judgment on the numerical
results. This section is aimed at simulating the dynamipaese of a homogeneous soil layer
over horizontal rigid bedrock, as an analytical solutiontfee natural frequencies is available.
It is based on a one-dimensional wave propagation theomyll be first presented and then the
numerical results will be checked against this solution.

If a homogenous soil layer, of depith is subjected to a horizontal or vertical harmonic load, the
natural frequencies of the horizontal and vertical respsiug the soil layer can be determined
from the following expressions

h__ _

fil=(n-1)2n=123 ... (4.1)
= (2n-1)P n=1,23........ (4.2)
n 4H7 2 ) 2

wherec, andcs are the compression and shear wave velocities respectijjend Y are the
natural frequencies of the horizontal and vertical respsasc is an integer. The superscripts
h andv refer, respectively, to the horizontal and vertical resgasn

Consider an isotropic, linear elastic soil medium undartai rigid bedrock as shown in Figure
4.9. A harmonic load applied at the top surface generates c@simreand shear waves which
propagate vertically within the soil layer, consequen#lysing displacements and deformations
in the soil deposit. An incident horizontal harmonic loaol, €&xample, generates a vertically
propagating shear wave in the soil layer. Once the propagatiear wave hits the fixed base
it reflects back into the domain with the same amplitude. H@nedhe reflected wave doubles
its amplitude once hitting the free surface. The solutiartie horizontal displacement can be
written as
u(y,t) = Ad(@+ksy) | pe(@t—ksy) (4.3)

wherew is the circular frequency of the harmonic lo&d — c% is the horizontal wavenumber
andA andB are the amplitudes of the travelling waves upwards and da@xtsy respectively.
Boundary conditions in this case are zero displacementgditadse and zero shear stresses at the
soil surface (free surface), and as consequence zero $reas ss well. A standing wave with
amplitude 2 cokgsy can be described by the previous equation. This leads toedifntransfer
function or the amplification factdf;(w) given by the ratio of the displacements between the
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surface and the base. It is given by

1
Fa(w) = cosksH

4.4)

horizontal harmonic
load - free surface

. . X

'y
Aei(wt+k )

S-wave

<——> l Bei( wt -kgy)

) i
rigid bedrock

Figure 4.9: Linear elastic soil deposit over bedrock.

Equation 4.4) represents the analytical transfer function for undangmblayer subjected to
horizontal excitation. Similarly, if the soil layer is s@gjed to a vertical harmonic load, the
associated transfer function could be derived and the cesson wavenumbek, replacesks

in expression4.4).

To understand the soil response due to the harmonic loadislgiot the magnitude of the
transfer function against the frequency considering amseilium of 10m depth with the same
material properties presented in sectdbB The natural frequencies for both the horizontal and
vertical loading can be determined from equatighg)(and @.2). The top graphs of Figu4.10
show the magnitude of the transfer function of the vertical horizontal undamped response
of the soil layer, under vertical and horizontal harmonids. The results show that resonance
happens at certain frequencies, natural frequencies,entherresponse goes to infinity due to
the absence of damping. These frequencies are functioregifrtperties and the depth of the
soil layer. However, this is not the case for practical aggilons where the presence of damp-
ing leads to energy dissipation. The transfer function fsceelastic materials is derived by
introducing a damping ratig3, in equation 4.3). The transfer function for the damped soill
layer subjected to horizontal excitation is expressed as

1
)= /CoFkeH + (BkeH)2)
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Again, the compression wavenumbey replacesks in expression4.5) to obtain the transfer
function in the case of vertical excitation. More detailsatthe derivation of the transfer func-
tions may be found in text books such as Kranigr]].

When evaluating the damped response of the same soil layamrsydering 5% damping ratio
we obtain the bottom graphs of Figu4el0in the vertical and horizontal directions. Although
amplifications happen at natural frequencies, resonamaerig pronounced at the lower natural
frequencies, especially at the fundamental one. It is als/tbat the magnitude of the transfer
function/(w) reduces significantly for increasing frequency, thank$ieogresence of damp-
ing, unlike in the undamped case where all natural freq@sneiad to infinite amplification.
Next the dynamic response of the considered soil layer issiiiyated numerically to evaluate
its natural frequencies and compare them to those obtaeeddtically.

|Amplification factor|

undamped vertical

10 20 30 40 50 60 70 80
f(Hz)

|Amplification factor]|

undamped horizontal

510 15 20 25 30 35 40 45
f(Hz)

|Amplification factor|

141

damped vertical

10 20 30 40 50 60 70 80
f(Hz)

|Amplification factor]|

damped horizontal

510 15 20 25 30 35 40 45
f(Hz)

Figure 4.10: Theoretical amplification factors for vertifiaft) and horizontal (horizontal) ex-

citations for undamped and damped homogenous soil layebaedrock.

4.4.1 Undamped response

The dynamic response of a soil layer overlaying bedrock @ysed numerically here by the
developed finite element model. The same soil layer considersectiort.4is used in the nu-
merical simulations to examine the capability of the modeatdpture its dynamic response in
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n fY(Hz) fh(Hz)
1 7.04 3.8
2 211 11.3
3 352 18.8
4 49.2 26.3
5 633 33.8

Table 4.1: Natural frequencies of the horizontal and valtiesponse of the solil layer.

terms of the natural frequencies of the horizontal and e@rtisplacements. Those frequencies
are calculated using expressiodslj and @.2) and are shown in Tabk. 1

First, let us consider a vertical harmonic load applied atghbil surface with a range of fre-
guencies including the first two natural frequencies of thiedomain. As usual, the domain
is meshed into finite elements with size not exceeding ontttef the Rayleigh wavelength.
The top left graph of Figurd.11shows the vertical surface displacements for the freqesnci
3, 7 and 10Hz. For the case of 3Hz, apart from a disturbanesdrtine point of application of
the load, the rest of the soil surface shows no displacem@n®Hz, however, significant dis-
placements take place along the whole surface. This frexyusvery close to the fundamental
frequency of the soil medium, which is 7.04Hz, and hencerr@asoe was expected. Then at
10Hz, while noticeable displacements occur, those aresaratler in comparison to those cor-
responding to the frequency of 7Hz.

Similar numerical experiments are carried out with higlieg@iencies. The bottom left graph
of Figure4.11shows the vertical displacements corresponding to 15, @P8&Hhz. Once again,
the displacements occurring for the 21Hz case are more tapdhan those corresponding to
15 and 25Hz. In fact, at around 21Hz resonance takes place &dech corresponds to the
second natural frequency.

To show this in a more obvious way, for each frequency rangieigveen 1 and 25Hz, the
areaA under the surface displacement curve is calculated antkdlot Figure4.12(left). The
areaA is normalised here with respect to a unit afgafor a non-dimensional representation.
Other authors such as Yamg al. [98] multiplied, for example, the vertical displacement by
the shear modulus and plotted it against the frequency. r&gd 2 (left) clearly shows that
resonance occurs at the frequencies around 7 and 21Hz, aidcrery close to the predicted
frequencies of 7.04 and 21.1Hz by expressii2)(

For the case of natural frequencies of the horizontal lagdime same approach is followed.
The soil layer is subjected to a surface horizontal load fguency ranging from 0.5 to 20Hz.
The surface displacements for selected frequencies avenshdhe right graphs of Figuré.11
Once again, the displacements seem to be higher at cergneincies.
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Figure 4.11: Undamped vertical (left) and horizontal (t)gtisplacements at the surface for
various applied frequencies.
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Figure 4.12: Soil response amplification for vertical andZental excitations under undamped
condition for homogenous soil layer over bedrock.
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To show the resonance behaviour, the normalised &fég is evaluated for each loading fre-
guency and the results are plotted in Figdirg2(right). Once again, it is obvious that resonance
occurs at the frequencies around 4, 11 and 19Hz. Those fretpseare in very good agree-
ment with the values predicted by expressiéri), which are 3.8, 11.3 and 18.8Hz (Tadl4).
The above numerical tests validate further the developetenical model and show its ability
to capture the dynamic behaviour of soil media overlayindrbek. Since previous numerical
simulations considered both undamped and damped casessgithcomplementary numerical
tests are carried out with the introduction of a damping.

4.4.2 Damped response

The same cases analysed in the previous section are reemtstiere with the introduction of
a damping ratio of 5%. The results are presented in Figut8for the vertical and horizon-
tal loading. The left graphs represent the response of tihéager due to a vertical harmonic
load while the right graphs show the response associatbédhéthorizontal loading. The same
behaviour is shown as in the undamped case except that thleofedisplacement is less pro-
nounced in the presence of damping. A steady displacemensteady wave, is encountered
in the undamped case, while the pattern of the displacermel@mped as we move away from
the point of application of the load. This is related to thieetf of damping in the soil which is
an important property when considering dynamic analysguré4.14shows the fundamental
frequencies for vertical and horizontal displacementgeetively, to be around 7Hz and 3.5Hz.
These values are in good agreement with the theoreticaésaiiTabled. 1
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Figure 4.13: Damped vertical (left) and horizontal (rigti§placements at the surface for vari-
ous applied frequencies.
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Figure 4.14: Soil response amplification for vertical andizantal excitations under damped
condition for homogenous soil layer over bedrock.
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4.5 Dynamic behaviour of a soil layer over rigid bedrock:
critical depths

The depth of a soil layer over rigid bedrock has a significdiece on its dynamic behaviour
when it coincides with a critical value as it also leads tmnssice. Such cases include; ma-
chine foundations where ground vibrations can be a majocaonfor neighbouring structures
and people. The case of a moving load such as a train overaseit bverlaying bedrock is
another example. In the following sections, analytical ancherical analysis are presented to
investigate the effect of these critical depths.

4.5.1 \Vertical loading

The critical depth formula associated with a vertical loadivith a fixed frequency acting on
a soil layer is deduced from expressi@dng) as

Hy = 22 (2n—1). (4.6)
Let us consider a vertical load of a magnitude 1kN with a fesgpy of 5SHz acting at the surface
of a soil layer with the same material characteristics ovioes examples (sectionk2, 4.3
and4.4). The length of the domain is taken to b&sgand its depth varied between Qgland
4)\r with AR being around 27.9m, in this case. The harmonic load is asstonge applied on
the left boundary of the domain to make the results more tdadd he effect of the soil layer
depth is shown in Figurd.15 In the case of shallow depths,J@Qr and 02Ag, the waves do
not seem to propagate. Propagation starts when incredsrdepth of the soil layer and it is
more pronounced with depths greater thamf.3n fact, resonance occurs when approaching
a depth of 0.3r, which coincides with the first critical depth of the soil éxyfor the vertical
loading case determined from expressidré), Actually, if we consider the depth of QAR of
the soil layer and compute the fundamental frequency of émgcal loading it will be around
5Hz. As it is shown in Figurd.15 waves do not propagate if the depth of the solil layer is less
than the first critical depth. From other cases of largerfigpte can see resonance happens at
the second critical depth of 1.33.

4.5.2 Horizontal loading

This time a horizontal surface load is considered with adesgty of 5Hz. The effect of the
soil layer depth is examined for a series of numerical examfir surface wave propagation.
Similar to the vertical load case, the critical depth forenaksociated with horizontal loading
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with a fixed frequencyf acting on a soil layer is deduced from expressibi)(as

Cs

o= 2

2n—1). 4.7)
As in the case of vertical excitation, waves do not propagédien the depth of the soil layer
is less than the first critical depth associated with thezomtal loading, as in Figuré.16(top
left). The magnitude of the horizontal displacement inseebwith increasing the depth of the
soil layer and waves start to propagate for depths greaser QtRAr. The first critical depth
associated with horizontal loading is computed from exgioes{@.7) to be around 0.2¥; and
the second critical depth is around B8

To compare the soil surface response for varying soil laygtid the area underneath the
displacement curve is evaluated with a numerical integmaéipproach and normalised with
respect to a unit area. These are shown in Figut& (bottom) against the normalised depth
of the soil layer. The top plots of Figuee17 present the theoretical prediction of amplifica-
tion in the horizontal and vertical directions against tleenmalized depth, with respect to the
Rayleigh wavelength of the soil layer. Amplification occatsertain depths which are the crit-
ical depths as depicted in the previous figure. It is cleartth@numerical results predict very
well resonance and that the numerical critical depths edéneell with the theoretical values.

In practice, it is very important to avoid those depths orttargge the applied frequency if pos-
sible when designing machine foundations or when runningeimg load. The same trend is

found in the damped case but it is not included in this dissert.

So in summary, the developed numerical model captures thandig behaviour of soil me-
dia over rigid bedrock, in the case of a fixed frequency, whieeedepth of the bedrock varies.
Indeed when the depth coincides with critical values deitgethby expressiongl(6) and @.7)
for vertical and horizontal loadings, respectively, thé lkyer shows resonance.
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4.6 Dynamic behaviour of layered soil media over rigid bedrok

Up to this point, the soil medium is assumed to be a homogesimgge layer. In spite of

this assumption being very helpful to simulate wave profiagan soil media, it is unusual

in engineering practice to encounter such a situation. @operties usually vary with depth,
especially the stiffness, which could be due to the geolddicstory of the soil, for example.

Moreover, soil layers usually deposit over each other vifletand consolidate leading to form-
ing stiffer materials with depth, in general. Next, the @sge of two-layer and multi-layered
soil profiles are examined in the following sections.

4.6.1 Dynamic behaviour of a two-layer soil profile

In this section, the developed numerical model is emplogesirhulate wave propagation in
a two-layer soil profile consisting of a soft soil layer owsfing a stiff deposit. The material
properties of the soft soil layer are; 20MPa, 1550kyand Q3 for elasticity modulus, density
and Poisson’s ratio, respectively, with no damping. Whehmaing’s modulus, soil density and
Poisson’s ratio for the stiff soil are assigned as 100MPaPRG/nT and 025. For the layers’
thicknesses, let us assume for simplicity thlatH,=5m. The two-layer medium is subjected
to a vertical surface load of 1kN with a frequency of 20Hz. Tewe that the consistent
transmitting boundaries allow the waves to radiate awayatdw infinity, the same approach
used for homogenous media is followed. The length of the doméncreased from 2 to 8Ar
while the total depth is kept, as mentioned above, unchaag&@m. Horizontal and vertical
surface displacements are displayed in FiguE8 for different lengths of the domain. It is
clearly shown that the results are in very good agreementtaidhe consistent transmitting
boundaries allow the waves to radiate away at both laterdicaé boundaries. Comparison
between successive cases of length show low relative emtaid do not exceed 2% and 3%
for the horizontal and vertical displacements, respelgtive
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Figure 4.18: Horizontal (left) and vertical (right) suréadisplacements with their correspond-
ing relative error of 2-layer soil profile.

Let us now analyse the dynamic behaviour of the two-laydrmmedium in terms of critical
frequencies, as was done for the homogenous single laygre Honsider a wave hitting the
interface of the layered system, part of that incident wailereflect back and the other part
will travel into the bottom layer. The transmitted wave tigh the bottom layer will reflect at
the bedrock and refract again at the two layer interface jiekaflLl0Z estimated the fundamen-
tal period of a layered soil profile by an approximated relaghip involving the thickness and
the fundamental period of each soil layer and two other patara which represent the ratio
between the thicknesses of soil layers. Hadjian obtainexraiufla estimating the fundamen-
tal period of a layered soil profile which may be used in corapsgbftware. The equivalent
fundamental frequencies have the following expressions

f= f for % > 1. (4.8a)
\/§ {0.75+ (%)2 (2+ 2;’;—:;)] ’
f H
e ey TR
2 2112
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wheref3 =1-0.2 <g;—ni> ’ and n=4-— 1.85;—[:;. The fundamental frequencids and
f, are related to the upper and the bottom layers, respectiVeg/fundamental frequency of the
soil profile considered in our analysis is estimated fromagign @.80) to be 5.32Hz. It should
be indicated that the analytical solution derived in refiese[L02 has the ability to predict the
fundamental frequency of a two-layer soil with a marginaber This could be generalised to
a layered soil profile and the fundamental period or frequefithe profile could be estimated
by using the Successive Use of Twbayer solutions. It is worth mentioning that the induced

error is due to the fact of taking the first two terms in the nesieries expression.

Generally speaking, the fundamental period or frequentlyegsnost important dynamic char-
acteristic as the response will be at the first maxima. Ma@eandamped response was consid-
ered in the preceding formula, which is very practical. He&resometimes the second natural
frequency could be also of practical importance but theesh@ntioned solution cannot predict
this frequency.

Next, the developed numerical model will be checked agdimstabove approximate solu-
tion. So, if we consider a soil domain of 30m length and 10ntlleyth the same material
properties given at the beginning of the current section.kN lbad is applied at the surface
with different frequencies. Vertical and horizontal sgdalisplacements are shown in Figure
4.19for the considered frequencies. The same behaviour as ioae of homogenous soil
layer over rigid bedrock of sectiof4.1is observed; waves propagate when approaching the
fundamental frequency of the soil medium and amplificatioouns. Waves do not propagate
when the frequency is lower than the fundamental frequehog.numerical model predicts the
fundamental frequency to be around 5Hz which coincides wigi the approximated solution

of expression4.8b).

A comparison between the homogenous layer response andldlyer2soil profile response
is presented in Figurd.20in terms of amplification by estimating the normalised aredax
the vertical displacement curve at the surface. The honmgesoil layer has the material prop-
erties of the upper layer of the 2-layer system. The fundaah&equency of the homogeneous
layer is estimated to be around 3.3Hz and the numerical coettigbs it to be around 3.4Hz.
Resonance occurs when the applied frequency coincideghigfundamental frequency as it
is shown in Figuret.20
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Figure 4.19: Vertical (left) and horizontal (right) suréadisplacements of a 2-layer soil profile
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Figure 4.20: Resonance phenomena of homogeneous andrzdalyarofiles.

In the 2-layer soil profile, the fundamental frequency hakesihto the right, or increased, due
to the impedance effect of the two layers. As the bottom lgystiffer than the upper layer, its
fundamental frequency should be higher than the frequehtyeocoverlain layer. In equation
(4.8b), given that the fundamental frequency of the bottom lagdrigher than of that of the
upper layer and so the denominator decreases, which leadarttlamental frequency of the
soil system to increase. This explains the shift in the fumeiatal frequency when comparing
the homogenous case and the 2-layer soil profile, as it issihowigure4.20,
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4.6.2 Dynamic behaviour of a multi-layered solil profile withlinear varia-
tion of stiffness

Using the Successive Use of Twbhayer solutions, the fundamental frequency of a multi-
layered soil profile could be evaluated. The ability of theedeped numerical model to simulate
wave propagation in a multi-layered soil deposit with difiet material properties is examined
next. As the 2-layer solil profile is validated against theragjmated solution, a linear stiff-
ness relation will be adopted in the numerical model to sateulvave propagation in the soil.
However, the stiffness of the soil should not vary withinteatement. Nevertheless, the length
of each element is very small and therefore the effect ofidensg constant stiffness over a
small length may not have much effect. It is common practiceonsider a homogeneous half-
space with an average shear modulus but it is more praatigaty the shear modulus of the soil
with depth as the homogeneous case underestimates therdpechpracteristics of the medium.

Here, a linear stiffness of the soil profile resting over honital rigid bedrock is assumed. A
linear variation of the shear modulus with depth is choseh shat

p = po(1+az), (4.9)

wherea is the rate of linearityy is the shear modulus at a given degitb,js a reference shear
modulus at the soil surface andig the depth below the soil surface. The rate of linearity is
chosen to be 1 and the reference shear modulus equals to BaZ B6il density and Poisson’s
ratio are assumed to be constant for simplicity. Hence, éil@sposit is assumed to be soft at
the surface and the stiffness is increased gradually t@esept hard soil at the bottom. Having
obtained the shear modulus for each layer we assume theeswiitgd and Poisson'’s ratio to be
1550kg/n? and 03, respectively. No damping is considered. A 1kN verticaldavith 10Hz
frequency is applied at the soil surface. The length of thematational domain is changed
from 2AR to 8Ar with a fixed depth of 2g. The domain is divided into 20 layers with respect
to depth, each layer has its own constant stiffness deriged the previous equation. As it is
shown in Figure4.21, vertical and horizontal surface displacements are mloitieen increas-
ing the length of the domain. Once again, the continuity spiicements for various lengths
of the domain and low relative error show the good perforreasfdhe consistent transmitting
boundary conditions to radiate the waves away to infinitwdfassume that the soil layer is ho-
mogeneous and has the reference elasticity modulus of 2@d#Riae previous computational
domain, the results of Figur4.22 show a completely different response for the vertical and
horizontal displacements at the soil surface in the casemidgeneous and linear variation of
the soil stiffness.
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Figure 4.21: Vertical (left) and horizontal (right) suréadisplacements and their corresponding
errors for domain length associated with linear variatibthe stiffness.
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Figure 4.22: Vertical (left) and horizontal (right) disp&aments at the surface for homogeneous

and linear variation of stiffness for the case ak8
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A parametric study is performed to investigate the effedhefratea has on the fundamental
frequency of a multi-layered soil profile. Three differemtives ofa have been assigned; O,
0.5, and 1. A soil domain of 30m length and 10m depth is comsdaleith 10 layers. The area
underneath the vertical displacement curve at the soihsaris plotted for several frequencies
and the three chosen valuesaf From Figure4.23 it is observed that the fundamental fre-
guency of the soil profile has shifted to the right. Itis iragsed with increasing the soil stiffness.
Increasingx will increase the shear modulus of the soil and consequémglyundamental fre-
guency of the soil deposit. In summary, the fundamentaluieegy increases with increasing
the linearity coefficientr.

0.005

<
0.0025 -
<

Figure 4.23: Effect of soil stiffness on the fundamentadjtrency.

4.7 Models with structured and unstructured mesh grids

So far only uniform structured mesh grids consisting of dleguadrilateral elements were
used. Although such mesh grids are very simple to use butdaheyot practical especially
when encountering complex geometries as it is the case of emggneering problems. The
purpose of choosing such meshes is for simplicity and thasé@ry common to use in problems
with simple geometry. For problems of practical interelsg $oil domain may contain some
discontinuities or structures such as foundations, tnaelvave barriers of complex shapes.
Dealing with problems with a uniform structured mesh gridiféicult if not impossible in some
cases. Therefore, using unstructured mesh grid is veryrtapoxhen solving such problems.

4.7.1 Structured triangular element mesh grids

A structured triangular grid is used first to mesh the domaith simulate wave propagation
in a soil medium before adopting an unstructured mesh. Hgegich quadrilateral element is
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divided into two triangular elements. Hence, a structureshgular element mesh grids is ob-
tained as shown in Figu# 24 Triangular elements are either right or left-angle. Quatéral
elements are replaced by triangular elements and consgyjtlenstiffness and mass matrices
routines are changed in addition to the post processingesitNodal forces simulating the ef-
fect of the two semi-infinite lateral media on the central damremain unchanged. In order to
satisfy the condition on the model size, the length of thenelet should be around one-fifteenth
of the Rayleigh wavelength in order to obtain the length eflilgpotenuse abol/10 or less.

It is found that a dimension of one-twentieth of the Rayleigdvelength of the triangular el-
ements gives reasonable results as the horizontal andalatisplacements converge towards
the quadrilateral element mesh solution. Here, a soil domidAr in length and 2g in depth

is considered. The soil has the following properties; dgrefi2000kg/nt, elasticity modulus
of 100MPa, Poisson’s ratio of. 256 and a damping ratio of 2.5%. It is subjected to a vertical
surface harmonic load with a frequency of 20Hz. A higher nendf nodes and consequently
much higher number of degrees of freedom in the computdttmmain are used by the above
mentioned discretisation. The number of elements in thér@ledomain has increased by a
factor of 8. The run time in the case of quadrilateral elemevdas 3s whereas in the case of
triangular elements with one-twentieth of Rayleigh wanglth has increased to 15s, 5 times
higher, as more degrees of freedom and elements are involted solution. Fortunately these
run times are so small that the increase is not of importance.

One drawback of the right and the left-angle triangular elets is that the shape is not uni-
form; in other words, the length of the hypotenuse is gretitan the other lengths. It was
found that including triangular elements as in the top rigiesh type 1) or bottom left (mesh
type 2) of Figure4.24has produced non-symmetrical results and it is more prorexiim the
surface horizontal displacements, Figdt85 The loss of symmetry is less pronounced when
decreasing the dimension of the finite element from onéitehthe Rayleigh wavelength to
one-twentieth. This obviously leads to more finite elemeahtgrees of freedom and eventually
a higher computational cost.

As depicted in Figurd.25 mesh type 3, half of the triangle elements inclined to tfiealed the

other half to the right, is a symmetrical mesh and produceswstrical displacements. In the
case of mesh grids 1 and 2, the displacements were found torbsymmetrical, however both
meshes have shown that the results are close to the quadiilahd to the mesh type 3 results.
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Figure 4.24: Mesh grids used in the analysis.
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Figure 4.25: Effect of triangular element type on surfacezomtal (left) and vertical (right)
displacements.
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To investigate the effect of mesh size on the accuracy ofdghgisn, the mesh grid 3 is further
refined. The number of nodes is increased from 10 to 20 andr3Radeigh wavelength. As it
is illustrated in Figurel.26 for the case of one-twentieth of the Rayleigh wavelengéhrésults
are almost matching the quadrilateral element solutiohénvertical direction but there is still
some discrepancy in the horizontal direction. Better agesd is obtained by adopting even
smaller elements with mesh size equal to one-thirtieth@Rhyleigh wavelength.
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Figure 4.26: Effect of triangular element size on surfacazontal (left) and vertical (right)
displacements.

4.7.2 Unstructured triangular element mesh grids

An automatic mesh generator such as the one introduced byaeuand Remaclel03 is
used in the current section to generate an unstructuretjtriar element mesh grid. The mesh
generator produces a random grid for the computational domigh a specified element size
at the surface by the user, by setting the element size fastdwith element length within the
mesh grid less or equal to the specified size. Basically, riredler the element size factor the
smaller is the length of the element. The benefit of the meskrgéor consists in its practical-
ity to introduce many layers in the domain, include disaomties with complex geometry and
even consider an inclined rigid bedrock or inclined soiliesy

If we consider a soil medium of length 30m and depth of 15m Wwitias the same charac-
teristics presented in sectidn7.1 A 1kN oscillating load of 20Hz frequency is applied at the
left boundary of the domain. An unstructured mesh grid wimigular elements is generated.
The horizontal and vertical directions are divided into &d 84 nodes, respectively. If a un-
structured mesh grid is adopted, 2599 nodes are requireshgtract 5064 elements. This mesh
is much denser in comparison to 1091 nodes and 1800 elenrahefstructured quadrilateral
element mesh. Figuré.27 shows the two types of meshing. Horizontal and verticalasaf
displacements are plotted in Figu4e28 For the considered problem very good agreement is
achieved when comparing the results from both grids. Howélwe computational cost of the
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analysis increased due to the increase in the number ofeegféreedom in the model, for the
unstructured mesh.
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Figure 4.27: Structured quadrilateral versus unstrudttirangular mesh grids.
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Figure 4.28: Horizontal (left) and vertical (right) suréadisplacements associated with struc-
tured and unstructured mesh grids.

The length of the computational domain is increased from 1&®30m. The horizontal and
vertical surface displacements are plotted in Fig29 The continuity of the displacement
field is clearly observed and hence the developed modelaséfisctive with unstructured mesh
grids.
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Figure 4.29: Horizontal (left) and vertical (right) suréadisplacements associated with unstruc-
tured mesh when extending the domain.

4.7.3 An application with unstructured mesh grids

The merits of using unstructured mesh grids is exploitedresively in Chapte? for various
applications. A test example is introduced in the curreatise to show the flexibility of the
numerical model, by incorporating unstructured trianguatesh grids, to deal with problems
where a traditional uniform structured mesh could be tresdime.

Several assumptions have been made in sedtiémo simplify the problem such as presum-
ing that the soil layer is resting on horizontal rigid bedcodsually, neither soil layers nor the
bedrock are horizontal. Therefore, it is worth investiggtihe effect of inclined rigid bedrock
on the dynamic behaviour of the soil layer. A parametric gtwds performed by Joned(4]
and Jones and Hunt (5 to investigate the effect of soil layer inclination oveyfilag half-space
on surface wave propagation due to an interior dynamic ltravhat follows, a series of nu-
merical examples are used to investigate the effect of the lelination of the soil domain on
wave propagation. A soil layer of 30m in length and 15m depsting on rigid bedrock is con-
sidered. Young’s modulus, density, Poisson’s ratio andplagratio of the soil are assumed
to be respectively; 100MPa, 1700kgind.30 and 25%. The dynamic load is 1kN and applied
at the soil surface with a frequency of 20Hz. An unstructiBetbde triangular element mesh
grid is employed where the base is considered first to be dwatiak in order to obtain a refer-
ence solution which should match the solution when usingderquadrilateral elements. The
rigid bedrock is then inclined with an angbevaried from 0 to &°. The main difference in the
case of inclined soil base model, in comparison to the cas@mfontal base, is that we have
to solve two separate eigenvalue problems, as the two ldteumdaries of the computational
domain are different in terms of depths and node numbersur&#30shows an example of
unstructured mesh grid for a soil layer over an inclineddrigedrock, the semi-infinite lateral
regions on the right and the left are assumed to have hoaktayters extending into infinity.
Figure4.31depicts the effect of the angle of inclination on the veltstaface displacement.
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Figure 4.30: Unstructured mesh grids for soil layer oveliea base.

The right hand side depth of the soil layer is multiplied by ®ayleigh wavelength for better
interpretation of the results. For low angles of inclinatithere is no dramatic change in the
surface vibration. With increasing the angle of inclinatio such way that the shorter depth of
the soil domain approachesag, the region of the shorter depth is first affected more than th
region corresponding to the larger depth. However, theraggion becomes more affected as
the angle of inclination is increased.
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Figure 4.31: Effect of base inclination on surface vertaiaplacements.
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4.8 Concluding remarks

In this chapter a parametric study is carried out primanlyalidate the numerical model de-
veloped in ChapteB. The soil medium is assumed to rest over rigid bedrock anddhsistent
transmitting boundaries simulate the unbounded charattire computational domain in the
horizontal direction. The main conclusions are as follows:

e Itis clear that untreated lateral boundaries of a computatidomain, representing a soill
medium, lead to erroneous dynamic response of the medium.

e The effectiveness of the consistent transmitting bouedda radiate the incoming waves
away to infinity at the lateral boundaries of a given compatetl domain is checked by
considering different lengths. Indeed, both vertical andZontal surface displacements
remain unchanged irrespective of the domain length, wititive errors remaining very
low, showing that the model simulates the infinite extenhefgoil medium.

e The developed model is further validated by consideringifheamic behaviour of a soill
layer overlaying rigid bedrock, in terms of the natural fieqgcies or critical depths. The
model successfully captures the resonance effect due toatueal frequencies of the
medium, for cases of fixed depth. Conversely, for a fixed feegy of the external load,
the model captures resonance due to the critical depth&eighl bedrock.

e The latter validation is extended to the case of multi-lagesoil profiles, particularly
to 2-layer soil media for which an approximate expressionhef natural frequencies
is available. The developed model predicted frequenciesiged by the approximate
theoretical approach.

e Itis also shown that the developed model can incorporategb®f structured or unstruc-
tured mesh grids. In fact the ability to use unstructuredmggils offers more flexibility
in considering problems of engineering interest such aindeaith complex geome-
tries. In summary, all numerical analyses carried out is tapter lead us to trust the
developed model and further extend it to deal with soil meder half-space.
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Chapter 5

Wave propagation modelling in half-space
soll media

5.1 Introduction

In Chapters3 and4, the soil medium is assumed to overlay rigid bedrock. As aeqoence,
the nodes at the base of the computational domain are fixe. mddel may represent real
engineering situations, in which the bedrock is at shallevintermediate depths. However,
when this is not the case and the soil medium is either verp deextends to infinity in both
lateral and vertical directions, the alternative modelstide the half-space model. According
to Andrade 106§ there is no exact representation of the half-space withénftamework of
the FEM. An approach representing part of the half-spadewba domain of interest, as an
absorbing or paraxial boundary would be of practical use.

In this chapter, the Paraxial Boundary Condition (PBC) imbmmed to the TLM approach
to produce a model for half-space soil media.

5.2 Literature review

A first idea consisted to extend the TLM approach to the basigeodomputational domain and
formulate the appropriate matrices which represent th&itomion of the half-space. Treating
the base of the domain with the same procedure used for thenéfright lateral semi-infinite
regions will lead to a costly computational model becausb@gigenvalue problem. Moreover,
following the TLM would require fixing certain nodes, for erple at the two bottom corners
of the computational domain, to avoid rigid modes. As thiprapch seemed unpractical for
the considered applications, an alternative method istado\s mentioned above, it consists
to couple the TLM with the PBC. Figurg.1 shows a schematic diagram representating this
coupled model.
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Halfspace

Figure 5.1: Two dimensional half-space representation.

In the following, a survey is conducted to review differeppeoaches combined with the TLM
to represent half-space media. Kausel and Roé46&} (ised the stiffness matrix approach,
by employing the Haskell-Thompson transfer matrix techaido derive the dynamic stiffness
matrix for layered media. This approach is based on is@aispecific layer and maintain-
ing equilibrium by applying external loads at the upper anadr interface of the layer with
different signs. As it was shown in Chapt&ran algebraic eigenvalue problem was derived
by applying the principle of virtual work on the wave equasgdo first compute the horizontal
layers’ matrices. Therefore, if one is seeking to model thieownded domain by means of the
TLM with another approach, the computed global stiffnessrimahould also be of a polyno-
mial form in the wavenumber. This could be achieved by usomgespolynomial approximation
of the impedance matrix.

An explicit closed-form of the Green’s function for a dynandbad acting on, or within, a
layered soil system is derived by Kausel and Pe)g]. It is achieved by first inverting the
stiffness matrix in the wavenumber domain, which is caroatiby performing a spectral de-
composition, and applying an integral transform to obtaadisplacement vector. This has led
to obtain algebraic expressions for the dynamic stiffneagrimnfor layered media over rigid
base. A paraxial approximation for rigid base was derive@mploying the Green’s function
which relate stresses and displacements at any locatiom @tastic medium caused by a dy-
namic source at any other location. Hull and Kaud€l9 extended this procedure to obtain
the Green'’s function of layered media over half-space aacktfter derived paraxial approxi-
mations for the impedance of the half-space by using Tagoes to approximate its stiffness
matrix in a polynomial form. The impedance matrix of the kepdface is then added to the stiff-
ness matrix of the irregular region to obtain a model for thié€layer over half-space. In fact,
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PBC was first derived by Engquist and May 3]

Special formulations of the PBC for the half-space impedanatrix, derived by Kausel and
Roésset107], were further developed in referenckOf as follows. A layered half-space is
truncated at the interface between the last layer and therlama half-space. The tractions at
the interface contribute to the external virtual work pdrttee principle of virtual work ex-
pression. Considering that the bottom layer is divided gltaments and applying the virtual
work equation on the tractions at the bottom of the last latyex dynamic stiffness matrices
of those elements, half-space elements, are deduced ace aenassembled with the stiffness
of the finite elements of the irregular domain. The edge nodi#se last layer have also some
contribution. For the lateral boundaries, the contributi the half-space is accounted for and
implemented in the algebraic eigenvalue problem. Nodaef®and the dynamic stiffness ma-
trices of the regular regions are then computed and sutestitback into the global dynamic
equation.

The half-space impedance matrix of Kausel and Roéd4¥ was also used by Kayniat
al. [11Q to represent the soil media under the soil embankment. Titieoes used the disk
loads Green’s function to obtain the soil stiffness at théankment-half-space interface which
was assembled with the dynamic stiffness matrix of the erkipa@nt. This was implemented
in a finite element code in the frequency domain to predictigdovibration induced by high
speed trains in a layered viscoelastic half-space.

The stability and the accuracy of the PBC and the doubly asyticpapproximation are dis-
cussed by Maeda and Kausglfl] for the anti-plane shear case. Improvement of the paraxial
boundary approximations is achieved by incorporatirtgutier layerwith the same material
properties of the half-space at the interface between thegdium of interest and the remain-
ing of the half-space. Itis reported that it is not accuratede only the paraxial approximation
for modelling half-space, adding a buffer layer is then ssaey to improve its performance.
Further details are supplied next, in sect®h Moreover, Kausell17 investigated the physi-
cal interpretation of the PBC and its stability considenasiwhich should be taken into account.
For example, setting the determinant of the exact stiffnessix to zero leads to finding pairs
of wavenumbers which are all real. While, two pairs of roots) or complex depending on the
value of the Poisson’s ratio, are obtained from the apprat@hmatrix. Parkg6] employed the
same technique for anti-plane shear case and in-plane wadgsroposed some improvements
to the approximated stiffness matrix, depending on theevafithe Poisson’s ratio. An exten-
sive study was performed and a comparison between the encittt@approximated matrix was
carried out.
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The concept of the second-order paraxial boundary comditi® extended by Leet al. [113

to deal with water-saturated layered soil media over hadfes. They first obtained the exact
dynamic stiffness matrix of the water-saturated half-spaud then a second-order approxima-
tion of the exact stiffness matrix is computed. Both anéin@ shear problems and plane strain
problems are considered. The remaining steps of the proeede identical to those presented
by Andrade 106. As an application, the dynamic stiffness of rigid impeahke or permeable
strip foundations resting on water-saturated half-spaatetermined. This procedure is also
adopted in referencd 14 where a second-order paraxial approximation for threeedisional
wave motion in the Cartesian coordinates is determined Iplaymg their previous derivations
presented in referenc&13 for plane and anti-plane cases. It is transferred thenapliodri-

cal coordinates. The same steps in solving the problem airgairged leading to an eigenvalue
problem of dimensioii6én+ 6) wheren is the number of layers in the model.

Another technique for modelling wave propagation in adrtrunbounded domains is to com-
bine the TLM with high-order local absorbing boundary caiatis which are expressed as
polynomial functions of the horizontal wavenumber to be lenpented within the framework
of the TLM. The Continued Fraction Absorbing Boundary Caiodis (CFABC), a high-order
local absorbing boundary condition developed by Zalitly, Savadatti and Gudattil[Lg,
Savadatti and GudattiLl[L7] and other researchers, satisfies the latter condition amdrgtic
function of the horizontal wavenumber. Lee and Tassoulas|[combined the CFABC with
the consistent transmitting boundary conditions wherestifimess of CFABC is determined by
the mid-point rule. For layered half-space media, the bpdee may be represented by a suc-
cessive number of single layers of the CFABC where the acgusimproved by increasing
the number of layers. Lee and Tassoula$d stated that in order to obtain perfect absorbers
for in-plane waves with a horizontal wavenumber, the CFARgels could be used in pairs
where one layer is used to absorb compression waves andhhiefot absorbing shear waves.
Recently, Barbosat al. [119 constructed an efficient model by combining the PML with TLM
to simulate wave propagation in layered half-space.

5.3 Treatment of the half-space

In this work, the treatment of the irregular and regular oegiare presented in sectiohs.1
and5.3.2 respectively. First, elements of the half-space interfaithin the irregular region are
dealt with to form the elementary stiffness matrices. Thieacorner elements of the half-space
are considered in the eigenvalue problem of the TLM. FiguBshows the representation of
the mentioned regions.
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Figure 5.2: Treatment of the half-space model.

5.3.1 Treatment of the irregular region

The FEM is adopted in the irregular region, which is assuroduktresting over rigid bedrock.
Now, half-space elements will replace the bedrock. Theeeitois needed to formulate these
elements in order to account for their contribution.

The impedance stiffness matrix for SV-P waves in a half-spggens downward (one may
reverse off-diagonal terms in the impedance matrix to gt half-space opens upward) is
developed in referencd (7] and expressed as

1-¢&2 ro—1 0 -1
K:2ku[m[_l S]—[_l 0”, (5.1)

where parametersands are given by

/ w \? / w2
r= 1—<k—cp) and S= 1—(65), (5.2)

w is the circular frequency of the dynamic logdl s the shear modulus of the half-spacg,
andcs are respectively the compression and shear wave veloaitig®e half-space, ankd is
the horizontal wavenumber. The impedance stiffness, aat estdfness, is not a polynomial
function of the wavenumber. Hence, expanding it and retginhe first three terms of the
Taylor series abouk = 0 yields a second order approximation with respect to thezbotal
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wavenumber of the form
K (k) ~ K (0) + kK (0)+ %sz” (0), (5.3)

and subsequently

K:iwp%ll 0 ]+“1—2ak[o 1

0 1/a a 10 2w 0 (1-2a)/a® |’
(5.4)
wherep is the density of the half-space soil andrepresents the ratio of the shear wave to
dilational wave velocities. Expressiof.d) is an algebraic expression krand a second order
paraxial approximation of the half-space stiffness. Itidtide noted that referenc&Qq pro-
vides what appears to be an erroneous version of expregs®masmuch as the two diagonal
terms in the matrix that multiplie® are at variance of expressioh.4). However the correct
terms might have been implemented in the authors numericdd lgading to the same results

obtained in this dissertation.

+i“&kzl—(2—0)/0 0

By expanding the impedance matrix ab&ut 0, the wavefronts of the incoming waves towards
the half-space are assumed to be parallel to the horizanfale of the half-space. Thus, a suf-
ficient depth should be provided in order to allow the wavetsdo become horizontal when
hitting the surface of the half-space. This has been inyat&d in sectio®.2.2 Tractions and
displacements at the surface of the half-space are relatbeé ifollowing form

&)

where the vertical traction and displacement are scaledintaginary number i to work with

a symmetrical matrix. Combining the previous equation dredsecond order formulation of
the impedance matrix of expressidn4) and thereafter applying the Inverse Fourier Transfor-
mation (IFT) with respect t& yields

1 00 ~ _. . 00 R _.
ET/_OOFXE gk = iwpcs U_wue ”(Xdk}

] : (5.5)

< O

ipcs(a —2) i/m 2 - 1kx
R s {271 [ iae T dk (5.6)
_ H(=2q) i/ ikveikxdk},
of 21 ) -
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and

%T/_mlfye_ikxdk — iwpcy [/_wVe—ikXdk]
ipcs(1—2a) / 29k
e [ — | Kve gk (5.7)
1o ik
2n/mlkue dk} :

Taking into account Fourier transform properties on theripres two equations we obtain the
following relationships between tractions and displacetmat the surface of the half-space

p(1-2a)
a

ipcs(a —2) p(l-2a)

Fx = iwpcsu— 2000 U xx + o Vx, (5.8)
. iucs(1—2a 1-2a
Fy = iwpcpv — H 2(w013 )v7xx—“( g >uyx, (5.9)

whereu, uy andu xy represent the horizontal displacement and their first acorgkderivatives
with respect tox. The same applies to the vertical displacenveand its derivatives with respect
to x. ExpressionsH.8) and 6.9) show the relationship between displacements, displactme
derivatives and the tractions at the surface of the haléesp#n order to apply these tractions
at the interface boundary between the half-space and #guiar region, their signs must be
reversed. Thereafter, the principle of virtual work is apglby considering the external virtual
work by these traction forces

| |
W:/ 5uFX”fdx+/ VR dx, (5.10)
0 0

wherenf refers to the interface between the irregular region anfidpace. Substituting the
tractions from equation$(8) and 6.9), after reversing the signs of all terms, into the previous
equation and integrating by parts leads to
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|
W = —iwpcsu/ 6uudx—M/ OuVydx
0
_ |
+ M/ 5UdeX—M/ 6uxuxdx
2a 0o

| _ |
— iwpcpv/ 5vvdx+M/ OVuydx (5.11)
0 20 0

_ [
- ’1(12767201)/05V7xudx %/ OV xV xdX

om0 p(-20)

|
2a 2a dvulo

ipcs (o —2) |
+ 2000 SUUx(o+

ipcs (o —2)

ovv
20wa3 xlo

The integration boundaries 0 ahiepresent the surface of the half-space over the entireidpma
which could be subdivided into half-space elements andritegyration will be performed on
these 2-node elements (see Figbii®. If we introduce a linear interpolation functidnfor the
displacement field in the-direction, the displacements at any pomtlocated between nodes
A and B (Figures.3), will be written as

Uj
_|Nx 0 Uj+1 _ X x
Up_[ 0 N(x)] v where N(x)—[l—m E(], (5.12)
Vi+1

whereAx = Xj1 — Xj represents the length of an individual half-space elemedtk is the
displacement vector for the half-space element. It is gbseits components

u=4{ Y and v={ L (5.13)
Uj+1 Vi+1

u=NU and v=NV. (5.14)

with

Variations of the nodal displacements within each elemengaen by

ou=NdoU and ov=NoV. (5.15)
The first derivative of the nodal displacements with respegtare given by

Ux = NxU and Vx = NxV. (5.16)
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Half-space

Figure 5.3: Half-space element.

Considering the relationship between the displacemeitshenshape functions, and then sum-

ming for all half-space elements will lead to
n

x2
W = Z(—iwpcséuT{ NTNdx]u

=1 X1

X
- iwpcpévT{ 2NTNdx}V

X1

i _ X
— M&/T 2|\|T(|\|de V
2was g

_ X
_ M(SUT ZNTNde Vv
2 bl

a X1

- “(127;2“)5\/T _ sz NTN dx} u
|
+ WWT _ Xlxz NI Ncdlx| v (5.17)
+ Mlz;aza)éw _ ):ZNTN’xdx:U
- ey ( X1X2 N;N,xdx) u)
T TS T
b D gy HE 2 gy e

wherenis the number of the half-space elements. Integral terntseinittual work equation are
understood to define finite elements and their stiffnessixedn be calculated and assembled
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into the global dynamic stiffness matrix of the irregulagiom by means of standard direct
stiffness techniques. The stiffness matrix of a 2-node-$yadice element has the form

K K
K=| >3 "2 (5.18)
Kiz K22
with y ] 0
2 — 2
Ki1=iwpcs [ NTNdx+ IHes(a —2) NT N dx, (5.19a)
H(1—2a) e g p1—2a) e g
Kipp="——F7—-= N'Nydx— ——= N,Nd 5.19b
12 2a %0 X 2a % X X ( )
. X i —2) e
Koo = iwpcp NTNdx+ M N}N%dx (5.19c¢)

X1 2(,003 X1
The entries of equatiorb(18 are determined by integrating the terms over the lengtihef t

half-space element in equatiorsX9. The first entry in the stiffness matrix for a half-space
element is computed and given by

K11

:iwpcsAX[Z 1]+w[ -l (5.20)

6 1 2 200 AX -1 1

Other terms have been obtained in the same way and are a$sidditional notations to sub-
stitute back into the impedance matrix.

_lwpcAx . iwpcpAx | ipcs(a—2)
C1= 6 C2= 6 Cs= 200X
p(1-2a) ipcs(1—2a)
— — , 21
Ca 20 G5 2wa3AX (-21)

Substituting back into the stiffness matrix leads to

2C,+C; 0 Ci-C; Cu
0 Cs  C-C
Khs— 21Cs 4 27 (5.22)
Ci—GC3 —Cy 2C1+C3 0

Cy C—GCs 0 2L +Cs

The half-space 2-node element mati%s, of dimension 4x 4, represents a typical half-space
element stiffness matrix. It is a function of the propertiéshe half-space material, the length
of the element and the frequency of the applied load. SoHarsémi-infinite extent, far field,
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of the domain with respect to depth is represented by thedianpee matrix of the half-space.
Hence, in order to model the unbounded domain, the stifimegsx of the half-space should be
assembled with the irregular region global matrix as theysimodes at the interface between
the half-space and the bottom boundary of the irregulaoregi

5.3.2 Treatment of the regular region

Half-space elements, located beneath the irregular regrendealt with in sectiob.3.1 The
bottom node at each lateral boundary has also contributiorbioth the irregular and the regu-
lar regions. Figur®.4illustrates the treatment of the regular region over hpies.

If we derive the displacements in equati@l@) and back substitute them in expressioh8)
and 6.9) the horizontal and vertical tractions at the half-spaa r@gular region interface are
obtained

F = icopedU (y)e 19— ik@wy)eikxqL kZWU (y)e1kx, (5.23)

Fy = iwpcpV (y)e ¥4 ik@u (y)e 1y kZ%V(y)eikx, (5.24)

whereU (y) andV(y) are the mode shapes assuming that the horizontal and Velisptace-
ment fields are described by;
ikx

uix,y) =U(y)e" and  v(xy) = V(y)e‘ikx. (5.25)

Let us consider the regular region on the right, at the hadiee-last layer interfacex & O,
y = H). Expressions{.23 and 6.24) could be re-arranged in the following form

R | 2iHcs | (@—2)a? 0 u(1-2a)| 0 -1
[Fy] = K 2wa3[ 0o (-20) | @ [1 0 ]
[ia)pcs | 0 ) U(H) (5.26)
0 iwpcp V(H)

Expression%.26) is an algebraic equation kand it is used to solve the modes of wave prop-
agation of the regular region over half-space to expressdh&ibution of the half-space into
the regular region. It is similar to the algebraic equatibéthe regular region over rigid base
derived in sectior3.3.3in Chapter3.
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Figure 5.4: Layered region over half-space.

The matrix factors in equatiol3(30, which are 44, are similar to Z 2 matrices of expression
(5.26). A relationship between the tractions and the displacésn&tinthe top of the half-space
is extracted in equatiorb(26. Comparing this equation with an equivalent equation fthm
regular region over rigid bedrock leads us to deduce thewvatg half-space matrices

27 2wa3 0 (1-2a) |’
AQSZMH _01], (5.27b)
chs_ | 1wPCs O ] (5.27¢)
0 iwpcp

These 2 2 matrices reflect the contribution of the corner nodes atitieeface of the half-space
and the overlain regular regions, into the regular regicasi&lly, they are associated with the
last two degrees of freedom of that node. Assembling previoatrices with the matrices
derived in ChapteB, section3.3.3and which represent the contribution of the horizontal taye
over rigid bedrock, we obtain the regular region system icedrover half-space. Here, the
dimension of the global matrices igr2+ 1) x 2(n+1). In the case of rigid bedrock, the last
two rows and columns of the global matrices are omitted dtiegdase fixity. In the half-space
case, we must consider the whole matrix and add the coritiibaf the half-space into the last
two rows and columns. The eigenvalue problem of equaB8d3() is replaced by the following
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eigenvalue problem
[k?A2+ikA1 +C]ug =0, (5.28)

where
Ar=A5+AD | A=A;+Al® and C=A;—w?Mj+C"S. (5.29)

Global matricesA,, A; andC are Zn+1) x 2(n+ 1) matrices. The matrices with the super-
script* symbol represent the contribution of the regular regiomauit the contribution of the
half-space. The eigenvalue problem of expresstofg is of second order. It is reduced to a
first order problem with the dimension being doubled (o4 1) x 4(n+1). The eigenvalues
of interestks, s=1,..,2n+ 2, are stored in the diagonal matkikas

kg
H— . (5.30)

Kont2

The corresponding eigenmodéare stored in the modal matrix columnwise. The displace-
ment vector at the lateral vertical boundary is a linear doation of the Zn+ 1) eigenvectors
corresponding to the(B-+ 1) eigenvalues

2n+4-2

{ue}= 2, a {ul} ellet+ex), (5.31)

where {ul} is the eigenvectors aral is a vector of dimension(2 -+ 1) which represents the
mode shape patrticipation factors. Thus, the displacensddtdt the right side lateral boundary

is expressed as
2n+4-2

Ur= 3 as{ug} =au. (5.32)
s=1

Next, the consistent nodal forces of the transmitting bampdonditions of the half-space
model are derived as follows. If we consider the last foumtem equation.17)

1-2 1-2
_ RA20) gy HAZ20) 5
20 2a
ipcs (o —2) ipcs(1—2a)
_— ————=0VV .
o0 oU U x+ e oV Vy, (5.33)
the displacements corresponding to the last node are
2n42 2n42
Unp1=u(O,H) = Z UWn1ds and Vpi1=V(O,H) = Z V310 8s, (5.34)
S= S=
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and hence

Ux(0,H) = —ikagn 1€ (@ n1¥)  and Vy(0,H) = —ikagy p€ (@ *2X)  (535)

Substituting back into the equatiors 33 yields into

p(1-2a)
201

p(1-2a)

W = —dUnu1 Tunﬂ

Vi1 +0Vhi1

Lucs(a—2 L ducs(1—2a
- 5Un+1 ('k%) Un+1 - 5Vn+1 ('k%) Vn+1- (5-36)

The nodal forces acting at the lateral vertical boundaryhef tight side of the domain are
expressed as

PR = [ikABS+ A5 {upg (5.37)
WhereAgS being the matrix which was given in expressi@n27g andAgS IS a 2x 2 matrix
given by
1-20)| 0 1
AhS — “ ( . .
portam] o 4 -

Matrix AlS ia a skew symmetric matrix and obeys the relationshifs=[Al]"-[ALS]. The
forces and displacements associated with the regularrrdgiti-space interface are therefore

expressed as
hs FX<n+1) hs Uni1
Fr = and UR = . (5.39)
FY<n+1) Vi1

Half-space matricea!s, AlS, AfS andCPs should be assembled into the matrices of the regular
regionAj, A5, A3 andC* to form the global matrices. The assembling of these matige
depicted in Figuré.5. Equation §5.37) has the same form of equatioB.87) for the regular
region over rigid bedrock. Assembling the matrices of theseequations produces the nodal
forces vector at the right lateral boundary of the form

Fr = [i(kAVHV ~1 4 Ag] {uby) (5.40)

whereFr represents the global forces at the right lateral boundsgyand A3 represent the
global matrices of the regular region over half-space. Tihedsions of these matrices are also
2(n+1) x2(n+1).

The modal matrix, columnwise matrix of dimension ¢h2- 1) x 2(n+ 1), is given by

v:[ul . Usnia |- (5.41)
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Figure 5.5: Global matrices structure for half-space model

The dynamic stiffness matriR, which is obtained from expressiob.40, relates the nodal
forces to the nodal displacements at the specified bounHarnce, the nodal forces applied at
the right side regular region has the following form

FrR=—-RUr where R=iAVHV 1+As, (5.42)

whereUgR is the nodal displacement vector of the regular region omigjit side boundary. The
left side boundary is treated in the same manner as for theside lateral boundary. The nodal
forces of the left lateral boundary is expressed as

FL——LU_ where L ——iAVHV —As, (5.43)

whereL is the dynamic stiffness matrix of the left regular regionl &mrelates the nodal forces
to the nodal displacements. In such a way, the dynamic stiffimatrices of the regular regions
are obtained and the unboundedness of the domain is modelled

5.3.3 The half-space finite-element model

Figure5.6 shows a schematic diagram of a soil medium overlaying hadte. For this model,
the impedance matrix of the half space elements, expressequiation $.22), is assembled
to the global dynamic stiffness matrix of the irregular tegi The effect of the two regular
regions is modelled by the consistent transmitting bourdaobtained from expressiors42
and 6.43, in terms of nodal forces applied on the lateral boundasfethe irregular region.
As these forces are functions of the nodal displacementiseofateral boundaries, which are
unknown, the matriceR andL are also assembled to the global dynamic stiffness matiixeof
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irregular region. The finite element final system to solvéesaxpressed by

[K — ™ +R+L] up = Fo. (5.44)

e

ioo {Fris}

half-space

Figure 5.6: The finite element half-space model.

This system is linear and a direct solver is used to competadldal displacements, in the same
way followed for the system3(42 corresponding to a soil medium overlaying bedrock. The
same methodology is also followed for the post-processirniyeoresults.

5.4 Concluding remarks

In this chapter, the PBC is presented for modelling the dafimite extent of a soil domain with
respect to depth. This is based on the expansion of the patfesstiffness matrix into Taylor’'s
series, for which only three terms are retained. As a resgiicond order matrix with respect to
the wavenumber is obtained leading to the stiffness matot¢he half space elements, which
are assembled into the global matrix of the irregular regidrile the contribution of the corner
elements of the half-space are involved in the eigenvalolelem for the consistent transmitting
boundaries.

The ability of this TLM-PBC coupled model to simulate wavepagation in half-space soil

media is investigated in the next chapter, where the use affardayer in introduced and its
effect on the performance of the model also analysed.
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Chapter 6

Wave propagation in half-space soll
media: validation & applications

6.1 Introduction

This chapter is dedicated to the validation of the numenwatiel developed in Chapté,
for simulating wave propagation in half-space soil medrathis model, the TLM is coupled
with the PBC to allow the waves to propagate away to infinitgraly and with respect to
depth. The concept of the buffer layer is introduced in thelehand its performance is investi-
gated through numerical analysis. Applications dealt withuding harmonic vibration of rigid
surface foundation overlaying homogenous or layered $padize media and ground vibration
reduction using wave barriers.

6.2 Wave propagation in homogenous half-space

Simulation of wave propagation in a homogenous half-spageerformed in the following

sections where the coupled model is first validated. The gati@nal approach, adopted in
Chapterd by extending the length of the domain, is used here for extgnitie depth and the
length of the domain, for which the relative error is complute

6.2.1 Validation test example

The combined TLM-PBC half-space model is validated agadimesanalytical solution, through
a specific test example obtained by personal communicatitmJones 104]. The analytical
solution is based on coupling the Green’s function of a hoenogs layer and a homogenous
half-space. The author has investigated in his PhD thesisftact of an inclined soil layer over
half-space from interior loads after validation of the nuetlagainst surface loading. Hyperele-
ments were used in his analysis.
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In this numerical test, a homogenous half-space domairhiegstiowing properties; density of
1700kg/n?, elasticity modulus of 100MPa, Poisson’s ratio 0 @nd a damping coefficient of
5% is used. A harmonic load of 1N is applied at the soil surfaitle a frequency of 25Hz. The
soil domain is truncated atAg in depth and 18 in length with the assumption that the soil
domain extends to infinity in both depth and lateral diragdiovith the same properties. The
horizontal and vertical displacements at the surface ofdthreain are computed and plotted
in Figure6.1 The results obtained from the presented TLM-PBC are in gend agreement
with the analytical and numerical results provided by refiee L04. Minor differences appear
between the curves but overall the results are very similar.

Analytical - Analytical
--------- Jones (2010) ------------ Jones (2010)
Present g mmm— Present

60 -40 -éO 0 Zb 40 60
x/a x/a

Figure 6.1: Validation of wave propagation in homogenouts$zace.

Next, the effect of the depth of the soil model is studied dedefficiency of the coupled TLM-
PBC is investigated. A minimum practical depth of the hal&se model will be proposed based
on the numerical results.

6.2.2 Effect of the half-space model depth

Jones 104 indicated that the minimum depth of the soil layer over tladf-space should be
5Asin order to get convergent results towards the analytidatiem. As the analytical solution
is not available to us, the depth of the soil layer is incrddsem 1AR to 5Ar and the relative er-
ror of the surface displacements related to two successpthd is estimated. A homogeneous
half-space is taken in this case by considering the sameiadgimperties used in secti@?2.1

A harmonic load of 1kN in magnitude is applied at the surfaicéene domain with a frequency
of 20Hz. Figures.2 and6.3 show, respectively, the surface vertical and horizontspldice-
ments with their corresponding errors for the homogeneolidemain when varying its depth.

The results show that the error percentage is around.8% in the case of Agr and 2\ depths.
Increasing the depth toA\g reduces the error with the maximum difference, when contptre
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2AR, is about 06% for the horizontal displacement. However, the relativerepercentage is
decreased dramatically to less thah3% and 01% for 4Ar and 5\r depths. It is obvious that
a depth of AR for the soil domain to represent a half-space is alreadgfaatory. If one seeks
very accurate results for simulating wave propagation imdgenous half-space, the soil layer
depth may be taken higher, A4 However, as the depth ofAg produced acceptable differ-
ences, from an engineering point of view, it is retained herepresent the half-space model. It
is worth indicating that the depth ofAg of the half-space is around\g for the assumed mate-
rial properties but this may not be always the case when ¢hgitige material properties. This
is due to the dependance of wavelengths on Poisson’s ratibelfollowing,Ap will be used as

a measure of the depth as it was used in other referencess|&h, &or the sake of comparison.

The justification of high error percentage associated witllsw depths, AR, of the homoge-
nous half-space is as follows. It is known that the Rayleiglr@vcarries out most of the energy
compared to shear and pressure waves. Therefore, if theede is not deep enough in such
a way that Rayleigh waves hit the paraxial boundaries, spanvaves will reflect back. Now,
if the depth of the domain is large enough to prevent Rayleighes from approaching the PB,
body waves will travel deeper and might hit the boundary.iAg@flections of body waves may
lead to spurious reflections in the domain. Therefore, thatlon of the paraxial boundaries
should be deep enough to prevent body waves from reflectirsgthé pressure wave has the
longest wavelength, the depth of the homogenous half-spdlcbe expressed in terms of its
wavelength rather than Rayleigh wavelength. These two agéhs and their ratio are largely
affected by Poisson’s ratio. For example, if we considertihe extreme values of Poisson’s
ratio; 0.01 and 0.49, for any material properties the ratihe pressure and the Rayleigh wave-
lengths varies from 1.6 to 7.9, respectively, while thisoret around 2 for the case of Poisson’s
ratio of 0.3. This indicates that expressing the depth imseof the Rayleigh wavelength might
not be appropriate as it will underestimate the depth agtstiwith values of Poisson’s ratio
more than 0.35. In other words, if the depth is expressed'md®f the Rayleigh wavelength,
2AR is sufficient for Poisson’s ratios less than 0.3. For Poissatios greater than 0.3, the ratio
ZA/\—F; > 1 and therefore £z will not be enough. A thickness ofAg is recommended in reference
[104] to be considered beneath the load, which was applied wiki@rnalf-space and not at the
surface. If we consider the depth to be arouid,&s proposed in referenc&d4, the ratio

of E% > 1 for Poisson’s ratios greater than 0.48 and again it is nep@mough to absorb the
propagating waves towards the paraxial boundaries. It ithwmting that the thickness oA
provided in the previous reference is equivalentAg fr the used Poisson’s ratio of 0.44. In
summary, the depth is next expressed in terms of the pressmwelength to avoid the likely
effect associated with Poisson’s ratio.
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6.2.3 Effect of the model lateral extent

The performance of the half-space finite element model im@xad when extending the lateral
boundaries of the computational domain, in the same wag@l for the soil layer over rigid
bedrock in sectiod.2 The half-space material properties are the same used preli®us sec-
tion. The depth of the domain is maintained ak2which is equivalent to Ap for this specific
example, and the length is extended froAar2o 10Ag. A 1kN harmonic load with 20Hz fre-
guency is applied at the surface of the domain. Surfaceatisphents are plotted and compared
for each two successive domain lengths. Fig@dsand6.5 show the vertical and horizontal
displacements at the surface with their relative errorswhereasing the domain length. The
relative error does not exceedb® and 1% for the vertical and horizontal displacements, re-
spectively. This confirms again the good performance of tiralined TLM-PBC model to
simulate wave propagation in half-space soil media.
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Figure 6.4: Vertical surface displacements and assocratative errors.
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Figure 6.5: Horizontal surface displacements and assatratative errors.
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6.3 Wave propagation in layered half-space

The homogenous half-space model, considered in se6t@rcould be of engineering inter-
est. But, in general, layered half-space media are even mtaeesting. Next, the coupled
TLM-PBC finite element model is numerically assessed tokitswalidity in simulating wave
propagation in half-space layered media. Moreover, theeotof “buffer layer” will be intro-
duced and used to improve the performance of the coupledimode

For wave propagation modelling in layered half-space medahen 64] proposed introduc-
ing an interface element between the interior region angbénaxial boundary, within a FDM
approach. Maeda and Kauselfl] investigated the accuracy of the paraxial boundariesen th
case of anti-plane shear. They recommended the introductia buffer layer between the ir-
regular region and the half-space with a minimum thickné€s%\s to obtain accurate results.
The concept of adding a buffer layer was first introduced Bl&S5]. Its influence on the ap-
proximated impedance matrix was investigated by P&ék where the thickness of the buffer
layer was considered as a function of the pressure wavéleAgtomparison between the ap-
proximated and the exact impedance matrix was also cartied\@xt the dynamic behaviour
of a soil layer overlaying half-space will be investigatgddoking at the displacements at the
surface as well as the soil-half-space interface, whenfabiafyer is introduced.

The previously mentioned authors of referen@s; §6] used the exact stiffness matrix to model
the buffer layer, while in this work it is modelled by the FENwhich it is treated as part of the
irregular region. For the sake of this study, a paramgtsiintroduced. It represents the buffer
layer thickness with respect to the pressure wavelehgih the half-space.

6.3.1 Soil layer over half-spaceH,ay = 0.5Ar

A soil layer with a unit shear modulus and Poisson’s ratio .@50s considered to overlay a
half-space with Poisson’s ratio of®such thats .= v/3cs. Both the soil layer and half-space
have 5% damping ratio. Let us consider an external excitatid Hz is applied at the surface.
The length of the domain is taken to beARand the depth of the soil layer is3Ar. For gener-
alisation, the depth of the model is increased also\ipith section6.3.2 It is worth mentioning
here that, in the first case, the depth of the model is veryedloshe first critical depth, if the
soil layer was over rigid bedrock, but it is higher in the sgtanodel. In the following analysis,
the PBC are implemented at the base of the model and the tamtdisansmitting boundaries
are used on the lateral boundaries of the model.

To achieve a good discretisation level, each Rayleigh veaggh is meshed into 10 elements.
Figures6.6to 6.9 show the displacements, with their relative errors, at tidase and at the
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soil-half-space interface, respectively, with= 0 andy # 0. It is obvious from the results that
the presence of the buffer layer affects the displacemenets &t low values of.. Indeed ay/
increases, the displacements converge towards those o¢fisvbelieved corresponding to the
half-space model. Introducing a buffer layer, even if it fdaw thickness such as.DlAp,
makes the solution follow those of greater thicknesseshldigcrepancy is found between the
displacements when comparing the casg ef0 andy = 0.11, this case is not included in the
following figures. However, the difference is reduced dracadly when comparing the dis-
placements in the case pf= 0.11 andy = 0.25. Very similar results results are obtained when
increasing the thickness of the buffer layer and the errsigisificantly reduced. All discussions
are made for both surface and soil-half-space interfagdatisments. Good results are found
for buffer layer thickness of .8Ap where the error percentage is less than 5%. More precise
results could be obtained if we increase the thickness,Xfamgle the error percentage is less
than 05% for the case of thicknes3\g. It is also noticed that the error percentage is slightly
higher near the lateral boundaries of the model.

Asiitis clearly shown, the use of PBC does not allow to modgdiad half-space media and that
a buffer layer must be used between the soil layer and thespalfe. To conclude, a buffer layer
of 0.5Ap thickness leads to good results and if better accuracy igtgaticould be increased to
1Ap.
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Figure 6.6: Effect of buffer layer thickness on verticalfage displacement$ij,y = 0.5Ar.
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Figure 6.7: Effect of buffer layer thickness on horizontatface displacements$i;y = 0.5Ar.
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Figure 6.9: Effect of buffer layer thickness on horizontapiacements at the soil-half-space
interface:Hay = 0.5Ar.

6.3.2 Soil layer over half-spaceHay = Ar

In this case, the soil layer depth is increased Agq With same material properties as in the
previous analysis. This depth exceeds the critical depli@rwcomparing with soil layer over
rigid bedrock.

Figures6.10to 6.13summarise the numerical results for the current analysiaias previously
done. They show very similar trend to the caseHpf, = 0.5Agr. The vertical and horizontal
displacements at the surface and at the soil-half-spaedane are in good agreement in the
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case of truncating the half-space abAp with the maximum relative error being around 5%.
Again, more accurate results are obtained when increabm@puffer layer thickness toAg.
These two cases show that no matter what is the depth of tHayser, a buffer layer is required
to reduce the reflections associated to the paraxial boigsddrhe results confirm that a mini-
mum thickness of the buffer layer offp is sufficient to obtain good results. The performance
of the coupled model significantly improved by adding a hulifger. In fact, this comes to an
additional computational cost of the analysis due to thes@se in the number of elements, in
the irregular region, and the number of sub-layers, in teles lateral regions, in the model.
The effectiveness of the buffer layer will be further exaedrin the next section by considering
applications related to rigid surface foundations sulegdd harmonic vibration and surface
vibration reduction by wave barriers.
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Figure 6.10: Effect of buffer layer thickness on verticatfage displacementsijoy = Ar.
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Figure 6.12: Effect of buffer layer thickness on verticadmlacements at the soil-half-space
interface:H sy = Ar.
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6.4 Applications

An interesting application when studying soil-structurgeraction is the harmonic vibration of
surface or embedded foundations. Next, the dynamic behawiosurface rigid foundations

overlaying either homogenous or layered half-space issiiyated by using the coupled TLM-
PBC model. It is worth mentioning that AndradEOf investigated the dynamic behaviour of
surface and embedded foundations resting only on homogdmatispace media. Here both
homogenous and layered half-space media are considered.
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6.4.1 Rigid surface foundation over homogenous half-space

It is shown in sectior6.2.2that the soil domain should be taken deep enough in the case of
homogenous half-space to obtain good quality results. Aemaactical case is considered here
and compared to published results in terms of dynamic cangds of rigid foundations when
the forcing frequencies are very low. This is given speciglortance as the poor behaviour of
PBC is associated with this range of frequencies.

Luco and Westmannlip( dealt with the foundation dynamics by the theory of singuia
tegral equations where they reduced the problem into dgatlith the numerical solution of
two Fredholm integral equations. More recently, Lee anddaks 118 coupled the contin-
ued fraction absorbing boundaries with the consistenstraiting boundaries and compared
their results with those of referencd®p and [124. In this section, the results obtained by the
coupled TLM-PBC are compared with the results of refereipt8 120.

Figures6.14aand6.14bdepict the problem configuration of a rigid massless surfiagedation
overlaying homogenous half-space and the correspondiitg &lement model. The consistent
transmitting boundaries are applied at the lateral boueslaf the domain and the impedance
stiffness matrix is used at the base of the solil to represenparaxial boundaries. The width
of the foundation is taken equal tB2nd the depth of the soil is@67B, as taken in reference
[118. A value of 025 is assigned to Poisson’s ratio and a unit value is assignibe soil den-
sity and shear modulus. The damping ratio is considered 3%. It should be mentioned
that a Poisson’s ratio of.B is valid for the results of referenc&2( and also no damping was
considered in their test examples. The low value of the dagh@ introduced to stabilize the
solution.

2B

2B

Rigid foundation f,

Homogeneous half-space

transmitting transmitting
boundary boundary

paraxial boundary conditions
\

(a) Rigid foundation over half-space (b) Finite element representation

Figure 6.14: Problem representation and idealization.

The dynamic compliances of foundations are explained iaidetmany publications. Here, a
brief description is given. The dynamic compliances of thendation relate the external loads
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to their associated displacements. The relation betweeexternal loads and the displacements
is expressed as

Uy L Cw R
Uy | = T Chh Chr Fn : (6.1)
Ba Chr Cir M;/B

whereF, andF;, are the vertical and horizontal forces with their corregpog displacements,
respectivelyUy andUp, M, is the rocking moment with the corresponding rocking andle o
rotation @, and u is the shear modulus of the soil. The results are expressesinrs of the
vertical and horizontal compliances of the foundatypandCy, as functions of the normalised
frequencyag = wB/cs.

Andrade [L0qg investigated the effect of the soil depth when it variedNsstn B and 8. It is
reported that for normailsed frequencie$.4, the results converge rapidly leading to similar
responses in the cases @ a@nd 8. For the sake of validation and consistency, the half-space
in this section is truncated at a depth 06@7B. It is common practice to express the size of
the model in terms of the wavelength and here it is first exg@g@sn terms of the half width
of the foundatiorB and then it is expressed in terms of the pressure wavelepgtfio obtain

an acceptable discretisation level, the irregular domadepth 4.66B is meshed with 4-node
square elements of size less than one-tenth of the Raylegblength while the remaining do-
main, up to 0.2%p is meshed into elongated elements (narrow element widtteage vertical
size) because of the long wavelengthat low frequencies. It is worth noting that the maximum
element size is always less than one-tenth of the Rayleigieleragth. Moreover, the size of
the elongated elements is maintained within acceptabléslim

Figure6.15depicts the vertical and horizontal compliances of thedrigundation when taking
the depth of the half-space equal to 4.BGahd when increasing this depth gradually pl1
As it is shown in the previous figure, good agreement is fougtsben the current approach
for values of normalised frequencies greater thah @iscrepancy occurs for lower values of
frequencies and poor performance is noticed. This wadipsin referencel0q to be due to
the approximation of the exact stiffness matrix of the tsplce and more specifically due to
the fact of including only the first three terms of the appnoaied stiffness. The performance is
improved when increasing the depth of the model tap.dnd it is much better for the cases of
0.50p and Wp. The error is less than 2.5% for these cases. Thereforeggith df 0.2 p of the
homogeneous half-space is used for the comparison withgheldl results, which are presented
in Figure6.16

Overall, the results of the current model compare well taséhof referenceslfl8 12Q. It
should be indicated here that some differences in the s2sught be due to the discretisation
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level and the properties of the rigid foundation. Previouthars considered 8 elements by
shear wavelength and in the current analysis at least 10eelsnare considered by Rayleigh
wavelength at each considered frequency.
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Figure 6.15: Effect of half-space depth on compliancesgitirioundation over homogenous
half-space.

y=0.5

14r [118]

.................. [120]
g g
= =
8 S
= =
£ £
o o
o O
8 8
= =4
(] CI)
s £

o T 04}
% 05 1 5 025 05 1 5
Normalised frequency Normalised frequency

) Q'
(&) o
3 3
E- =
§ g
O o}
g g
c =
IS IS
S S
T L
@ €
o -
% 05 1 5 % 05 1 5
Normalised frequency Normalised frequency

Figure 6.16: Comparison of compliances of surface rigichftation over homogenous half-
space of depth of 0.

120



6.4.2 Rigid surface foundation over layered half-space

In this section, a soil layer over half-space is considaredhich the material properties of the
soil layer are different from those of the underlain halésp. In order to assess the validity of
the paraxial boundaries, two different depths of the sgéfare considered for which published
solutions are available in the literature. Tzong and Penfd21] computed the impedance
matrix of the half-space and analysed a soil layer overtahalf-space. Thus, we will consider
in the following a soil layer of two different depthB,and 2B.

6.4.2.1 Soil layer over half-space: iy = B

Figure6.17shows a rigid strip foundation overlaying a soil layer ovalftspace as well as the
model configuration by the finite element method. Poissatis and the damping ratio of the
soil layer and of the half-space are takeB3B and (05, respectively. The characteristics of the
soil layer and of the half-space are determined by taking= /3cs,, with the assumption of
unit value for the soil density in both media. The surfacenfiation is subjected to a harmonic
load and the dynamic compliances of the foundation are ctaddor various normalised fre-
guencies. First, the half-space is truncated at a ddpthB, where the PBC are implemented.

2B Rigid foundation 2B
E— | |
Soil layer Hiayer /1 Hiner
/ ‘\\
corisistent “consistent
transmittin transmitting
boundary ! l}oundary
Half-space A ’/I
Buffer Iayérl‘ Buffer layer
i
paraxial boundary conditions
(a) Rigid foundation over layered half-space (b) Finite element representation

Figure 6.17: Rigid foundation over layered-half-space.

The vertical and horizontal dynamic compliances of the @ation are shown in Figuré.18

It is obvious from the results that the performance of the R8&ery poor not only at low
frequency range, as reported in the literature, but all dverfrequency range. Let us recall
that the response in the case of homogeneous half-spacewehadaetter and discrepancy only
occurred at low frequency range. In fact this shows thatguemly the PBC is not sufficient
to represent a layered half-space, as stated in refer@ddk [t is believed that the half-space
model adopted here is not deep enough. To overcome this,alfksgace is truncated at an
appropriate depth by incorporating a buffer layer with aecadte thickness.
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Figure 6.18: Compliances of surface rigid foundation oageted half-spaceay = B.

In the first instance, the dynamic compliances are computeshwumplementing the approxi-
mate impedance matrix directly at the soil layer-half-gpaterfacey = 0. From Figure5.18

it is clear the results are not of good quality if no bufferdays used. There is a large dis-
crepancy not only in the low frequency range but also aciossvhole computed normalised
frequency range. Previous wor&€d and [11]], in addition to the numerical results presented
in subsection$.3.1and6.3.2 prompted this work to investigate the effect of adding dduf
layer with this application of rigid foundation over laydrbalf-space.

Next, a buffer layer of different thicknesses is considdsetiveen the soil layer and the trun-
cated half-space. It has the same material properties &sthspace and is modelled by mesh-
ing it into finite elements by considering at least 10 elemdyt Rayleigh wavelength of the
half-space. The thickness of the buffer layer is considéodoke proportional to the pressure
wavelength of the half-space. It is worth noting here thé& itery difficult to avoid the use of
elongated elements in the mesh of the buffer layer. Heneegpect ratio, which represents the
ratio of the longest to the smallest element is maintainddvass possible. For large depths,
corresponding to the lowest frequency, the aspect ratakist between 5 and 10 and it is kept
around 1 for higher frequencies. A maximum value of 10 for #élspect ratio is suggested
by Liu and Quek 127 for displacement analysis. It is noticed from Fig@d 9that signif-
icant improvement in the results is already observed whelmgda buffer layer with a small
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thickness of 0.Ap. The thickness of the buffer layer is able to absorb a corsidde amount
of energy and damp out the transmitted waves, hence redtleengnagnitude of the reflected
waves. The thickness of the buffer layer was subsequerthg@sed from AAp to 1Ap and
found to give improved quality results. The numerical resaf Figure6.19indicate that very
slight improvement is achieved by further increasing thekiiess of the buffer layer beyond
0.5Ap. Indeed the results for Q\p are almost identical to those ofAd. Hence, the case of
0.5Ap is considered when comparing to the results of refererficEg and [121] as depicted in
Figure6.2Q It is clear that great improvement is achieved when usingfieblayer of thick-
ness 0.3p. Very similar results to those of referencdd.§ and [L21] are obtained over all the
provided normalised frequency range, including the lowdiency range.
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Figure 6.19: Effect of the buffer layer thickness on compudies of surface rigid foundation on
layered half-space, |k,=B.
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Figure 6.20: Vertical and horizontal compliances of sugfagid foundation over layered half-
spaceHay = B.

6.4.2.2 Soil layer over half-space, Hy = 2B

In this section, the soil layer depth is increasedBo Zhe performance of the paraxial bound-
aries is again examined. The problem is treated in the samaenas in sectiof.4.2.1 Figure
6.21 displays the vertical and horizontal compliances of thenttation in the case of imple-
menting the PBC immediately under the soil layer. Therergdaliscrepancy in the results for
normalised frequencies up to5lwhen comparing to the results of referenckEsd and [121].

As was discussed in the previous section, using only thexjgdaoundaries is not enough to
model the problem correctly and in order to improve the pennce of the model, a buffer
layer of thickness of 0.1, 0.25, 0.5 andplis attached at the bottom of the soil layer and the
associated results are plotted in Figé6r22 As the thickness of the buffer layer increases the
response converges towards the solution of the probleniudimg a buffer layer of thickness
of 0.5Ap leads to good quality results for the whole range of norredlisequencies. Figure
6.23shows a comparison of the results of the coupled model wheaohang a buffer layer of
thickness 0.8p with the results of referencd 1§ and [121]. Indeed, they are in very good
agreement.
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Figure 6.23: Compliances of surface rigid foundation oagefed half-spacej,y = 2B.

6.4.3 Application to ground vibration reduction

The developed coupled model is used here for the case of drabration reduction by an
empty trench. It is presented due to the fact that the presehdiscontinuities within the
model produces multiple reflections and refractions. Thins,waves’ amplitudes will vary
within the homogenous half-space. Let us consider a soilasloraf 200g length and 4gr
depth subjected to a surface vertical harmonic load on tluglmiof the domain and with a
frequency of 31Hz. It should be noted that thas4lepth of the model is very close t03ap.
Soil properties, in this example, are adopted from Yang andgH123. An empty trench is
installed at a distance ofAr from the harmonic load. The vertical displacements at thfiase

of the domain are computed, respectively, with and withbetgresence of the trench. The
amplitude reduction factor which relates the ratio betwt#endisplacements after installing
the trench to the ratio of the displacements without thecties computed for a distance of
5AR after the trench. The results are compared with severaltsgstesented in the literature
as in referenceslp4, 125 126, and presented in Figur@.24 The same trend is observed
when comparing the coupled model results with the mentioasdlts from the literature. It is
worth indicating that different numerical approaches ageduin these references. A constant
element-base boundary is used in refered@d]| an advanced direct boundary element method
is used in referencelP§ and the commercial software ABAQUS with infinite elemerstsised

126



in reference 126|.
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Figure 6.24: Amplitude reduction factor for vibration retion by an empty trench.

6.5 Stability issues of the PBC

It is demonstrated in the previous sections that the budfger eliminates wave reflection and
improves the performance of the paraxial boundaries. lisis geported that there is negative
energy associated with certain Poisson’s ratio valuess rhiurn will produce a supply of
energy rather than dissipation of energy as reported by Kaed KauselJ11]. Therefore,
modelling half-space only with the approximated stiffnessrix is not sufficient as part of the
energy will reflect back into the domain. It is worth notingthn the case of homogenous
half-space many authors adopted large soil depths to aHewdsponse to converge towards
the exact solution.

Cohen p4] and Cohen and Jenning&q7] presented an alternative approach different from
the one employed in referencgq to derive the paraxial boundary conditions for scalar and
linear wave equations. They started from the one dimenbwge equation seeking a solution
of the differential equation in such a manner to allow the @gato travel only in one direction,
to represent the boundary where waves only impinge thraugdtmis was extended to 2D scalar
wave equation deriving what they call silent boundary cbads. In their silent boundaries, a
term of (csto%) which is similar to (- 2a) in equation §.4) is also found. A negative stiff-
ness term is encountered in the case of Poisson’s ratied /3, which leads to conclude that
the PBC are unstable for this range of Poisson’s ratios. Ttteoes proposed to eliminate that
term to avoid the negative energy. Sedlg|jand Kausel 117 also explored the stability of the
paraxial boundaries by examining the characteristic eguaf the PBC by setting the determi-
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nant of equation.4) to zero. They concluded that for Poisson’s ratio- 1/3 the half-space is
too stiff leading to instability issues. Also, for Poissenatiov < 0.110394 poor performance
is exhibited.

Meade [L2§ obtained three approximations for the artificial bounésiin time and harmonic
analyses for the scattering of elastic waves by inhomogeabstacles under plane strain condi-
tions. Their third approximation depends on six coefficraatrices where two of them are pos-
itive semi-definite, dissipative boundary, for any pointres boundary if and only iés/cp, > 0.5
which impliesv < 1/3.

As it is shown, Poisson’s ratio has a key role in the perforreanf the paraxial boundaries.

It is also reported that the PBC exhibit poor performancewatftequencies which is shown in
section6.4.2 Also, it was shown in sectio®.2.2that the convergence was achieved by increas-
ing the depth of the homogenous half-space. In the folloywivegwill address the effect of the
buffer layer thickness and Poisson’s ratio on the perfogaarf the PBC. As the second term
in equation $.4) brings a negative energy, and hence leads to reflected waeabe irregular
domain, this term is omitted. The modified matrix is exprdsse

. 1 0 1-2a [0 1]
K = lwpcs k
0 1/a a 10
. Cs o —(2—a)/a 0 ]
+ iu=—k , for v<1/3. 6.2a
H2w [ 0 (1-2a) /a3 /3. (629

< _ iwpcsll 0 ]+u1—2ak[o 1]

0 1/a o 10
. Cs, o —(2—a)/a O
—k f >1/3. 2
+ I“Zcu [ 0 ol or v>1/3 (6.2b)

Now, the stiffness matrix of the 2-node half-space elemérgxpression %.22 is modified
according to the new approximated impedance matrix of esgiwa 6.2b). Moreover, the reg-
ular region matrices should also be modified. Thus, follgnime procedure of deriving the
half-space elementary stiffness matrix we obtain

2C1+C3 0 Ci—-C
KhS dified= O 2C:2 _C4 C2 ‘ (63)
moditie C,—C3 -C; 2C;+C3; O

C4 C2 0 2C:2
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Let us proceed now to deal with the regular regions. Modificadf the impedance matrix
yields to only modifying the matri)é\QS given in equation§.279 and will be replaced by&(4)

h _ipes | (a—=2)a* 0

Azr?lodified_ 20003 [ 0 ol (6.4)
Now, the modified PBC combined with the TLM is used. A sengitianalysis is carried out in
the following section to examine the above mentioned maatibas for the stability of the PBC.
Improvement brought to the performance of the method in lgenous and layered half-spaces
is outlined below.

6.5.1 Performance of the modified PBC in homogenous half-spa media

To assess the modifications introduced in sec@dm let us recall the example illustrated in
section6.4.1 Figure6.25shows the effect of Poisson’s ratios of 0.35 and 0.4 on theuayo
compliances of the foundation. It is clear that there is somensistency in the response, for
example, for thicknesses of the buffer layer less thanf.However, the cases of Q\p and
1Ap seem to produce similar results. The inconsistency in theli®is reduced, as it is shown
in Figure6.26 when applying the modifications presented in secicn

6.5.2 Performance of the modified PBC in layered half-space etia

The example presented in secti6@.2.2is revisited again by applying the modification pre-
sented in sectioB.5. The results are plotted in Figurés27and6.28 Again, a similar trend
to the homogenous half-space response is noticed. Theettfe is significantly reduced by
applying the presented modifications. Although, the déffexe is reduced, it seems sufficient to
apply a thickness of a buffer layer of Q/and without modifying the matrix.
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Figure 6.25: Effect of Poisson’s ratio and the buffer lay@ckness on the performance of
homogenous half-space TLM-PBC modek= 0.35 andv = 0.4.
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Figure 6.26: Effect of Poisson’s ratio, modified matrix, &hd buffer layer thickness on the
performance of homogenous half-space TLM-PBC mowet,0.35 andv = 0.4.
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Figure 6.27: Effect of Poisson’s ratio

and the buffer lay@ckness on

layered half-space TLM-PBC model;dj = 2B, v = 0.35 andv = 0.4.
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Figure 6.28: Effect of Poisson’s ratio, modified matrix, ahd buffer layer thickness on the

performance of layered half-space TLM-PBC modegk/H- 2B, v = 0.35 andv = 0.4.
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6.6 Concluding remarks

The coupled TLM-PBC model developed in Chagdidor wave propagation in half-space soil
media is numerically validated in the current chapter tigftouarious test examples. The main
conclusions are as follow:

e To model wave propagation in homogenous half-space soilandte model thickness
of at least one pressure-wavelength should be considerathteve good quality results.
For thicknesses below the indicated one, the model woulddadpurious reflections at
the half-space base, where the PBC is used. This is due tetivaiion of the PBC based
on an approximation of the impedance of the half space.

e For wave propagation in layered half-space soil mediash@wvn that the coupled TLM-
PBC modelis not capable to properly simulate such probleitiowt introducing a buffer
layer, at the irregular region-half-space interface. Hteel layer is of the same properties
of the half-space and of at least half of the pressure-wagétehickness. For even better
quality results, the thickness of the buffer layer may béierrincreased to one pressure-
wavelength.

e Test examples related to the dynamics of rigid foundatimeslaying half space showed
that the discrepancy associated with low dimensionlesgi&ecies, in the case of homo-
geneous half-space, was eliminated by taking a thickne®ssf of the half-space. In
the case of surface foundations over layered half-spaceafferbayer of at least 0.xp
thickness must be inserted.

¢ Instability of the PBC for Poisson’s ratio greater than K3llustrated and an attempt
to overcome it was presented. This is based on a deliberaissiom of a term in the
half-space impedance expansion.

The introduction of the buffer layer obviously leads to aoreéase of the computational cost
related to the coupled TLM-PBC as it involves more nodal in both the finite element
model of the irregular region and in the eigenvalue problssoeiated with the regular regions.
The computational burden becomes even more obvious whemlhimgdlarge domains and
covering wide ranges of frequencies.
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Chapter 7

Consistent transmitting boundary
conditions with a reduced number of
eigenmodes

7.1 Introduction

In the formulation of the consistent transmitting boundsaupresented in Chapt8rwithin the
TLM model, and in Chaptés, within the coupled TLM-PBC, all eigenmodes deduced froe th
second order eigenvalue problem were included in the caatiputof the lateral nodal forces
simulating the effect of the right and left regular regiolsthis chapter, the effect of reducing
the number of participating eigenmodes in the formulatibthe lateral forces is investigated.
First, the wave nature of the exponential terms involvirgwavenumbers obtained from the
eigenvalue problem is analysed. Then modified transmitimgndary conditions are formu-
lated and assessed. Last, guidelines are provided on thef ukeminant eigenmodes in the
newly formulated transmitting boundary conditions.

7.2 Background and concept

Waas B] indicated that in seismology scientists usually tacklpensive eigenvalue problems
by calculating the dispersion curves for the Love waves ciidescribe the relationship be-
tween the frequency of the wave and its wavenumber. The fuedtal mode and only one or
two higher modes are usually considered. This latter ideapsored here in the context of the
TLM and analogy with structural dynamics practice, wherly @afew lower modes are usually
taken into account, is briefly reviewed.

With the development of advanced computers, analysts deet@ltompute the structural re-
sponse for large computational models with many degreeseefibm. However, sometimes
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the capability of computers is not sufficient when consiugriery large soil problems. This is
tackled by employing the modal reduction schemes, the maplerposition method, Ritz vec-
tor and the Quasistatic Ritz vector method, to reduce treeaizhe problem. These methods
are different in essence but their objective is based onciaduhe size of the global dynamic
stiffness matrix to a smaller size and hence saving the tageired for the global matrix inver-
sion. More details about the modal reduction schemes caufdind in referencelR9. The
mode superposition method for dynamic analysis of strestis based on selecting a reduced
number of vibrating modes depending on the frequency rahigeesest. Basically, the reduced
number of modes is obtained by retaining only a few corredpmneigenfrequencies.

Lopez and Cruz J3Q investigated the effect of higher modes and determinedréleired
number of modes to be included in the elastic design for dynamalysis of buildings sub-
jected to horizontal shaking. To quantify the validity otluging the number of modes, the
authors calculated the relative error when using all modelsvehen using a reduced number.
Significant reduction in the error percentage is found winetuding two or three modes rather
than only the first one. A simplified formula is provided ineefnce 130 to keep the relative
error low.

Within the context of the TLM, it is obvious that the compidatl time needed for computing
the eigenmodes is significant in comparison to the time rebéatehe whole analysis. In other
words, if more sub-layers are included in the regular regnaael then many nodes should be
used with respect to depth. Hence the size of the diagonaix(dt31) and the modal matrix
(3.38 will be larger. As it was explained in Chapt&r4n eigenvalues and their corresponding
eigenvectors are computed when considering a rigid baselmiéor example, for a square soil
domain model of g in both depth and length, with a discretisation level of temmeents per
Rayleigh wavelength, would require 41 nodes on each labenahdary. This leads therefore to
computing 160 eigenvalues with their corresponding eigetors. The time needed for com-
puting the eigenvalues is 3s and for computing the eigeoved 4s, whereas the time needed
for the assembling process and the solution is only 2s. Tiress are estimated on 1.95GB and
1.99GHz computer. This is a small size problem but gives aa @h how cpu time is allocated
to the different steps of the analysis.

Next, the eigenvalue problem related to the TLM is revisaed the eigenvalues are analysed
for both damped and undamped soil models.

136



7.3 Eigenvalue problem and wave nature of the solution

The eigenvalue problem presented in expresss8( is of second order. It is reduced into
a first order problem by introducing a change of variable.sTeads to double the size of the
problem. This is a convenient and straightforward procedibut computationally expensive,
for solving the second order eigenvalue problem. Brieflg ¢hange of variable consists to
introduceq such that

q=iku, (7.1)
and construct vectdD defined by
Q' = {d".u}. (7.2)
The eigenvalue problem becomes
[A—AlQ=0, (7.3)

wherel is the identity matrix and matriR is given by

Ay tAa ASTH(AL - wPMF)
| 0

A= (7.4)
MatricesAj, A7, A5 andM* are all defined in Chapted. It is obvious from the structure of
matrix A that the size of the eigenvalue problem has doubled. The™eéyenvalues ard,
rather thark, and the “new” eigenmodes a@erather tharu. For a soil medium overlaying rigid
bedrock, the “new” eigenvalue problem is of dimensionrlbeing the number of sub-layers in
the regular regions.

The displacement field in the right regular region is writhsra linear combination of all eigen-
modes obtained from the solution of the “new” eigenvaluebfam of expression(3) for

ks = K1 + 1Ko, with K2<0. It is given by

2n .
{u*} = Zas{ug}e'(“’tksx). (7.5)

Expression.5) represents a combination of waves which are harmonic ie &nd propagating
horizontally in the positive-direction. The wave types included in the solutign3 depend
basically on the wavenumbeksand several cases occur as reported by Wgjas [

1. If the wavenumber is complekx;= k1 + ik, (k1 # 0 andk, # 0), then the motion is
expressed as _
{u} = a{u0} e (AKX ghox. (7.6)

which represents a propagating wave in xhdirection with increasing or decaying am-
plitude depending on the sign of the imaginary paft
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2. If the wavenumber is reat;,= k1, (K1 # 0 andk»=0), the motion is of the form
{u} = afu’ye (9, (7.7)

which represents a wave travelling in tkeirection with a constant amplitude. This type
of wave could not occur in the damped case as waves attenithtelistance from the
source of vibration.

3. If the wavenumber is imaginarlg;= ik2, (k1 = 0 andk» # 0), the motion is expressed by
U} = a{W0)ye e, (7.8)

This is a wave which varies exponentially in tkelirection but does not propagate.

4. Finally, if the wavenumber is zer&;z=0, (k1 = 0 andk», = 0), the motion is independent
of x and is expressed by ‘
{u} = a{ulle't. (7.9)

This is a standing wave which could occur only in the undamgeese and at certain
frequencies. Wavenumbers of this type may not exist if dagns included.

As itis already mentioned, thenZomputed eigenvalues, or wavenumbers, with negative imagi
nary partk,<0, describe waves propagating in the posixadirection with decaying amplitude.
On the other hand, the othen 2igenvalues with positive imaginary paks>0, describe waves
propagating in the negativedirection with decaying amplitude. The nature of the moi®
dependent on the type of the wavenumber which in turn dependse presence of damping,
while the number of eigenmodes is dictated by the nunmbefrthe sub-layers in the regular
region. Next, numerical tests are carried out to presepiaiible types of wavenumbers under
undamped and damped conditions.

7.3.1 Undamped case

In the absence of damping, matrick§ A] andAj of equation 8.30 are real. However, com-
plex eigenvalues with their corresponding complex eigetors are obtained. Wavenumbers in
the undamped case could be complex, real or imaginary. Ustifite this, an example of a soil
model of 30m in length and 10m in depth subjected to 1kN haroload of frequency 4Hz
is considered. Half of the computed wavenumbers correspgrid the right regular region,
which represent propagating waves in the positreirection, are tabulated in Tablel
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n —K> K1

1 5.87080419324460 9.917485262926976E-017
2 5.33650965620063 3.881378380881605E-016
3 4.49195670821783 3.949369079082468E-016
4 3.56305391411867 -2.301572451243074E-016
5 2.67829245388722 -3.162047183676384E-016
6 1.94832270565977 1.098055607470449E-015
7 1.86566456158340 4.302016737950528E-016
8 1.48721791823830 -5.434680040119120E-016
9 1.37395295938099 6.144048557706494E-016
10 1.88588115836173 0.179724211854971

11 0.214597481226497 0.136645469801204

12 0.214597481226497 -0.136645469801204

13 1.38096361328397 -0.165447605369872

14 1.38096361328398 0.165447605369872

15 0.585679087665297 0.218039747282778

16 1.88588115836173 -0.179724211854970

17 0.944222978139081 -0.239727753648631
18 0.944222978139080 0.239727753648632

19 0.585679087665298 -0.218039747282780

20 -2.857625564527434E-015 2.807184179997326E-002

Table 7.1: Imaginary and real parts of wavenumbers for tltaoped case.

As it is shown in Tabl€r.1, three types of wavenumbers are present in the undampedloase
the case of complex wavenumbers, they appear in pairs; wihiye and negative imaginary
parts. This is obvious, for example for10 and 16, and=11 and 12. However, far=20 it is
purely real.

7.3.2 Damped case

When damping is included, matricag, A} andA’ are complex. The same soil domain consid-
ered in sectiof?.3.1is used here with a damping ratio of 2.5%. All wavenumber&hanzero
imaginary parts as shown in Tabfe2 In the damped case, complex wavenumbers, do not
appear in pairs unlike the undamped case.

7.3.3 A method for selecting eigenmodes

In expressionq.5) of the displacement field, all eigenmodes are taken intowaa; where each
mode is weighted with the fact@;. In the formulation of the dynamic stiffness matrides
andL, however, the factoras do not intervene and therefore all modes contribute equiadly
selecting a few eigenmodes, the proposed approach in thilsaensists to rank therdeigen-
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n —K> K1

1 5.87080985908597 1.132953268934870E-004
2 0.585807164510774 0.218799159581013

3 5.33651580200005 1.228893478633891E-004
4 0.585628316991176 -0.217271582172299

5 4.49196383961546 1.425887915195512E-004
6 8.601496723589494E-003 2.893149720468033E-002
7 3.56306263791666 1.744117008670624E-004
8 0.214541166835173 0.139164575546165

9 2.67830387627921 2.283166631093965E-004
10 0.214942166524979 -0.134160625328525
11 1.88593597347341 0.179940663880394

12 1.88584822782740 -0.179503429069688

13 1.94832770335401 9.976496579846834E-005
14 1.86566906375030 8.994782045994271E-005
15 1.38104948346212 0.165918179384498
16 1.38092482056506 -0.164970460501847
17 1.48721825497958 3.581384569191966E-006
18 1.37395549300977 4.451500541061514E-005
19 0.944318538411235 0.240198990875966
20 0.944175109977053 -0.239249458815423

Table 7.2: Imaginary and real parts of wavenumbers for tiepdal case.

values with increasing imaginary pat then display the magnitude of the exponential term
exp(iksx) of expression®.5) with distance beyond the lateral boundary.

As a test case, a soil domain aAd@in length and 4R in depth is used. The shear modulus,
density and Poisson’s ratio are 40MPa, 1700Kgénd 025, respectively. Damping is taken
into account by considerin@ =5%. Time harmonic motions are considered for the frequency
of 20Hz, which is much greater than the first cut-off frequeatthe soil layer. The soil do-
main is discretized into 40 sub-layers= 40, by considering 10 linear elements per Rayleigh
wavelength. The eigenvalue problem leads to the computatid 60 eigenvalues with their
corresponding eigenmodes. Half of the modes, which ar¢ectla the right lateral boundary
(k2 < 0), are ranked as stated above. The magnitude of the expgalnenins expiksx), with

s= 1,80, is displayed as a function of the log-scale of the dinamists distance/a, wherea

is a unit distance.

Figure7.1displays the magnitude of the exponential terms correspgrtd the ranked eigen-

valuesks, Hamdanet al. [131]. For clarity purpose some wavenumbers are skipped as their
effect is either identical or very close to those alreadyldiged.
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The first obvious remark is that all modes decay with the dista. For the adopted ranking,
the first modes present a less pronounced decay in comp&oitiomlater modes. For example,
the first eight modes, while decaying, the magnitude of(iéxy) is still greater than O by the
distancex/a=40. The following modes, 9 s< 16, decay with a higher rate and some of which
decay to 0 by/a ~10. For the last modes, the decay is very sharp and the mdgniéaches
the zero value at very low distance. The other obvious rensaated to the magnitude of the
exponential term which is around 1 for the first modes and thdnces with increasing ranking
to become insignificant at the last modg=s¢p(iksx)| < 0.0006. In other words, the modes with
the smallest imaginary part present a significant responterms of the magnitude of the ex-
ponential term and consequently a large distance beyondttéral boundary is affected. With
increasing the magnitude of the imaginary part of the ward@rers the affected zone beyond
the lateral boundary as well as the magnitude of the exp@ié¢etms are significantly reduced.

It is noticeable that the sharp decrease in the responseeaxponential term and the very
small affected zone beyond the lateral boundary are retatadvenumbers with minor influ-
ence. Those with major influence on the response, howewertode investigated and will
be called dominant modes. In what follows various numberthese dominant modes are
consideredn, n/2 and eventually 3. The solutions corresponding to thesescai® compared
to the solution of reference in which athZnodes are included in the dynamic stiffness matrices.

The aim is to reduce the dimension of the modal matrix by reduthe number of modes
and consequently reducing the related computationalteffdiore importantly, reducing the
number of modes will lead to significant time saving in thelgsia especially for soil domains
with large number of sub-layers. This is a common practicgmnctural dynamics and seismol-
ogy where analysts include only a few modes of vibration. By, the question of accuracy
emerges such as what is the allowable percentage of errorwhat extent is the solution is
acceptable? YoonlR9 indicated that it is often advantageous and sometimes necessary to
transform a set of the system equations of complex FE mottehiset of reduced equations
with a smaller number of degrees of freedom, the accuraayeigtably affected, but the reduced
accuracy is adequate from an engineering standgoinhis will be dealt with in this work to
validate the modified consistent transmitting boundawestilated next.

7.4 Modified consistent transmitting boundary conditions

Selecting only some of the eigenmodes in the formulatiohefbnsistent transmitting bound-
aries requires some mathematical alterations of expres@@7) and 3.39. Assume a number
m of eigenmodes is selected, with< 2n. In such case, the diagonal matkxcontainingm
eigenvalues remains square of dimengionm, the modal matri¥/ containing the eigenmodes
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becomes rectangular of dimensiam2m. Seeking its inverse leads to an over-determined sys-
tem and the inverse matrix is replaced by the pseudoinverstihe Moore-Penrose inverse,
which is denoted by T. Recalling equation3.29

Fr = [ASul +AzUT] ), (7.10)
and substituting the displacement vector derivatives vasipect tox gives
F— [iAEVHV *1+A§VV*1} U*y_o. (7.11)

If the modal matrix is square then the prodd 1 is the identity matrix. However, if the
modal matrix is rectangular, the pervious product doeseasd ko the identity matrix, see Ap-
pendixA. Thus, the contribution of this product must be taken intmaat in the formulation of

the matrixR corresponding to the dynamic stiffness of the right regrtégion. The dimension
of the dynamic stiffness matriR is still 2n x 2n. It is given by

R=iAVHV T+ AWV, (7.12)
2 3

whereH contains the selectedwavenumbers, witlk, < 0, andV contains their corresponding
eigenmodes columnwise. The dynamic stiffness matrix oféfteegular region is formulated
in the same manner leading to

L =—iAVHVT-AVVT, (7.13)

whereH' contains the selected wavenumbers, witlo > 0, andV' contains their correspond-
ing eigenmodes columnwise. The diagonal matridendH’ are of dimensiomn x m.

Next, the computed wavenumbers are ranked in an ascendetemaith respect to their imag-
inary partk,. The solutions corresponding to the cases n andm= n/2 are computed and
compared to the reference solution for which all eigenmadesaken into accounty = 2n, in
the formulation of the matriceR andL.

7.4.1 Test example: undamped soil model

Two depths of a soil domain Ak and 4Ar are considered in order to show if there is any effect
on the response when considering small and large sizesvaigerproblems. The soil domain
has the following characteristice:=2000kg/n?, E =100MPa and’ =0.25. Figureg.2and7.3
show a comparison of the surface displacements when ugdiegahvalues and when selecting
only half or quarter. In total, 40 and 160 eigenvalues witkirthorresponding eigenvectors are
computed for the considered depths. For the lower depthn@l(baeigenvalues are chosen in
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the current analysis for each lateral region when redudiegimber of eigenmodes. As it is
shown in Figurer.2 the results are not in good agreement in terms of surfaggadisments.
The relative error graphs show high values for both horiaband vertical displacements ex-
ceeding 10%.

In the case of Ar depth, where a total of 160 eigenmodes are calculated, 4@@ntbdes are
used in the determination of the modified transmitting b@uias$. A comparison of the surface
vertical and horizontal displacements in Figidt8shows that the results are relatively of better
guality, in comparison to the case ofddepth, as the relative error is below 10% when half of
the modes are used.

7.4.2 Test example: damped soil model

The previous example is used in this section with the intetidn of damping and the same
procedure is followed. Figure&4 and7.5show the vertical and horizontal displacements at
the surface with their corresponding errors fagland Ar domain depths, respectively, when
using all computed eigenmodes, half or only a quarter.

Similar conclusions are also drawn for the damped soil mddehe case of low depth model,
using the modified transmitting boundaries lead to largerdgancies when comparing to the
reference surface displacements, where all modes do lbot&iin the transmitting boundaries.
In fact using half or a quarter of the modes for the caseMfdepth lead to only use 10 or 5
modes, which are low numbers as the total number is 20 for ketal boundary. For Xk
depth, however, the total number of modes is 80 and usinghalfquarter, lead to use 40 and
20 respectively, and consequently provide better quadylts.

From here, it is concluded that for small depth domains, itasworth considering the mod-
ified transmitting boundaries as this leads to spuriousatsbles on the lateral boundaries and
the number of sub-layers is not important anyway to make amings in the computational
time. For large depth domains, however, for which the nunabesub-layers is important, it
is shown that the modified transmitting boundaries lead mireering quality results. Fur-
thermore, using the modified version of the transmittingrimtawies for such cases leads to
significant computational savings
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Figures7.6aand7.6bshow the variations of the horizontal and vertical disptaerts with the
normalised depth, 2k, when different numbers of modes are used. Thosemra, 21/2 and

3 modes. The results show that the responses for the casesnusndn/2 dominant modes
is in good agreement with the case where alr2odes are used, with the caseromodes
giving better accuracy. The response corresponding togeé®iionly 3 modes with the lowest
imaginary parts shows large discrepancies in comparisdheoeference case. This shows
that using very few modes does not allow enough energy raditd infinity and hence causes
waves to reflect at the lateral boundaries.
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Figure 7.6: Displacements variation with depth at the righeral boundary, Hamdaet al.
[131].

7.5 Effect on computational time

The effect of reducing the number of contributing eigennsocdie the computational effort is
investigated. If a selected number of eigenmodes is usexdtherefore not necessary to com-
pute all s eigenvectors of the eigenvalue probleBi30). This obviously allows a significant
reduction of the computational cost especially for largptti computational domains. Figure
7.7ashows an example of cpu time used to compute the eigenmodes.

As the modifications introduced in secti@m affect the dynamic stiffness matrices of the lat-
eral boundary, the determination of these matrices is dleced but in favour of saving some
computational time as less columns are included in eachbma&@onsequently, matrix inver-
sion is also affected. The alteration in terms of run timeethels, now, on the pseudoinverse.
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Figure7.7bshows the cpu time used to compute the dynamic stiffnessxRirorresponding
to the right lateral boundary and eventudllycorresponding to the left boundary, for different
numbers of selected eigenmodes when the number of sulslsyecreased.
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namic stiffness matrices

Figure 7.7: Computational efficiency of the approach, Hametaal. [131].

It is clear from the results of Figuré7that, when considering a high number of sub-layers and
taking into account all eigenmodes, the computational cogesponding to the computation
of the eigenmodes and/or the computation of the dynamimet$ matrices tends to increase
exponentially. Reducing the number of contributing eigedes significantly reduces the com-
putational time. For example, at high numbers of sub-lgyeising the number of contributing
modes leads to around 50% saving in computational time. i§hedvious from the previous
figure where, for example, the run time required to computeeeithe eigenvalues or the dy-
namic stiffness matrices is reduced from 100s when usirgjggihvectors in the solution to 50s
when reducing this number by half. Better reduction is aadefor further reduction in the
number of eigenmodes. The calculations were performedjusiortran 77 code with double
precision variables on an Intel(R) Xeon(R) 2.33 GHz progessth 1.95 GB of RAM under
Microsoft Windows Server 2003.

7.6 Efficiency of the modified consistent transmitting boune
ary conditions

As demonstrated in the previous section, the computatiretlis significantly reduced when

using a reduced number of eigenmodes, when considering thgth soil media. To further

assess the efficiency of the modified transmitting boundageamples of practical interest are
dealt with next.
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7.6.1 Wave propagation in multi-layered soil profile

Let us revisit the example presented in secdoBi2for simulating wave propagation in a soil
profile with linear variation of stiffness, provided in egsion 4.9 wherea is the rate of
linearity. In Chapted, the fundamental frequency of the soil medium was estimayembnsid-
ering the area under the surface displacement curve andrajputed modes were used in the
formulation of the transmitting boundary conditions. Thepgose of reconsidering this exam-
ple is to investigate whether the finite element model withrttodified transmitting boundaries
would lead to similar results.

In an attempt to reproduce the results of Figdu23 the same numerical simulations are carried
out again but this time with the modified transmitting bouieta Figure7.8 shows the results
for the normalised area as a function of frequency, for wermalues of the linearity coefficient,
when 2n, n, n/2 and only 3 eigenmodes are used. It is cleausivag the modified transmitting
boundaries with half or a quarter of the eigenmodes leadsrtidas results obtained with the
unmodified transmitting boundaries, i.e. with 2n modes. E\®v, using only 3 modes leads to
discrepancies in the results at high frequencies. At theesane, if we are after the fundamen-
tal frequency of the soil medium, the results show that itoisgible to predict it even with only

3 modes accounted for in the modified transmitting boundarie
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Figure 7.8: Effect of reduced number of eigenmodes on thddmental frequency of layered
soil profile.

149



Actually, great discrepancy for including only three modefound especially in the high fre-
guency region. The explanation of this is as follows. In thsecof low frequencies, more
precisely lower than the fundamental one, waves do not giipaand the response is similar
to the static response. As the frequency increases andagh@® the fundamental one, waves
start to propagate all over the domain as it is demonstratexctions4.4.1and4.4.2 In-
cluding only the first three smallest wavenumbers produmgtfecant difference in the surface
displacements in sectiors4.1and7.4.2 Accordingly, the surface area is affected by this dis-
crepancy leading to the difference at frequencies higher the fundamental frequency of the
soil profile. Overall and based on the numerical resultsjeced) the number of eigenmodes to
include onlyn andn/2 at each lateral boundary produced good agrement compamedtd-
ing all modes. Including only the smallest 3 eigenmodes tssnfficient enough to generate
very accurate results especially for frequencies highan the fundamental frequency of the
medium.

7.6.2 Surface rigid foundation on a stratum

A rigid surface strip foundation is assumed to be resting ad®mogenous soil layer overlay-
ing bedrock. The foundation has a width d3,2vhere B = H andH being the depth of the
soil layer. The soil medium has shear modulus and densitynibfvalue, a Poisson’s ratio of
0.3 and a damping ratio of.05. For the sake of validation, the numerical example pitesen
by TassoulasZ9] is used in this section. Figuré9illustrates a schematic diagram of the finite
element model.
i wt
2B t ) rigid foundation

_—

— [

H p=1| p=1| v=0l3 p40.05

— \

I~
! rigid bedrock consisten!%nsmitting

boundaries

Figure 7.9: The finite element model of rigid foundation oseil deposit over rigid bedrock.

The centre of the foundation is subjected to a unit time-laimload with a wide range of
frequenciesv. The vertical and horizontal displacemepts| andp|u| are computed under the
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load and displayed for various dimensionless frequenayesbH /271cs, wherecs is the shear
wave velocity of the soil medium. The computational domairdivided into 10 sub-layers,
n= 10, with equal thicknesses not exceeding a tenth of the Rgayeavelength corresponding
to the highest applied frequency. The highest applied #aqy was 0.1Hz which corresponds
to a Shear wavelength of 10m, which is equivalent to the ldg@th. A total of 20 wavenum-
bers are computed and used to compute the lateral boundadasforces using the consistent
transmitting boundaries.

Figure 7.10 shows the real and imaginary parts of the horizontal andcartlynamic com-
pliances against the dimensionless frequency when usenghtidified consistent transmitting
boundaries with 10 and 5 modes, which correspond &mndn/2 respectively. The case with
only 3 modes is also considered. In comparison to the reswtdving the consistent trans-
mitting boundaries, with all 2 modes, the results show very similar variations and an tivera
acceptable agreement. Although the case with only 3 modekipes roughly similar results,
it leads to the largest discrepancies, while the case mittodes leading to the closest results.
Overall, the same trend is generated even when reducingithber of eigenmodes to only the
first three ones. However, if accurate solutions are soughémigenmodes must be included
in the analysis.
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Figure 7.10: Dynamic compliances of rigid foundation ovesad layer overlaying bedrock,
Hamdaret al. [131].
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Increasing the number of wavenumbers in the analysisgooduces a closer response to the
reference solution. In the vertical response, there isghsghift in the response towards the
left, which is a decrease in the fundamental frequency oftilestratum. However, reducing
the number of eigenmodes generated the same response wgilifyarg or de-amplifying the
response. The horizontal compliances of the foundatiomtseshow that there is no change
in the fundamental frequency but the curve for each casehitisdsup indicating the stiffness
of the soil has decreased. The variation of the normalissplaitements under the centre of
the foundation are also displayed in Figutdl To sum up, the general trend is produced
when reducing the number of wavenumbers in the analysisagJsily the first three lowest
wavenumbers leads to the discrepancy but the trend is vegptable.
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Figure 7.11: Variation of normalised displacements widgtrency.

7.6.3 Wave reduction by empty trench

A soil domain of 3@ in length and 3r in depth subjected to a time-harmonic load at the soil
surface centre is considered here. The characteristidtsedfdil are 40MPa, 1700kgAn0.25
and 2.5% for the shear modulus, density, Poisons’ ratio amapéhg ratio, respectively. The
associated Rayleigh wavelength is around 7.1m. An emptlrés installed at Bg from the
dynamic load to reduce the effect of transmitted waves tdsvéine right part of the domain.
This kind of problem is typical and was dealt with by many aus) such as Seget.al[132],
Laghrouche and Le Houedegd, 100, and Ahmad and Al-HussainlLp5. To investigate the
wave barrier effectiveness, the amplitude reduction faatal the average amplitude reduction
factor could be used. The amplitude reduction fadderevaluates the effectiveness locally and
is defined as the ratio between the amplitude of the displaneat the surface after installing
the trench to the amplitude of the surface displacementeasdime point before installing the
trench. The average reduction factor, however, is a gloleasure as it considers the effect of
the wave barrier over a certain distarXef the protected area beyond the wave barrier. It is
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given by
— 1 rX
A = —/ Acdx (7.14)
X Jo

This example is used to determine the effectiveness of tive Warrier when using the consis-
tent transmitting boundaries and the modified version. Tiensedium is subdivided into 30
sub-layersi{=30) and hence a total of 60 eigenmodes are obtained for éduh lateral bound-
aries. First, the amplitude reduction factor is computedifthe point of application of the load
for normalised deptld/Ar and widthb/Ag of the trench taken as 1 and 0.1, respectively. A
distance of 1@R is considered after the trench. It is computed for the casggsponding to
m= 2n, nandn/2. The case involving only 3 eigenmodes is also considerddanresults are
displayed in Figur&.12a The figure clearly shows that the results foandn/2 eigenmodes
are in very good agreement with those obtained whenrakigenmodes are included. This
indicates that the corresponding modified consistentmnétiag boundaries perform as well as
the original version which uses all eigenmodes. Howeverréisults associated with including
only 3 modes deteriorates in the vicinity of the verticaklal boundary of the domain. This
indicates partial wave reflection at the boundary.
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Figure 7.12: Effect of the number of eigenmodes on the sangesificiency of an empty trench,
Hamdaret al. [131].

The average amplitude reduction facxﬂrgiven in expression?(14) is computed for various
normalised depths when its width is fixd@},Ag=0.1. The results shown in Figurel2billus-
trate the variation o;IBTr with d/Ar when considering both the consistent transmitting bouedar
and the proposed modified version witm/2 and 3 eigenmodes in the formulation. The results
are in very good agreement again with the reference solublametheless, there is some dif-
ference in the case of including only 3 wavenumbers, thohghesults follow the same trend.
Overall, there is good agreement when considering the geemaplitude reduction factor even
when using only 3 modes unlike the case of computing the @andgaireduction factor. This
may be due to the fact that the oscillation effect around éfierence solution seen in Figure
7.12acancels when using the integral in expressioi4). In fact, the provided results compare
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very well to those provided in referencEg obtained by the finite element package Abaqus.

7.7 Concluding remarks

The TLM is revisited in this chapter with the aim to reducecisnputational cost. For a Carte-
sian computational domain witlhsub-layers, a second-order eigenvalue problem of dimensio
2n is reduced to the first order with the dimension doubledrtoaé a consequence. The ob-
tained solution leads to the evaluation of the dynamicretgb matrices withrReigenmodes
included in each of the force vectors applied on the latevahilaries to allow the radiation of
waves away to infinity.

The proposed modified version of the consistent transrgitimundaries involves fewer eigen-

modes with dominant effect. Those are defined as the modesaendigenvalues have the small-
est imaginary part. The modal matrices become rectangathhance pseudoinverse matrices
are used in the formulation of the modified consistent trattsrg boundaries.

It is shown that computing a selected number of eigenmodgsfisiantly reduces the com-

putational cost of the model especially for problems witlyéadepths, in terms of the wave-
length, and when a wide range of frequencies is to be coveémdhe test problems considered
in this chapter, the modified consistent transmitting bauied performed like the unmodified
version when the most dominant eigenmodes are includeceilyhamic stiffness matrices.
Using only the first 3 modes, performs well except in the vigiof the lateral boundaries of

the computational domain where wave reflection occurs tegpiti erroneous solutions.
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Chapter 8

Some applications with unstructured
triangular mesh grids

8.1 Introduction

This chapter is devoted to some applications exploitingoefits of the numerical tool, de-
veloped throughout this dissertation, with unstructureghgular mesh grids. The advantages
of using unstructured mesh grids include the possibilitgmiploying available mesh genera-
tor packages and the flexibility they offer to include compdometries and discontinuities.
This obviously makes the numerical tool more attractivedealing with problems of practi-
cal interest as well as offering possibilities for furth@vdlopments. The dynamic behaviour
of non-horizontal soil profiles is first analysed. It is falled by applications of surface rigid
foundations over non-horizontal profiles. Various shagdesave barriers are then introduced
to examine surface vibration reduction. This chapter ddBsepresenting stationary harmonic
loading of several configurations of railway embankmentsmelstructured mesh grids can be
difficult to obtain. The soil-foundation, the soil-slab ahe soil-barrier interfaces are assumed
to be in fully bonded contact.

8.2 Dynamic behaviour of soil media with non-horizontal pre
file

The fundamental frequency of a soil layer over horizongiirbedrock can be estimated from
expressions4.1) and @.2). However, for cases where the bedrock is inclined the previ
expressions are not valid anymore. Therefore, numeridatisns are the alternative for such
cases and for many problems of practical engineering istteliethe case of 2-layer soil profile,
approximated solutions are also available and presentexpiressions4.89 and @.8b). If the
layers interface is inclined, the fundamental frequencthefsystem will be affected and again
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numerical solutions can be used. Therefore, the effectained rigid bedrock and inclined

soil layer interface over horizontal bedrock on the fundarakfrequency of the soil deposit

is investigated next. It is worth indicating that two separaigenvalue problems are solved
here, one for each lateral regular region, due to the diffe¥eof geometry for the two lateral

boundaries.

8.2.1 Dynamic behaviour of a soil layer over inclined bedrok

A numerical example was presented in secdon3to demonstrate the ability of the numerical
code to simulate wave propagation in the case of soil layer ioxlined rigid bedrock. A more
detailed parametric study is performed here by exploitirglienefits of the numerical model
with unstructured triangular mesh grids.

A homogenous soil domain of length and depth of 30m and 12spectively, and with the
same properties used in sectis revisited. A damped case is considered by taking a damp-
ing ratio of 5%. Two configurations of the model are illuséchin Figure8.1 The bedrock is
assumed to be horizontal for the reference solution wherduhdamental frequencies of the
vertical and horizontal loadings are respectively 5.9H2 ariHz. The bedrock is inclined by
angles of 10, 15° and 20 leading to a decrease in the volume of the soil layer, for e ©f
Figure8.13 due to the decrease of the depth of the right side lateraidemy byAH = X tan@,

with X being the length of the domain.

H+AH

(a) Soil layer over inclined base (volume decrease) (b) Soil layer over inclined base (volume increase)
Figure 8.1: Schematic diagram of a soil layer over inclinedrbck.

Following the analysis of sectiah4, the frequency of the applied load is varied and the area un-
der the surface displacement curves is computed for botltakand horizontal loading cases.
The top plots of Figurd.2 show the normalised area corresponding to the verticd) @eid
horizontal (right) responses of the inclined soil model $everal angles of base inclination,
which lead to a reduction in the volume of the soil domain.sitlear that there is a shift in
the vertical and horizontal fundamental frequencies faheangle of inclination. The funda-
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mental frequencies are increased. This was anticipatdteamverage depth of the soil layer is
decreased, the fundamental frequency should increasedie tlecrease in the denominators
of expressions4.1) and @.2).

The bedrock is then inclined by the same angles but with asing the volume of the soil
layer due to increasing the right side depth of the layeABy The corresponding results are
plotted in the bottom graphs of Figue2 Again, as expected, the fundamental frequencies of
the soil layer decrease as the average depth of the soibiseselt is clear that the fundamental
frequency of the vertical response has increased from 5.&8# = 0°, to around 12Hz, for

6 = 20", in the case of “volume decrease” where as it is decreased &r8Hz, for6 = 0°,

to around 3.8Hz, fob = 20°, in the case of “volume increase”. The same observatiorss al
noticed in the case of the of horizontal loading.
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Figure 8.2: Dynamic response of a soil layer over inclinezkrovertical response of volume
decrease (top left), horizontal response of volume deer@ap right), vertical response of
volume increase (bottom left) and horizontal response hfrae increase (bottom right).
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8.2.2 Dynamic behaviour of a two-layer soil medium with indned inter-
face over horizontal bedrock

Up to now, horizontal layering of the soil medium is assumEdr example, Jones and Hunt
[105 examined the effect of a soil layer inclination over haglfase on the surface vibrations
induced by an internal loading. A stepwise fashion methos @raployed in their simulation
to mesh the interface between the inclined layer and therladéalf-space. There is no need
for such meshing as unstructured mesh grids are employed Aerapproximated solution for
estimating the fundamental frequency of a 2-layer soil fgofias presented in secti@gh6.1
and is used here to obtain the reference solution for hot@tdayers. In the current section,
the same example is revisited but with considering an iedimterface between the layers.
Hence, the dynamic behaviour of the 2-layer soil profile iexamined. The configurations of
the model are illustrated in FiguB3. The upper layer is first inclined with angles of &nd
7.5, respectively. This leads to a decrease of the right sid&nless of the upper layer for the
left figure and an increase in the case of the right side figespectively. The fundamental
frequencies of the vertical and horizontal responses asdiig@rofile are displayed in the upper
diagrams of Figur®.4, left and right, respectively.

HaH

HAH,

H; AH,

Figure 8.3: Schematic diagram of 2-layer soil profiles witblined interface over horizontal
bedrock.

It is obvious that the fundamental frequencies are affelsyetthe inclination of the interface, in
comparison to the horizontal interface case. Those areased in the top graphs and decreased
in the bottom graphs. However, there is no noticeable chaelgéed to the two angles of
inclination, which are very close to each other. Furthetimation with larger angles would
probably affect the frequencies.
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Figure 8.4: Dynamic response of an inclined interface 2iagoil over horizontal bedrock:

vertical response of volume decrease of upper layer (tdp ledrizontal response of volume
decrease of upper layer (top right), vertical response hfrae increase of upper layer (bottom
left) and horizontal response of volume increase of upparléoottom right).

8.3 Harmonic vibration of a surface rigid foundation over
soil media with non-horizontal profile

Similar soil profiles are considered in this section with gae rigid foundation subjected to
a harmonic loading. The effect of bedrock and soil layerrfate inclination on the dynamic
compliances are investigated for various inclination aag|

8.3.1 RIigid foundation over soil layer over inclined rigid bedrock

An application related to the harmonic vibration of rigidifalations resting over a soil layer
overlaying horizontal rigid bedrock was presented in 8&cfi6.2 The same example is revis-
ited again here but with considering an inclined bedrocke @iinamic response of the rigid
foundation is examined by comparing its behaviour with #fenrence case, with the horizontal
bedrock. The angle of inclination is increased leading te@ehse or an increase in the depth
of the right lateral boundariy. The dynamic complianceshef toundation are computed and
plotted against the dimensionless frequency; both termdefined in sectioii.6.2
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Figure8.5shows the horizontal and vertical compliances for the cdssevbedrock inclination
leads to a volume decrease (Fig@&&g. For the case where the bedrock inclination leads to
an increase of volume (FiguB1b), the compliances results are reported in Figlife For the
first case, the results of Figug5 show the response of the foundation shifts to the right as the
angle of inclination increases. This was expected as thgastof the compliance represents
the stiffness and inertia of the soil, while the imaginaryt pepresent the soil damping. As the
soil volume decreases, the soil resonance frequency sese&or the second case, Fig8re

the main remark is that as the depth of the right lateral bagnohcreases, the resonance fre-
guency of the soil decreases. The other remark is that thétadgof the horizontal resonance
for the inclined base cases are much higher than for thearefercase. This is more obvious,
as shown in Figur8.7, when plotting the normalised amplitudes of the vertical horizontal
displacements.
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Figure 8.5: Compliances of surface rigid foundation ovetiied rigid bedrock (volume de-
crease).
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Figure 8.6: Compliances of surface rigid foundation ovetined rigid bedrock (volume in-

crease).

Normalised Vertical Displacement

02

04 06
Dimensionless frequency

Normalised Horizontal Displacement

04 06 08 1

Dimensionless frequency

0 02

Normalised Vertical Displacement

02

04 06
Dimensionless frequency

Normalised Horizontal Displacement

04 06 08 1

Dimensionless frequency

0 02

Figure 8.7: Variation of displacements amplitude with freqcy: vertical response of volume
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volume increase (bottom left) and horizontal response hfrae increase (bottom right).
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8.3.2 Rigid foundation over 2-layer soil medium with inclired interface
over horizontal bedrock

In this section, the effect of a soil interface inclinatioatlween two layers over horizontal
bedrock on surface foundation compliances is examined.iftbgace is inclined in the same
manner as in sectio®.2.1 The total depth of the soil profile satisfids (B=4), whereB is the
half width of the foundation. The shear modulus of the bottayer is twice the shear modulus
of the upper layer. The soil densities, Poisson’s ratios@ardping ratios are considered the
same for both layersp{/p2=1), (v1/v2=1) and (1 /B>=1). The interface is thereafter inclined
by 5°, 10° and 15 and the compliances of the foundation are plotted in Fi§u8elt is obvious
from Figure8.9that the interface inclination does not have significargafbn the natural fre-
guency of the solil profile. The variations of the complianaith the dimensionless frequency
remain practically unchanged for all inclinations consadke
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Figure 8.8: Effect of soil interface inclination on compices of surface rigid foundation.
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Figure 8.9: Variation of normalised displacements amgétwith frequency.

8.3.2.1 Effect ofuy /Lo

Israil and Ahmad 133 presented a parametric study, using BEM, for the dynamiabeur
of strip foundations overlaying a homogenous half-space, soil layer over half-space and a
soil layer over bedrock. The authors examined the effech@ftaterial damping, the relative
stiffness between the soil layer and the half-space andftbet ®f stratum depth considering
only vertical loading. A similar parametric study is cadi@ut in the current work to investigate
the dynamic response of surface strip footings over 2-lagdrmedia with inclined interface
overlaying bedrock. Horizontal and vertical excitatioms aonsidered. In the current section
the effect of the relative stiffness between the two layestudied.

Both layers are assumed to have the same thickness in thisrsét; /H,=1. The two layers
have 0.3 Poisson’s ratio and 0.05 damping coefficient. The beetween their relative stiff-
nesses is taken 0.25, 0.5, 2 and 4. The dynamic compliandbs édundation are computed
and plotted in Figure8.10to 8.13for several angles of inclination of the interface betweden t
two layers. The case q@f; /io=1 is excluded as it represents a homogenous layer overdiedro
From the graphs of Figurés10to 8.13 it is clear that very minor changes occur in the dynamic
compliances of the foundation, for all cases of relativifretss, when the angle of inclination
is changed from Oto 15 in increments of 5 As mentioned before, probably this is due to
the fact that the angles of inclination of the interface aselarge enough to induce significant
changes in the dynamic compliances. The normalised displants underneath the foundation
also confirm these remarks (FiguBel4).
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Figure 8.10: Normalised compliances of the

surface rigichftation forp / 1>=0.25.
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Figure 8.11: Normalised compliances of the surface rigithftation forpy /p>=0.5.
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Figure 8.14: Variation of normalised displacements amgés underneath the foundation for
M1/ 12=0.25, 0.5, 2 and 4, from top to bottom.
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8.3.2.2 Effect ofH1/H>

The fundamental frequency of a layered soil strata is a fonaif the material properties and
the thicknesses of the layers, as it was shown in expres@d®g and @.8b). In fact the thick-
nesses of the soil layers have a major effect in the fundah&eguency of the soil profile.
They appear in the denominator in the form(piH1)/(p2H2) and each layer thickness is in-
cluded in the termd; and f;/f,, implicitly. Therefore, the effect of the ratio of the relet
thicknesses of the two layers on the dynamic compliancebeofdundation overlaying a 2-
layer solil profile with an inclined interface over bedrockngestigated here. Poisson’s ratio,
damping ratio and soil densities are considered the samaotbrlayers. The only difference
in material properties is the ratio of the relative stiffegs; /L, it is taken as 0.25. The total
depth of the stratum is kept constant & & he ratio of the layer thicknessef /H; is varied
to take the values; 0.25, 0.333, 0.6, 1, 1.67, 3 and 4. For reich the interface is inclined by
the angles § 10° and 15 in a way to decrease the volume of the upper layer. The dynamic
compliances of the foundation are shown in Figu8el5-8.21

The results show that the interface inclination has an inflteeon the dynamic compliances,
especially at low values dfl; /H,. For example, foH; /H,=0.25, the real and imaginary parts
of the dynamic compliance decrease when the angle of inm#® increases. Moreover,
the peak values show slight shifts with respect to the dinoatess frequency. The indicated
changes are also obvious fbls /H,=0.333 andH;/H»=0.6. However, foH;/H,=1, 1.67, 3
and 4, the interface inclination leads to very little chaimgeomparison to the previous cases.
Once again, these conclusions are confirmed by the resutteaformalised displacements
underneath the foundation, shown in Figu8&22 and8.23 where the effect of the interface
inclination is clearer foH; /Hp<1.
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Figure 8.15: Normalised compliances of the surface rigithftation forH; /H»=0.25.
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Figure 8.16: Normalised compliances of the surface rigichftation forH; /H,=0.333.

168




Re[Normalised Vertical Compliance]

-Im[Normalised Vertical Compliance]

025 02

04 06 08 1
Dimensionless frequency

0.2

04 06 038
Dimensionless frequency

6=0°
6=5°
6=10°
6=15°

-0.2 -

Re[Normalised Horizontal Compliance]

0 0.2

-Im[Normalised Horizontal Compliance]

04 06 08 1
Dimensionless frequency

06

0.4r

0.2

0.2

04 06 0.8

Dimensionless frequency

Figure 8.17: Normalised compliances of the surface rigichftation forH; /H,=0.6.
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Figure 8.18: Normalised compliances of the

surface rigichftation forH /Hy=1.
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Figure 8.19: Normalised compliances of the surface rigithftation forH; /H»=1.67.
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Figure 8.20: Normalised compliances of the foundatiorHofH»=3.
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Figure 8.21: Normalised compliances of the surface rigithftation forH; /Ho=4.
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Figure 8.22: Variation of normalised displacements amgés underneath the foundation for

Hi/H»=0.25, 0.333, 0.6 and 1.
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Figure 8.23: Variation of normalised displacements amgés underneath the foundation for
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8.4 Surface ground vibration reduction by wave barriers

Various shapes of wave barriers are considered in the folgpgection to show the flexibility
of the numerical model in dealing with complex geometrielser, the case of wave reduction
by an inclusion, soft or rigid embedded mat, is considered.

8.4.1 Vibration reduction by wave barriers of various shape

Wave reduction, either by empty or in-filled trenches, is@bhdominated by the use of rectan-
gular shape trenches, wave impedance blocks or by ingigdiles. They have proved success-
ful in achieving the desired level of ground vibration retioic. However, other shapes have
not been usually considered due to either installationcdiliies or other practical considera-

tions. This section aims to investigate the efficiency ofargular inclined barriers, triangular

barriers, L-shape barriers and trapeziums barriers asridited in Figuré.24a

10AR

w 3R

(a) Several types of used wave barriers (b) Schematic diagram of the model

Figure 8.24: Schematic diagrams of wave barriers and thagmoconfiguration.

First, a rectangular concrete in-filled trench is used tosigie an idea about its effectiveness
on wave reduction and to be used for comparison to varioug Wavriers. The length and the
depth of the domain are takenAgland 3R, respectively, (Figur8.24h. The load is applied
at a distance of B from the centre of the barrier andd from the left lateral boundary of the
domain with a frequency of 20Hz. A zone of A®is permitted after the barrier's centre, it is
reported in reference irlR4 that good screening effect is achieved for a zone digldfter the
trench. The soil density, shear modulus and Poisson’s aaid. 700kg/r, 20MPa and 0.25,
respectively, with a damping ratio of 2.5%. The vibratioduetion at the surface of the model is
assessed by computing the average amplitude reductiar gt global measure. For in-filled
concrete trenches, Ahmad and Al-Hussali#§| proposed a normalised depth of the trench of
1.2; except for normalised width less than 0.3 as it achiessstlean 40% reduction (see Figure
8.2539. The normalised dimensions, with respect to the Rayleigialength, of the rectangular
barrier are varied as in FiguB25aand their screening effects are assessed. Next, the barrier
inclined by an angle of§ 10° and 15 toward and outward the point of application of the load.
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The reason for choosing such low angles is that this coulgdraduring the installation process
as itis not always guaranteed to maintain the vertical taitean when digging the trench in the
field and thus it is worth investigating the influence of itslination on its screening effects.
The normalised depth of the barrier is then increased to 2 feormailsed width of 0.4 and
the results are shown in Figur826aand8.26h respectively. In the diagrams, the case0°
refers to a vertical barrier. The results show that the perémce of the barrier is not affected
by the inclination and almost the same reduction level iseael for all cases.
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(a) Rectangle barrier (b) Triangle barrier

Figure 8.25: Effect of barrier shape on screening efficiency
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(a) Inclined barrier (b) in Figur8.24a (b) Inclined barrier (c) in Figur8.24a

Figure 8.26: Effect of barrier inclination on reduction ei#incy.

The triangular shape barrier is then used where the basé&eami@pth of the triangle are varied.
The results are plotted in FiguBe25bwhere the same trend is obtained for all cases. This type
of barriers reduces considerably the vibration level. H@vethe achieved reduction level is
lower than for the rectangular barrier of the same widthhi$ type is used then the depth of
the barrier could be increased to achieve better reductiel.| For example, a level of around
60% is achieved for a triangular shape barrier with a nosedliwidth of 0.5 and a depth of

2. The same level is achieved by rectangular barriers of @dfhvand 1.2 depth. In spite of
the larger depth of the triangular barrier, it requires bres compared to the rectangular barrier.
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The L-shape in-filled trench, which could be considered ast@ining wall, is used here and
it achieved between 40% to 60% reduction level in both catés shape as shown in Figure
8.27 The base of the barrier, the normalised embedded wjdtbes not have significant effect.
Maintaining low normalised embedded wid#dw: 0.4, is enough to achieve a reduction level of
around 50%.
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(a) L-shape barrier (e) in Figug24a
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(b) L-shape barrier (f) in Figur@.24a

Figure 8.27: Effect of L-shape barriers on screening efiicye
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(a) Trapezium shape barrier (h) in Figil824a
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(b) Trapezium shape barrier (g) in FiguBe24a

Figure 8.28: Effect of trapezium shape barriers on screpeificiency.

Trapezium blocks are used then by reversing their positibme narrow normalised base is
taken as 0.2 and the large base is increased according toghe@a Good reduction level

is obtained by using this type of trenches, see Figug8 due to their large contact surface.
However they are difficult to build on site and engineers mi&fgy in this case to increase the
dimensions of the rectangular trench to obtain a similagllefrreduction, as itis more practical.

For comparison purpose, the normalised area of the bamigfs respect to a unit area of the
Rayleigh wavelength, is calculated and plotted in FiggiR9against the average amplitude re-
duction factor for all shapes, excluding the inclined ofetevel of 60% reduction is achieved

176



in the case of rectangular barriers for normalised areamifrat 0.6. However, the triangular
barriers reduced the vibration by 40% for normalised arearofind 0.4. The level of reduc-

tion could be increased by maintaining a normalised widtb.4fand increasing the normalised
depth to more than 1.2. This is also obtained by the L-shapebmbut with higher normalised

area, 0.8 to 1.2. The trapezium blocks reduced the vibratidhe same level achieved by the
rectangular barriers but with higher normalised area; betw0.6 and 0.8.
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Figure 8.29: Effect of normalised area of the barrier on tlreening efficiency.

The numerical results showed that good level of vibrati@uotion could be obtained by using
for example triangular barriers. For a normalised width depth of 0.5 and 1.2, respectively,
reduction levels of around 50% and 36% are achieved formgalar and triangular barriers.
The corresponding normalised areas are 0.6 and 0.3, regdgctNonetheless, the reduction
level achieved by the triangular barrier could be increde€sD% by increasing its depth to 2.
In spite of that, its normalised area, 0.5, is still less tth@area of the rectangular barrier.

8.4.2 Vibration reduction by an inclusion

Elastic slab mats have been in use for vibration mitigatromfrailway systems. For example,
Cui and Chew 134 investigated the effectiveness of a floating slab on reaythe transmit-
ted forces to the ground due to a stationary harmonic loadaandving load. They indicated
that the floating slab is very effective for frequencies ¢artipan 1.5 of the designed resonance
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frequency. Hussein and Hunt35 modelled floating-slab tracks on rigid foundations by ac-
counting for moving loads. Xin and Gad36 investigated the efficiency of an elastic layer
inserted between slab track and bridge on the transmitta@tion to the bridge. They con-
cluded that there is amplification in the vibration levelasated with certain frequencies. The
effect of the slab stiffness on the rail and the slab dispieard is also studied in the previous
reference. In fact, the application of an embedded mat giragar results obtained for the
floating slab where an increase in the vibration level is entered below a certain frequency.
In fact, this depends on the depth of the mat as it shown indhewing analysis. The mat
reduces the vibration level and an intersection frequesi@eintified depending on the depth of
the mat.

To examine this, a soil domain oA and 3\g in length and depth (as depicted in Fig&.&0),
respectively, is used in the analysis with the same matarigderties as in the previous section.
The domain is subjected to a surface harmonic load of 10Hp&eCy. A mat, of soft or rigid
material properties, of length ofA and thickness of 0.5m is installed at various normalised
depths. The density, elasticity modulus and Poisson’s aitihe soft mat are 150kgAn1lMPa
and 0.25 while concrete properties are used for the rigid ifta¢ area under the displacement
curves at the surface of the model is computed and normakstdda unit area as shown in
Figure8.31 It is clear from the left graph of Figur.31that there is a reduction before a
certain depth of the rigid mat then amplification takes pldodact, amplification happened at
a normalised depth of around 0.5 which is close to the clitlegath of the domain. In the case
of the soft mat, amplification happened before the critiegdtl and reduction occurred with
depths around the critical depth of the model. In other warelduction in the vibration level is
achieved for normalised depths of the rigid mat of less thdb hile amplification happened
in the case of soft mat. In addition, the rigid mat amplified tasponse between 0.5 and 1 of
the normalised depth while reduction is achieved in the cAs®ft mat. Similar response is
found after a normalised depth of 1 for both mats.
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Figure 8.30: Schematic diagram of surface vibration radadty an inclusion.

Next, normalised depths of 0.5 and 0.75 are considered afdehuency of the harmonic load
is varied. The only difference from the previous case is thedsed frequency. As it is shown
in right graph of FigureB.31, for the case of 0.5 normalised depth, amplification occén.
the soft mat case, a slight reduction level is achieved beddrequency of SHz after which the
response is amplified. The case of 0.75 normalised deptheshtivat the response is amplified
in the case of rigid mat and reduced, to achieve around 35%ctied level, in the case of soft
mat.
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Figure 8.31: Comparison of the efficiency of soft and rigidsman surface vibration reduction.

8.5 Harmonic loads on railway embankments

The high demand for railways as a major transport mode hangige to various issues with
ground induced vibration being one of them. Some challeagesisually encountered such
as crossing soft soil deposits, passing through urban,aaedshe level of induced vibrations.
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High level of vibration and amplification could happen inead coincidence of the passing
frequency with the natural frequency of the soil depositf dhé depth of the strata is close to
the critical depth. A very popular type of railway lines ietBmbankment structure. Typical
railway embankments are of low and intermediate heights gltipes of 35. This leads to an
increase of the base of the low embankment by a factor of 1 #aah side compared to the
top width. This factor is increased to 2 in the case of intetiae height embankmerite. the
width of the base of low height embankment is around 21m wites@around 35.6m in the case
of intermediate height embankment. In other words, theaserbf the occupied land is three
times and five times the width of the top of the embankmenteérctise of low and intermediate
height embankments, respectively. As a matter of fact,ishiestly where, indeed, it becomes
one of the important factors to consider when passing thraugan areas. The purpose of
the current section is to examine the level of vibration cetliby surface harmonic loads in
addition to present some alternatives where savings inthethmount of fill materials required
for the embankment and the occupied space are significadlyced. More specifically, the
effect of the embankment geometry on surface vibrationsinfieduction is first given about
various configurations of possible railway embankmentanBiical results are then presented
in sections8.5.1and8.5.2

The developed finite element model is used here to simularatons induced by harmonic
loads on several configurations of the railway embankméltsases are studied. FiglBe32
depicts the schematic diagrams of these cases. The firstegagesents a low embankment, and
it is shown in Figure8.32a The soil layer underlain low embankment is improved byahistg
Constant Modulus Columns (CMC) as it is depicted in FigBu22d An additional two cases
correspond to intermediate height embankment. Highly Gartgel Geomaterials with Retain-
ing Walls (HCG-RW) are used in Figur8s32band8.32¢ instead of traditional embankments.
Constant Modulus Columns are used to stiffen the undertaln Bhe last two cases represent
embedded HCG-RW as it is shown in FiguB82cand8.32f For each case, two lines of har-
monic loads of magnitude 83kN are applied at the surfacenalsite two passing trains, in this
work only harmonic stationary loads are considered. Eaghdonsists of two axis point loads.
Examples of the geometries used in the low embankment anduhelCG-RW are shown in
Figure8.33
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(a) Low height railway embank- (b) Low height HCG-RW represen- (c) Embedded low height HCG-
ment tation RW representation

is
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(d) Low height railway embank- (e) Low height HCG-RW over soil (f) Embedded Low height HCG-
ment over soil layer stiffened with layer stiffened with CMC RW over soil layer stiffened with
CMC CMC

Figure 8.32: 2D configuration of railway embankment ovel lsgier resting on bedrock.

83kN 83kN 83kN 83kN 83kN 83kN 83kN 83kN
Tim  Lam | Tim  1am
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5m 5m
35° 21m
underlain soil underlain soil

Figure 8.33: Schematic diagrams of loads on railway embamitsn

8.5.1 Railway embankment

A medium-stiff low height embankment is first considered.e Freight of the embankment is
taken as 5m where it is inclined with an angle of 3ading to 7m width at the top and 21m at
the embankment-underlain soil layer interface as it wasctisghin Figure8.33 It is a typical

and common practical case. The numerical model is used taaiethe behaviour of the do-
main under stationary harmonic loading. The domain is nekstte 3-node triangular elements
with element size less than one-tenth of the Rayleigh wagthein each layer. Distances of
3Ar and 0.5\ are taken beyond the lower edges of the embankment on theangHeft sides,
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respectively. The embankment is assumed to be overlaying kger of 4Ar in depth which
rests on rigid bedrock. Typical unstructured triangulasmegrids of the low embankment and
the underlain soil, for a load frequency of 18Hz, is presemeFigure8.34 Material charac-
teristics are tabulated in TabBl

p(kg/mP) | u(MPa) | v | B (%)
Embankment 1700 18.8 0.33| 2.5
Soft soill 1500 7.4 0.35| 25
HCG 2000 83.3 0.20( 1.0
CMC/RW 2500 6521x10° | 0.15 1

Table 8.1: Material properties

The vertical displacements curves at the surface are cadfot the Ar distance beyond the
right side edge of the embankment. Comparing, for examptedisplacement curves does not
give a general and obvious idea about the response. Hemcargh underneath each vertical
displacement curve, for each applied frequency, is conapanel used for comparison purpose
as it gives better indication about the level of vibrationgufe 8.35ashows the results for a
range of frequencies up to 26Hz. Next, the soil layer undgimthe embankment is stiffened
by installing CMC, of 10m depth, 0.5m of width and at intesvaf 1.5m. As it is shown in
Figure8.35a both cases exhibit high level of vibration for low frequess; up to 3Hz, where it
is dramatically reduced to very low levels with increasihg frequency.
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Figure 8.34: Example of unstructured triangular mesh farédonbankment: F=18Hz.

To distinguish the difference in response for both casesatka underneath the vertical dis-
placements curves of the low embankment over stiffenedsoibrmalised by the area under
the vertical displacement of low embankment. The resuéishown in Figur®.35h It is clear
that the level of vibration is reduced when considering tiMGC However, there is an ampli-
fication associated with some frequencies. In fact it isteeléo the fundamental frequency of
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the low embankment, which is around 10.4Hz, by considetiegeimbankment as a soil layer
over rigid base. An interesting example was presented bymAalad Schmid137] where the
BEM is used to describe the semi-infinite extent of the dom#iconsisted of a railway em-
bankment supported by a vertical retaining wall only frone @ide due to a restriction in the
nearby property. They computed the response on the surfabe embankment and also for
some distance beyond the vertical wall. Resonance occurizuth cases for frequencies close
to the fundamental frequency of the embankment. Their medslbased on a half-space one.

The height of the embankment is further increased to 10m nsider an intermediate height
embankment. The length of the base of the embankment isratseased in this case to be-
come 35.6m. This case does not represent only an increae wolume of the fill materials
required to construct the embankment but also significastement in the area of the occu-
pied land by the embankment. In addition to that, the distareeded after the embankment
where regulatory design codes allow constructing residemtildings is as well affected. The
soil under the intermediate height embankment is agaifesatl by CMC. The area under the
vertical displacement curves of the latter case is normdls/ the area under the displacement
curve of the intermediate height embankment. The resudtsiaown in Figuré.35 As for the
low embankment height, there is amplification in the respassociated with the fundamental
frequency of the intermediate height embankment whichdarad 5.2Hz.

Low embankment 20 Low embankment (CMC)
.......... Low embankment (CMC) ---------- |ntermediate embankment (CMC)
Intermediate embankment
Intermediate embankment (CMC)

15

05

. Area under displacement curve
Normalised area under displacement curve

0 3 6 9 12 15 18 21 24 27 03 6 9 12 15 18 21 24 27
F(Hz) F(Hz)

(a) Area under displacement curves for embankment cas€b) Normalised area under displacement curves
Figure 8.35: Vibration reduction by railway embankmentraal layer resting on bedrock.

As depicted in Figure8.35 two main remarks are observed. The first one that the area un-
der the vertical displacement curve is decreasing withemsing the frequency for the four
cases. In other words, low frequencies generate signifleaat of vibrations in comparison

to frequencies higher than 3Hz. The other remark is that wizemalising the area under the
displacement curve two peaks appear which are associatedh&i fundamental frequency of
the embankment. De-amplification is more pronounced in #se of intermediate height em-
bankment. This may be justified by the effect of the heighhefémbankment where waves are
damped and reduced in magnitude.
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8.5.2 Other alternatives

It is difficult sometimes to construct an embankment duedogkample, the presence of ex-
isting buildings and infrastructures where space is vemtéd and restrictions apply. The high
price of the land is also another important factor even inchee of low heights. Other alter-
natives could be used instead of the embankment with aniaagitreatment. This treatment
could be achieved by improving the soil with geosynthetid¢erals or as it is done here by
applying HCG. For example, a method consisting to constancembankment of HCG and
supported by RW could be used. This will save two-thirds efltase size of the embankment
required to construct a low embankment and 80% in the case aftarmediate height em-
bankment. In terms of area, a saving of half of the area isidxdaf the low embankment is
replaced by HCG-RW while two-thirds are saved if an interratxheight HCG-RW replaces
the intermediate height embankment. Here, the low embankimeeplaced by HCG-RW, with
the material properties assumed in TaBlé The soil under the HCG-RW structure is also
stiffened by CMC and the results are presented in Fig8ré8aand8.36h Again, the level of
vibration decreased by increasing the load frequency,herstudied range of frequencies. In
the case of CMC, there is an amplification in the responsetasdorresponding to the natural
frequency of the HCG-RW structure, around 16.7Hz. The mésliate embankment is also re-
placed with HCG-RW with the same height. In addition, CMCiasgalled in the soil under the
intermediate height HCG-RW with CMC. The results are degiéh Figures8.36cand8.36d
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Figure 8.36: HCG-RW cases.

Another common case is the embedded HCG-RW as the one depidtgure8.32c Itis han-
dled as in previous cases with and without CMC. The low hegbnly considered in this case.
The results are presented in Fig@&®&7. The purpose of such example is to give an indication
about the response when considering such a structure withvahout CMC. It is clear that
the case of embedded HCG-RW with a strengthened soil medu@MC gives better level of
reduction of vibration as the normalised area is lower tloantife case of only embedded HCG-
RW. Amplification does also appear at the fundamental frequef the HCG-RW structure.

Contour plots of the vertical displacements of several €a@se shown in Figur8.38 It is
clear that the displacement level decreased in the strengthsoil case both underneath the
embankment and beyond it. The contour plots show symmepioéiles, with respect to the
vertical axis of symmetry of the embankment, despite thetfecproblems are not symmetrical,
thanks to the good performance of the transmitting boundanglitions.
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Figure 8.38: Contour plots of the vertical displacements,8Hz.
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8.6 Concluding remarks

Various numerical examples are analysed in this chaptegukie TLM model with unstruc-
tured mesh grids. The main remarks deduced from the reseltsted below.

e The fundamental frequency of soil media with non-horizbptafile is determined nu-
merically. It is shown that there is a significant change mfimdamental frequency of
soil layer over inclined base. This is also confirmed by theliaption of rigid founda-
tion over soil layer over inclined bedrock. The fundamefadjuency of a 2-layer soil
medium with inclined interface over horizontal bedrockligtgly affected by the angle
of inclination. In the case of rigid foundation over 2-laysil medium with inclined
interface over horizontal base, the relative thicknes$é#seosoil layers has a noticeable
effect, for ratios less than 1, on the dynamic behaviour efftlundation.

e Vibration reduction by various shapes of wave barriersse atudied. Triangular wave
barriers could be used as they lead to similar reductiond®f¢he rectangular barriers. A
reduction in the area of the barrier is also achieved. Othpad of barriers also achieved
good reduction level but with a significant increase in theaasf the barriers in addition
to installation difficulties.

e The vibration induced by stationary harmonic loads reprisg railway loads is also
investigated. Various configurations of railway embankteane used showing the flexi-
bility of the numerical model when using unstructured tgalar mesh grids.

In summary, the developed model is capable to simulate weniegms in a two-dimensional
configurations thanks to the flexibility offered by unstwreid mesh grids and to the good per-
formance of the implemented transmitting boundary coodgi
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Chapter 9

Conclusions and Prospects

A numerical model for simulating wave propagation in soild@edue to the effect of harmonic

loads has been developed in the current work. The model isdtmensional under the as-

sumption of plane strain condition. The soil medium can beadgeneous or layered and it
may overlay rigid bedrock or half-pace. A more attractivesuan of the finite element model

is developed where unstructured mesh grids are employecesh e irregular region. This

attracts practitioners as they are usually interested afirtgwith models of complex geome-

tries. Furthermore, the TLM is modified in this dissertatiamere a faster version is proposed
by reducing the contributing number of eigenmodes in thetgoi. This has led to a more

efficient model in terms of computational cost. Major cosahns are summarised below.

e For soil media overlaying rigid bedrock, a finite element mldias been developed in
which wave radiation to infinity through the vertical latdsaundaries, is ensured through
nodal forces which are derived using the thin layer methadV()l

e For soil media over half-space, the TLM has been coupled thighparaxial boundary
condition to create a model capable of simulating wave temtiavith respect to both
lateral directions and depth.

e Both models, soil media over bedrock and soil media overs$yadice, have been validated
through the consideration of various test examples inyastig the dynamic behaviour,
in terms of natural frequencies, critical depths, surfacentlation compliances and other
useful comparisons to past published work.

e Various parametric studies have allowed us to deduce goegesuch that the developed
numerical tools lead to correctly model problems of pradticterest, particularly in the
case of soil media over half space. In fact, for this case amum depth for the ho-
mogeneous half space and a minimum thickness of a buffer iaytbe case of layered
half-space are required in the finite element model.

e Practical engineering problems usually include complesxngetries. In order to make
the developed numerical tool flexible, unstructured mesgtsdrased on linear triangular
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finite elements are incorporated. As shown in this disgertatork, it allows considering
discontinuities of various shapes as well as non horizdayaring of soil profiles or non
horizontal rigid bedrock.

e For large-size soil domains, in terms of the Rayleigh wawgtle, and for wide ranges of
analysis frequencies, the developed models lead to higlpetational effort. In order to
reduce this effort, a modified version of the transmittingibdary conditions has been
proposed. It was shown to lead to good quality results if tietuded eigenmodes are
carefully selected.

What is achieved in this dissertation shows that a lot of werkains to be done. Some obvious
tasks are identified as follows:

e Enhancement of the PBC could be achieved by improving theoappate impedance
matrix of the half-space. This could be done by taking momasein the Taylor series
approximating the impedance matrix to prevent the germraif negative energy in the
model.

e The proposed model could be extended to develop a numenigidbased on anti-place
shear and axisymmetric cases. Extending to three-dimeslssases would be even more
attractive as it allows dealing with more practical probéedodifying the corresponding
transmitting boundaries could also be formulated for theeses to reduce the computa-
tional effort.

e Last, investigating more effective ways to absorb waveggnat the artificial boundaries
of the computational domain would be another option, esfligcif it leads to better
guality results and low computational cost.
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Appendix: The Moore-Penrose
Pseudoinverse

The solution of a linear systedx = b is straightforward if the matrijA is square. However,
if Ais rectangular, the Moore-Penrose pseudoinverse or thalgad inverse simplifies the
problem by treating it in a least square manner. It was stufilist by Moore in 1922. Years
later, Penrosel3§ rediscovered Moore’s work, which was named: the Moorer&ss pseu-
doinverse.

The Moore-Penrose pseudoinverse of a complex rectanguaiixi of dimension(m x n)
is denoted byAT(n x m). It satisfies some of the characteristic properties of swer Penrose
[138 summarised some of the characteristics of the pseudaeas in the following

AATA=A. 1)
ATAAT = AT, 2)
(AAN* = AAT, ©)
(ATA)* = ATA. 4)

Thex refers to the conjugate transpose of the matrix.

ATA= (A*A)TAA. (5)

AAT = (AA)TAA. (6)

Penrose 13§ showed that the unique matrid, satisfies equationd) and @). The general
solution of the linear systex= b is

x=A'b+ (I —ATA)y, (7)
wherey ia an arbitrary vector.
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