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Xiaoyong Bai (Ph.D., Civil Engineering) 

Development of Time-Domain Green’s Functions and Boundary Element Techniques for 

Transient Elastodynamics of Multi-layered Media 

Thesis directed by Professor Ronald Y.S. Pak 

 

Time-domain boundary element method (TD-BEM) is a powerful tool for transient 

elastodynamic modeling of soil and structures especially for unbounded domain 

problems.   Aimed to add to the advancement of this class of methods and facilitate its coupling 

with other numerical approaches, a number of new analytical and computational formulations are 

developed and explored in this study.  The work includes the development of a regularized 

convolution-type boundary integral equation in the time domain for 3-D elastodynamics, the 

formulation of a rigorous stability analysis via a hybrid amplification matrix of direct TD-BEMs, 

an extension of a displacement potential-integral transform method from the frequency- to the 

time-domain, a generalization of the classical Cagniard-de Hoop method in wave propagation 

theory for Laplace transform's inversion, and the derivation of exact as well as asymptotic forms 

of the time-domain point-load Green's functions for a homogeneous and a multi-layered half-

space.    The theoretical developments are employed to develop new computational algorithms 

such as the new variable-weight multi-step collocation TD-BEM scheme with higher-order time 

projections and a new numerical contour integration method to compute the fundamental integrals 

in exact half-space time-domain Green's functions.  The efficacy and performance of these 

developments are evaluated with respect to benchmark elastodynamic problems for both bounded 

and unbounded domains.   The formulation and effectiveness of coupling the proposed TD-BEM 

approach with a local finite element zone for dynamic soil-structure interaction problems as a 

rigorous form of wave-absorbing boundary are also investigated. 
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Chapter 1  

                                                                Introduction 

 

Three-dimensional elastodynamic problems with unbounded domain are fundamental in 

theoretical and applied mechanics because of their relevance to a wide range of applications in 

geotechnical and earthquake engineering, dynamic soil-structure interaction, and geophysics.  In 

geotechnical and earthquake engineering, the phenomenon of the wave propagation in a half-space 

plays a vital role in the investigation of foundation vibration, dynamic bearing capacity of 

foundation and many modern in-situ test methods (Chopra 2001, Kramer 1996, Das 2016).  In 

dynamic soil-structure interaction, the fundamental challenge is to model the unbounded 

foundation medium so that the effective reaction of the structure as a result of the wave radiation 

and scattering upon seismic wave incidence can be comprehensively determined (Wolf 1985, 

Enrique Luco 1998, Stewart 2012).  In seismology, a cornerstone is the theory of wave propagation 

which underlies the modeling of the earth as a three-dimensional body with complex depthwise 

and laterally isotropic or anisotropic media (Aki and Richards 2002, Cerveny 2005, Shearer 2009). 

 By common domain-type numerical methods (for example, the Finite Element Method, 

Finite Difference Method and Meshless methods) for this class of problems, the discretization of 

an infinite region has to be limited to a finite region.  Besides the needs to have many degrees of 

freedoms to cover a sufficiently large domain, the artificial boundaries rising from the spatial 

truncation in dynamic and wave propagation problems can generate spurious reflections and 

distortions that can contaminate the solution.  Boundary Element Methods (BEM) that are 

formulated for exterior region using appropriate Green’s functions can bypass such issues as they 

can satisfy rigorously the far-field radiation condition at infinity while needing only to discretize 
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the near-field boundary surfaces (Karabalis 1984, Brebbia, et al. 1984, Dominguez 1993).   With 

the enabling possibility of coupling it with finite element and other numerical methods as well, 

further development of boundary element methods is believed to be warranted from the viewpoint 

of theoretical and applied mechanics as well as general engineering modeling of physical problems. 

In past developments of BEMs for elastodynamics, they were commonly formulated and 

used in the frequency domain, with the time-domain responses being synthesized by means of 

Fourier transforms (Rizzo 1985, Karabalis 1987, Pak and Guzina 1999).  For fast loading resulting 

from transient events like blast loading, however, the use of the frequency-domain BEM approach 

will necessitate the evaluation of dynamic Green’s functions at not only numerous but ultra-high 

frequencies.  For such problems, a time-domain BEM formulation would likely be considered as 

more attractive and logical.  To facilitate the development of hybrid numerical methods such as 

FEM, FDM and meshless methods to tackle complicated geometric or material problems, the 

availability of an effective BEM approach in the time-domain should also be more helpful.  For 

example, in the modeling of dynamic soil-structure interaction or a buried blast problem, the BEM 

can be employed for the far-field domain while the local region can be handled by finite element, 

meshless or even discrete element methods (Rizos and Wang 2002, Bode et al.  2002, Regueiro 

2014, Galvín and Romero 2014).    

On TD-BEMs, the most commonly-used approach is to apply a step-by-step direct time 

integration method with a collocation scheme to the fundamental boundary integral equation that 

involves multiple convolution integrals.  To date, a number of such TD-BEM formulations have 

been proposed for 2-D (e.g., Mansur 1983, Antes 1985, Coda and Venturini 1995, Carrer et al. 

2012 ) and 3-D problems (e.g., Karabalis and Beskos 1985, Banerjee et al. 1986, Rizos and 

Karabalis 1994, Rizos and Zhou 2006, Galvín and Romero 2014) ).   While various advances have 

been made in recent years, there are still basic theoretical and numerical issues that can use better 

resolutions.  For example, one common feature among many time-domain BEM formulations is 

the presence of Cauchy principal values (CPV) of integrals and the jump term as a result of the 
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strong singularity of the point-load traction Green’s functions.  Although there are schemes for 

their computation using special quadrature weights, the method of finite part integration (Coda 

and Venturini 1995, Kutt 1975) or the indirect rigid-body motion technique (Banerjee et al. 1986), 

they are generally sensitive numerically or limited to specific load and geometric configurations.   

Most critically, the numerical instability and accuracy issue of TD-BEM in the execution 

of the time integration has remained a fundamental challenge to be fully resolved as they tend to 

be problem- and mesh-specific in time-domain boundary element treatments (Cole et al. 1978,  

Dominguez 1993, Peirce and Siebrits 1997).  Aimed to mitigate the stability problem, a number 

of TD-BEM schemes have been proposed.  As direct time integration strategies, there are for 

example the half-step and 𝜖-methods (Peirce and Siebrits 1997), the linear-𝜃 method (Araujo et al. 

1999, Yu 1998), the time-weighting method (Marrero and Dominguez 2003, Soares and Mansur  

2007, Yazdi et al. 2011, Yu et al. 1998), and the Galerkin procedure (Frangi and Novati 1999, Yu 

et al. 2000).  In most past studies, however, the stability of an algorithm was often proclaimed by 

executing only a finite number of steps that was deemed sufficiently large in lieu of a rigorous 

analytical assessment.  Such a choice unfortunately runs the risk of misjudgment since a scheme 

that looks stable over N  steps may still eventually see instability emerging at N k  steps or upon 

the imposition of an alternative set of loading-boundary conditions.  To date, the most rigorous 

approach to BEM’s stability question is by Peirce and Siebrits (1997).  Utilizing the method of 

amplification polynomial (Strikwerda 2004), they proposed the use of a discrete z-transform to the 

time-marching algorithm to develop an approximate characteristic polynomial equation whose 

roots can be used as direct indicators of the scheme’s stability for their half-step and 𝜖-methods.    

As one can easily deduce, the most important element in BEMs or boundary integral 

equation methods (BIEMs) is the kernel of the integral equation, i.e., the Green's 

function.   Unfortunately, time-domain Green’s function for elastodynamics is very limited and 

the classical Stokes' solution (Stokes 1849) remains the prevalent one used in most 

implementations.  For problems involving semi-infinite media typically found in geotechnical 
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engineering, geophysics and seismology problems, the use of full-space Green’s functions in a 

BEM will require a discretization of the free-surface with truncation (Padrón et al. 2011, Von 

Estorff and Hagen 2006).  This increases not only the size of the matrix system but also limit the 

time interval of a solution’s validity.  Should the half-space Green’s functions be available that 

can satisfy the conditions of infinite free-surface fully, the accuracy of many TD-BEMs should be 

improved fundamentally upon their incorporation. 

To obtain elastodynamic half-space Green’s functions in 3D, a powerful method of 

solution is the methods of displacement potentials (Lamb 1904, Gurtin and Sternberg 1962, Pak  

1987).   By means of the analytical decompositions, they enable the conversion of the coupled 

Navier’s equations of motion to a set of uncoupled wave equations.  To obtain rigorous 

mathematical solutions, techniques such as Fourier transform method can be used to convert the 

problem to one in the frequency domain or the partial differential equations to the elliptic 

type.  Through an inverse Fourier transform, the time-domain response can then be theoretically 

recovered.  To achieve it analytically and numerically, however, the time-function of the imposed 

loading or excitation needs to be reasonably smooth so that it does not contain any very high 

frequency components.  Otherwise, it will require a frequency-domain characterization over a 

large or infinite range which is unwieldy numerically.  An analytical alternative for developing 

time-domain Green’s functions is the use of Laplace transform together with the ingenious 

inversion technique conceived by Cagniard (1962) and modified by de Hoop (1960).  As the most 

rigorous theoretical platform for wave propagation problem in solid mechanics (Miklowitz 1978), 

acoustics (Brekhovskikh 2012), seismology (Aki and Richards 2002) as well as electromagnetics 

(de Hoop 1988), the key idea of Cagniard entails finding a special integration path in the complex 

plane and manipulating the variables so that the transformed solution can be re-cast in a canonical 

format.  A number of basic wave propagation problems in 2-D (Dix 1954, Pekeris 1955a, Pekeris  

1955b) were solved analytically by the Cagniard-de Hoop method but the method’s application to 

general three-dimensional elastodynamic source-response problems has been limited owing to the 
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complexity of the mathematics involved except for special cases such as the surface response due 

to a buried source or the interior response due to surface loading (see Chao 1960, Verweij and de 

Hoop 1990).   For example, Chao (1960) considered the response of an elastic half-space to a 

tangential surface load.  A review of past solutions for the case of surface source and response can 

be found in Kausel (2012) which included some simplified formulas.  As to the case of a general 

buried source and a general observer location on or in a homogeneous half-space, the main solution 

is that of Johnson (1974) who obtained a solution of the 3-D Navier’s equations in terms of Laplace 

and Fourier transforms, and adapted Cagniard-de Hoop’s method for his choice of a rectangular 

coordinate system.  The resulting mathematical derivation and operations involved are, however, 

lengthy and complicated, with multiple variable transformations and analytical manipulations and 

the suggested numerical implementation had some basic issues (Galvín and Romero 2014).      

For the more complicated scenario of a multi-layered half-space which is essential for 

representing common in-situ soil’s properties’ variations in nature, past advances were mostly 

achieved in the frequency domain as in Thomson (1950),  Haskell (1953), Knopoff (1964), Gilbert 

and Backus (1966), Kennett (1979), Aspel (1979),  and Pak and Guzina (2002) where the Green’s 

functions were developed by means of Hankel transfroms with respect to the radial coordinate, 

Fourier decompositions with respect to the angular coordinate, and the method of “propagator 

matrices” that allow for the determination of integration coefficients by means of boundary and 

interfacical conditions.   In the work by Ma and Lee (2006), a method to computing the time-

domain Green’s function was developed to invert the Laplace transform solution via Cagniard’s 

method but there remain important analytical issues such as a proper treatment of various 

singularities, to be resolved.  

Intended to be a rigorous effort to extend the analytical and computational foundations for 

BEMs for general 3-D elastodynamic problems especially for unbounded 3-D multi-layered media, 

the following developments were pursued and presented in this dissertation: 
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1. Regularized Time-Domain Boundary Element Method (BEM) formulation 

With the recognition of the analytical and numerical issues that have plagued TD-BEMs 

for elastodynamics, an effort was made to develop a compact but rigorous mathematical 

foundation for BEMs for the time domain that may help to ease some of the numerical issues in a 

direct time-integration solution scheme.  Owing to the strong singularity of some of the Green's 

functions in elastodynamics, the classical BEM formulation requires the computation of Cauchy 

Principal Values (CPV) which is often sensitive and tricky.  To this end, by means of a general 

decomposition of time-dependent point-load Green’s functions into a singular and regular part, it 

is shown that a regularized boundary integral equation for the time domain can be formulated.  Its 

numerical implementation via a variable-weight multi-step collocation scheme that allows for 

different orders of time projection for the boundary displacements and tractions is also 

accomplished and evaluated. 

2. Stability analysis of direct time-integration schemes in boundary element methods 

As noted earlier, the numerical instability of TD-BEM schemes has been a critical issue in 

direct time-domain boundary element methods (TD-BEM) especially for elastodynamics.   While 

there are some schemes that appear to be stable for a finite number of time steps, few have offered 

a mathematical proof that they actually are because of the absence of a rigorous assessment 

formalism.  In this study, a compact analytical framework for evaluating the issue is presented.  By 

finding a way to cast the convolution integral-based TD-BEM algorithm in the form of a linear 

multi-step method with a hybrid amplification matrix and the incorporation of some fundamental 

characteristics of commonly used transient Green’s functions, the assessment problem is shown to 

be reducible to a standard spectral analysis in matrix theory by which the stability threshold can 

be clearly defined.  Apt to be applicable for the evaluation of a wide class of TD-BEMs, the 

approach is applied to the proposed regularized time-domain direct boundary element method with 

optional collocation weights and orders of solution variable projections as illustration.  With the 
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aid of the rigorous stability analysis and a systematic parametric study, an analytical resolution of 

some critical aspects in some past schemes as well as the versatility of the generalized TD-BEM 

algorithm as they pertain to the benchmark finite-domain square-bar and the infinite-domain cavity 

elastodynamic problems are given as examples.  

3. Indirect Time-domain elastodynamic Green's functions for homogeneous and multi-

layered half-space for “B-Spline" time function and frequency-domain formulation 

Intended as a benchmark solution for assessing the TD-BEM to be developed for half-space 

problems, a time-domain Green's function of homogeneous half-space subjected to arbitrarily-

located point-load with a cubic B-spline time function is implemented using a Fourier synthesis of 

the frequency-domain half-space Green's function presented in Pak and Guzina (2002). The 

adoption of a smoothened impulse-type time history such as a cubic B-spline function for the 

fundamental solution is shown to be useful in nullifying the need to computing the frequency-

domain Greens function at excessively high frequency. 

4. Direct Time-domain Green’s function for a homogeneous half-space by an extended 

displacement potential-Laplace-Hankel-Cagniard transform method 

With aid of Laplace and Hankel transforms with respect to time and space, a method of 

displacement potentials is extended to obtain time-domain dynamic response of an elastic half-

space resulting from an arbitrary, finite, buried source is presented.  To recover the time 

dependence of the Green’s functions, a novel approach in extending Cagniard’s idea to the derived 

analytical transformed solution is realized.  By virtue of a generalized presentation of Bessel 

functions in the Hankel transform, the well-acknowledged difficult task of discovering the 

inversion path is replaced by a simplified analytical procedure in finding an effective replacement 

Cagniard contour that has fewer integration issues.    The new solution is given compactly in terms 

of a single integral over a finite interval, and its numerical implementation is tested against known 

results for accuracy and robustness.   
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5. Time-domain Green’s function for a multilayer half-space 

On the basis of the foregoing developments, a rigorous theoretical framework is formulated 

to analyze the propagation of transient disturbance in a semi-infinite 3-D multilayered solid due to 

arbitrary asymmetric loadings in this study.  Utilizing the new method of solution in terms of 

displacement potentials, Laplace and Hankel integral transforms, method of propagator matrix and 

Cagniard method, it is shown that results such as wave arrival time and wave front singularities in 

the 3-D multi-layered problem that were obtained in the past by separate analyses via generalized 

ray expansion and geometric methods in geophysics, can be extracted rigorously from the full 

mathematical solution.    

6. TD-BEM with half-space Green’s function and its use in finite element-boundary element 

(FE-BE) coupling for soil-structure interaction (SSI) problems 

With the regularized TD-BEM incorporating the multilayer half-space Green’s functions, 

several problems involving homogeneous and multilayer half-space are considered and validated 

in this study.  An analytical framework for direct BEM-FEM coupling so that a common step-by-

step integration scheme can be used for dynamic soil-structure interaction analysis is developed 

and implemented.  A number of soil-foundation-structure interaction configurations are also 

considered to evaluate the effectiveness of the proposed coupling formulation.    

In this thesis, the foregoing work is presented in 9 chapters.  Chapter 2 presents the 

derivation of a regularized form of the time-domain boundary integral equation which forms the 

core foundation of the proposed TD-BEM developments.  With the improved analytical format, 

the derivation of the new TD-BEM solution algorithm on the basis of a variable-weight multi-step 

collocation scheme with higher orders of time projections for the field variables for better control 

of the accuracy and stability is given.  Chapter 3 contains a number of examples of the numerical 

performance of the proposed generalized TD-BEM scheme.  The formulation of a formal 

analytical framework for the evaluation of the stability of a general class of TD-BEMs is outlined 
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in Chapter 4.  To provide a reference for the development of new time-domain Green’s functions, 

Chapter 5 describes the use of frequency-domain Green’s function to generate time-domain 

response via Fourier transform approach.  Chapter 6 outlines the analytical solution formulation 

of the time-domain Green’s function by means of Laplace-Hankel transforms and the proposed 

inversion approach by analytic function theory.   Chapter 7 presents an extension of the techniques 

in Chapter 5 and 6 to the more complicated case of multilayer media.  Partly as a summarial 

application of all the analytical and computational developments in the study, Chapter 8 gives a 

number of examples and results from the application of the time-domain BEM formulation for 

problems using the half-space Green’s function as well as a coupled finite elmenet-boundary 

element algorithm in a dynamic soil-structure interaction problem.  A set of conclusions is 

provided in Chapter 9.  
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Chapter 2  

Regularized Boundary Element Formulation for Time Domain with Weighted-Collocation 

and Higher-Order Projection for 3-D Time-Domain Elastodynamics 

 

2.1 Introduction 

Boundary element method (BEM) is a powerful numerical method for elastodynamics, as 

an independent candidate or a component in a hybrid procedure (Cole et al. 1978) especially in 

unbounded domain problems.  While the approach is commonly implemented in the frequency 

domain, a sound time-domain boundary element formulation (TD-BEM) is of equal fundamental 

importance to both theoretical and computational developments.  Apart from its clear analytical 

appeal in being able to handle directly in the time domain fast transient and shock-like dynamic 

conditions for which a frequency-domain approach will have to face the challenge of determining 

the system response at very high frequencies, an effective TD-BEM is essential to allow the 

method to be coupled with a wide variety of mesh-based or meshless methods to realize the best 

modeling of complex physical problems.  To date, a number of TD-BEM formulations have been 

proposed for 2-D (e.g., Mansur 1983, Antes 1985, Coda and Venturini 1995, Carrer et al.  2012)  

and 3-D problems (e.g., Karabalis and Beskos 1985, Banerjee et al. 1986, Rizos and  Karabalis 

1994, Rizos and Zhou, 2006, Galvín and Romero 2014).  While various advances have been found 

in recent years, there are still basic theoretical and numerical issues that warrant further attention.  

For example, one common feature among many time-domain BEM formulations is the presence 

of Cauchy principal values (CPV) of integrals and the jump term as a result of the strong singularity 

of the point-load traction Green’s functions.  Although there are schemes for their computation 

using special quadrature weights, the method of finite part integration (Coda and Venturini 1995, 
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Kutt 1975) or rigid-body motion that combines both evaluations (Banerjee, et al. 1986), they are 

generally sensitive numerically or limited to specific load and geometric configurations. More 

fundamentally, numerical instability and accuracy issues in the execution of the time integration 

have remained the critical challenge to be fully resolved as they tend to be problem- and mesh-

specific in time-domain boundary element treatments (Cole et al. 1978, Dominguez 1993, Peirce 

and Siebrits 1997).  Aimed to mitigate the issue, a number of numerical schemes have been 

proposed.  Examples are the averaged collocation method (Marrero and Dominguez 2003), the 𝜖 

method (Peirce and Siebrits 1997), the linear-𝜃 method (Araujo et al.  1999), the time-weighting 

method (Frangi and Novati 1999, Yazdi et al. 2011, Yu et al. 1998), and the Galerkin method (Yu 

et al. 2000).  While there are alternative avenues to time-domain solution via, for example, the 

frequency domain through FFT algorithms or the Laplace transform domain with the method of 

convolution quadrature (CQ) (Schanz and Antes 1997, Schanz et al. 2016), the direct time-

integration boundary element approach has the fundamental appeal of conceptual simplicity and 

ease in implementation.  To advance this class of methods, a TD-BEM scheme that can be 

customized parametrically to achieve a higher level of stability and accuracy control should be 

valuable.   

In this chapter, a generalized weighted-collocation boundary element method for three-

dimensional elastodynamics is presented.  On the basis of a decomposition of any time-dependent 

point-load Green’s functions into a singular and regular part (Mansur 1983, Sladek 1991), a 

regularized boundary integral equation for time-domain analysis is formulated and implemented 

via a variable-weight multi-step collocation scheme with different temporal projections of the 

displacement and traction variations.  The numerical performance of the formulation using 

different parametric combinations is tested and compared against some basic treatments in the next 

chapter.  The possibility of improved performance by an optimal choice of the collocation weights 

and the order of variable projection is also be explored via benchmark finite-domain and infinite-

domain problems.  In what follows, the fundamental boundary integral equation for 3-D is first 
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established, followed by its regularization and numerical implementation in a new generalized 

time marching scheme.    

2.2 Governing equations for Elastodynamics 

With reference to a Cartesian frame  1 2 3; , ,O    for a three-dimensional solid in motion 

whose  displacement, Cauchy stress tensor, body force, elasticity tensor and mass density are 

denoted by  , tu ξ ,  , tτ ξ ,  , tf ξ , C  and   respectively in open regular region , the 

governing equations in the framework of linearized elastodynamics and component form are 

 , ,ij j i if u     (2.1) 

from the balance of linear momentum and 

 , ,ij ijkl k lC u    (2.2) 

from the constitutive relationship where ijklC  denotes the fourth-order elasticity tensor with major 

and minor symmetries.  The general displacement and traction boundary conditions for 

u t     as the closed boundary of   (see Figure 2.1) can be expressed as    

   
   

   

, , , 0,

, ; , , , 0,

i i u

i ij j i t

u t u t t

t t n t t t

  

   

ξ ξ

ξ n ξ ξ
                           (2.3) 

where in  is the outward normal, iu  and it  are the prescribed displacements and tractions, 

respectively.  In transient problems, the general initial conditions 
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should also be specified. 
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 (a)Finite region, interior problem                 (b)Infinite region, exterior problem 

 

Figure 2.1: Elastodynamic boundary value problem 

2.3 Boundary integral representation in time-domain 

To establish the boundary integral equation for general initial-boundary value problems in 

elastodynamics, Graffi’s reciprocal theorem (Wheeler and Sternberg 1968) is a useful theoretical 

platform.   In terms of the Riemann convolution of two functions ,( )g tξ  and ,( )h tξ  defined by 

   
   

0

0, , 0

* , ,
, , , , 0

t

t

g h t
g t s h s ds t

  
 

  
   

 


ξ

ξ
ξ ξ ξ

  (2.5) 

the theorem can be stated as  

[ * d [ * dˆˆ ˆ ˆ ˆ ˆ] ] ][ * d [ * d [ * d [ *] ]d]i i i i i i i i i i i it u f u u u t u f u u u 
     

              (2.6) 

for any two admissible elastodynamic states  ; , , τ fS Cu,  and ˆ, ,ˆ ˆ ˆ ;  
 

τ f CS u,  over the 

same domain, provided that they both satisfy their corresponding momentum balance equations 

 , ,
ˆ0 ˆˆ, 0,ij j i i ij j i if u f u           (2.7) 

the traction formulas  

𝜴(𝝃) 

𝜞𝑡 

𝒏 

𝜞𝑢 

𝜴(𝝃) 𝜞𝑡 

𝜞𝑢 

𝒏 

𝜞𝜌→∞ 

𝒙 
𝜌 
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 ˆ ˆ,i ij j i ij jt n t n   ,  (2.8) 

and the stress-displacement gradient relations  

       , ,
ˆ ˆ, , , , ,ij ijkl k l ij ijkl k lt C u t t C u t  ξ ξ ξ ξ . 

By virtue of the commutativity of the Riemann convolution, the major symmetry of ijklC  and the 

identities 
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Eqn. (2.6) can be expressed as 
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.  (2.10) 

Focused on the common case of a quiescent past, Eqn. (2.10) can be reduced to 

 [ * d [ * d [ * d [ *ˆˆˆ ] ] ] ]dˆ
i i i i i i i it u f u t u f u

   

        .  (2.11) 

To develop the fundamental boundary integral equation in the classical framework of three-

dimensional elastodynamics, it is useful to specialize the body force field ˆ
if  to be  ˆ 1,2,3k

if i   

which corresponds to a time-dependent unit point-load in the thk  direction acting at a point x ,  

i.e.,  

      ˆ , , 0, 1,2,3k

i ikf t g t t k    ξ x ξ ,  (2.12) 
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where i k  denotes the Kronecker delta and   x ξ  the three-dimensional Dirac delta function.  

The function  g t  is the time variation of the point load that onec an specify, its usual choice 

being the Dirac delta-function  t  or the Heaviside step-function  H t .  Commonly referred to 

as the displacement, traction and stress Green’s functions, respectively, the corresponding 

elastodynamic solution ( , )ˆ ,k

iu tξ x , ( ,ˆ , ; )k

it tξ x n  and ˆ ( , , )k

ij t ξ x under the point load in (2.12) 

satisfy the field equations 
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  (2.13) 

with the displacement and traction/stress Green’s functions being singular of the order of 

1

| |
O
 
 
 ξ - x

 and  
2

1

| |
O
 
 
 ξ - x

 , respectively as | | 0ξ - x .  

By virtue of the foregoing characteristics of the Green’s functions, an integral 

representation of the displacement field at a point x  in   can be secured from Eqn. (2.11) as 
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k

i i
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f t u t

D

 



   

 

 
  

 

 



ξ ξ

ξ

x x ξ ξ x ξ x n ξ

ξ ξ x

x
x

x

    (2.14) 

for the interior domain problem depicted in Figure 2.1(a). 

For an unbounded domain Ω that is exterior to the boundary surface Γ, the elastodynamic 

integral representation is identical to Eqn. (2.14), provided that the unit normal on Γ is directed 

opposite that for the interior case and the solution satisfies the generalized radiation or regularity 

condition of 



16 

 

 ˆˆlim [ , )* ( , ,( (| )] [ ( , , ; | )* , )] d 0, ,k k

i i i it t u t g t t g u t






     ξξ ξ x ξ x n ξ x   (2.15) 

where   is the spherical outer surface with its radius    (see Figure 2.1(b)).   

2.4 Boundary integral representation in frequency-domain 

Letting the upper-case to denote a function’s Fourier transform with respect to time, e.g.,  

  , ) ( , ) (( , ) i tg t g t eG dt   





  F ,  (2.16) 

the boundary integral equation (2.14) can be transformed to a frequency-domain representation as 

 

 

ˆ( ) , ) , ; ) , , )d [ ( , , ; ) , d
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F U D

    

 

 



   

 
    

 

 



ξ ξ

ξ

x x ξ n ξ x ξ x n ξ

x
ξ ξ x x

x

,      (2.17) 

where ˆˆ , , ), ( , , ; )(k k

i iU T ξ x ξ x n  are the Fourier-transformed fundamental solution satisfying the 

field equations 

  , ,

2

,

ˆ( ) 0 ˆ ˆˆ ˆ ˆ,, k

ijpq ik i

k k k

j ijpq

k k

p q i ij ij p q
j

C U U nT C U      x ξ .  (2.18) 

 In frequency domain, the general radiation condition Eqn. (2.15) becomes 

  ˆ ˆlim , ; ) ( , , ) ( , , ; ) , )] d( 0,(k k

i i i iT U T U




   




     ξξ n ξ x ξ x n ξ x .  (2.19) 

Comparing the two boundary integral representations, i.e., Eqn. (2.14) for time-domain and 

Eqn. (2.17) for frequency-domain, one may find that the time-domain equation is considerably 

more complicated because it involves a convolution integration over time besides the spatial 

integration.  As the frequency domain approach has been generally well developed in past decades, 

e.g., (Pak and Guzina 1999), the focus of this chapter is on the fundamental aspects of time-domain 
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BEMs and how further theoretical and computational developments can be a meaningful step 

towards an improved analytical foundation.      

2.5 Time-domain boundary integral equation and its regularization 

Taking into account the different orders of singularity of the displacement and traction 

Green’s functions ˆ k

iU  and ˆ k

iT , the limiting form of Eqn. (2.14) as  x y  can be stated 

explicitly as 

 
0 0

0
0

ˆ( , ) ( , ) ( , , ; ) ( ; )

( , , ) ( , ) ( , , ) , )dˆ ˆ ( ,

t t
k

ik i i i

t
t

k k

i i i i

c t u d T t u

U d

d d

t t d d U t f t





     

    






   

       

 

   ξ

y y ξ y n ξ

ξ y ξ ξ y ξ y

∫

  (2.20) 

where

∫ stands for the Cauchy principal value of the surface integral and  

   
0

, lim ,) ; ,ˆ ,( k

ik ik i
c tt T dgt











   y ξ y n y ,                 (2.21) 

with 
ε
denoting the small hemispherical surface with a dimension defined by 𝜖 and centered at 

y  (see Figure 2.2) so that  , ,ˆ ,k

i
T tξ y n is theoretically non-singular in the limit process.    
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Figure 2.2: Formal domain of definition for the jump term 
ikc  

Despite its classical appeal and adoption, the boundary integral formulation by Eqn. (2.20) 

and (2.21) is not without some common objections.  For one, the second integral of Eqn. (2.20) is 

in terms of its Cauchy principal value whose numerical evaluation is often sensitive as discussed 

in the Introduction.  For non-homogeneous media and non-smooth boundary geometries, a direct 

evaluation of the jump term ikc  in Eqn. (2.21) is also non-trivial generally.  To avoid these obtuse 

computational challenges while dealing with a complex problem, an alternative boundary integral 

equation format which can bypass these issues has proven to be an asset as in Pak and Guzina 

(1999) and Sladek (1991).  For this purpose, it is useful to note that dynamic point-load stress 

Green’s function corresponding to Eqn. (2.13) can be decomposed, as a generalization of Pak & 

Guzina (1999)  from the frequency- to the time-domain, into a singular part 1[ ( ,ˆ , )]k

ij t ξ x  and a 

regular part 2[ ( ,ˆ , )]k

ij t ξ x  such that 

 1 2( , , ) [ ( , , )] [ ( , , )]ˆ ˆ ˆk k k

ij ij ijt t t   ξ x ξ x ξ x ,  (2.22) 

with 1[ ˆ ]k

ij  satisfying  

 , 1[ (ˆ ] ) ( ) 0k

iijj j ik g t    x ξ .  (2.23) 

 

𝛤 − 𝛤𝜖  

𝜉3 

𝜉1 

𝜉2 

𝒚 

𝒙 ∈ 𝛺 

𝛤𝜖  
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For all possible source and observation points in a piecewise homogeneous, isotropic, 

multi-layered solid for instance, 1[ ( ,ˆ , )]k

ij t ξ x  at any time t can be demonstrated to be the static bi-

material full-space Green’s function (Pak and Guzina 1999) that is modified by the strength 

coefficient ( )g t  of the imposed point load.  In the simplest case of a homogeneous full-space, it 

degenerates to a time-moderated Kelvin’s elastostatic state of   

 
 

      1 , , , , , ,2
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| |
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, , ; ] 1 2 3 1 2 ,

8 1

.
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i ik i k m m k i i k

g t
t r r r n r n

r

r

n rT   
 

      


 

ξ x n

ξ x

     (2.24) 

By virtue of the decomposition of  , ;ˆ ,k

iT tξ x n as defined by Eqn. (2.22), one may write Eqn. 

(2.20) as  
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,   (2.25) 

and express the second term on the left-hand side as 

          

   

1 1
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.    (2.26) 

With the aid of the identity that   

   1

Int.Problem
[ , , ; ] ,

0
ˆ ( )

Ext.Problem

ikk

iT t d g t


 



 
     

 
 ξ y n   (2.27) 

according to Eqn. (2.23), Eqn. (2.26) gives  
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 (2.28) 

Making use of the foregoing results, Eqn. (2.25) can be transformed to the compact format of  
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ξ y n ξ ξ y n ξ y

y y

,  (2.29) 

which is free of Cauchy principal values and the jump term ikc .  Amenable to much simpler 

numerical implementations, the regularized time-domain boundary integral equation in Eqn. (2.29) 

for three-dimensional elastodynamics provides an equally rigorous mathematical foundation that 

can facilitate advanced treatments of complicated time-domain singular mixed boundary value 

problems such as those involving sharp geometries and material discontinuities commonly 

encountered in engineering mechanics and analysis. 

2.6 Numerical implementation  

2.6.1 Time and spatial interpolations 

Dividing the time interval of interest into M  equal segments and discretizing the boundary 

  by a mesh of quadrilateral elements with N  nodes, the time and spatial variations of 

displacements and tractions can be approximated by     

 1 1

1 1

( ( )

( (

, ) ( ) ,

, ) ( )) ,

m

m n n

m

M N

m n

m n

M N

n

m n

t

t

t

t

 

 

 

 









u u

t ξ t

ξ ξ

ξ

  (2.30) 
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where 
m

nu  and 
m

nt  are the displacement and traction components at the 𝑛𝑡ℎ node at time  tm,  ( )m t   

the time interpolation function for the thm  time interval, and ( )n ξ  the spatial shape function 

corresponding to the thn  node.  Adopting the collocation approach in this treatment, the boundary 

integral equation is enforced at each nodal location and direction.   While techniques such as polar 

coordinate transformation (Hayami 2005, Liu 1970), h-adaptive and p-adaptive Gaussian 

integration strategies (Lachat and Watson 1976) can be used to improve the accuracy of elemental 

quadrature of weakly singular integrals in BEM, the idea of subdividing any element that has one 

of its nodes as a collocation point into two or more triangular regions, each being considered as 

the limiting case of a quadrilateral with 2 of its nodes collapsing into the one that coincides with 

the collocation node (see Figure 2.3 for the case of a bilinear element as an example) is adopted as 

in Luchi (1987),  Pak and Guzina (1999) .  Such a degenerate quadrilateral mapping generates a 

Jacobian that goes to zero at the collocation point, helps to further weaken of any residual 

singularities and accelerates the convergence of the numerical integration.  More details about such 

improved treatments of linear and quadratic quadrilateral as well as triangular elements can be 

found in Ashlock (2006).   

 
Figure 2.3: Degenerate triangular subdivision and mapping for regularized boundary element 

integration for a corner node (Ashlock 2006) 
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Leaving out the forcing term from body-force loading for brevity, the boundary integral equation 

(2.29) can thus be reduced to the matrix equation 

       
1 1

0 0

, 1,2...
M M

MM M MM M Mm m Mm m

m m

M
 

 

                  H u G t G t H u ,       (2.31) 

where  m
u  and  m

t  are the assembled global displacement and traction vectors, [ ]Mm
H  and 

[ ]Mm
G  are 3 3N N matrices whose component are defined by 
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  (2.32) 

with  

 
3( 1) , 1 , 1 3, 1 3 ,

3( 1) , 1 , 1 3, 1 3 .

A a k a N k A N

B n i n N i B N

        

        
  (2.33) 

 

2.6.2 Proposed Time marching scheme 

Distinguishing the displacement and traction values on the displacement boundary u  and 

the traction boundary t  respectively, by subscripts “u” and “t”, Eqn. (2.31) can be partitioned as 

   
1 1

0 0

.

MM MM M MM MM M M M
Mm m Mm muu ut u uu ut u

MM MM M MM MM M
m mtu tt t tu tt t

 

 

       
               

       
 

H H u G G t
G t H u

H H u G G t
 (2.34) 

For a general mixed boundary value problem, one may rearrange the matrix equation into the form   
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        , 1,2,...M MM M M M     Λ d F 0H   (2.35) 

where 

  , ,

MM MM M

MM Mut uu t

MM MM M

tt tu u

   
           

H G u
d

H t
H

G
  (2.36) 

      
1 1

0 0

MM MM M M M
M Mm m Mm muu ut u

MM MM M
m mtu tt t

 

 

   
              

 
H G u

F G t H u
H G t

  (2.37) 

at each time 
Mt .  To march in time, the elementary single-step approach by means of Eqn. (2.34) 

for TD-BEM, as noted in many past studies, generally suffers from numerical instability.  In what 

follows, a generalized weighted-collocation scheme for the time marching is thus proposed and 

implemented.  As an extension of Marrero and Dominguez (2003) and Yu et al. (1998), a linear 

combination of the collocation equations at  𝑡 = 𝑡𝑀−1, 𝑡𝑀 and 𝑡𝑀+1 in the form of  

        1 1

0

M M M

a b     Λ Λ Λ 0  . (2.38) 

is employed where 𝛼𝑎,  𝛼0, and 𝛼𝑏 are three collocation weights that can be chosen to wield a 

higher level of control of the numerical performance as will be illustrated in the next section.   To 

express  1M 
u and  1M 

t in terms of past  m
u and  m

t , two levels of analytical projection of 

the temporal variation of  m
u and  m

t are also considered in difference form:  

(a) First-order projection scheme:   

The variation of a function ( )f t is taken to be of the first-order.  This can be translated to 

having 

(2) 1 1

(2) 2

2
0

M M Mf f f f

t t





  
 


 or 

      1 12M M Mf f f   .                                                    (2.39) 
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(b) Second-order projection scheme:   

The variation is taken to be second-order with respect to time.  This is equivalent to having 
(3)

(3)
0

f

t




  which can be cast as having 

(3) 2 1 1

(3) 3

3 3 1M M M Mf f f f f

t t





     



 =0 or                                                                 

 1 2 13 3M M M Mf f f f     .  (2.40) 

The foregoing class of projection relationships for displacement and traction can be compactly 

expressed in the form of  

 
1

1 ( 1 )
1u

u

j

M

j

M j


  



 u u ,  (2.41) 

 
1

1 ( 1 )
1t

t

j

M

j

M j


  



 t t , (2.42) 

where the index u  is the chosen order of projection for the displacement with 
u

j  being the 

corresponding coefficients, and t , 
t

j are the corresponding values for the traction. In accordance 

with Eqns. (2.39) and (2.40), the coefficients for  displacement are listed in Table 2.1.  It is worth 

mentioning that u  and t  are not necessarily to be equal.     

 
 

 ,

1

u t  
,

2

u t  
,

3

u t  

, 1u t   2 -1 0 
, 2u t   3 -3 1 

Table 2.1: Projection coefficients for various order of time variation 
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By the foregoing definitions, the matrix equations for the time marching can be expressed 

as 
   
   

       

1( 1)( 1)

1 0

1( 1)( 1)

1 0
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 u H H H u      (2.43) 

for the determination of the nodal unknowns at time  
Mt  under arbitrary time-dependent loading.  

In what follows, ( 0a b    ) is normalized to be unity with 0 1 a b      for clarity.  In the 

next chapter, the numerical performance of the new TD-BEM integration scheme will be explored 

and illustrated via the benchmark problems.    
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Chapter 3  

 

3.1 Introduction  

To illustrate the boundary element formulation in the previous chapter and its performance 

characteristics, the basic Stokes dynamic point-load solution with the Heaviside time-function H(t) 

is used as the time-domain Green’s function.  With its singular part being the corresponding 

modulated Kelvin’s elastostatic state, the resulting time–domain boundary element method is 

applied to two commonly-used benchmark initial-boundary value problems as illustrations.  The 

first is the 1D wave propagation problem in a square bar, and the second one is a spherical cavity 

in a full-space under sudden internal pressure. 

3.2 1D wave propagation in a prismatic bar 

 

 
Figure 3.1: A square bar under a step jump in normal end-traction by coarse mesh 

Shown in Figure 3.1 is a square, isotropic, linearly elastic bar with zero body-force. It is 

characterized by a Young’s modulus E , a mass density  , and Poisson’s ratio 0  .   Its left 
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end is fully fixed at 0x   while a uniform step jump in normal pressure is applied to its right end 

in the form of 

    0 .P t P H t    (3.1) 

Possessing an exact closed-form solution, this 1D wave propagation problem has been used 

as a benchmark test in many past TD-BEM developments.  Using the proposed formulation with 

several different combinations of displacement and traction projection orders as well as collocation 

weights, the dynamic solution is computed using the coarse mesh shown in Figure 3.1.  The mesh 

consists of 22  four-node linear surface elements, with double and triple nodes at the edges and 

corners, respectively to allow for distinct traction vectors at the common location for the adjoining 

planes (Brebbia et al. 1984, Mitra 1987). Linear time interpolation for the integration is employed 

for both displacements and tractions.  In terms of the dimensionless time-step parameter 

/ elc t    where 𝑙𝑒  is the minimum dimension of the elements in the direction of wave 

propagation and 𝑐 is the relevant wave speed, different time step sizes relative to the time it takes 

a stress wave to pass through one element were used to examine the performance of the numerical 

scheme.   With 0   in this 1D wave propagation problem, 𝑐 is equal to /E   which is the bar’s 

longitudinal wave speed.   

In the foregoing setting, solutions are computed using 4 different schemes and the resulting 

time histories of the displacement in the x direction at the loaded end and the normal traction at 

the fixed end are shown in Figure 3.2 and Figure 3.3, respectively.  Unlike the elementary single-

step scheme, the 4 time-integration schemes shown in the figures are all stable over many cycles, 

with computational efficiency.  In terms of accuracy, however, one can see from the displays that 

the scheme with ( , ) (2,1)u t   and ( , ) (2,2)u t   gives much better result for the 

displacement response than the ( , ) (1,1)u t  -scheme for the choice of (𝛼𝑎 , 𝛼𝑏).  As to the end-

traction solution, one can see from Figure 3.2 and Figure 3.3 that the scheme with ( , ) (2,1)u t    

is the most favorable.  Even though all 4 schemes suffer from accuracy because of the coarseness 
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of the mesh and the related causality issue, the scheme with ( , ; , ) (2, 1 ; 0.2,0.2)u t

a b    is 

the best among them in both displacement and traction aspects.  Compared to the scheme of 

( , ; , ) (1, 1 ; 0.25,0.25)u

a b

t     which corresponds to the algorithm by Marrero & Dominguez 

(2003), the case of ( , ; , ) (2,1;0.2,0.2)u t

a b    is clearly an improvement.     

 

 
Figure 3.2: Coarse-mesh BEM results for normal displacement time history at loaded end. Row 

vectors ( , ; , )u

a

t

b   in the legends labels the parameters for time integration, in which u  

and t  denotes the projection orders for displacement and traction respectively, while 𝛼𝑎 and 𝛼𝑏 

represent the collocation weights.  
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Figure 3.3: Coarse-mesh BEM results for Normal traction time history at fixed end  

To confirm the observations, the finer mesh in Figure 3.4 is used for the same bar problem 

using 3 variations of the generalized schemes.  The results are shown in Figure 3.5 and Figure 3.6.   

Not only do all the 3 schemes remain stable, one can see from the display that they can now deliver 

much more accurate results relative to the analytical solution except when the exact response has 

a theoretical discontinuity.  As an approximate measure of the solution error, an averaged 

numerical damping ratio  

 
(1)

ln 2 ( 1)
( )

num

A
n

A n
 

 
  

 
,  (3.2) 

over the first n cycles is defined where ( )A n  is the amplitude of oscillation at thn  cycle.  Taking 

5n   in the determination, one can see from the results in Figure 3.5 with  ( (0., 2,0.2))a b     

that the numerical error in the ( , ) (2,1)u t  -scheme is less than that of ( , ) (1,1)u t  -

scheme.  The same is true for the traction response given by the two schemes, with the former 

being more accurate and smoother than the latter.  Among the 3 choices, the 

( , ; , ) (2,1;0.2,0.2)u t

a b    case is again the most favorable. 
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Figure 3.4: A square bar under a step jump in normal end-traction by finer mesh 

 

 
Figure 3.5: Finer-mesh BEM results for normal displacement time history at loaded end of bar. 

Comparison between  ( , ) (2,1)u t  -scheme and ( , ) (1,1)u t  -scheme.  

 

 
Figure 3.6: Finer-mesh BEM results for normal traction time history at fixed end. Comparison between  

( , ) (2,1)u t  -scheme and ( , ) (1,1)u t  -scheme.  



31 

 

To explore more fully the benefits of having variable collocation weights in the 

formulation, a systematic parametric study is carried out by varying (𝛼𝑎 , 𝛼𝑏) and a summary of 

the results is given in Table 3.1.   One can see from the tabulations that the influence of the 

collocation weights is significant in both the stability and accuracy of the TD-BEM.   Generally, 

an increasing 𝛼𝑎  improves the stability but brings in higher numerical damping, while an 

increasing 𝛼𝑏  reduces the latter.  An approximate delineation of the stability region in the 

parametric space of (𝛼𝑎 , 𝛼𝑏) on the basis of Table 3.1 for the generalized TD-BEM scheme with 

( , ) (2,1)u t   is shown in Figure 3.7.    

 

𝛼𝑏 

𝛼𝑎       
 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

1.0 0.715% - - - - - - - - - 

0.9 0.690% 0.690% - - - - - - - - 

0.8 0.663% 0.663% 0.664% - - - - - - - 

0.7 0.634% 0.635% 0.635% 0.635% - - - - -  

0.6 0.605% 0.605% 0.605% 0.604% 0.604% - - - - - 

0.5 0.574% 0.573% 0.572% 0.571% 0.570% 0.569% - - - - 

0.4 0.540% 0.539% 0.538% 0.537% 0.535% 0.533% x - - - 

0.3 0.442% 0.440% 0.439% 0.437% 0.497% x x x - - 

0.2 x 0.430% 0.430% x x x x x x - 

0.1 x x x x x x x x x x 

0.0 x x x x x x x x x x 

 

Table 3.1: Damping ratio for the displacement Normal displacement time history at loaded end 

of bar by fine mesh. ( , ) (2,1)u t   and 1.0  . In the table cells, ‘-‘ means the combination is 

not examined, ‘x’ means the scheme is unstable, and numerical entries are the numerical 

damping ratios. All schemes are computed with 10,000 steps in the stability assessment.  
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Figure 3.7: Stability zone of the ( , ) (2,1)u t  -scheme with respect to collocation weights 

 ,a b     

To explore the influence of time step on the method, Figure 3.8 is a plot of the time histories 

of the displacement at the loaded end that are computed with four different time step sizes, 

including 1.2  , 1.0  , 0.8   and 0.5   for the (2,1; 0.4, 0.2) scheme.  The comparison 

shows that the use of a smaller time step size, e.g., with  0.5  , can give more accurate result 

despite possibly incurring more causality error.  The result for the end-traction in Figure 3.9 shows 

the same trend.  

 
Figure 3.8: Normal displacement time history at loaded end of bar-comparison of different time 

step sizes.  
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Figure 3.9: Normal traction time history at fixed end of bar-comparison of different time step 

sizes. 

As demonstrated earlier, the collocation weights have significant effect on the stability 

of the time-marching scheme.  To further the insights, the stability regions for both  

 , ) (2,1u t   and  , ) (1,1u t   schemes in the parametric ( , )a b   space are presented 

in Figure 3.10(a) and (b), respectively as a function of the time-step size.  From the displays, 

one can see that smaller time step size generally reduces the stability zone in the  a - b  space, 

an observation that can be anticipated. 
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(a)  , ) (2,1u t   

 

(b)  , ) (1,1u t   

Figure 3.10: Stability zones for generalized time-collocation BEM scheme for different time step 

sizes.  
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3.3 Sudden pressure in a spherical cavity in a full-space 

 
Figure 3.11: Boundary element surface mesh for a spherical cavity in full space 

To explore the influence of temporal and spatial interpolation on the TD-BEM formulation 

in another class of problems, the case of a spherical cavity embedded in a homogeneous isotropic 

linearly elastic 3-D full-space with a Poisson’s ratio 0.2   that is subjected to a step jump in 

internal pressure as described by Eqn. (3.1) is also considered.  Using the mesh shown in Figure 

3.11, results computed by the proposed multi-step collocation TD-BEM scheme with different 

orders of variable projections are shown in Figure 3.12.   As can be seen from the illustration, they 

all show excellent agreement with the analytical solution, with the ( , ) (2,1)u t  -scheme also 

being the best.  To investigate the effect of the time step size on the TD-BEM solution on the 

problem, the spherical cavity solution is computed with time step sizes of   =1.0 , 0.8  and 0.5 .    

As illustrated in  Figure 3.13, the solutions generated with the 3 time step sizes are found to be all 

very good and stable, with mean absolute errors relative to the exact solution being 1.20% , 1.18% 

and 0.59% for   =1.0 , 0.8  and 0.5 ,  respectively over the time span.    

In the numerical examples shown in this section, the computer time it takes using the 

proposed method are of the order of 10% to 20% more than that from using the elementary single-

point collocation method, i.e., it does not incur a significant increase in computing effort to achieve 
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more control of the stability and accuracy by virtue of the generalized collocation and projection 

TD-BEM scheme.   

 
Figure 3.12: Comparison of TD-BEM results for surficial radial displacement of cavity using 

different orders of variable projection. 
 

 
Figure 3.13: Performance of TD-BEM scheme in spherical cavity problem by different time step 

size with ( , ) (2,1)u t   and    , 0.2,0.2a b   . 



37 

 

3.4 Summary 

In the last chapter, a regularized time-domain boundary integral equation format is 

presented for three-dimensional elastodynamics.  By virtue of a decomposition of the Green’s 

functions into singular and regular parts, all integrals in the proposed boundary element 

formulation are weakly singular and amenable to standard numerical treatment.  Aimed to provide 

extra control of both the stability and accuracy aspects, the formulation is implemented 

numerically via a generalized collocation scheme with higher-order projections in a step-by-step 

time marching scheme.   Its performance is illustrated in this chapter via the benchmark tests of a 

finite 1D-bar and a spherical cavity wave-propagation problem.  With its adaptability and 

efficiency, the proposed TD-BEM scheme is apt to be helpful to a variety of elastodynamic 

problems.    

As shown in some of the numerical examples, numerical instability of the TD-BEM can 

indeed happen, as has been reported in the literature.   In the early stage of the present study, the 

stability zone in the space of (𝛼𝑎 , 𝛼𝑏) was evaluated by means of long-time simulations, as in most 

past TD-BEM studies.  Recognizing that numerical stability cannot be demonstrated rigorously by 

mere long-time simulations because a process that looks stable up to a long time may still collapse 

later, a formal analytical framework for the stability evaluation of TD-BEM schemes is deemed 

necessary for a solid advance of TD-BEMs.  Such a development is the subject of the next chapter.    
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Chapter 4  

  Stability Evaluation of Direct Time-Domain Boundary Element Methods for 

Elastodynamics 

 

4.1 Introduction 

In direct time-domain boundary element methods, one of the perennial challenges is their 

stability in the step-by-step time marching process.  The notice of possible instability in a TD-

BEM scheme dates back to Cole et al. (1978).    It was then found by many that the use of small 

time steps is prone to more of the problem (Dominguez and Gallego 1991).   The fact that 

instability can manifest itself in the form of early divergence, intermittent instabilities and eventual 

divergence, and that both too small or too large a time step size can both be the trigger has been 

noted e.g., see (Frangi and Novati 1999, Pak and Bai 2018, Peirce and Siebrits 1997).   Aimed to 

mitigate the problem, a number of TD-BEM schemes have been proposed.   Examples are the half-

step and 𝜖-methods (Peirce and Siebrits 1997), the linear-𝜃 method (Araujo et al. 1999, Yu et al. 

1998), the time-weighting method (Marrero and Dominguez 2003, Soares and Mansur 2007,  

Yazdi et al. 2011, Yu et al. 1998, Yu et al. 2000), and the method of convolution quadrature (CQ) 

using Laplace transformed Green’s functions (Banjai et al. 2012, Schanz and Antes 1997).  As a 

means to reduce causality errors in modeling wave passage problems, Frangi (2000) proposed a 

set of causal shape functions for 2-D elasticity problems and tested them in some examples.  

Panagiotopoulos and Manolis (2011)  suggested a TD-BEM formulation that employed velocity 

and traction as the unknowns to improve the solution performance.  The promise of Ha‐Duong and 

Terrasse (2003)’s idea of a space–time Galerkin procedure on the basis of a weak or variational 

form of the boundary integral equation for acoustics was illustrated in the extension by Aimi (2012)  
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and Aimi et al. (2011) to 3-D elastodynamic problems.  While their approach requires another 

level of integration, it offers a rigorous approximation framework upon which unconditionally 

stable time integration schemes can be constructed at least theoretically.  In the computational 

implementation of most numerical methods including TD-BEMs, however, different types of 

approximation errors arising from discretization, as from the choice of mesh, spatial and temporal 

interpolations, accuracy in elemental integration and the Green’s functions, can all affect the actual 

performance of a scheme.  To evaluate the stability of an implemented TD-BEM algorithm, 

drawing conclusions on the basis of only computed solutions for a finite number of steps that is 

deemed sufficiently large is a common practice.  While expedient, such an empirical approach 

unfortunately runs a great risk of misjudgment, as a scheme that looks stable over N  steps, no 

matter how large N is, may still eventually become unstable at N k  steps or upon the imposition 

of an alternative excitation setup or trigger conditions.  To date, the most analytical approach to 

address BEM’s stability question for an implemented scheme is perhaps the work of Peirce and 

Siebrits (1997).  Utilizing the method of amplification polynomial (Strikwerda 2004), they 

employed a discrete z-transform to the time-marching algorithm to develop an approximate 

characteristic equation whose roots were used as direct indicators of the numerical stability of their 

half-step and 𝜖- TD-BEM schemes.   

In this paper, a rigorous analytical framework for the stability evaluation of TD-BEM time 

integration schemes is proposed.  Congruent with the concept of amplification matrix (Gustafsson  

et al. 1972, Ngo and Erickson 1997), it is shown that direct TD-BEM time-marching algorithms 

can, with appropriate re-casting, generally be framed as equivalent linear multi-step or higher-

order difference schemes similar to those for the numerical solution of initial value problems for a 

system of differential equations (Richtmyer and Morton 1994, Strikwerda 2004).  Should the 

proposed transformation be accomplished, the stability analysis of a TD-BEM can be formally 

reduced to the determination of the spectral radius of a hybrid system matrix.   As a demonstration, 

the method is applied to the evaluation of the characteristics of a family of regularized TD-BEMs 
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with variable collocation weights and higher-order projection schemes that includes some past 

proposals as degenerate cases.  Numerical results are included for the canonical finite-domain 

square-bar and the cavity-in-an-infinite-domain initial boundary value problems as illustrations.  

4.2 BEM Formulation for Stability Analysis 

Adopting an elastodynamic point-load Green’s function in an unbounded full-space or half-

space and its associated displacement and traction fields ˆ k
iU  and ˆ k

iT  as one of the 2 elastodynamic 

states in Graffi’s reciprocal theorem (Wheeler and Sternberg 1968), a fundamental boundary 

integral representation of the response at a point x in an open three-dimensional solid domain   x   

that is bounded by the surface   x  with a quiescent past and body force field  fi can be stated as 
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in rectangular coordinates and indicial notation for both interior and exterior problems, where 

 ,iu tx and  ,it tξ  are the displacement and traction fields subject to displacement boundary 

conditions on 
u and traction boundary conditions on t , and ( )g t  the arbitrary time-dependent 

magnitude of the point load at ξ  acting in the thk -direction.  Equivalent to an extension of the 

regularization approach in Pak and Guzina (1999) to the time domain, it is useful to decompose 

ˆ k
iT  into a singular and regular part in the form of   
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with  , ,k
iT ξ x n  being the appropriate static traction Green’s function.   With the identities that  
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one may obtain in the limit of  x y  from Eqn. (4.1) the fundamental boundary integral 

equation for  three-dimensional elastodynamics in the regularized form of        
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as an alternative framework for rigorous numerical developments.    For the present development, 

it is useful to recognize that the function ( )g t  in commonly adopted full-space or half-space time-

domain Green’s functions is generally set to be constant, if not zero, beyond a certain time, an 

example being the Heaviside function H(t).  As such, the Green’s functions will have the properties 

that     

 ( ) , ( , , | ) ( , ), ( , , , | ) ( , , ),ˆ ˆk k k k
i i i ig t g t g g U T t g g TU    ξ x ξ x ξ x n ξ x n  (4.7) 

between any two points xand ξ within   for ft T , fT  being the maximum non-steady response 

period, g  a constant, and ( , )k
iU ξ x  and  , ,k

iT ξ x n  the corresponding eventual time-independent or 

static Green’s functions, respectively.  In the case of using Stokes’ full-space solution with a 

Heaviside load time history for an isotropic linearly elastic full-space characterized by a shear 

modulus, Poisson’s ratio and density as ,   and  , respectively, one finds that  
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where 
max

ξ x  denotes the maximum distance between any 2 points for ,  x ξ , 2c  stands for 

the shear wave speed of /  ,  
ˆ̂

,k
iU ξ x  and  

ˆ̂
, ,k

iT ξ x n  are Kelvin’s unit point-load 

displacement and traction fields, respectively.  By virtue of the analytical characteristics of the 

Green’s functions in (4.7), the time interval of the convolution integrals in Eqn. (4.6) can be 

meaningfully divided into two at fT , leading to   
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For a rigorous stability analysis, it is useful to consider the difference of Eqn. (4.9) at time 

0t T  and t  for any 
0 0T  .  By a change of variables and some analytical reductions, it can be 

shown that  
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where 
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Notice that ( )og t in Eqn. (4.11), defined in terms of ( )g t  that possesses the properties in 

(4.7), is identically zero after a finite duration 
d oT T .  Accordingly, ˆ ( , , | )k

i oU t gξ y  and 

( ,ˆ , | )k
i oT t gξ y  are effectively the time-domain displacement and traction Green’s functions that 

correspond to a concentrated force pulse of finite duration, with ˆ
fT being the effective non-steady 

response period of the finite-pulse Green’s functions.  For its simplicity in illustrating the ensuing 

analytical and computational development, Stokes’s solution with a Heaviside time function 

( ) ( )g t H t will be employed, with                                                                                                                            

 
00( ) ( ) ( )g t H t H t T    , 

0dT T , (4.12)  

being the forcing function of a square-pulse full-space point-load Green’s function as in (Coda, H. 

B.; Venturini, W. S., 1995), with the analytical features of  

 0 2 ( , , ) 0, ( , 0,/ , )k k
f fi imax

T T c tT U T   ξ x ξ x n ξ x  . (4.13) 

4.3 Square-Pulse Green’s function by Stokes’ Elastodynamic Solution 

For a square-pulse point-load Green’s function in a full-space with 0 0( ) ( ) ( )g t H t H t T   , the 

requisite displacement and traction Green’s functions can be composed analytically from Stokes’ 

general solution (Wheeler and Sternberg 1968) with ( ) ( )g t H t , for which the closed form results 

are   
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where r  x ξ  is the distance between the load point x  and the field point ξ , n  is the outward 

normal of the surface, 1
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It is evident from Eqn. (4.14) and (4.15) that      

 0 0 2( , , | ) 0, ( , , , | ) ,ˆ 0ˆ k k
i i o cU t g T t g t T r    ξ x ξ x n   (4.16) 

as noted earlier.  

4.4 Discretization and Matrix System 

To implement a TD-BEM scheme, the first step is a discretization of the time-domain 

boundary integral equation.   Following the normal procedure in this study, the time interval is 
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divided into M  equal segments,  and the boundary   of   by a mesh of quadrilateral elements 

with N  nodes, while the time and spatial variations of displacements and tractions are interpolated 

by    
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where 
m
nu   and 

m
nt  are the displacement and traction components at the thn  node at time with ( )m t , 

( )m t  being time interpolation functions at thm   time interval, and ( )n ξ  the spatial shape function 

corresponding to the thn  node.  Adopting the collocation approach in what follows, the discretized 

boundary integral equation is enforced at each nodal location, direction and time.   For numerical 

robustness, an element that has a corner node as the collocation point is subdivided into two 

triangular regions in the spatial integration, with each triangle taken to be the limiting case of a 

quadrilateral with 2 nodes collapsing into the one that coincides with the collocation node as in 

Brebbia et al. (1984), Lachat and Watson (1976) and Pak and Guzina (1999).   This results in the 

Jacobian of the degenerate triangular mapping going to zero at the collocation point that can further 

weaken any residual singularities while adding to the accuracy of the numerical quadrature.  

Details about similar treatments of linear, quadratic quadrilaterals and triangular elements can be 

found in Ashlock (2006). 

By the foregoing numerical formulation, the fundamental regularized time-domain 

boundary integral equation (4.6) at time Mt can be converted to the matrix equations 
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where  m
u  and  m

t  are the displacement and traction of nodes on the boundary surface at time 

mt , /f fT t    to the nearest round-up integers.  The matrices in (4.18) and (4.19) are defined by 
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with indices  

 
3( 1) , 1 , 1 3, 1 3 ,

3( 1) , 1 , 1 3, 1 3 .

A a k a N k A N

B n i n N i B N

        

        
  (4.23)  

To realize a discretized form for the time-shifted boundary integral equation in Eqn. (4.10) 

which is equivalent to Eqn. (4.6) with a finite-pulse Green’s function as discussed earlier, one may 

employ the collocation equations in (4.18) and (4.19) that correspond to the latter directly.  To this 

end, one may note that the matrix system of Eqn. (4.19) for dM
t

  can be stated as 
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whose difference with Eqn. (4.19) is 
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Upon collecting the nodal boundary unknowns at time Mt into a single vector  m
d , the 

final matrix system of equation in (4.25) for the solution of the nodal unknowns can be written 

compactly as 

      ˆ , for

d f d f

M M
Mm m Mm m m

d f

m M m M
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with  m
h denoting the nodal boundary values that are imposed and  m

d the boundary reactions 

to be determined at the mth step.  
 

4.5 Stability analysis 

To render a rigorous determination of the stability of numerical schemes for time-

dependent problems, their performance in the associated free-vibration or homogeneous equation 

system is the key  (Bathe and Wilson 1976, Hilderbrand 1965,  Hughes 2012, Peirce and Siebrits  

1997).  With zero traction on 
t , zero displacement on 

u  and zero body force beyond a time *T , 

one may set  
m
um

m
t

  
  
  t

h
u

and  m
F to be  0 on the right-hand side of Eqn. (4.27), reducing it to   

     *, for

d f

M
M

M d
m m

f

m M

t T T T
  

      d 0H .  (4.28) 

As a result of the time-translational property of the Green’s function and its finite period of non-

steady response, the matrices in (4.27) for a fixed mesh and time step size have the property that  

 
1 1

1 2

2

1 2

2

, for
M m M m

M m M m     
   
H H ,  (4.29) 

i.e., the coefficient matrices in Eqn. (4.28) remains unchanged from step to step (Mansur 1983).    

 

4.5.1 A Hybrid Amplification Matrix for TD-BEM Formulations 

Moving the known response quantities up to 1Mt    in Eqn. (4.28) to the right-hand side, one can 

express the nodal unknowns in a vector form at time Mt  as 

    
1

1

d f

M
Mm Mm

M

M m

m  



  

  
    

    







d dH H   (4.30) 

or 



49 

 

     1ˆ ˆM M d A d ,  (4.31) 

where  

 

1 1 1 ( )( 1) ( 2) d fM MMm M M Mm M M Mm                  
        

   
 
 
 


 
 
 


 







H H H H H H

I 0 0
A

0 I 0

0

0 0 I 0

 (4.32) 

and  

         11, ,ˆ d f

T
TT T MM M M   d d d d  . (4.33) 

The matrix  A  can be termed a Hybrid Amplification Matrix for the TD-BEM scheme and  ˆ M
d

an extended solution vector whose components, with the exception of  
T

M
d , are known from 

previous steps.   With the spectral radius of  A denoted by 

   max ,i
i

 A A  

where  i A  is ith eigenvalue of  A ,  the numerical stability of (4.28), and thus (4.25), can be 

assured by requiring that   1 A   by virtue of the theory of Jordan form (Horn & Johnson, 2012).    

One may note that Eqn. (4.31) is similar in form to a linear multistep vector difference scheme  

(Gustafsson et al. 1972, Hughes 2012) whose stability is governed by the same criterion.   
 

4.5.2 Stability Evaluation of a TD-BEM Family with Weighted-Collocation and Higher-Order 

Projections  

To demonstrate the steps of the proposed stability evaluation procedure, the regularized direct TD-

BEM scheme with optional collocation weights and higher-order projections in chapter 2 is used 

as an example.   Expressed in a compact form, the generalized TD-BEM algorithm involves 

solving for the vector of unknowns at Mt via  
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where the matrices Ĥ  and  Ĝ  are defined in Eqn. (4.26),  
a  and 

b  are two collocation weights 

that can be varied to obtain the third as 
0 1 a b     .  The indices u  and t  in the equation 

denote the order of projection (0 =constant, 1 =linear, 2=quadratic variation) employed in 
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 u u ,  (4.35) 
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t t , (4.36) 

for the displacement and traction, respectively with the coefficients 
u
j  and 

t
j  given in Table 1.    

 

 
1 1,u t   2 2,u t   3 3,u t   

0tuor   
1 0 0 

1tuor   
2 -1 0 

2tuor   
3 -3 1 

Table 4.1: Projection coefficients for various order of time variation 

Taking the case of u and t both being 1 and the time interpolation being linear and 

constant for the displacements and tractions respectively, for example, Eqn. (4.34) degenerates to 

Marrero and Dominguez (2003)’s average-velocity projection scheme, with   

    
d f d f

M M
Mm m Mm m

m M m M       

 



   H d G h  (4.37) 
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With (𝛼𝑎 , 𝛼𝑏) = (0.25, 0.25).  By virtue of the proposed formulation, the stability of the time-

marching process can be evaluated in  a straightforward manner by determining the spectral radius 

of the hybrid amplification matrix [ ]A as defined by Eqn. (4.32).  

4.6 Numerical examples 

As an illustration of the proposed formulation for the stability analysis, Stokes’ solution for a 

square-impulse with      0g t H t H t t    as discussed in Section 2 is used as the Green’s 

function in the generalized TD-BEM and the eigenvalue solver in SLEPc (Hernandez et al. 2005) 

is employed in the ensuing spectral radius computations:   
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4.6.1 Example 1: Axial wave propagation in a square rod 

 
Figure 4.1 :  Mesh A for a square bar under a step jump in normal end-traction by coarse mesh 

Shown in Figure 4.1 is an isotropic, linearly elastic square bar with zero body-force, 

characterized by a Young’s modulus E , a mass density  ,  Poisson’s ratio 0   and a length-

to-width ratio of  5l w  .  Its left end is fully fixed at 0x   while a uniform step-jump in normal 

traction is applied to its right end in the form of 

    0P t P H t .  (4.40) 

With a zero Poisson’s ratio, the 3-D elastodynamic problem is essentially a 1-D wave 

propagation one whose exact solution is available in closed form.  As was used in many past studies 

as a demonstrative case, (e.g., Coda and Venturini 1995, Marrero and Dominguez, 2003), a coarse 

Mesh A is set up as indicated in Figure 4.1.  It consists of 22 four-node linear elements with double 

or triple nodes for the edges and corners.  Constant or linear time interpolation for the integration 

is employed for both displacements and tractions where appropriate, with a dimensionless time-

step size denoted by / elc t    where el   is the minimum dimension of the elements in the 

direction of wave propagation and c the relevant wave speed.  The maximum distance between 

any two points on the boundary in this case is 
25 2eR l   .  With 2 7.4fT tR c   and  

dT t   

in this case, it is taken that 8f  , 1d  .     In the case of the elementary 1-step integration scheme 

which corresponds to the generalized scheme with , ) (0,0( )a b    and linear time interpolation for 
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both displacement and traction, the spectral radius of the corresponding [ ]A  matrix for the 

numerical scheme is found to be 4.072 .  As illustrated in Figure 4.2, such a large deviation of 

  A from unity renders the scheme quickly unstable (see also Marrero and Dominguez 2003, Yu 

et al. 1998).   For a 1-step scheme with linear time interpolation for displacements but constant for 

tractions, the spectral radius of the corresponding [ ]A   matrix has a value of 2.757, i.e., it is also 

unstable.  

 
Figure 4.2: TD-BEM results by Mesh A for normal displacement time history at loaded end of square bar 

in the first several cycles with 1   

Figure 4.2 also includes the results from using ( , ; , ; , ) (1, 1 ; 0.25,0.25; 1,0)u u t
a b

t I I     

which corresponds to the averaged velocity scheme of Marrero and Dominguez (2003), the 

(1,0; 0.25,0.25; 1,0)and the (1,1; 0.25,0.25; 1,0) case, with uI  and tI  denoting respectively the 

order of the time interpolation  for displacements and tractions.  From the displays, one can see 

that the 3 weighted collocation schemes show considerable improvement in the time history of the 

axial displacement response in terms of smoothness and appears stable over the cycles shown.  

However, the spectral radii ( )s A  of the corresponding hybrid amplification matrices are found 

to be all larger than 1, i.e., violating the stability criterion.  As a demonstration of the correctness 



54 

 

and reliability of the stability criterion, the computations are continued with more steps for two of 

the schemes, and the results are shown in Figure 4.3.   While both solutions look stable in the early 

going, they are actually unstable and diverge badly at a later stage as predicted.   It illustrates well 

the danger of judging a TD-BEM algorithm’s stability by means of only finite-time simulations, 

and the importance of having a more rigorous approach to the problem as mentioned earlier.  

 

 

Figure 4.3: TD-BEM results by Mesh A for normal displacement time history at loaded end of 

square bar in the long run with 1   
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𝛼𝑏 

𝛼𝑎 

 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

1.0 1.00223 - - - - - - - - - 

0.9 1.00227 1.00227 - - - - - - - - 

0.8 1.00231 1.00231 1.00231 - - - - - - - 

0.7 1.00236 1.00236 1.00236 1.00236 - - - - -  

0.6 1.00240 1.00240 1.00240 1.00240 1.00240 - - - - - 

0.5 1.00244 1.00244 1.00244 1.00244 1.00244 1.00244 - - - - 

0.4 1.00248 1.00248 1.00248 1.00248 1.00248 1.02337 1.2716 - - - 

0.3 1.00253 1.00253 1.00253 1.00253 1.04498 1.1293 1.3281 2.0764 - - 

0.2 1.09887 1.05150 1.05038 1.10177 1.18413 1.28323 1.3922 2.1593 3.6290 - 

0.1 1.62442 1.43247 1.34919 1.34267 1.41671 1.54315 1.6999 2.2448 3.8192 8.324 

0.0 4.07158 4.07158 4.07158 4.07158 4.07158 4.07158 4.0715 4.0715 4.0715 9.000 

Table 4.2: Spectral radii for generalized TD-BEM scheme with Mesh A with ( , ) (2, 1)u t  , 

)( ,, (1 1)u tI I   and 1   

To explore how the stability of the TD-BEM time-marching scheme can be changed by 

having different collocation weights in 𝛼𝑎 and 𝛼𝑏, the spectral radius of [A] for the generalized 

TD-BEM scheme with ( , ) (2, 1)u t   is evaluated for a number of combinations of (𝛼𝑎 , 𝛼𝑏) as 

shown in Table 4.2.   One can see that there are (𝛼𝑎 , 𝛼𝑏) combinations that can lead to substantially 

smaller   A  with 𝛼𝑎 > 0 for the TD-BEM setup even though they all remain larger than unity, 

i.e., all are still unstable for the crude mesh employed.   

To demonstrate how the coarseness of the discretization can affect not only the accuracy 

(as one might expect) but also stability of the scheme as mentioned in the Introduction, results 

from using the finer Mesh B in Figure 4.4 for the square bar problem are also generated.   The 

mesh comprises 352 linear elements with double or triple nodes at edges and corners as before and 

a 20x20 Gaussian quadrature rule.  With 2 29.6fT TR c   for the case, f  is set to be 30  and 

𝜅𝑑 in the computations.  Shown in Figure 4.5 are the computed solutions from using 3 projection 

schemes with ( , )tu
= (1,0), (1,1) and (2,1) , the same collocation weights of (0.2,0.2) and 

( , )tuI I =(1,0) or  (1,1).   From the displays, one can see that their ( )s A  are now all less than 1, i.e., 

all 3 schemes are numerically stable.  In terms of accuracy, however, one can see that ( , )tu
= 

(1,1) and (2,1) solutions are generally closer to the exact solution of the problem than the (1,0)’s 

case.    
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Focused on the (1,1) and (2,1) schemes’ stability with respect to the collocation weights, 

the spectral radii of their resulting [A] matrices for a large range of different 
a  and 

b are 

computed and shown respectively in Table 4.3 and Table 4.4, as well as the 3-D column plots in 

Figure 4.6 and Figure 4.7.  From the tabulations, the benefits from having optional collocation 

weights should be evident in regard to stability control.  With the plane of ( ) 1 A  shown in green 

color in Figure 4.6 and Figure 4.7  and each column’s height representing the magnitude of the 

spectral radius above 1, one can see that an approximate triangular region exists in the parametric 

space of (𝛼𝑎 , 𝛼𝑏) over which the weighted-collocation TD-BEM scheme for ( , ) (1, 1)u t   and 

(2,1)  are both stable.   Guided by the stability results in Table 4.3 and Table 4.4, the time histories 

by the generalized TD-BEM with  ( , )tu
= (1,0), (1,1), (2,1) and 1   for three variations of 

the collocation weights are plotted in Figure 4.8, Figure 4.9 and Figure 4.10 for more detailed 

comparison of their performance.   To provide an idea how the stability of the TD-BEM can be 

affected by the time step size,   A  is also computed for a few s  for the scheme of (2,1; 0.4,0.0; 

1,1) and some results are shown in Table 4.5.   As can be seen from the tabulations, the range of 

stable 𝛽𝑠 is centered around 1 as expected, and a large deviation from it is not advisable for the 

case.    With the variety of options available via , , , ,u u
a

t
b I  and tI  in the generalized TD-

BEM scheme, however, a larger range of 𝛽 can probably be found for the problem with a suitable 

parametric set for the algorithm or other methodological improvements.    

 

  

 

Figure 4.4: Mesh B for the square bar under end-impact 
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(a) loaded-end displacement  

 

(b) fixed-end traction at x=0 

Figure 4.5: Influence of ( , )tu
on TD-BEM scheme’s stability and accuracy: Mesh B, 1   

 

 

 

 

 

 



58 

 

𝛼𝑏 

𝛼𝑎         
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

1.0 0.9944 - - - - - - - - - 

0.9 0.9971 0.9982 - - - - - - - - 

0.8 0.9885 0.9963 0.9999 - - - - - - - 

0.7 0.9992 0.9832 0.9997 0.9999 - - - - - - 

0.6 0.9820 0.9835 0.9837 0.9979 0.9646 - - - - - 

0.5 0.9742 0.9705 0.9986 0.9965 0.9629 0.9614 - - - - 

0.4 0.9998 0.9754 0.9973 0.9682 0.9963 0.9996 1.0687 - - - 

0.3 0.9840 0.9837 0.9814 0.9792 0.9937 1.0811 1.1749 1.2741 - - 

0.2 1.2232 1.0240 0.9946 1.0220 1.1062 1.2111 1.3249 1.4742 1.63 - 

0.1 1.8226 1.6823 1.4943 1.1716 1.2810 1.4323 1.6081 1.8208 2.08 2.41 

0.0 3.7861 3.7861 3.7861 3.7861 3.7861 3.7861 3.7861 3.7861 4.00 8.99 

 

Table 4.3: Spectral radii for generalized TD-BEM scheme with Mesh B:  

( , ) (1, 1)u t  , )( ,, (1 1)u tI I  , 1   

 
 

𝛼𝑏 

𝛼𝑎             

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

1.0 0.9993 - - - - - - - - - 

0.9 0.9989 0.9966 - - - - - - - - 

0.8 0.9990 0.9990 0.9990 - - - - - - - 

0.7 0.9981 0.9857 0.9944 0.9989 - - - - -  

0.6 0.9974 0.9974 0.9976 0.9992 0.9992 - - - - - 

0.5 0.9981 0.9981 0.9979 0.9963 0.9944 0.9744 - - - - 

0.4 0.9982 0.9982 0.9982 0.9983 0.9983 0.9989 1.0599 - - - 

0.3 0.9985 0.9985 0.9985 0.9982 1.0646 1.1409 1.2208 1.3035 - - 

0.2 1.0142 1.0046 0.9923 1.1011 1.1720 1.2539 1.3621 1.44875 1.60 - 

0.1 1.5460 1.3597 1.1883 1.2354 1.3382 1.4928 1.6324 1.8106 2.03 2.33 

0.0 3.7861 3.7861 3.7861 3.7861 3.7861 3.7861 3.7861 3.7861 4.00 8.99 

 

Table 4.4: Spectral radii for generalized TD-BEM scheme with Mesh B  

with ( , ) (2, 1)u t  , )( ,, (1 1)u tI I  , 1   
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Figure 4.6: Spectral radii and stability region with respect to ( , )a b   for generalized TD-BEM 

scheme with Mesh B: ( , ) (1, 1)u t  , )( ,, (1 1)u tI I  , 1    

 

 
Figure 4.7: Spectral radii and stability region with respect to ( , )a b   for generalized TD-BEM 

scheme with Mesh B: ( , ) (2, 1)u t  ,  )( ,, (1 1)u tI I  , 1    
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(a) loaded-end displacement  

3 

(b) fixed-end traction  

Figure 4.8: Mesh B results for loaded-end displacement and fixed-end traction time histories of 

square bar with ( , ) (1, 0)u t  , 1   
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(a) loaded-end displacement 

 

(b) fixed-end traction  

Figure 4.9: Mesh B results for loaded-end displacement and fixed-end traction time histories of 

square bar with ( , ) (1, 1)u t  , 1   
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(a) loaded-end displacement  

 

 

(b) fixed-end traction  

Figure 4.10:  Mesh B results for loaded-end displacement and fixed-end traction time histories of square 

bar with ( , ) (2, 1)u t  , 1   
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(a) loaded-end displacement  

 

(b) fixed-end traction 

Figure 4.11: Comparison of (1,1; 0.4,0.0; 1,1) and (2,1; 0.4,0.0; 1,1) TD-BEM schemes in displacement 

and traction solutions for square-bar: 1   
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(a) loaded-end displacement  

 

(b) fixed-end traction 

Figure 4.12: Comparison of (2,1; 0.4,0.0; 1,1) TD-BEM scheme in displacement and traction solutions for 

square-bar with 1    and  0.8  
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( , ; , ; , )u u t
a b

t I I    
(2,1; 0.4,0.0; 1,1) 

𝛽 = 1.3 1.0364 

𝛽 = 1.2 1.0387 

𝛽 = 1.1 0.9884 

𝛽 = 1.0 0.9982 

𝛽 = 0.9 0.9805 

𝛽 = 0.8 0.9832  

𝛽 = 0.7 1.03721 

𝛽 = 0.6 1.02824 

 

Table 4.5:  Spectral radius for a range of βs in generalized TD-BEM scheme with 

( , ; , ; , ) (2, 1 ; 0.4,0.0 ; 1, 1)u u t
a b

t I I     

To provide some insights on the influence of the projection orders for the displacement and 

traction solutions in regard to accuracy, the response time histories for the square-bar problem by 

the (1,0; 0.4,0; 1,0), (1,1; 0.4,0; 1,1) and (2,1; 0.4,0; 1,1) schemes are plotted together in Figure 

4.11.   From the display, one can see that while the displacement amplitudes are comparable, the 

(2,1;0.4,0.0;1,1)  solution is more in-phase with the exact solution than the (1,0; 0.4,0; 1,0) and (1,1; 

0.4,0; 1,1) solutions.  The traction response by the (1,0; 0.4,0; 1,0) and (1,1; 0.4,0; 1,1) schemes 

also exhibit a bit more distortion or spurious oscillations than the (2,1; 0.4,0;1,1) scheme.  Such 

deviations from a discontinuous solution are however, not unexpected.   As a sounder basis of 

comparison, the response to a smoother half-sine pressure pulse defined by   
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 ,   

in place of the Heaviside load in Eqn. (4.40) as the boundary loading is also computed using the 

same mesh and the result is shown in Figure 4.13 together with its exact solution.  As one can see 

from the displays, the numerical solution is now considerably smoother and closer to the 

continuous analytic solution in both displacement and traction responses, with the (2,1; 0.4,0.0; 
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1,1) scheme still doing somewhat better than the (1,1; 0.4,0.0; 1,1) and (1,0; 0.4, 0.0; 1,0) TD-

BEM schemes.  

 

 
(a) Load-end displacement history 

 
(b) Fixed-end traction history 

Figure 4.13: Square-bar response due to a half-sine end impulse by generalized TD-BEM scheme: 1   
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4.6.2 Example 2: Spherical Cavity under step pressure in a full-space 

To illustrate the application of the TD-BEM stability assessment method to unbounded 

domain problems, the case of a spherical cavity embedded in a homogeneous isotropic linearly 

elastic 3-D full-space with a Poisson’s ratio 0.2   and subjected to a step jump in internal 

pressure is considered.  Using the mesh for the spherical surface shown in Figure 4.14 the solution 

is computed using the single-step scheme.  The time history of the radial displacement generated 

with the elementary single- step time integration and 1.0   is depicted in Figure 4.15.  With the 

spectral radius ( )A of its hybrid amplification matrix being 0.997, the TD-BEM scheme is stable 

and, in fact, very close to the exact solution for this problem.  When the time-step size is reduced 

to 0.8  , however, the spectral radius increases to 1.002 indicating instability.    As can be seen 

from the figure, while the solution appears to be stable over a large number of steps, it would 

eventually explode, illustrating once more the importance of an analytically rigorous stability 

assessment.    
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

Figure 4.14: Mesh for a full-space with a spherical cavity under sudden internal pressure 
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Figure 4.15: Stability of TD-BEM for spherical cavity problem with single step time integration: 

)( ,, (1 1)u tI I   and 1.0     

 
Figure 4.16: Stability of TD-BEM for spherical cavity problem with 1-step time integration:

)( ,, (1 1)u tI I  , 0.8    

 

Provided as a comparison to the elementary scheme, the results obtained from using the 

generalized TD-BEM scheme with ( , ; , ; , ) (2, 1 ; 0.2,0.2; 1,1)u u t
a b

t I I    and (1, 1; 0.2, 0.2; 1,1)  

are shown in Figure 4.17 and Figure 4.18 for the same two   values.  With their spectral radii 

both being less than 1 as indicated in the figure, they both satisfy the stability requirement, allowing 



69 

 

one’s focus to be placed on other aspects such as accuracy and efficiency of the method with 

confidence.  

 
Figure 4.17: Stability of generalized TD-BEM for spherical cavity problem: 1.0   

 
Figure 4.18: Stability of generalized TD-BEM for spherical cavity problem: 0.8   

4.7 Conclusions 

In this paper, a rigorous analytical formulation that can be used to assess reliably the 

stability of time-domain boundary element methods for 3-D elastodynamics is presented.   By 

casting a step-by-step time-domain boundary element algorithm in the form of a linear multi-step 
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method with a hybrid amplification matrix and using the fundamental characteristics of 

commonly-used dynamic Green’s functions, a formal stability evaluation is shown to be possible 

and the resultant procedure is equivalent to a standard spectral analysis in numerical methods.  As 

an illustration, the approach is applied to a regularized time-domain direct boundary element 

formulation with multiple collocation weights and optional solution projections in the solution of 

the benchmark finite-domain square bar and the infinite-domain step-pressure cavity problems.  

Through the use of some of its parametric options, a group of stable time-marching schemes within 

the realm of the generalized TD-BEM is identified and their performance illustrated.   With suitable 

adaptations and translations, the proposed approach for determining TD-BEM’s stability should 

be helpful in a thorough evaluation and development of more robust time-domain boundary 

integral-element methods for engineering and applied sciences.  
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Chapter 5  

Synthesis of TD-elastodynamic Green's function for homogeneous and multi-layered half-

space by frequency-domain solutions 

 

5.1 Introduction 

The dynamics of an elastic half-space under external or internal loads has long been a 

subject of great interest because of its fundamental importance in earthquake engineering and 

seismology and geophysical applications.   Following Lamb’s study on waves produced by a line 

source (Lamb 1904), the early investigations focused on either line-source, axisymmetric pulse, 

vertical or surficial load (Cagniard 1962, de Hoop 1960, Pekeris and Lifson 1957).   The time-

harmonic response to an arbitrarily distributed buried load, with point-load solutions as degenerate 

cases, was developed by Pak (1987) for a homogeneous isotropic elastic half-space.  For a 

piecewise homogeneous horizontally multi-layered half-space, there were the works by Kennett 

(2013), Kennett and Kerry (1979), Luco and Apsel (1983), Apsel and Luco (1983), Hisada (1994), 

Hisada (1995) and Pak and Guzina (2002) .  In particular, Pak and Guzina (2002) showed through 

a local analysis that the singular parts of the multi-layer Green’s function coincide with the 

corresponding static bi-material Green’s functions (Guzina and Pak 1999) with appropriate 

material parameters.  

To employ time-domain boundary element methods for dynamic soil-structure interaction 

analysis (Galvín and Romero 2014, Doménech et al. 2016, Romero and Galvín 2015), the 

availability of effective time-domain half-space Green’s function is essential.  This can be 

achieved by means of a Fourier synthesis of frequency-domain Green’s functions.   With a true 

Heaviside step function or the Dirac delta function as the time function g(t) in Eqn. (2.12), however, 
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numerical reliability and accuracy will inherently be a problem because they both correspond to a 

white frequency spectrum.  To avoid such practical difficulties, it is logical to employ a smoother 

time variation such as B-spline functions for g(t) in a BEM (e.g., see Rizos and Karabalis 1994,  

Rizos and Zhou 2006).  The improved smoothness of the point load Green’s function brings some 

advantages in the numerics.  For one, Fourier transforms of B-spline functions can be evaluated in 

close form.  Secondly, their frequency spectrum decays strongly, reducing the need to compute the 

frequency-domain Green’s functions at very high frequencies, the task of which is daunting.  There 

are more frequency-domain than time-domain Green’s functions available in the literature as well.   

In this chapter, the development of a 3-D time-domain BEM via a frequency-domain approach is 

described as an approach in its own right as well as a useful basis to validate the development of a 

direct time-domain Green’s functions in the research program    

5.2 Statement of the problem  

5.2.1 Elastodynamic Green’s function for a Homogeneous half-space 

For a homogeneous, isotropic, and linearly elastic half-space (see Figure 5.1 for the dual 

rectangular and cylindrical coordinate systems), Navier’s equation of motion can be written as 

         
 2

2

,
2 , , ,

t
t t t

t
   


      



u x
u x u x f x ,  (5.1) 

where   stands for the density,   and   stand for the Lamé constants of the classical theory of 

elasticity, while t is the time, x  is the coordinate vector, u  is the displacement, and f  is the body 

force respectively.   The boundary conditions for the free surface at 𝑧 = 0 are 

      13 23 33, , , 0t t t    x x x .  (5.2) 
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Figure 5.1: Homogeneous half-space under internal point load 

 

A point load applied on the free surface or in the interior of the half-space can be specified by 

      ,t B t   f x x y e ,  (5.3) 

where  is the magnitude of the force, e  is a unit vector in the direction of the force f , and ( )B t  

is the cubic B-Spline basis function, defined as 
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  (5.4) 

where T  is the width of B-Spline function that can be chosen to suit a particular problem. 
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For comparison, the linear, quadratic and cubic B-Spline basis functions in time-domain 

are plotted in Figure 5.2 and their corresoponding Fourier transforms are depicted in Figure 5.3.  

From the plots, one can see that frequency spectrum of higher-order B-Spline functions are 

generally smoother and narrower than those of lower-order B-Spline functions.  In this 

implementation, the cubic B-Spline is adopted for g(t). 

 

 

 

 

 

 
 

Figure 5.2: The linear, quadratic and cubic order B-Spline basis functions 
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(a) Real part of the Fourier transforms 

 

 
(b) Imaginary part of the Fourier transforms 

 
(c) Magnitude of the Fourier transforms 

 

Figure 5.3: Fourier transforms of the linear, quadratic and cubic B-Spline basis functions 
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5.2.2 A horizontally multi-layered half-space 

Depicted in Figure 5.4 is a homogeneous elastic half-space overlaid by 𝑛  parallel 

piecewise-homogeneous elastic layers.  A coordinate system is ataached to the half-space with the 

origin located at the top free-surface and the positive z  direction pointing downward.  Bounded 

by the upper and lower interfaces located at depths 1jz   and jz  respectively, the domain of the 

thj  layer is denoted by j  and characterized by the material parameters j , j , j , thickness 

1j j jh z z   , which can be formally written as 

 




1, ; , , ) |( , ,

, , , 1,2,..

0

.

,0 2

,

,j j j

j j j

r z z

j n
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.  (5.5) 

Likewise, the domain of the underlying half-space is denoted by  
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.  (5.6) 

 

 
 

Figure 5.4: A piecewise homogeneous horizontally multi-layered half-space 
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Of interest is the time-domain response of the layered half-space due to an arbitrarily located point 

load with a time variation of ( )B t  by a frequency-domain synthesis.   

5.3 From frequency domain to time domain 

To derive the time-domain fundamental solutions, existing Green’s functions in the 

frequency domain is a natural point of departure. With the Green’s function of displacement 

 , , ; ;r z s U  corresponding to a time harmonic load with a time factor of i te   in Pak (1987), the 

time-domain Green’s function corresponding to the concentrated cubic B-spline loading defined 

by Eqn. (5.3) can be obtained by an inverse Fourier transform in the form of 

      
1

, , ; ; , , ; ;
2

i tr z s t B r z s e d    






 u U ,  (5.7) 

where  B   is the Fourier transform of the cubic B-Spline function whose the exact form is 

    
 

4
/4

3 4

11 2
32

2

i T i T

i t
e e

B B t e dt
T

 


 

  






 

 .  (5.8) 

The numerical evaluation of the improper Fourier integral over the infinite interval in Eqn. (5.7) 

is obviously difficult.  Numerical integrations of it can be carried out only if it is analytically 

justifiable to truncate the lower and/or upper limits to a reasonable value.  For such a purpose, it 

is observed from Eqn. (5.8) that  B   decays strongly with increasing    at the rate of   

  4

1
B O



 
  

 
. 

With such a characteristics, even though U  and i te   do not decay with increasing  , the whole 

integrand    , , ; ; i tB r z s e   U  in Eqn. (5.7) will decay quickly to 0  because of the strong 

decaying rate of  B  .  Accordingly, one may reduce Eqn. (5.7) computationally to 
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1

, , ; ; , , ; ; ,
2

trunc

trunc

i tr z s t B r z s e d







    




u U   (5.9) 

with a sufficiently large enough limit of  𝜔𝑡𝑟𝑢𝑛𝑐 .  

5.3.1 Choice of 𝝎𝒕𝒓𝒖𝒏𝒄 

To ensure a high degree of accuracy in the evaluation of  , , ; ;r z s tu , a sufficiently large 

𝜔𝑡𝑟𝑢𝑛𝑐   should be taken but not to the extent that is computationally unnecesary.  With the closed-

form expression of  B  ,  𝜔𝑡𝑟𝑢𝑛𝑐  in this study is chosen such that 

     0| , truncB B        ,  (5.10) 

where   is a small value that specifies the degree of accuracy.  It can be deduced from Eqn. (5.8) 

that the crtiterion can be given analytically as 

    
4

3 4

2 32 1 2
, 0

4 2

T
B B

T


  

  
 


. (5.11) 

Combining with Eqn. (5.10), it yields    

 
1/4

1 8
trunc

T



 .  (5.12) 

In dimensionless form, one can define the frequency truncation limit as  

 1/4

8
trunc trunc

s s

a a

c T c
 

  
   (5.13) 

where 𝑎 is a basic reference length and 𝑐𝑠 is the reference shear wave speed. For example, if one 

chooses 𝛼 = 1𝑒−4, then 80trunc

s

a

T c
 

 
.  
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5.3.2 Numerical Examples 

To illustrate the idea of Fourier synthesis in this section, an example is presented in Figure 

5.5 of the response computation for a point source and observation point both in the interior of a 

half-space that is described in the caption of  Figure 5.5.  In this example, loading point is put at 

(0,0,1)y , and the observation point at (10,0,4)x  in meters.  The elastic parameters of the 

material are: 4Mpa  , 32000 /Kg m  , and 0.25  .  The width of the B-Spline pulse is 

0.02secT  , while the observation time is 0.05sect  .  The displacment Green’s function 1

1U   

in the frequency-domain are shown in Figure 5.5(a) and (b) in complex notation.  One can see that 

the magnitude of 1

1U  doesn’t decay as the frequency   increases.  A plot of Fourier transform of 

B(t) is shown in Figure 5.6.   Notice that B  decays quickly to 0  with increasing  , as discussed 

earlier in Eqn. (5.8).  Accordingly, the whole integrand in Eqn. (5.9) which is the product of U , 

B and i te  will decay quickly as   increases for any t as illustrated in Figure 5.7.  
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(a) Real part 

 

 

(b) Imaginary part 

Figure 5.5: Green’s function of displacement 
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Figure 5.6: Cubic B-Spline basis function in frequency-domain 

 

 

 
Figure 5.7: Behavior of the integrand as a function of frequency 
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5.4 Numerical aspects related to frequency-domain Green’s function computations   

 The general point-load elastodynamic Green’s function in the frequency domin for a 

homogeneous half-space can be found in Pak (1987).   With 𝑎 being a characteristic length, and 

the dimensionless parameters 
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  (5.14) 

one may cast the displacement and stress Green’s functions due to a point load of magnitude  

at a depth s in a homogeneous half-space in frequency domain can be cast in the form of   
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  (5.15) 

where the dimensionless displacements U  and stresses τ  are defined as follows. 

1) For horizontal loading in 𝜽 = 𝜽𝟎 direction  
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2) For vertical loading in 𝒛 − direction 
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with 
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.  (5.19e) 

5.4.1 Evaluation by asymptotic decomposition 

Owing to the complex behavior of the integrands involved, a direct evaluation of the 

improper integrals in Eqn. (5.16) and (5.17) is difficult both analytically and numerically.  The 

situation is further complicated by the intrinsic singular behavior of the Green’s functions in case 

of observation point approaching loading point.  One can however use the method of asymptotic 

decomposition of Pak (1987) to extract analytically from the integral form of the Green’s function 

the singular component so that the residual part of the integral can be evaluated numerically in a 

robust manner.    Taking 
v

zU  in equation (5.17) as an example, one may write, 

1 2] ] ,v v v

zz z zU U U     

where the subscripts “1” and ”2" denote the analytically- and numerically-evaluated parts of the 

Green’s function respectively.  They are defined respectively by 

   asym

1

0

[ ] , ; ; , , , , , , 0,1,2
2

n

k

iU z s J r d i r z k v h n


     




                (5.20a) 

      asym

2
0
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n

k

iU z s z s J r d


      




                                    (5.20b) 

where   can be 1 , 2 , 3 , 1 and 2  with     asym , ; ; Asym , ; ;z s z s


   


   .  

Specifically, the asymptotic kernels are    
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  (5.21e) 

As pointed out by Pak and Guzina (2001), the analytically-evaluated parts of the Green’s functions 

are identical to Mindlin (1936)’s static point-load solution for a homogeneous half-space which is 

a special case of the bi-material Green’s function in Guzina and Pak (1999). 

5.4.2 Numerical integration of residual integrals 

As mentioned earlier, the residual integrands after the asymptotic or singularity extraction 

are designed to be decaying quickly with increasing 𝜉̅ so that the semi-infinite integrals of the type 

of Eqn. (5.20b) can be evaluated numerically with a suitable truncation of the upper limit.   It’s 

should be noted, however, that the integrands generally have three singularities along the formal 

path of inversion integration along the real axis in the complex dimensionless  𝜉̅ − plane at the 

branch points of 𝛼 ̅ and  �̅� at 
s

d

c

c
 and 1, and the Rayleigh pole at 

R

sc

c
 where 𝑐𝑅 denotes the Rayleigh 
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wave speed.  By virtue of the analyticity of the integrands, on the other hand, the path of integration 

can be deformed suitably to avoid these singularities.  In this study, the simple triangular path 

depicted in Figure 5.8 and chosen by Pak (1987) is adopted.  The height h  of the triangular path 

can be adjusted to be tangent to the formal steepest decent path as shown in the figure) near the 

origin for any of the specific exponential kermels in the Green’s function if desired.   

 

 
Figure 5.8: Deformed path of integration. 

 

One of the advantages in using the triangular path is that the integrands are smoother and 

nonsingular along it.  As an illustration, the variation of the term  1

3

0

de J r





 in Eqn. (5.17) 

is plotted in Figure 5.9.  From the figure, it can be seen that both the real and imaginary part of the 

term oscillate rapidly along the real axis (i.e., the formal path) while it’s much smoother along 

Pak’s triangular path as well as the formal path of steepest descent.   
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(a) Real part 

 

(b) Imaginary part 

Figure 5.9:  Variation of  1

3

0

de J r





 along the different paths for 1 1, 0.5, 100d r     

and triangular height 1h  .  The steepest descent path is defined by a ib    with 

 2 2/ 1 , for 0b a a a   . 
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The triangular path has a further advantage than the steepest decent path in that the whole integrand 

generally decays more rapidly along the former than the latter for large   (see Figure 5.10).   This 

is because the Bessel function decays more rapidly along the real axis than on the steepest descent 

path.     In this study, numerical integrations for all terms were conducted along the same triangular 

path for computational efficiency with the height h= 1.  

 

(a) Real part 

 

(b) Imaginary part 

Figure 5.10:  Variation of  1

3

0

de J r





 with 1 0.2, 1, 5d r     along the paths in Figure 

5.8. 
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In the examples shown in Figure 5.9 and Figure 5.10, the integrand decays rapidly due to 

the exponential term 1de   and the Bessel function  0J r , thus the upper limit of the 

integration can be truncated.   When 1 0d  , i.e. source point and observation point are in the same 

depth, however, the exponential term degenerates to 1 and the decay provided by the Bessel 

function is insufficient in the original integrand for a legitmate truncation of the integration limit.  

This is another reason behind the method of asymptotic decomposition of Pak (1987).     Consider 

the example shown in Figure 5.11, one can see that the original integrand  F   with a zero 

exponent (i.e., d1=0) in the exponential term actually grows rather than decays with increasing  .  

On the other hand, the residual integrand that is left behind after  asymF  is extracted decays 

strongly to 0   (see Figure 5.11(b)). 

 

 

 

(a) Real part 
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(b) Imaginary part 

Figure 5.11:  Asymptotic decomposition.    1

3

0

dF e J r
 



 , 

   11
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, with 1 0, 1, 5d r    . Variation is plotted 

along triangle path. 

 

 

5.5 Numerical results 

5.5.1 Verification with full-space Green’s function 

For verification, the proposed solution is checked against the Stokes’ exact solution for a 

full-space.  In this example, the source point in the full-space is taken to be  0,0,0y , and the 

observation at  1,0,4x  in meters.  The material parameters for the homogeneous full-space are 

20MPa  , 31730 /Kg m  , 0.25   and the non-zero duration of the B-Spline loading 

function is set to be 0.01secT  .  The time histories of the four non-zero components of the 

displacement are plotted in Figure 5.12, with the Fourier synthesized solution agreeing very well 
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with Stokes’ solution.  In the display,   ; ;j

iu tx y  stands for the i th displacement component under 

a unit point load at j th direction.  

. 

 

 

 
(a) 𝑢1

1 

 

 

 

 

 
(b) 𝑢2

2 

 



92 

 

 
(c) 𝑢3

3 

 

 

 

 
(d) 𝑢1

3 

 

Figure 5.12: Displacement histories for the case where both the source and observation point in a 

full-space.  
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5.5.2 Case of source and observation points both on surface of half-space 

There is special interest in the case of having both the source and observation points located 

on the surface of a homogenous half-space and far apart (e.g. Lamb 1904) so that P-, S- and 

Rayleigh- wave generated by the source point will arrive at the observation point distinctly.  To 

illustrate an example of such a case, the source point is taken at  0,0,0y  and the observation 

point at  20,0,0x ,  while the time function of the unit point load is taken to be cubic B-Spline 

function with a width of 0.02T sec  .  The displacement Green’s function obtained by Fourier 

transform as described in this paper is compared with the results of Kausel (2012) in Figure 5.13. 

It is evident that the solutions agrees very well.  On can notice that most of displacement response 

components have 3 identifiable moments of arrivial corresponding to P-, S- and Rayleigh-wave, 

although some are clearer than others.   

 

 

(a) 𝑢1
1 
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(b) 𝑢2
2 

 

 

(c) 𝑢3
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(d) 𝑢1
3 

Figure 5.13:  Displacement response  ; ;j

iu tx y  in a half-space at  20,0,0x and  0,0,0y  

with 20Mpa  , 31730 /Kg m  , 𝜈 = 0.25 for a cubic B-Spline loading with 0.02T sec  . 

 

5.5.3 Buried source and observation points 

Shown in Figure 5.14 is an example where both source and observation points are buried 

in a homogenous half-space with 20Mpa  , 31730 /Kg m  , 𝜈 = 0.25, at a finite depth with 

the source point at  0,0,2y and the observation point at  10,0,4x .  The cubic B-Spline 

impulse again has 0.02T sec  .  In the display,   ; ;j

iu tx y  stands for the i th displacement 

component under a unit point load in the j th direction.    This is a case where the reflected waves 

from the free surface has a significant influence on the response at the observation point.   The 

time-domain results computed via the present synthesis of the frequency-domain Green’s function 

are compared with those in Johnson (1974).  One can see again that the results show excellent 

agreement.   

The more complex wave form occurs in this case because the waves traveling from the 

source point to the observation point can arrive at a location along multiple paths through reflection, 

mode conversion and grazing incidence.  The result is that the travelling wave motion can be 
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regarded as composed of 6 groups that can be named as the direct P-, S-wave and the reflected PP-, 

PS-, SS-, SP-wave trains in the half-space problem (see Graff 1975).  Their sequential arrival times 

can be derived from the Green’s function’s contour integrals and are denoted in Figure 5.14 by the 

vertical dashed lines.     

 

 
(a) 𝑢1

1    

 
(b) 𝑢2

2 
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(c) 𝑢3

3 

 

(d) 𝑢1
3 

Figure 5.14: Displacement response  ; ;j

iu tx y  at  10,0,4x and  0,0,2y  with 20Mpa  , 

31730 /Kg m  , 𝜈 = 0.25 for a B-Spline loading with 0.02T sec    

 

5.5.4 Hysteretic damping  

The frequency-domain approach for an elastic medium can be extended to viscoelastic 

media by means of the correspondence principle (see e.g., Christensen 2012).   To model materials 

that incur energy loss in cyclic loading that is insensitive to frequency (Newmark and Rosenblueth 



98 

 

1971) as in soils and rocks, one can use a hysteretic damping model for which the stress-strain 

relationship in the frequency domain can be expressed as 

 ( ) (1 )hyi     ,  (1.1) 

with hy  being a constant damping ratio.  From the displacement time histories corresponding to 

various hy shown in Figure 5.15, one can see that the arrival time is not very sensitive to the 

damping ratio, while the amplitude of the displacement generally decreases with increasing 

hysteretical damping ratio.   

 

 

(a) 𝑢1
1 

 

(b) 𝑢2
2 
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(c) 𝑢3
3 

 

 

(d) 𝑢1
3 

Figure 5.15: Displacement response  ; ;j

iu tx y  at  10,0,4x and  0,0,2y  in a viscoelastic 

half-space. 

 

5.5.5 Response of a single layer bonded to a half-space  

In this example, the case of a homogenous layer boneded to the top of a homogenous half-

space is considered.  The thickness of the top layer is taken to be 10h m .  As a reference, the 

elastic material parameters of the top layer are 𝜇1 = 20MPa, 𝜌1 = 1730𝑘𝑔/𝑚3, 𝜈1 = 0.25.   The 
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mass densities and the Poisson’s ratios of the layer and the half-space are taken to be the same, i.e.,  

𝜌2 = 𝜌1, 𝜈2 = 𝜈2, but the shear modului 𝜇2 of the halfspace is taken to be twice or half of 𝜇1.   The 

results are shown in Figure 5.16 (a)-(c).   With the observer point  10,0,4x and source point 

 0,0,2y , i.e., both are in the top layer, one can see that the responses for the 2 cases are the 

same before waves are reflected by the layer interface or the free-surface to the observation point, 

and differ afterwards.   

 

 

 

 

(a) 𝑢1
1 

 



101 

 

 

(b) 𝑢2
2 

 

(c) 𝑢3
3 

Figure 5.16: Displacement response  ; ;j

iu tx y  at  10,0,4x and  0,0,2y  in a layer overlying 

a half-space. 
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5.6 Summary 

This chapter describes the  Fourier synthesis approach using frequency-domain Green’s 

functions method to obtain time-domain elastodynamic Green’s function.  In using this method,  a 

necessary theoretical accommodation is to limit the time function (for the load) to ones whose 

Fourier transforms decay sufficiently strongly at high frequency so that the Green’s function 

integral kernel as a whole in the inverse Fourier transform format also decay sufficiently strongly 

to allow a legitimate truncation of the infinite integration interval.  The success of the approach in  

obtaining the time-domain response for cubic B-Spline loading time histories is demonstrated by 

several examples.  
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Chapter 6  

Direct Time-Domain Green’s functions for a Homogeneous Half-Space 

 

6.1 Introduction 

Since the classic work of Lamb (1904), an effective solution for the time-domain 

elastodynamic Green’s function pertaining to a homogeneous, isotropic, linearly elastic half-space 

has been sought for over a century because of its fundamental importance in seismology, 

earthquake engineering, dynamic stress analysis and boundary integral equation-type methods.   

The approach to solve the underlying wave propagation problems generally falls into the four 

categories: (a) Numerical methods with high performance computing (Reshef 1988), (b) Semi-

analytical (hybrid) methods, which is based on numerical solution in the direction of layering and 

integral transforms in the other directions (Desceliers 2008), (c) Geometric ray theory which yields 

the asymptotic approximations for the waves (Verweij and de Hoop 1990, Aki and Richards 2002), 

and (d) Analytical methods seeking for exact solutions (Pekeris 1955a, Pekeris 1955b, Pekeris and 

Hanna 1957, Chao 1960, Kausel 2012).    

Generally speaking, exact analytical approaches are the most attractive ones.  In seeking 

rigorous solutions, powerful analytical techniques and formulations such as the method of 

potentials, method of separation of variables, integral transforms and complex variables are 

available.  While integral transforms are often straightforward to carry out and solutions in the 

transformed domain can be derived without excessive difficulties, their inversion back to the 

physical time and spatial domains is usally the most challenging aspect except in simple problems.  

In developing the 2-D theory of the propagation of seismic pulses in two homogeneous media 

separated by a plane non-slipping boundary using Laplace transform for the time variable, 
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Cagniard suggested an ingenious method to obtain the inverse transform (Cagniard  1962).  His 

list of change of variables and transformations was later simplified by de Hoop (1960) and the 

reduced method has been commonly referred to as the Cagniard-de Hoop method (e.g., Miklowitz 

1978, Ben-Menahem and Vered 1973).  Partly to explore the mathematical transformations in 

Cagniard (1962), Dix (1954) determined the axisymmetric seismic pulse motion generated by an 

impulsive point pressure source located in a homogeneous, isotropic, infinite medium.  By virtue 

of Cagniard’s procedure, the axisymmetric motion of the surface of a homogeneous half-space 

produced by the point pressure pulse on the surface and buried in the half-space were investigated 

in Pekeris (1955a) and Pekeris (1955b), respectively.  The method was also applied to explore the 

surface motion of a homogeneous half-space under the excitation of a buried vertical point force 

(Pekeris and Hanna  1957).  The investigation in Pekeris & Hanna (1957) was however limited to 

the case of Poisson’s ratio is 0.25  .   Mooney (1974) later generalized it for an arbitrary 

Poisson’s ratio and presented solutions of the velocity, acceleration, strain and displacement.    

Owing to the axisymmetric nature of point pressure/dilatational source and vertical point 

force, the equations involving these loadings are considerably simpler than those in the general 

case where there is no inherent symmetry.  As one of the few examples of the latter,  Chao (1960) 

considered the response of an elastic half-space to a tangential surface point force.  Making use of  

the method of mirror image, he constructed a formal solution of the problem in the Laplace-

transform domain and inverted it back to the time domain by Cagniard’s method.  Because 

performing Cagniard’s inverse Laplace transform of the solutions for an arbitrary observer location 

is much more complicated, only the surface displacement and the displacements along the z-axis 

directly below the applied surficial tangential force were reported.   A collection of a number of 

past analytical results for the surface displacements of a homogeneous half-space under the vertical 

and horizontal points loads on the surface with certain simplifications was given in Kausel (2012).   

As indicated in the preceding discussion, most of the past solutions were confined to either 

an axisymmetric load or special geometrical placements of the source and observation points.  
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While they have fundamental scientific values, they have limited use as Green’s functions for 

general boundary value problems in three-dimensional elastodynamics via boundary integral 

equation or boundary element formulations.  For the case that allows a pair of general source and 

observer locations and asymmetric loading in a 3-D half-space, the main contribution to date 

remains that of Johnson (1974) .  Using the Cartesian coordinate system so that de Hoop (1960)’s 

transformations could be applied in the Laplace transform’s time-inversion, he employed Laplace 

transforms with respect to the spatial coordinates as well as the time variable.  Despite the 

complicated expressions and some basic issues, the resulting Green’s function is fundamental in 

studying wave propagation in seismology while forming a useful basis in boundary element 

methods as in Triantafyllids (1991) and  Galvín and Romero (2014) for dynamic soil-structure 

interaction problems.   

In this chapter, a new compact analytical solution procedure is presented for the three-

dimensional time-domain elastodynamic response at the general point on or in a homogeneous 

half-space under an arbitrary point load on its surface or interior.   While the problem has been 

studied by Johnson (1974) as discussed earlier, the present treatment has the advantages of (a) a 

simpler and more systematic mathematical derivation of the transformed solution by virtue of the 

use of displacement potentials in lieu of dealing with the complicated Navier’s equation of motion, 

(b) using cylindrical coordinates and Hankel transforms which are physically more natural and 

allows the avoidance of dealing with nested infinite integrals from using Fourier transforms and 

(c) an improvement in the analytical and numerical efficiency and robustness.   

 

6.2  A Method of Displacement Potentials 

For a homogeneous linear elastic solid, Navier’s equation of motion with zero body force 

can be written as 
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u x u x ,  (6.1) 

where   stands for the density,   and   denote the Lamé constants of the classical theory of 

elasticity, while t   is the time, x  is the position vector, and u  is the displacement.  The half space 

under consideration is depicted in Figure 6.1.  In cylindrical coordinates ( ,, )r z , the free surface 

of the half space is defined by 0z   and positive z  points into the half space. 

 

 

 

 

 

 

 

Figure 6.1: A distributed time-dependent buried source in a half-space 

In classical elastodynamics, a powerful method for solution is by displacement potentials 

together with integral transforms.  As shown in (Pak 1987), a suitably regular displacement vector 

field 𝐮 in a half-space can be decomposed in terms of three scalar fields 1, 2,3,i i   as    

        1 2 3, , , , , , , , , , , ,z zr z t r z t r z t r z t        u e e   (6.2) 

with 𝐞𝑧  being the unit vector for a cylindrical coordinate system and 𝜙𝑖  satisfying the wave 

equations   
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Respectively (see also Pak and Morteza 2007).  In the above, 1 ( 2 ) /dcc       and 

2 3 /sc cc     are respectively the compressional and shear wave speed, and 

2(1 )

1 2

d

s

c

c









 with the Poisson’s ratio 

 

2

2
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.  With the definition of Laplace 

transform as 
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    (6.4) 

and its Bromwich inversion integral (Churchill 1972) 
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with respect to time for an arbitrary function  ˆ , , ,f r z p with a quiescent past, the 3 wave 

equations in (6.3) are equivalent to the Helmholtz equations  

 
2 2 0, 1,2,3i iik i    , (6.6) 

where   
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  .   With the completeness of the eigenfunctions  ime  with 

respect to the azimuthal coordinates, the potentials and the response of the half-space can be further 

decomposed as   
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Upon the application of the thm  order Hankel transform with respect to the radial coordinate via   

     
0

m

mf r rJf r dr 


  , 
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whose inverse is 

                                                             
0

m

mr J r dff    


                                   

where  mJ r  is the Bessel function of the first kind of order m, the Helmholtz equations in 

Equation (6.6)  can be reduced in the Laplace-Hankel transform domain to 
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whose general solution can be written as  
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and 
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  (6.11) 

where 
2 2 1/2( )( )dk p   , 

2 2 1/2( )( )sk p    and , , , 1,2,3
m m m

I I II

q q qB qA B   are constants of 

integration to be determined from the boundary and interfacial conditions.  The branches cuts of 

 and   are chosen as shown in Figure 6.2 such that the real parts of   and  are always non-

negative with their branch points on the imaginary axis.  They, in turn render the ze  and ze  terms 

in Region II  inadmissible owing to the radiation condition of the z-direction and are thus omitted 

in Eqn. (6.11). 

On the free surface of z=0, it is required that 

      , , , 0, for 0zr z zzt t t z     x x x .  (6.12) 
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For an arbitrarily distributed time-dependent body-force field over an open disc Π𝑠 at a 

depth 𝑠, it is convenient to view the half-space as being composed of an upper and a lower region 

of the same material (Regions I  and II  in Figure 6.1) divided by the plane 𝑧 = 𝑠 and regard the 

imposed loading as a general discontinuity in stresses across Π𝑠 that is defined by   

 

( , , ), ( , , )
( , , , , , )

0, ( , , )

( , , ), ( , , )
( , , , , , )

0, ( , , )

( , , ), ( , , )
( , , , , , )

0, ( ,

, ) (

, ) (

, ) (
, )

s

zr zr

s

s

z z

s

s

zz zz

s

P r t r s
r s r s t

r s

Q r t r s
r s r s t

r s

R r t r s
r s r s t

r
t

s

t

t 

 
   



 
   



 
   



 

 

 


  




  




  



  (6.13) 

where  , ,P r t , 𝑄(𝑟, 𝜃, 𝑡), and  , ,R r t  represent the body-force distributions in the radial, 

angular and axial directions, respectively.   For the horizontal and vertical concentrated point loads 

located at the point (0,0, )s  of the form 
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the body-force distribution can be specified as  
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respectively, where ( )r  is the Dirac-Delta function, and ( )g t  is any specific time variation of the 

point load, 
0 0)cos( sin( )rh      e e e  is the unit horizontal vector in the 𝜃 = 𝜃0 direction.  

In this study, the transient solution of displacements and stresses, which are commonly referred to 

as Green’s functions, for the impulsive case where )( ()g t H t  is a step impulse is considered. 

 

 

 

 

 

 

Figure 6.2: Branch cuts of  and   

6.3 Solution in Laplace transform domain 

The 9 coefficients , , , 1,2,3
m m m

I I II

q q qB qA B   in (6.10) and (6.11) corresponding to an 

arbitrarily distributed force-force field concentrated on the plane at a depth  z=s  can be obtained 

by imposing the traction-free boundary conditions at z=0, the displacement continuity and the 

induced stress-jump condition at z=s , with the aid of the compact transformed displacement- and 

stress-potential relations analogous to those derived in (Pak 1987).   For a concentrated point loads 

with a resultant of  with )( ()g t H t , the transformed displacement response or Green’s 

function can be expressed as  

    , , ; ; , , ; ; ,
s

r z s p r z s p
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 Uu   (6.16) 

where  , , ; ;r z s pU  is in a dimensionless form in terms of the normalized parameters and 

functions  
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with reference to (6.10), (6.11) and 𝑎 is a chosen characteristic length for the problem.  

With the superscripts , zh   denoting the horizontal and vertical unit load directions and 

subscripts , ,i r z denoting the displacement response directions, respectively, the following 

Green’s function cases are considered: 

 

6.3.1 Horizontal loading in 
0   direction 
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6.3.2 Vertical loading in z-direction 
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6.4 Inversion of Laplace-Hankel transformed Green’s functions by Cagniard’s idea 

As a simple but ingenious observation by Cagniard (1939, 1962), a powerful and effective 

way for the inversion of a Laplace transform is to analytically re-cast it in its defining integral form 

with an explicit kernel 𝑒−𝑝𝑡 as a factor in the integrand so that residual factor is by definition the 

sought-after time function.  Owing to the use of Cartesian coordinate system in Cagniard and de-

Hoop and many studies that followed it (setting things up in a Cartesian coordinate system), past 

approaches typically involved a sequence of mystic analytic transformations and change of 

variables (whose design, while functional,  might be less than obvious) to find a contour in a 

complex-plane for its realization.   For its use of the approach in the more natural setting of a 

cylindrical coordinate system for a general point-load in a 3-D half-space, there was the concern 

of added  difficulties owing to the need to deal with transcendental special functions such as Bessel 

functions (see Verweij and de Hoop 1990).  As a result, the formulation proposed by Johnson 

(1974) employed a double Laplace transform for the horizontal coordinates in a Cartesian system 

so that Cagniard-de Hoop transformations in Cartesian coordinates can be applied.  The steps that 

are involved are however mathematically complicated as a result of having to deal with two spatial 

or transformed coordinates.  As will be illustrated in the following sections, the proposed method 

of potentials and Laplace-Hankel transforms in cylindrical coordinates can lend itself to a much 

more straightforward and systematic derivation in their inversion back to the physical time and 

spatial domains for this class of fundamental elastodynamic problems.   

6.5 Application of Cagniard inversion approach - basic rendition 

As a simple but ingenious observation by Cagniard (1962), an effective way for the 

inversion of Laplace transforms is to find a way to cast them in the defining integral form of a 

Laplace transform with an explicit kernel pte  as a factor in the integrand so that the integral 

residual kernel is by definition the sought-after time function.  By means of some special analytic 

transformations from Cartesian to polar coordinates in 2-D problems, Cagniard, de Hoop and 
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others were able to find a complex contour to transform the p-variable integration.   To apply the 

inversion approach effectively to the present transformed 3-D Green’s function in Eqns. (6.18)-

(6.23), however, it is relevant to note that they all involve Bessel functions.  In this treatment, it 

will be shown that fundamental integral representations      
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are particularly helpful in the analytical reduction. 

6.5.1 Inverse Laplace transform by Cagniard’s idea 

, ,h h h

r zI I I  and 
v v,r zI I   in Eqns. (6.24)–(6.28) can be expressed as 
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as well as 
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where , ,h h h

r z  and 
v v,r z  are the targeted the time-domain Green’s functions. Arranging the 

5 integrals in equation (6.32) and (6.33) as the column vector  

     v v, ; , ,; , ,
T

h h h

r z r zI I II Iz s p Ir  , (6.34) 

and collecting together the terms those involves the same exponential terms,   , ; ;I r z s p  can 

be expressed as  
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where 

 

     

     

     

     

 

1

1

2

2

cos

0 0

cos

0 0

cos

0 0

cos

0 0

1
{ } , ; ; { } , ,

1
{ } , ; ; { } , ,

1
{ } , ; ; { } , ,

1
{ } , ; ; { } , ,

{ } , ; ;

p d i rp p

p d i rs

p d i rpp

p d i rss

s

pp

ss

ps

I r z s p M e d d

I r z s p M e d d

I r z s p M e d d

I r z s p M e d d

I r z s p


  


  


  


  

   


   


   


   



 


 


 


 

















   

     

cos

0 0

cos

0 0

1
{ } , ,

1
{ } , ; ; { } , ,

p d s i rps

p d s i rssp p

M e d d

I r z s p M e d d


   


   

   


   



  


  









  (6.36) 

with 21 | |, ,d d s d d s      and   
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  (6.42) 

The six terms in Eqn. (6.35) correspond to the six physical waves as shown in Figure 6.3, namely, 

the direct P-, and S-waves, and the reflected PP-, SS-, PS- and SP-waves, as will be.  They can 

also be in turn transformed inversely to the time domain by the Cagniard’s idea as to be 

demonstrated in the next section. 

 

 

 

 

 

Figure 6.3: The six waves emanating from source to receiver. 

 

(1) Direct P-wave term 

Consider the term associated with the direct P-wave in Eqn. (6.36), i.e., 
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    (6.43) 

By the analyticity of the integrand [ ]pM , the order of integration with respect to   and   is 

interchanged in (6.43) allowing it to be written as 
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1
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    (6.44) 

The goal of Cagniard’s idea is to cast the inner integral on the right-hand side in such a form that 

its time domain counterpart,  [ ] , ; ;p r z s t  becomes obvious.  To achieve the goal, the improper 

inner integral is first extended to the complex    plane and a path is sought such that its 

exponential kernel is identical to the standard Laplace transform kernel of pte , where t  is real 

and 0 .  Demanding that  

 
2 2 1/2

1( ) cosp K d i r        (6.45) 

is real and positive, and rearranging  as a function of p , one finds two possible roots as 
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whose derivative with respect to p  are respectively  
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  (6.47) 

Here, /s dK c c  is introduced for the brevity of notation.  

Evidently, the path under seeking is composed of the two roots. Next, consideration is 

given to the character of the roots.  For the expected real value of 1, ,r d K , and 0 / 2   , the 

contour on the complex    plane defined by Eqn. (6.46), i.e., Root 1, for 0 p    is depicted 
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in Figure 6.4(a).  Generally, the contour starts at point A (see Figure 6.4) for 0p   and then pass 

through points B, C and D, coordinates of which are respectively 
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  (6.48) 

It is noted that 1 0
p

d

d




  at point B, where the contour begins to turn downwardly.  Also, 

Note 1

p

d

d




  at point C, indicating that the contour has a kink there.  

 

 

 

 

 

 

      (a) 0 / 2, cos 0                                                     (b) / 2 , cos 0        

 

Figure 6.4: Path of Root 1 in Eqn. (6.46) in   plane as p  increases. 

Under the same condition, the contour defined by Eqn. (6.46), i.e., Root 2, for 0 p    

is depicted in Figure 6.5(a).  As p  increases from 0 to ∞, the contour starts at point E, and then 

passes through point C and F.   The point C is identical to the one defined in Eqn. (6.46), while 

coordinate of point E is 

  2 22

110, cos at 0.pE Kd d r        (6.49) 
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(a) 0 / 2, cos 0                                                            (b) / 2 , cos 0       

Figure 6.5: Path of Root 2 in Eqn. (6.46) in   plane as p  increases. 

By Cauchy’s theorem and Jordan’s Lemma (see e.g., Ablowitz and Fokas 2003), and in 

view of the branch cut for , the formal integration path of the interior integral in Eqn. (6.44) can 

be deformed to 𝐶1 + 𝐶2 at the case where 0 / 2   , as shown in Figure 6.6(a).  Here, 𝐶1 is the 

segment from the point O to C in Figure 6.5(a), and  𝐶2 is the segment between the point C and D 

in Figure 6.4(a).  

 

 

 

 

 

 

(a) 0 / 2, cos 0                                                               (b) / 2 , cos 0       

 

Figure 6.6: Chosen Cagniard path for direct P-wave. 
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Similarly, for / 2    , Eqn. (6.46) defines for 0 p    the contour showed in 

Figure 6.4(b).  The contour starts at point A, and then passes point G and H.  Point A is the point 

that is defined in Eqn. (6.48), while the coordinate of G and H are 
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  (6.50) 

In this case, the formal path of integration can be deformed to 
3 4C C  as shown in  

Figure 6.6(b), where 𝐶3 is the segment from point O to G, and 𝐶4 is from point G to H. 

After deforming the path of integration, one can have   
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 (6.51) 

Then by changing the variable of integration from   to p , one obtains from Equation (6.51) that 
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where 1  and 2  are the two roots defined in Eqn. (6.46).  

To show that the two integrals in Eqn. (6.52) are complex conjugate to each other, it is 

useful to introduce a change of variable to the second integral as 

     ,  (6.53) 

such that 
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 (6.54) 

which is also 
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From Eqn. (6.46) and (6.47), one can have for 0 / 2    and 2 2 2
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while for 0 / 2   and 2 2 2
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wherein *  stands for complex conjugation.  Recall Schwarz’s reflection principle (Ahlfors  1953):   

If a function ( )f z  is (1) analytic over some region including the real axis and (2) real when 𝑧 is 

real, then  

 
**( ) ( ).f z f z   (6.58) 

As defined in Eqn. (6.37),  { } ,pM    is an analytic function of  , and is real when both   and 

  are real.  Thus, based on Eqn. (6.58), one has 
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Since the integrands in Eqn. (6.55) form a pair of complex conjugate, imaginary part of 

which will cancels each other out, it can be reduced to 
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 (6.61) 
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(a)First integral                                                    (b)Second integral 

Figure 6.7: Integration range marked as the shaded area. 

Next, one may interchange the order of integration to obtain  
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where 
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 .  It should be pointed out that, for  *0    , ,( )p    takes the 

value of Root 2 in the first integral of Eqn. (6.46), while for *0    , ,( )p    takes the value 

of Root 1.  

Through many numerical tests, it is confirmed that 
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hence 
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Finally, Eqn. (6.64) can be written in the general form of Laplace transform 
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  (6.67) 

By similar analyses, the time inversion of the other 5 terms can be accomplished.  They are given 

as follows. 

(2) The direct S-wave term 
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(3) The reflected PP-wave 
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(4) The reflected SS-wave 
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with 
sst be the arrival time of the reflected SS-wave, and 
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(5) The reflected PS-wave 
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with pst  be the arriving time of the reflected PS-wave, and   is determined by solving the 

following quartic equation 

 1/2 1/22 2 2( 1) ( ) cost d K s i r          (6.79) 

(6) The reflected SP-wave 
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where spt  is the arriving time of the reflected PS-wave, and ( , )t   is determined by solving the 

following quartic equation 

 
1/2 1/22 2 2( ) ( 1) cos .t K d s i r           (6.82) 

The time domain solutions derived here are all presented as integrals with respect to 𝜃 on 

the interval of 0 to 2 and can be evaluated numerically with appropriate attentions as will be 

discussed in the next section.   

 

6.5.2  Numerical Implemenation 

(1) Integration of weakly singular function 

Looking at Eqn. (6.75) which represents the displacement related to the reflected SS-wave, 

one can find that the integrand contains a singular point at * 2 2 2

2Arcco /( )s t d r    where 

d

dt


 .  To avoid this problem, a transformation of the variable of integration is introduced as 

below 

 
* 2 , 2 dd         (6.83) 

where   is the newly introduced variable of integration.  It is noted here that such a 

transformation is only needed for 2 2

2t d r  .  

(2) Integration around Rayleigh pole 

When both the source and receiver points are located on the free surface, one may 

encounter another numerical challenge associated with the Rayleigh pole, which is the root of 

  0R   and occupies a position on the imaginary axis of the complex    plane.  

To illustrate, take the result for the reflected PP-wave as an example which has the 

representation of  
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with 
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With condition of 0s z  , i.e., 2 0d  , Eqn. (6.73) is reduced to 

 ( , ) / ( cos )t i t r     . (6.86) 

It’s known that the integrand  
pp

M  has a pole at point ( )/s Ri c c  , (𝐶𝑅 is the Rayleigh wave 

speed), which corresponds to 
1cos ( / )s Rc r tc  .  If such a pole lies within the interval [0, / 2] , 

then the integration path of the integral stated in Eqn. (6.72) needs to be deformed in the complex 

𝜙 − plane to avoid the pole.      

One should also note from Eqn. (6.86) that ( , / 2)t i     .  It is useful to retrieve the 

integration range in Eqn. (6.84) from  [0, / 2]  to [0, ] , so that 
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Then the integration path on the real axis of   plane is deformed to a triangle path as shown in 

Figure 6.8.  
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Figure 6.8: Contour path in complex   plane.  

6.6 Application of Cagniard inversion approach – 2nd rendition 

  As one may notice, the Cagniard approach presented in Section 6.5 requires some careful 

choices of the Cagniard contour paths where branch lines, branch points and poles can be 

encountered.   To execute the inversion approach in a simpler manner, reference is made to the 

fact that an alternative path of integration is permissible for (6.31) in lieu of going from 0 to   

along the real axis owing to the analyticity of the integrands.  For the present treatment, it is found 

to be most advantageous to take    
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As will be shown in what follows, (6.88) is an effective decomposition of the Bessel 

functions in terms of elementary functions that can lead to considerable ease in reducing the 

Green’s functions to  a single line-integral representation for the half-space time-domain Green’s 

functions. To this end,  it is useful to first group the 5 fundamental integrals in Eqns. (6.24)-(6.28) 

for the Green’s functions in the column vector form of 

     , , ,, ; ,; x x x z

i

z

r z r z

T

I II r z s p I I I

  (6.90) 

where the superscripts h,v   denoting the horizontal and vertical t load directions and 𝑖 =

𝑟, 𝜃, 𝑧 denoting the displacement response directions, respectively.  Upon replacing their Bessel 

functions 0 1 2)( , ( , () )p r pJ J Jr p r   by their integral representation in Eqn. (6.88), 

  , ; ;iI r z s p
 can be expressed as  
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, (6.93f) 

with (1 )i    .  Note that all the functions in the 5x1 column arrays of{ }iM 
’s in Eqns.  (6.93a) 

to (6.93f) are analytic in the first quadrant of the complex    plane, except at the branch points 

and branch lines of  ,   and the simple pole associated with the Rayleigh wave function 

 R  , all on the imaginary axis.    As will be clarified in later reduction and inversion to the time 

domain in the following sections, the six integral terms in Eqn. (6.91) correspond to six physical 

wave groups that can be termed as the direct P-, and S-waves, and the reflected PP-, SS-, PS- and 

SP-wave groups, as previously done in Graff (1975),  Johnson (1974) and others, for an arbitrary 

pair of surface or buried source-receiver locations and expressed single finite-line integrals. 

 

6.6.1 Inverse Laplace transform by Cagniard approach 

(1) Direct P-wave integral 

 Consider first the wave-group integral  
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  . (6.94)  

in Eqn. (6.93) and extend the integration variable  of the inner semi-infinite integral onto the 

complex plane.  In seeking an integration path with respect to  such that the exponential kernel 

is identical to the standard Laplace transform kernel of pte  where t  is real and 0 as suggested 

by Cagniard (1939) for an exact Laplace transform inversion, it is natural to define   

  2 2

1 1( ) cos[(1 ) ] cos[(1 ], )t d i r i K d i r i                . (6.95) 
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 Equation (6.95) has an inverse one-to-one mapping of t  to   in  
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t t
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,  (6.96) 

with the square root function Z in (6.96) taken with arg Z    .     

For any chosen set of source and receiver locations and  in the integration range, Eqn. 

(6.96) represents an alternate contour to the real axis in the complex  plane, going from the 

origin 0 to ∞ in the first quadrant as a function of t  monotonically by virtue of the simple non-

singular nature of the integrand of (6.94).  For any pair of source and receiver  locations with a 

specific time t  of interest , on the other hand, the variation of    from 0 to  π/2  for the integration 

in (6.94) traces a finite curvilinear arc that begins at a point on either the imaginary axis or in the 

first quadrant of the complex    plane and ends on the real axis.  Denoting the former path as 

C ( );t   and the latter contour as ;( )D t , a family of them are shown in Figure 6.9.  They 

illustrate a number of interesting and important analytical features that lead to a set of appealing 

consequences and are shared by the other wave integrals.   From the display, for instance, one can 

see that the contours are generally smooth curves and away from the imaginary axis where the 

branch point for   and the Rayleigh pole of R  lie.   Furthermore, the mappings defined in (6.95) 

and (6.96) have the features of 
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10 K d rt   ,                     (6.98) 

     (c )   
1

2 2 2
1( / 2) ( ) sinh / 2,t K d r      .                                                         (6.99) 

By these analytical features, Cauchy’s theorem and Jordan’s Lemma, (6.94) can be written as  
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by the theory of contour integration.  Through the use of (6.96) in the reversal of the order of 

integration, (6.100) can be written as 
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(6.101) 

where H(t) is the Heaviside function.   For further reduction, it is useful to note that on the occasion 

that the point 0,0( )t   (point A) is on the imaginary axis but at or below the lowest singular 

point (in this case, the branch point of  at  𝑖𝐾), it can be shown by the virtue of the analytical 

characteristics of the integrand    , ; , ,
p

M r z s   in (6.93a) that the integral 
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by contour integration.  Together with the observation of the (6.102), ( , ; );PI t r z s  can thus be 

proved to be identically zero for 2 2

10 K d rt   , allowing (6.101) to be reduced to the 

compact form of  
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where  
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    (6.104)  

is the requisite time-domain solution with  
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2 2

1

pt K d r                                                          (6.105) 

representing the direct P-wave group’s arrival time that is well known in seismology and 

geophysics. 

 

 

 

 

 

 

 

 

 

Figure 6.9: A family of Cagniard and  -integration (C-P) contours for (𝑟, 𝑧; 𝑠) = (10, 5; 0), 𝜈 = 0.25,

𝐾 = 0.577,  =0.2 

 

It is relevant to note that Bessel contour parameter  can be any positive real number.   Its 

influence on the variation of the integrand and its helpfulness as a means to improve the efficiency 

in numerical quadrature over the integration range is illustrated in Figure 6.10.   
 

4

4

4 
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Figure 6.10: Variations of   
P

x

rI  integrand along D contours over    from 0  to / 2   

for 0.2  ( 2 2

10, 0, 10, 1.1K ds z r rt    ). 

 

The time domain results for the other 5 wave-group integrals can be obtained in a similar 

manner as outlined below: 

(2) Direct S-wave integral 
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with 
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and 
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1

St d r                                                                          (6.109) 
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as the arrival time of the S-wave group at the receiver location. 

(3) Reflected PP-wave integral 
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and 

      2 2

2

PPt K d r                                                                (6.113) 

as the arrival time for the PP- wave. 

 

(4) Reflected SS-wave integral 

On defining    2
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with  
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where 
SSt denotes the arrival time of reflected SS-wave group.  In this case, however, the arrival 

time 
SSt  proves to be a function of two criteria.  The dual condition arises mathematically because 

of the possibility that 0( ),0 SSt   can be located directly below the -branch point on the 

positive imaginary axis, along the right -branch line or off into the first quadrant depending on 

the relative value of 2,r d  and K according to (6.116).   For instance, one can see that 

(a) 0

SS  is on the positive imaginary axis if 
2 2

2 2d dt r   , 

(b) 0

SS  has a positive real part if 
2

2 2t rd  , 

(c) when 
2

2 2t rd  , 
2 2

2 r

r

d
i
 
 
  

.   In this case, one can easily deduce from Eqn. (6.116)  

that 0

SS will be below the P-wave branch point on the positive imaginary axis if 

2 2

2

r
K

d r
  (or 2

2 1r d K K  ) or above it (i.e., on the branch line) if   

2

2 1r d K K  .    

The first scenario is illustrated in  Figure 6.11 where the C ( );t  - ;( )D t  contour net in 

the complex    plane is plotted for a case whose source-receiver locations satisfy the criterion 

2

2 / 1r Kd K  . As one can see for the three times that satisfy 
22

2 2dd rt   , the D-

contours all start from some locations on the imaginary axis below the branch point iK for 

2

2 2t d r  , while the two cases of 
2

2 2t d r   have their 0  lying in the first quadrant.    

Similar to the direct P-wave scenario, it can be shown by the analytical characteristics of the 

integrand    , ; , ,
SS

iM r z s   and analytic function theory that the integral  
SS

I  in the former 

case are identically zero as in the  
P

iI  case, giving the arrival time 
1 2

2 2SS dt r  for the case 
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Figure 6.11:  A family of (C-P) contours for [ ]SS
integral:  (𝑟, 𝑧; 𝑠) = (10, 20; 0), 𝜈 = 0.25,

𝐾 = 0.577,  =0.2, 10r  , 2 20d  , 0 22.36SSt  , 00( ) 0.447iSSt   

   

An example of the second scenario, i.e., 2

2 1r Kd K  , is shown in Figure 6.12.  In 

this case, the starting point 0  of the integration contour D that corresponds to 
2

2 2t d r   is a 

point sitting on the P-wave branch line on the boundary of the first quadrant.   Owing to the change 

in character of the radical ( )   in {M}SS, the line integral over D in Eqn. (6.115) is generally be 

non-zero.   In mathematical form, such a requirement is  
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which leads to  
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Figure 6.12:  A family of (C-P) contours for [ ]SS
integral:  (𝑟, 𝑧; 𝑠) = (10, 5; 0), 𝜈 = 0.25,

𝐾 = 0.577,  =0.2, 10r  , 2 5d  , 1 9.86SSt  , 10( ) 0.577iSSt iK    

In summary, the arrival time for the SS-wave group can be determined by 
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as was previously found by geometric ray theory (Shearer 2009).  

 

 

(5) Reflected PS-wave integral 
 

On defining   

 
1/2 1/22 2 2( 1) ( ) cos[(1 ) ]t K sz i r i            (6.120) 

 which has the value of z K s  at 0  ,  
PS

I in Eqn. (6.93e) can be written as  
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where 
PSt  denotes the arrival time of the reflected PS-wave.   At 0  , 0  of the D-contour for 

t Kz s   is determined through Eqn. (6.120) by  
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0 0 0( 1) ( )zt K s i r       .  (6.123) 

Similar to the SS-wave integral, the arrival time 
PSt  is also a function of two criteria because

0( ),0 PSt   can be located directly below the -branch point on the imaginary axis, along the 

right -branch line or off into the first quadrant depending on the relative value of , ,r z s  and K 

according to Eqn. (6.123).   For instance, one can see that 

• For 0s  , the point 0  cannot locate above the branch point (0, )iK   when it is on the 

imaginary axis for a real t .  This is because for points on the imaginary axis above the branch 

point, the term 
1/22 2

0( )K   is purely (+)  imaginary, and there is no solution of Eqn. (6.123) 

for a real t .   

In this scenario to find the largest time or the highest coordinate 0  on the imaginary axis, one can 

set  
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and replace ia   where a  is real.  The equation then becomes 
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Denoting its solution as psa , the arrival time can then be expressed as 
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 as noted in Eqn. (6.126),  (6.126) can be reduced 

to 
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Such a scenario is illustrated in Figure 6.13.  

 

 

Figure 6.13:   A family of (C-P) contours for [ ]PS
integral:  (r, z; s) = (10, 5; 5), ν = 0.25, K =

0.577,  =0.2, 0 10.79PSt  , 00( ) 0.476iPSt   

 

• For  0s  , Eqn. (6.123) reduces to 
1/22

0 0( 1)t i rz    , from which one obtains that  
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 When 
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and one can easily deduce that 0

PS will be below the P-

wave branch point on the positive imaginary axis if 
2 2

r

z
K

r
  (or 

21r Kz K  ) or 

above it (i.e., on the branch line) if   
21r Kz K  . 

Following a similar analysis for the SS-wave integral, one concludes that  
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and  

 
2

2

2

2
1 ,PS r

t z K Kr
z

for K
r

 


  .  (6.130) 

 

 

Figure 6.14: A family of (C-P) contours for [ ]PS
integral:  (r, z; s) = (10, 20; 0), ν = 0.25, K =

0.577,  =0.2, 1 22.36PSt  , 10( ) 0.447iPSt   
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Figure 6.15: A family of (C-P) contours for [ ]PS
integral:  (r, z; s) = (10, 20; 0), ν = 0.25, K =

0.577,  =0.2, 2 9.86PSt  , 20( ) 0.577iPSt   

 

For the PS-wave integral, the arrival time can thus be summarized as  
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  (6.131) 

 

Now, look at the end point /2 (or point B)  which is determined by  
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Noting that  cos[(1 ) / 2] sinh / 2ib i b    , Eqn. (6.132) becomes 
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Then any t z Ks  ,  Eqn. (6.133) has a positive real root, indicating that the )( ( ), tD   -

contour will always end on the positive real axis.  
 

(6) Reflected SP-wave integral 
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where ( , )t   is determined by the solution of   
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and 
SPt  is the arrival time of the reflected SP-wave.   By means of a similar complex-plane and 

contour analysis as for the PS-wave group, 
SPt can be summarized as  
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 . (6.137) 

6.6.2 Wave front characteristics extraction for 0s z   

With a non-zero  , the integrands in Eqns.  (6.104, 6.107, 6.111, 6.115, 6.122, 6.135) are 

finite and smooth, except in the case where 0,0, Rrs z t c   , i.e., both the source and 

receiver points are on or near the free surface and the time is close to the Rayleigh wave arrival.  

Here, Rc  is the normalized Rayleigh wave speed.  In such a case, the path of integration at complex 
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 plane starts from a point that touches or is close to the Rayleigh pole (see  Figure 6.16), and 

thus the integrands can be singular or nearly-singular at 0  .  To deal with such scenarios in the 

numerical integration, a singularity extraction technique is adopted here.   

 

    

 

 

 

 

Figure 6.16: Integration path at 0,0, Rrs z t c   . 

Next, the singularity extraction technique will be presented for the case of  , 00s z   

and Rt r c .  Recalling Eqn. (6.91) that  
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one can collect Eqns. (6.92a)-(6.92f) to get that  
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where  
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For the case of 0s   and 0z  , Eqn. (6.139) can be simplified to 

S-wave branch point 
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with  
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Recall  components of  [ ] , ; ;i r z s t
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Each component can be derived from Eqn. (6.140). 

(1) ( , )r

h r t - Radial displacement due to unit horizontal load with 0s   and 0z   

From Eqn. (6.140), ( , )r

h r t  can be simplified to  
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where sec[(1 )
cos[(1 ) ]

it it
i

r i r
  

 
  


 and (1 )i    .  In terms of the reference time 

variable /t r   , Eqn. (6.143) can be condensed to the form of  
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where 
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and  

   2 2 2 2 2 2 2 2 2 2 2) 1 sec 1 4 sec 1 sec 1( , sec sec, Kr t                   . (6.146) 
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To determine the general analytical characteristics of the integral in Eqn. (6.144) around the lower 

limit of 0  , it is useful to note that )( , ,r t   and )( , ,r t   admit the power series 

representations     

     3 3 5 3 2 2 2 2 3
) 2 2 2 10 8 8 1 0,( , ,r Ot K                       , (6.147) 
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which can be evaluated in closed-form as  
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Note that the only source of ‘strong’ singularity of  (6.150) stems from 2 )( ,r t , with

2 2 2 2 2
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 is singular at the time

/R

s rt t rc c  .     Decomposing ( , )r

h r t  as  

 ( , ) ( , ) ( , )h h h

analytic residur r alr r t r t r t       
,  (6.152) 

it can be shown that ( , ) ( , ) ( , )h h h

residual analyticr r rr t r t r t       
is regular over requisite range 

of integration of [0, π/2] and thus is amenable to normal numerical quadrature even at 

/s R

Rt t rc c   or when o  is at the Rayleigh pole.   As an illustration, ( , )r

h r t  and 

( , )
sr

h

a ym
r t  

 are plotted as function of   in Figure 6.17 for the case of 1 8/ .0 76s rc c  , 

0, 1, 0.9999 Rs z r t t    , 0.25  , while  ( , )h

numericalr r t    is plotted in Figure 6.18.  One 

can see that the integrand of ( , )r

hu r t  is nearly-singular at this case, and its evaluation cannot be 

done accurately with numerical integration.   In contrast, ( , )h

residualr r t    is finite (small) and 

smooth as discussed earlier.  
 

 

Figure 6.17: Integrand behavior for 0, 0.9999 Rs z t t   .  
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Figure 6.18: Extracted Integrand for 0, 0.9999 Rs z t t   .  

 

(2) ( , )h r t . Tangential displacement due to horizontal load with 0s   and 0z   
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where /t r  , 
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(3) ( , )x

z r t . Vertical displacement due to horizontal load with 0s   and 0z   
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where /t r  , 

 

 

 

2 2 2 2 2

1

2

2 2 2

2 2

3

2 2 2 2

2 2 2

) 1 2 2 1

) )

1 2
) 4(1 ) 1 2 1

2 1

( (

(

( K

K
i K

K

R

     

  

 
      

 



    

 

   
        
   

  (6.156) 

(4) Term ( , )z

r r t . Vertical displacement due to vertical load with 0s   and 0z   

( , )z

r r t   is identical to ( , )r or x

z r t . 

(5) Term ( , )z

z r t . Vertical displacement due to vertical load with 0s   and 0z   
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where /t r  , 
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  (6.158) 

(6) Verification of analytical decomposition 

As explored in Chao (1960) and  Pekeris and Hanna (1957, the Rayleigh wave front behaves as 

1 Rt t .  To verify the validity of the proposed analytical decomposition technique, the 
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displacements at the Rayleigh wave front is compared with existed solution in Chao (1960) and 

Kausel (2012).  As can be seen in  Figure 6.19, for [0,0.49]  , the strength of singularity at 

Rt t  obtained by analytical decomposition agrees well with the existed solution.  

 
(a) 

 

 
(b) 

 

 
(c) 

Figure 6.19: Displacements at Rayleigh wave front. 
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6.7 Green’s function for stresses  

In the Laplace transform domain, the stress response due ot point load with magnitude  

is given as 

   2
, , ; ; , , ; ;

s

p
r z s p r z s p

c
 


τ τ ,                               (6.159) 

where the components of the dimensionless tensorial stress Green’s function τ  are defined as 

follows. 

6.7.1 horizontal loading in 𝜽 = 𝜽𝟎 direction 
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6.7.2  vertical loading in 𝒛 − direction 
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where ( , ; ; )h

rI r z s p , ( , ; ; )hI r z s p  are defined by Eqn. (6.24-6.25), and  
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Similar analytical and numerical treatments can be applied as in the case of the displacement 

Green’s functions.   

 

6.7.3 Time domain solution of stresses    
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and collect together the terms those involve the same exponential terms,   , ; ;ijT r z s p  can be 
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with 21 | |,d z s d z s     and   
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Through the same analysis and disposition as those for the displacements,  the 6 integrals in Eqn. 

(6.185) can be inverted by the proposed rendition of Cagniard’s idea, .e., by writing   
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where the arrival times and D-paths for various wave integrals are identical to those of  

displacements.  

 

6.8 Numerical Illustrations 

6.8.1 Example 1  

As an example, Figure 6.20 shows the components of the displacement Green’s function 

for the classical Pekeris-Chao case of 𝜈 = 0.3, 𝜇 = 𝑐𝑠 = 1, , where source point is put at  0,0,0 , 

receiver point is put at  0.7,0.5,0  in meters, and the point load is specified to be a Heaviside step 

load.  For this case, the Rayleigh wave speed is 𝑐𝑅 = 0.9274 𝑐𝑠.  The results obtained by the 

presented method are compared with those in Kausel (2012)  for the simplest case where both 

source and receiver points are on the free surface.  The comparison shows that they are identical.  

In this example, the direct P-, reflected PP-, SS-, PS- and SP-waves arrive the receiver point at the 

same time, then arrives the direct S- wave and the Rayleigh wave.  Each time when a wave arrives, 

the displacements have some abrupt changes.  In this case the Rayleigh wave component 

dominates the other waves. 
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(a)  

 

(b)  
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(c)  

 

(d)  
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(e)  

 

(f)  
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(g)  

 

(h) 
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(i) 

Figure 6.20: Result of displacements for Example 1.   

 
 

6.8.2 Example 2 

Another case to test the solution format in this chapter was the one that was investigated in 

Johnson (1974).  In this example, the elastic half-space has material parameters as 𝑐𝑠 = 4.62km/s, 

𝑐𝑑 = 8.00𝑘𝑚/𝑠 , 𝜌 = 3.3𝑔/𝑐𝑚3 , while the source point is embedded at (0,0,2)  and the 

observation point at (10,0,4).  The corresponding Possion’s ratio is 𝜈 = 0.25, and Rayleigh wave 

speed is 𝑐𝑅 = 0.9194 𝑐𝑠 = 4.25𝑘𝑚/𝑠. 

Consider a Heaviside-type point force with magnitude of F  is applied at the source point.   

Time history of displacement components at the observation point are shown in Figure 6.21, where 

the arrival of the direct and reflected waves, as well as the head wave are marked on the 

displacement curves.  The solutions obtained by the present method are in very good agreement 

with Johnson’s plotted solution, except for the displacement between the arrival of the reflected 

SP- and PS-waves.    At the arrival time of these two waves, the present result by the propsed 



167 

 

method exhibits a jump, which Johnson’s plotted solution apparently missed it (see also Eatwell 

et al. 1982).   

 

 

(a)  

 

(b)  
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(c)  

 

(d)  

 

(e) 

Figure 6.21: Result of displacements for Example 2.  
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6.8.3 Example 3 

By virtue of a time convolution, one can compute the Green’s function for a load with a 

cubic B-Spline time function that is defined by  
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  (6.195) 

with T  being the width of the B-Spline load.  In this example, it was set to be  0.3secT  .   

The result can be compared with the one by the inverse Fourier transform method as presented in 

Chapter 5.  

For the same half-space, source and receiver point in Example 6.10.2, the response curves 

of displacements and stresses to the cubic B-Spline load are obtained by these two methods and 

plotted for comparison in Figure 6.22 - Figure 6.25.  Figure 6.22 presents the non-zero components 

of displacement due to load in all three directions, while Figure 6.23 - Figure 6.25 display the non-

zeros components of stress caused by load in 𝑥, 𝑦, 𝑧 − direction correspondingly.  As expected, the 

response curves corresponding to this smooth loading are continuous and smooth.  The 

comparisons show that the two results match each other quite well.   
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Figure 6.22: Green’s function of displacement for Example 3. For 
k

iU , i  stands for the 

displacement component, while k  stands for the loading direction. 
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Figure 6.23: Green’s function of stresses for Example 3.  Point load is in 𝑥 − direction. 

 

 

Figure 6.24: Green’s function of stresses for Example 3.  Point load is in y  direction. 
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Figure 6.25: Green’s function of stresses for Example 3.  Point load is in 𝑧 −direction. 

 

 

6.8.4 Example 4 

 

Another example investigated here is the problem described in Figure 5 of Johnson (1974), 

where the half-space has properties of 𝑐𝑠 = 4.62km/s, 𝑐𝑑 = 8.00𝑘𝑚/𝑠 , 𝜌 = 3.3𝑔/𝑐𝑚3 . The 

source point is put at (0,0,2)𝑚, while and observation is taken at (10,0,4)m.  Figure 6.26 includes 

the non-zero components of the Green’s function of displacement.  Each component produced by 

the proposed method is compared with the solution present in Johnson (1974). 
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(a) 

 

 

(b) 
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(c) 

 

(d) 
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(e) 

 

Figure 6.26: Response curve of displacements for Example 4.   

 

6.8.5 Example 5 

For the same half-space, source and receiver point in Example 4, the response curves of 

displacements and stresses to a B-Spline load are obtained by the presented method and the inverse 

Fourier transform method.  The width of the cubic B-Spline load is again taken to be 0.3secT  .  

The results by the direct time-domain and frequency domain methods are plotted together for 

comparison.  It can be seen that they again agree very well with each other. 
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Figure 6.27: Response of displacement for Example 5. For 
k

iU , i  stands for the displacement 

component, while k  stands for the loading direction. 

 

 

Figure 6.28: Green’s function of stresses for Example 5. Load is in 𝑥 − direction. 
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Figure 6.29: Green’s function of stresses for Example 5. Load is in y  direction. 

 

 

Figure 6.30: Green’s function of stresses for Example 5. Load is in 𝑧 − direction. 

 

 

6.9 Summary 

In this chapter, a method of potentials with Laplace and Hankel transforms to investigate 

the transient wave propagation in homogeneous half-space due to an arbitrary point load is 

presented.  The time-domain solution is obtained by adapting Cagniard’s inversion approach  to 
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the use of Hankel transforms and Bessel integrals with which past researchers had tried to avoid.  

A singularity extraction technique that allows an explicit analytical characterization of the 

Rayleigh wave front singularity is also employed to ensure a rigorous and complete solution.  To 

confirm the reliability of the proposed method, multiple examples are considered with successful 

numerical checks against past solutions in the literature.   

As will be shown in Chapter 8, the Green’s functions developed here have been 

incorporated into a 3-D boundary element method for the analysis of transient dynamic problems 

related to a half-space.   
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Chapter 7  

Time-domain Green’s function for multi-layer half-space by a method of potentials 

  

7.1 Introduction 

The analysis of elastic wave propagation in a multilayered half-space is of fundamental 

importance in civil engineering, mechanical engineering and geophysics due to its applications in 

dynamic soil-structure interaction, geotechnical earthquake engineering, foundation vibration and 

quantitative seismology method where the medium’s material properties cannot be considered as 

spatially homogeneous but vary with depth or thickness.  

For a piecewise homogeneous but horizontally multilayered solid medium, the equations 

of motion differ in parameters from layer to layer and form a set of equations that are related by 

boundary and interfacial conditions.  The solution of such a dynamical system is generally 

complicated before the development of the propagator matrix method.  The method of propagator 

matrix was first proposed by Thomson (1950) to investigate the transmission of a plane elastic 

wave at oblique incidence through a stratified solid, where the relationship between wave 

quantities in two adjoining layers is  established in matrix form using interfacial conditions.  As 

noted in Haskell (1953), “although the method may be regarded as no more than a change in 

notation, the matrix notation itself suggests a systematic computational procedure that makes it 

possible to handle at least a three-layer case on an ordinary desk calculator without an unreasonable 

expenditure of time.”  The formalism was later used by Haskell (1953) to obtain the phase 

velocity’s dispersion equation for surface waves of Rayleigh and Love types.  In parallel to the 

formulation in Thomson (1950) who adopted a potential representation of the displacements, an 

alternative method of propagator matrix using directly displacements as the unknowns was devised 
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by Knopoff (1964) to investigate the plane harmonic waves in multilayer half-space.   In terms of  

Fourier transforms with repect to both time and spatial coordinate for a plane time harmonic SH-

wave field, a systematically transfer matrix for stress and displacements in the frequency domain 

between two adjacent layers in the multilayer media were developed (Gilbert and Backus 1966) .  

By establishing the connection between the method of propagator matrix and the 

reflection/transmission properties of a single layer, i.e., expressing the stress-displacement vectors 

in terms of the local upgoing/downgoing P- and S- waves and building their connections between 

the upgoing/downgoing waves on the two sides of the layer interfaces, an iterative approach to the 

calculation of reflection and transmission coefficients for plane waves in a two-dimensional 

multilayer media was set up in Kennett (1974).  The response of a multilayered half-space to a 

buried point source was then constructed in terms of reflection and transmission coefficients 

(Kennett and Kerry 1979).  With a factorization of the overall reflection and transmission matrices 

into generalized transmission and reflection matrices at individual interfaces, Apsel and Luco 

(1983), Luco and Apsel (1983) obtained the complete three-dimensional dynamic response of a 

multilayered half-space in a simpler form. By virtue of a method of displacement potentials (Pak, 

1987), Pak and Guzina (2002) presented a more compact mathematical development for the three-

dimensional elastodynamic problem, with a rigorous attendance to the singular response in the 

interior of a layer or at the bi-material interfaces and the elimination of past growing exponential 

terms.          

In seismology, a common method to investigate wave propagation in multilayer media is 

the generalized ray theory (Spencer, 1960).  Instead of dealing with the full definition of the 

boundary value problem analytically, the generalized ray theory constructs the responses directly 

using geometric and Snell’s law type arguments in terms of an infinite series of Laplace transforms 

of the response  (displacement, stress, etc.) of the wave components from a source in a multilayered 

medium. Each term in the series describes the wave motion that traverses a corresponding 

generalized ray path between the source and receiver, and each term is inverted by Cagniard’s idea 
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to get a time-domain response.  The method was used to investigate, for example, the surface 

response of a stratified half space to the radiation from an axisymmetric load in  Spencer (1960).     

Helmberger (1968) determined the pressure response in a fluid half-space overlying a stratified 

solid half-space using the generalized ray theory and Cagniard-de Hoop method to obtain the 

transient responses.  Wigginst and Helmberger (1974) presented an efficient computational 

implementation and the elaboration of such a method can be found in Kennett (2013). 

The success of generalized ray theory approach relies on the correct choice of the 

generalized rays from the infinite series.  For half-space configurations with layers more than just 

two or three and when long-time response is of interest, the problem is cumbersome  as it involves 

checking and developing many generalized rays and one’s intuition.  The generalized ray theory 

is thus generally not used for complicated 3-D mechanics boundary value problems.  As pointed 

out in Kennett (1974), the Taylor series expansion of some particular terms in the integral 

representations obtained via the method of propagator matrix can be expanded into an infinite 

series, each term of which can be related to a group of geometric rays.   As a problem that involves  

complicated reflections, transmissions and conversions, Lee and Ma (2000) studied the 

propagation of elastic transient waves in a two-dimensional multi-layered media subjected to in-

plane loadings by a matrix method.  In their development, Helmholtz displacement potentials in 

Cartesian coordinates were used together with one-sided Laplace transform for time and double-

sided Laplace transform for the horizontal spatial coordinates.   The equation system in the triple 

transformed domain constructed from the boundary conditions were then solved by a matrix 

formulation and the solution was expanded into a power series of phase-related reflection and 

transmission matrices.   They applied the same method to investigate the dynamic response of a 

layered media subjected to anti-plane loadings in Ma et al. (2001).  Exetending the method 

developed in Lee and Ma (2000) for the 2-D case,  Ma and Lee (2006) also considered the 

propagation of transient elastic waves in a three-dimensional multilayered half-space to point loads 

by means of  (i) the standard Lame’s representation with 4 potential functions, (ii) triple Fourier 
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transform over time and horizontal spatial coordinates (iii) decomposition of motion into two 

groups of P-SV and SH-waves, (iv) method of propagator matrices to determine the field 

unknowns in the transformed domain, (v) power series expansion of coefficient matrices, (vi) 

Cagniard’s method to obtain time-domain responses.  Using the method of reverberation-ray 

matrix (Pao 2000), the propagation of elastic waves in a layered solid due to an axisymmetric point 

source and/or a line source was considered by Su et al. (2002).   In the reverberation matrix method, 

the approximate time-domain solution was obtained numerically by fast inverse Laplace transform 

and fast Fourier transform.   Tian and Xie, Z. (2009) presented a hybrid approach for the evaluation 

of transient elastic-wave propagation in a multilayered solid, integrating reverberation matrix 

method with Cagniard-de Hoop’s method.    

Built on the analytical and computational developments in earlier chapters, a rigorous and 

systematic method will be presented in this chapter for tackling the time-domain multi-layered 

half-space Green’s function problem.    Highlights of the development include:      

(a) In contrast to most past studies, the proposed formulation adopts the more natural 

cylindrical coordinate system for this class of problems.  Similar to what is shown in 

the last chapter, the time domain displacements and stresses in a multi-layer half-space 

can be reduced to a single interal over a fixed finite interval.  

(b)  Instead of using Helmholtz-Lame’s potential presentation which involves 4 unknown 

potentials and thus requiring an additional constraint, Pak’s method of displacement 

potentials with 3 scalar unknowns is employed leading to considerable analytical 

compactness. 

(c) Ray expansion results in an infinite series of integrals, which must be truncated to a 

finite number of terms in practice.  To get the exact response at the receiver point for a 

specified time interval of interest, all terms associated with the rays arriving ahead of 

that time should be included in the truncated series.  In the present development, a new 
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analytical method to extract the arrival times for all the wave group terms in the exact 

potential solution is developed by means of branch-cut and integral contour analysis. 

(d) In the case where both source and receiver points are on free surface or the same layer 

interface, the formal integration path for the integral representation of response 

functions will run into Rayleigh and/or Stoneley poles whose analytical contributions 

to the integrals are difficult to evaluate by pure numerics, even if one can formally write 

the integral as the sum of the principal value of an integral over the real axis plus a 

contribution due to a small semicircular detour above the pole.  In this study, the 

complex function theory and contour integration method employed by Pak (1987) is 

extended to facilitate the treatment of the time-domain Laplace-Hankel transform 

inversion problem, leading to not only a reduction in the mathematical complexities 

but also an improvement in the computational efficiency.  

    

7.2 Statement of the problem 

Consider 𝑛 bonded parallel homogeneous, isotropic, linearly elastic layers overlying and 

adhering fully to a homogeneous elastic half-space (see Figure 7.1).  A cylindrical coordinate 

system is employed with its origin on the top free-surface and the positive z  direction pointing 

downwardly into the half-space. Bounded by the upper and lower interfaces located at depths 1jz   

and jz  respectively, the domain of the 
thj  layer is denoted by j  and characterized by the 

material parameters j , j , j  , a thickness 1j j jh z z   , with the notation of  
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Likewise, the domain of the underlying half-space is denoted as 
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Figure 7.1: Multi-layered half-space. 

 

In view of the elastodynamic solution for a homogeneous medium in absence of body force 

as outlined in Chapter 6, the displacement and stress fields in each layer not containing the source 

( 1 ( ) 1j l n     can be completely described by six coefficients of integration ( , )j
mA p , 

( , )j
mB p , ..., ( , )j

mF p   of  the potential for the jth layer.  Labelling the layer that contains a 

source within as the 
thl  layer, one can view it as composed of Region I 

1{ }lz z s    and Region 

II { }ls z z  .  Denoting 
1( , )l

mA p , 
1( , )l

mB p , ..., 1( , )l
mF p  and 

2 ( , )l
mA p , 2 ( , )l

mB p , ..., 

2 ( , )l
mF p  to be the integration coefficients associated with Region I and II respectively, the 

depth-dependent coefficients for the thl  layer can be expressed as 

                                         2 1 2( , , ) ( , ) ( ) ( , ) ( , )l l l l
m m m mA z p A p H s z A p A p       ,  

                                         1 2 1( , , ) ( , ) ( ) ( , ) ( , )l l l l
m m m mz p B p H zB s B p B p       , 

                                          2 1 2( , , ) ( , ) ( ) ( , ) ( , )l l l l
m m m mC z p C p H s z C p C p       , 

  1 2 1( , , ) ( , ) ( ) ( , ) ( , )l l l l
m m m mz p D p H zD s D p D p       ,  (7.3) 

                                         2 1 2( , , ) ( , ) ( ) ( , ) ( , )l l l l
m m m mE z p E p H s z E p E p       ,                  

                                            1 2 1( , , ) ( , ) ( ) ( , ) ( , )l l l l
m m m mF z p F p H z s F p F p       , 
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where H  is the Heaviside function.  The next step is to determine the 6( 2)n   unknown 

coefficients of integration from the boundary, interfacial and jump conditions.  

 

7.3 Problem decomposition 

For the ease of referencing and general usage, it is useful to define the following 

dimensionless parameters: 
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where a , 0  , 
0  represent a chosen “reference” length, shear modulus and mass density 

respectively, and 
0 0 0sc    is the reference wave speed.  In terms of Eqn. (7.4), one may also 

define a set of dimensionless integration coefficients 
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for layers not containing the source, and 
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for the loaded layer. 

Transformed variables such as the displacements and stresses for the multilayered medium 

can likewise be expressed in terms of the dimensionless transformed displacement kernels as 
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and dimensionless stress kernels as 
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By means of the Eqns. (7.5) to (7.16), the transformed stress and displacement components 

in Eqns. (7.17)  to (7.19) within the 
thj  layer can be expressed in terms of the unknown potential 

coefficients as 

   

   

   

   

1

2
2 2 2 2

21

2 2 2 2

22

2 2 2 2

33

2 2 2 2
11

 

 

2   2

2       2

  0 0

2 2 2   2 2

m

m

m

m

m

m

j
j j

j j j

j j j j j j j j

j
j j j j j j j j

j

j j j j

j

j j j j j j j j j j j

v

v

   

   

         


         

      

              

 
 
 
 
 

 
 
 
 


  



    

  

 




    

 

 

 

 

1

1

j j

j j

j j

j j

p z zj

m

p z zj

m

p z zj

m

p z zj

m

b e

f e

a e

e e













 

 






 
 


 
 
 
 

 
 
 



 
 
 
 
 









, (7.20) 

and 
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7.4 Propagation of vertically-polarized waves 

In this section, the unknown integration coefficients , , , , 1,...j j j j

m m m ma b e f j n  associated 

with P-SV waves will be solved from the boundary and interfacial conditions.  The corresponding 

mathematical expression for the boundary, interfacial conditions are listed as follows.  

7.4.1 Boundary and interfacial conditions 

(1) Free-surface condition 

    1 1

21 0 22 0, ; ; , ; ; 0
m m

z s p z s p     .  (7.22) 

(2) Continuity of displacements and tractions across all layer interfaces 
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(3) Jump condition across the loaded plane z s   
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with 
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(4) Regularity condition 
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To solve for the unknown integration coefficients , , , , 1,...j j j j

m m m ma b e f j n , one must 

express all boundary and interfacial conditions as equations for these coefficients, i.e., 

1) Free surface condition 

In terms of 
11 11, , ,m m m ma b e f , Eqn. (7.22) can be expressed as 
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which can be written as 
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and 
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2) Continuity of displacements and tractions across all layer interfaces 

Also, expressing Eqn. (7.23) in terms of , , , , 1,...j j j j

m m m ma b e f j n  leads to 
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which can be condensed to 
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with the coefficients of the “normalized” transmission and reflection matrices which are now 

independent of p  to be given by 
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similar to Pak and Guzina (2002) for the frequency-domain.  Here,  1 

j

jS  denotes the Stoneley 

wave function corresponding to the interface between the layers j  and 1j , i.e. 
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3) Traction jump condition and displacement continuity conditions across the loaded plane 

z s  within the 𝒍𝒕𝒉 layer 

Similarly, Eqn. (7.24) can be rewritten as 
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It can be deduced then 
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4) Regularity condition 

Eqn. (7.26) furnishes that  
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7.4.2 Formulation of solution by “Propagator Matrices” 

As shown in Guzina and Pak (1996), Guzina and Pak (2001), the equation system 

represented by Eqn. (7.28), (7.33), (7.52) and (7.57) can be solved by the method of propagator 

matrices.   To this end, one should first group the unknown coefficients ,...,j j

m ma f  into two arrays 

ro vectors:   
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In Eqn. (7.58) and (7.59),  , ,
m

j

d z pw  can be termed the downwardly propagating waves in the  

𝑗𝑡ℎ  layer, while  , ,
m

j

u z pw  stands for the correspond upwardly propagating wave components.   

As noted in Guzina and Pak (1996), Guzina and Pak (2001), the solutions of  , ,
m

j

d z pw  and 

 , ,
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u z pw  can be obtained as follows: 
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• Solution in the layers above the source 
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• Solution in the layers below the source 



195 

 

 
   

   

1 2, ... , , 1,..., 1,

, , , 1,...

ˆ

1,

ˆ ˆ

ˆ ,

 

 

    

   

m m

m m

j d d d l

d j j l d l

j d j

u j d

p z j l n

p p j l n

w T T T w

w R w
  (7.65) 

where 

 

1

1

1

1

ˆ

ˆ ˆ

ˆ

0,

, ,

.ˆ ,ˆ

d

n

d u d d

j j j j

d d u d d

j j j j j

l j n

l j n











    
 

   

R

T I R R T

R R T R T

  (7.66) 

7.5 Propagation of horizontally-polarized waves 

In analogy to the investigation in the last section, the unknown integration coefficients 

, , 1,...j j

m mc d j n  associated with P-SV waves can be derived from the boundary and interfacial 

conditions. The corresponding mathematical expression for the boundary, interfacial conditions 

are listed as follows.  

 

7.5.1 Boundary and interfacial conditions 

(1) Free-surface condition 
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(2) Continuity of displacement and traction across all layer interfaces 
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(3) Traction jump and displacement continuity conditions across the loaded plane 𝒛 = 𝒔 
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(4) Regularity condition 
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Analogous to the approach for vertically polarized waves, one can express all these 

conditions in terms of the unknown constants of integration  , ,j

mc z p ,  , ,j

md z p , 1,...j n , 

i.e., 
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This condition can be rearranged to 
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(7) Traction jump and displacement continuity conditions across the loaded plane 𝒛 = 𝒔 
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which gives that 
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(8) Regularity condition 

  1 , , 0. n

mc z p   (7.81) 

7.5.2 Formulation of solution by method of “Propagator Matrices” 

For the convenience of applying the method of “propagator matrices”, one may define 
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similar to Guzina (1996) and  Pak and Guzina (2002): 

a) Solution in the loaded thl  layer 
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b) Solution in the layers above the source 
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c) Solution in the layers below the source 
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7.6 Laplace transform inversion of multi-layer Green’s function to time domain  

Inversion of the multi-layer Green’s function in the Laplace-Hankel transform domain to 

the time domain for the arbitrary time and loading has always been an analytical challenge in 

theoretical mechanics and applied mathematics.  For slow dynamic loading, the frequency-domain 

approach developed by Pak and Guzina (2001, 2002) is a natural approach.  For very fast loading 

such as shocks and blasts, however, such an approach will require the computation of the Green’s 

function response at not only many but also high frequencies whose numerics is not trivial.    

Furthermore, for many practical engineering problems, the critical cases are concerned with the 

response over only a finite time interval right after the loading.  To serve such needs, an effective 
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approach to obtain the desired time-domain Green’s function’s response exactly up to a specific 

time interval will be helpful and described in this section.  

7.6.1 Ray expansion through Neumann series of matrix   

To obtain a rigorous finite time representation of the Green’s function, it is useful to 

recognize that one of the key complexities in the integration kernel in Laplace domain Green’s 

functions (Eqns. (7.60), (7.63), (7.65) for P-SV waves, and Eqns. (7.83), (7.86), (7.88) for SH 

waves) stems from the presence of terms of the form   

  
1

I R ,  (7.90) 

where R  is typically  the products of 2 generalized reflection matrices in Eqns. (7.60), (7.64), 

(7.66), or scalar function in Eqns. (7.83), (7879), (7.89).  For the case where the moduli of the 

eigenvalues of R  are all sufficiently smaller than 1 which will be the case for sufficiently large 

Laplace transform parameter p  in the negative exponent of the exponential functions in the 

matrix elements, it is legitmate to expand  
1

I R  into a Neumann series of the form 
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By virtue of the foregoing approach, the expressions of the integrands  ,
m

j

d pw ,  ,
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j pw in 

Eqns. (7.60), (7.63), (7.65) and  ,
m

j

dw p ,  ,
mu

jw p  in Eqns. (7.83), (7.86), (7.88) are expanded 

into infinite series, each term of which is a product from a sequence of multiplication of 

coefficients of transmission and reflection matrices and source vector.  For example, the equations 

in (7.60) for the kernels of the solutions in the loaded thl  layer corresponding to P-SV waves 

become  
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while for SH waves, Eqn. (7.83) become 
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Likewise, the kernels of the solutions in the layers above the source in Eqn. (7.63) become 
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For SH-waves, the integrands in Eqn. (7.86) are 
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Similarly, kernels of the solutions in the layers below the source in Eqn. (7.65) for P-SV waves 

become 
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For SH waves, the kernels in Eqn. (7.88) become 
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To provide more insights, consider the simple configuration where a layer is bonded to the top of 

a homogenous half-space.  For such a configuration, one has from Eqn. (7.93) that  
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for z s as the second term in (7.93) is zero.  Recalling that  
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Eqn. (7.102) leads to an explicit expression for the infinite series of  1 , ,
mdw z p  which is 
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whose terms can be organized according to the exponential terms, i.e., the terms with the same 

exponents are grouped as one term. Accordingly one can write Eqn. (7.104) as 
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As each term of series corresponds to a generalized ray group which has its particular arrival time, 

it is meaningful to sort these terms in an ascending order on their arrival time as will be discussed 

later.    

 

By similar algebraic expansions, the components of  ,
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me z p  , 

 , ,j

mf z p   can likewise be expressed as infinite series, with each of their terms having a general 

form of  
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 ,  (7.106) 

where sn  is an integer, iM  are the coefficients of the general transmission, reflection matrices 

and source vector, kc  are the wave speeds and kd  are vertical distance parameters in the 

exponents of the grouped exponential terms. 

7.6.2 General analytical character of the integrands in multilayer Green’s functions  

The integrands in Eqns. 7.30, 7.35-7.52, 7.61, 7.62, 7.75, 7.78, 7.84 and  7.85 are generally 

analytic in the complex plane except for the multiple branch cuts and poles.  All poles of the 
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coefficients in the propagator matrices, however, lie on the imaginary axis of the complex  

plane in the present formulation.  For example, as defined in Eqns. (7.30), (7.35)-(7.52), the 

coefficients in the reflection and transmission matrix can have a simple pole when 
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The solution of Eqn. (7.107) is Ri c   , where 
0RR sc c c  with Rc  being the Rayleigh wave 

speed.  The solution of Eqn. (7.108) is 
, 1j j

si c   , where 
0

, 1 , 1j j j j

s s sc c c  with  
, 1j j

sc 
 denoting 

the speed of Stoneley waves that can propagate along or near the interface between thj  and  1
th

j    

layer if it exists (see Miklowitz, 1978).  

Since the integrands in form of Eqn. (7.106) are multiplications of coefficients in the 

propagator matrices, one can see that all poles of the integrands lie on the imaginary axis of the 

complex   plane.  Using the -contour representation of the Bessel function involved, the 

integration path will avoid running into these poles as illustrated in Chapter 6.  

7.7 Wave front solution to point-loads in transformed domain 

7.7.1 Loading coefficients 

For a point load, the loading coefficients are: 

• Load in 𝑥1 − direction 
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• Load in 𝑥2 − direction 
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• Load in 𝑥3 − direction 
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7.7.2 Integral representations of displacement and stress fields 

Once all the  6 2n  unknown constants, i.e.,  , ,j

ma z p  ,   , ,j

mb z p  ,  , ,j

mc z p  , 

 , ,j

md z p ,  , ,j

me z p  ,  , ,j

mf z p , are determined (see Eqn. (7.106)), applying inverse 

Hankel transform to the Fourier components of the displacements and stresses, and substituting 

them into the corresponding Fourier series give that  
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where  ˆ , , ; ; ;r z s p ju  and  ˆ , , ; ; ;r z s p jτ  are the Laplace transform of displacement and stress 

of the 
thj  layer, and  , , ; ; ;r z s p ju ,  , , ; ; ;r z s p jτ  are their dimensionless form which 

admit the integral representation 
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Here, the dimensionless transformed displacement kernels , 1,2,3
mi

jv i   and stress kernels 

, , 1,2,3
mik

j i k   are obtained via Eqns. (7.20) and (7.21)  respectively.  For a specified point-

load, the integral representations in the above equations can be simplified upon the substitution of 

the corresponding loading coefficients.   

• Unit load in 𝑥1 − direction 

    , , ; ; ; cos( ) , ; ; ;h

r rr z s p j I r z su p j  ,  (7.122) 

    , , ; ; ; sin( ) , ; ; ;hr z s p j I r s p ju z    ,  (7.123) 
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    , , ; ; ; 2cos( ) , ; ; ;h

zz r z s p j I r zu s p j  ,  (7.124) 

• Unit load in 𝑥2 − direction 

    , , ; ; ; sin( ) , ; ; ;h

r rr z s p j I r z su p j  ,  (7.125) 

    , , ; ; ; cos( ) , ; ; ;hr z s p j I r s ju z p   ,  (7.126) 

    , , ; ; ; 2sin( ) , ; ; ;h

zz r z s p j I r zu s p j  ,  (7.127) 

• Unit load in 𝑥3 − direction 

    v, , ; ; ; , ; ; ;r rr z s p j I r zu s p j  ,  (7.128) 

  , , ; ; ; 0ru z s p j   ,  (7.129) 

    v, , ; ; ; , ; ; ;zz r z s p j I r zu s p j  ,  (7.130) 

where  
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It is worth mentioning that the loading coefficients in Eqn. (7.109) are used for 
h

rI , 
hI  and 

h

zI , while loading coefficients in Eqn. (7.111) are adopted for 
v

rI  and 
v

zI .  As pointed out in Eqn. 

(7.106), the integration coefficients  , ,j

ma z p ,   , ,j

mb z p ,  , ,j

mc z p ,  , ,j

md z p , 

 , ,j

me z p ,  , ,j

mf z p  are expressed by infinite series, thus as  consequences, the integrals  
h

rI , 
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hI , 
h

zI , 
v

rI  and 
v

zI  are all infinite series.  Accordingly, the functions 
h

rI , 
hI , 

h

zI , 
v

rI  and 
v

zI  are 

infinite series of integrals as well.  

 

7.7.3 Inversion to time domain solution by Cagniard’s idea 

As mentioned above, the multi-layer Green’s function solutions in the Laplace transform 

domain are now in the form of infinite series of integrals.  To obtain their time domain counterparts,  

one may apply the Cagniard-Hankel method developed in Chapter 6 term by term in ascending 

order of time.   The usage of it to invert term corresponding to a generalized ray is presented as 

follows. 

Consider a term with given Tn , iM , kc  and kd  as described in Eqn. (7.106). One can 

determine the dimensionless displacements and stresses in the transformed domain through Eqns. 

(7.20) and (7.21).    Taking  , ; ; ;h

rI r z s p j  in Eqn. (7.131) as an example, a process utilizing the 

proposed Cagniard method to -obtain time-domain counterpart will be illustrated. 

As explained in Chapter 6, it is useful for the inversion to replace the Bessel functions with 

their integral representations, i.e., 
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 , (7.138) 

where 𝑧 is an arbitrary complex argument and   is an arbitrary non-negative real number, such 

that Eqn. (7.131) becomes 
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where 

    
1 13 1( , ) ) [2(1 ) ] ) [2(1 )( 1 cos ( 1 co ]s
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        . (7.140) 

As noted before, the idea of Cagniard’s inversion approach is to extend the inner 

integrations in Eqn. (7.139) with respect to   to the complex plane and arrange the integrands 

into a Laplace transform format so that their time domain counterparts  , ; ; ;h

r r z s t j  can be 

clearly identified.  To achieve the goal, the improper inner integral is first extended to the complex 

 -plane and a path is sought such that its exponential kernel is identical to the standard Laplace 

transform kernel of pte , i.e., 
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where t  is real and 0 .  For 
1

Tn

k

kk

d
t

c

  , Eqn. (7.141) represents a contour in the first 

quadrant of complex  -plane as shown in Figure 7.2. 
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Figure 7.2: Cagniard path. 
 

By means of the principle of the argument, it can be checked that the inner integrand in 

Eqn. (7.139), i.e., ( , )N   , has no singularity in the first quadrant.  Consequently, by virtue of 

Cauchy’s theorem and Jordan’s lemma, the formal integration path of the inner integral in Eqn. 

(7.139) can be deformed to C , such that it becomes 
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Then, changing the variable of integration from   to t , one obtains from Eqn. (7.142) that  
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where   is obtained from Eqn. (7.141) using numerical method and  
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Interchanging the order of integration between   and t  furnishes that 
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Clearly, Eqn. (7.145) bears a general form of Laplace transform  
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  ,  (7.146) 

with time function being 
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 As illustrated in Chapter 6, there exists a finite time arrivalt  such that 

   arrival, ; ; ; 0,h

r r z s t j t t   .  (7.148) 

Physically, arrivalt  is interpreted as the arrival time of this group of waves before which they do not 

contribute to the response.  One way to compute arrivalt  is by the analytical treatment on Eqn. 

(7.147), and the other way is by Snell’s law as illustrated in the next section.  It can be shown in 

Section 7.7.5 that    
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So that Eqn. (7.147) can be written as 
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7.7.4 Computation of time-domain response and characteristics of multi-layer Green’s 

functions  

Following the same Laplace transform inversion procedure, one can invert 

 , ; ; ;h

rI r z s p j ,  , ; ; ;hI r z s p j ,  , ; ; ;h

zI r z s p j ,  v , ; ; ;rI r z s p j  and  v , ; ; ;zI r z s p j  term 

wisely to time domain and  obtain the time domain counterparts as  , ; ; ;h

r r z s t j , 

 , ; ; ;h r z s t j ,  , ; ; ;z

h r z s t j ,  , ; ; ;r

v r z s t j ,  , ; ; ;v

z r z s t j .  By virtue of Eqns. (7.122)-

(7.130), the displacements in time domain can then be obtained to be 
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• Unit load in 𝑥1 − direction 

    , , ; ; ; cos( ) , ; ; ;h

r rr z s t j r zu s t j  ,  (7.151) 

    , , ; ; ; sin( ) , ; ; ;hr z s t j z t ju r s    ,  (7.152) 

    , , ; ; ; 2cos( ) , ; ; ;h

zz r z s t tu j r z s j  ,  (7.153) 

• Unit load 𝑥2 − direction 

    , , ; ; ; sin( ) , ; ; ;h

r rr z s t j r zu s t j  ,  (7.154) 

    , , ; ; ; cos( ) , ; ; ;hr z s t s t ju j r z   ,  (7.155) 

    , , ; ; ; 2sin( ) , ; ; ;h

zz r z s t tu j r z s j  ,  (7.156) 

• Unit load in 𝑥3 − direction 

    v, , ; ; ; , ; ; ;r rr z s t j r z ju s t  ,  (7.157) 

  , , ; ; ; 0ru z s t j   ,  (7.158) 

    v, , ; ; ; , ; ; ;zz r z s t j r z ju s t  .  (7.159) 

Viewing that  , ; ; ;h

r r z s t j ,  , ; ; ;h r z s t j ,  , ; ; ;z

h r z s t j ,  , ; ; ;r

v r z s t j , and  

 , ; ; ;v

z r z s t j  are infinite series bearing the form in Eqn. (7.150), the displacements and stresses 

in time domain can be written as 
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,  (7.160) 

where the thn  term of the series is zero for arrival

nt t , i.e., the wave group corresponding to thn  term 

has no contribution to the response before they arrive at the observation point.  To exploit such a 

property, it is proper to order the series by the term’s arrival times in ascending order that wave 
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group arriving earlier appears in the series before the later ones.  When the series is kept up to n 

terms, the solution is exact for , ][0 n

arrivalt t  and an approximation beyond it.  Should one desire 

the exact solution for an arbitrary t , one needs to determine analytically and retain only those 

terms that have 
n

arrivalt t .        

7.7.5 Arrival times of different wave groups 

A general term of the infinite series for  , ; ; ;h

r r z s t j ,  , ; ; ;h r z s t j , 

 , ; ; ;z

h r z s t j  ,  , ; ; ;r

v r z s t j  , and   , ; ; ;v

z r z s t j   can all be written as 
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where ( , )N    is the relevant coefficient in the product of the multi-layer transmission/reflection 

matrices, and   is sought from  
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on the condition that t  is positive and real.  For a chosen contour parameter   and a given t , 

Eqn. (7.162) translates to a contour path D in the complex  plane as   goes from 0 to / 2  (see 

Figure 7.3).  Following a similar analysis for all 6 wave-integrals for the homogeneous half-space 

Green’s function, it can be shown that then one has  , ; ; 0r z s t  , if Point A or 𝜉0̅ of the path 

D is located on the imaginary axis but below all the branch points and singularities in ( , )N   .  

Accordingly, one may refer to the time t  which corresponds to such a position of Point A as the 

arrival time arrivalt  .  Should A be at the lowest branch point, the corresponding time arrivalt  is given 

by 
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 Figure 7.3: Integration path in 𝜉̅ −plane for increasing 𝜙 from 0 to 𝜋/2. 

To seek the highest location of 0  on the imaginary axis, one may note that the time 

corresponding to the starting point 0  at 0   is   

 2
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t d i 


  ,  (7.164) 

according to Eqn. (7.162) and set 0 ia    with 𝑎 being real.   This leads to 
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which will stay real and positive, provided 
max

1
0 a

c

 
   

 

 .  To find the maximum a and thus 

maxt , within the range, one may set the derivative of Eqn. (7.177) with respect to a to zero,  

leading to the condition that   
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 , (7.166) 

whose solution is straightforward numerically.  The true arrival time t  will thus be the time that 

corresponds to the smaller 𝑎 in Eqn. (7.165) and solution of (7.166).  

B (ϕ =
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2
)  

O  
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In practice, while the number of terms in the series representation of  ,
m

j

d pw , 

 ,
mu

j pw ,  ,
m

j

dw p ,  ,
mu

jw p  is infinite, only a finite number of terms will be non-zero 

during a finite observation time.   Accordingly, to get the response at a certain time of interest, 

only the terms whose corresponding waves arrive before the time are needed to be included.   

7.8 Numerical examples 

7.8.1 Example 1 

 

 

 

 

 

 
 

Figure 7.4: A 2-layer half-space 

 

As shown in Figure 7.4, a two-layer half-space (a single layer on top of a homogeneous 

half-space) is considered.  The point-load is put at (0,0,2)  and the observation is taken at (10,0,4)  

in kilometers.  To validate the proposed formulation, time function of the point-load is set to be 

( ) ( )f t F B t  , where ( )B t  is the cubic B-Spline function, i.e., 

 

𝑧 = 0 

𝜇1 = 70.4𝐺𝑃𝑎,  𝜌1 = 3300𝐾𝑔/𝑚3,  𝜈1 = 0.25 

𝜇2

𝜇1
= 2,

𝜌2

𝜌1
= 1,  𝜈2 = 0.25 

𝑧 = 6 𝑘𝑚 
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  (7.167) 

with 0.3secT  .  

As illustrations, the terms of the series in Eqn. (7.160) are sorted in an ascending order by 

the corresponding arrival times, the first several of which are listed in Table 7.1.  To distinguish 

the terms, upward-going and downward-going longitudinal waves are denoted as P and p 

respectively, while the upward-going and downward-going shear waves are denoted as S and s 

respectively.  The waves depart from the source point and then arrive at observation point.  For 

example, a pP-wave denotes a P-wave that first departs downward from the source point as a down-

going longitudinal wave, then gets reflected back by the interface between the two layers and 

arrives at the observation point.    
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Order Arrival time (sec) Wave types Number of 𝒅𝒌 terms Exponent of exponential functions 

1 1.2744 p 1 
1( ) cos[(1 ) ]p z s i r i          

2 1.4138 pP 2 
1 1 1 1) ( )( cos[(1 ) ]s zp z i r iz            

3 1.4574 Pp 2 
0 1 0 1) ( )( cos[(1 ) ]p s z iz r iz            

4 1.6323 pS 2 
1 1 1 1) ( )( cos[(1 ) ]s zp z i r iz            

5 1.7128 Sp 2 
0 101) ( )( cos[(1 ) ]p s z iz r iz            

6 1.7673 PpP 3 
0 1 1 0 1 1 1( cos) ( ) ( ) [(1 ) ]z z zs zp z i r i               

7 1.8507 sP 2 
1 1 1 1) ( )( cos[(1 ) ]p z s z z i r i            

8 1.9858 PpS 3 
0 1 1 0 1 1 1( cos) ( ) ( ) [(1 ) ]z z zs zp z i r i               

9 1.9858 SpP 3 
0 1 1 0 1 1 1( cos) ( ) ( ) [(1 ) ]z z zs zp z i r i               

10 1.9905 Ps 2 
0 1 0 1) ( )( cos[(1 ) ]p s z iz r iz            

11 2.0692 sS 2 
1 1 1 1) ( )( cos[(1 ) ]p z s z z i r i            

12 2.1500 pPp 3 
1 1 1 0 1 0 1( cos[() ( ) ( ) 1 ) ]z z z zp z s i r i              

13 2.2042 SpS 3 
0 1 1 0 1 1 1( cos) ( ) ( ) [(1 ) ]z z zs zp z i r i               

14 2.2074 s 1 
1( ) cos[(1 ) ]p z s i r i          

15 2.3101 Ss 2 
0 1 0 1) ( )( cos[(1 ) ]p s z iz r iz            

16 2.4227 PsP 3 
0 1 1 0 1 1 1( cos) ( ) ( ) [(1 ) ]z z zs zp z i r i               

17 2.5646 sPp 3 
1 1 1 0 1 1 1( ) co( ) s[(1 )( ])z z z rzp z s i i               

18 2.5646 pPs 3 
1 1 1 0 1 1 1( ) co( ) s[(1 )( ])z z z rzp z s i i               

19 2.5732 pPpP 4 
1 1 1 0 1 1 1( ) cos[2( ) ( ]( 1 ))z z zp z s i rz i               

20 2.5732 PpPp 4 
0 1 1 0 1 0 12( ) cos( ) () 1 )( [ ]z z z z zp s i r i              

21 2.6411 PsS 3 
0 1 1 0 1 1 1( ) cos[(1 )( ) ( ) ]z z z zp s i rz i               

22 2.6411 SsP 3 
0 1 0 1 1 1( ) cos[(1 ) ]( ) ( )z z z z zp s i r i              

23 2.7710 SpPp 4 
0 1 0 1 1 0 1( ) cos[(1 ) ]2( ) ( )z z z z zp s i r i            

 

24 2.7710 pPpS 4 
0 1 1 0 1 0 12( ) cos( ) () 1 )( [ ]z z z z zp s i r i              

25 2.7772 pSp 3 
1 1 1 0 1 1 1( ) co( ) s[(1 )( ])z z z rzp z s i i               

26 2.8569 SsS 3 
0 1 0 1 1( ) (( ) cos[(1 ) ])zp s i rz z z z i               

Table 7.1: Arrival time of waves in Example 1 
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 Fourier Synthesis Present method 

with 5 terms 

Present method 

with 26 terms 

Present method 

with 50 terms 

Computing time 

(percentage) 

100% 5.2% 13.8% 39.9% 

Table 7.2:Computing time 

 

To provide a basis for assessment for the computational procedure for the multi-layer case, 

the time-domain response for a cubic B-Spline loading is first computed by the method of Fourier 

synthesis using the frequency domain Green’s functions by Pak and Guzina (2012) and Guzina 

and Pak (2011) as presented in Chapter 5.  Three responses are then computed by the proposed 

method with a variable number of terms, namely, 5, 26 and 50 terms.  Their time histories of 

displacements are depicted in Figure 7.5, from which one can see that the present result with 5 

terms agree well with the result by Fourier synthesis before the wave corresponding to the 6th term 

arrives.  Similarly, the result with 26 terms is very good until the arrival of the 27th wave group, 

and the result with 50 terms is good until the arrival of the 51st wave group.   

The computing time is given in Table 7.2.  When only a small number of terms are included, 

the present time-domain method for the B-spline loading is much more efficient then the Fourier 

synthesis method.  As the number of terms included increases, the computing time of the present  

method does grow.   For very sudden, fast or discontinuous loading and the case where the time 

of interest is short in duration, however, the present time-domain approach should have significant 

advanatges over the Fourier synthesis approach which will require the computation of a frequency 

domain Green’s function at super-high frequency in such situations.  
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(a)  

 
(b) 

 



219 

 

 
(c) 

 
(d) 
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(e) 

Figure 7.5: Time history of displacement components for Example 1 
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(a) 

 

 
(b) 
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(c) 

 

 

(d) 

Figure 7.6: Time history of stress components for loading in 𝑥 −direction at Example 1  
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(a) 

 

 

(b) 

Figure 7.7: Time history of stress components for loading in 𝑦 −direction at Example 1  
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(a) 

 

(b) 
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(c) 

 

(d) 

Figure 7.8: Time history of stress components for loading in 𝑧 −direction at Example 1 
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7.8.2 Example 2 

For the same geometrical configuration as in Example 1, now consider a Heaviside time 

function for the point load, i.e. ( ) ( )f t F H t  , where F  is the magnitude of the point force.  

Time history of displacements are shown in Figure 7.9. 

  

 

 

(a) 
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(b) 

 

(c) 
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(d) 

 
(e) 

Figure 7.9: Time history of displacement components for Example 2 
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(a) 

 
(b) 
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(c) 

 

 
(d) 

 

Figure 7.10: Time history of stress components for loading in 𝑥 −direction at Example 2 
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(a) 

 
(b) 

Figure 7.11: Time history of stress components for loading in 𝑦 −direction at Example 2 
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(a) 

 
(b) 
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(c) 

 
(d) 

Figure 7.12: Time history of stress components for loading in 𝑧 −direction at Example 2 
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7.8.3 Example 3 

 

 

 

 

 

 

 

Figure 7.13: A 5-layer half-space 

As shown in Figure 7.13 is a 5-layer half-space, each layer of which is homogeneous and 

has material parameters as indicated in the figure.  The point-load is put at (0,0,10)  with a B-

Spline time function specified in Eqn. (7.167) and the observation is taken at (20,0,10) .  Time 

history of the displacement components at the observation point are shown in Figure 7.14.  The 

solutions obtained by the current method has very good agreement with the solutions produced by 

the Fourier synthesis.  

 

𝑧 = 0 

𝑧 = 10 𝑘𝑚 

𝜇1 = 70.4𝐺𝑃𝑎,  𝜌1 = 3300𝐾𝑔/𝑚3,  𝜈1 = 0.25 

𝜇2 = 2𝜇1, 𝜌2 = 𝜌1,  𝜈2 = 0.25 

𝜇3 = 3𝜇1, 𝜌3 = 𝜌1,  𝜈3 = 0.25 

𝜇4 = 4𝜇1, 𝜌4 = 𝜌1,  𝜈4 = 0.25 

𝜇5 = 5𝜇1, 𝜌5 = 𝜌1,  𝜈2 = 0.25 

𝑧 = 20 𝑘𝑚 

𝑧 = 30 𝑘𝑚 

𝑧 = 40 𝑘𝑚 
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(a) 

 

(b) 



236 
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(d) 
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(e) 

Figure 7.14: Time history of displacement components with cubic B-Spline load for Example 3 

 

 

7.8.4 Example 4 

For the same 5-layer half-space, source and observation points, now consider a Heaviside 

function as the time variation for the point load.  The time history of displacement components is 

illustrated in Figure 7.15.  
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(a) 

 

(b) 
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(c) 

 

(d) 
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(e) 

Figure 7.15: Time history of displacement components with Heaviside load for Example 4 

 

7.9 Summary 

In this chapter, a rigorous and systematic method to investigate the wave propagation in 

three-dimensional multi-layer media is presented.  The method is performed under cylindrical 

coordinate system with displacement potentials and integral transforms.  The solution in the 

transformed domain is expanded with Newmann series, each term of which describes a particular 

generalized wave group.  Time domain solution is then obtained via the proposed method, and the 

arrival time of each wave group is derived through branch cut analysis.  Using the numerical result 

from Fourier synthesis in Chapter 5 as references, examples shows that the proposed method is 

valid and accurate.   
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Chapter 8  

BEM-FEM coupling for time-domain soil-structure interaction analysis 

 

8.1 Introduction 

The effect of dynamic soil-structure interaction is well recognized to be important in 

seismic analysis of structures.  Among the most promising methods for time-domain soil-structure 

interaction analysis, one is the coupled BEM-FEM (Boundary Element Method-Finite Element 

Method) approach.  FEM is versatile at modeling structures with complex geometries and 

nonlinear materials, while BEM is an effective approach for representing infinite and semi-infinite 

space since the radiation condition are taken care of by the Green’s function automatically.  The 

concept of FEM-BEM coupling was firstly developed for elastostatic analysis (Zienkiewicz and 

Bettess 1977), and then applied to dynamic problem in the frequency-domain (Mita and Luco 1987) 

as well as the time-domain (Spyrakos and Beskos 1986).   The coupling formulations generally 

fall into two main categories: the direct coupling and the staggered coupling.   

The direct coupling formulation combines the FEM and BEM matrices system through 

equilibrium as well as compatibility conditions at the interface, and form a global matrix system.  

Using the BEM to relate the interfacial nodal displacement to contact stress, Spyrakos and Beskos  

(1986) investigated a 2-D flexible surface strip-footing subjected either to a point, uniform 

pressure and moment loadings or to seismic waves, while the solution for 3-D is presented in  

Karabalis and Beskos (1985).  With similar ideas, Von Estorff (1991) developed a coupling 

approach, and performed a quantitative assessment of the effects of various system parameters on 

the dynamic response of a block embedded into the soil.   
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As an alternative to a direct coupling approach, staggered schemes solve the equations for 

both subdomains separately, while the boundary conditions at the soil–structure interface are 

updated until convergence is achieved.  Using B-Spline characteristic responses in place of the BE 

equations, Rizos and Wang (2002) proposed a staggered BE–FE coupled scheme that yields an 

efficient implementation with matrices that are extremely sparse, and the scheme is demonstrated 

by the soil-structure interaction between flexible structures and the supporting soil.   The 

methodology is then applied for the analysis of vibrations in a railroad track system, induced by 

the passage of conventional and high-speed trains Brien and Rizos (2005).  Rizos and Wang 

(2002)’s scheme solved the equations of each subdomain once for each time step, which requires 

a sufficiently small time step in order to achieve convergence as noted in François et al. (2015).  

To circumvent such a difficulty and to take into account nonlinearities within the FEM subdomains, 

iterations for each step was introduced into the staggered scheme in Soares et al. (2004) and the 

response of a nonlinear half-space to an impulse load was modeled by the scheme.  In terms of 

how the Neumann or Dirichlet boundary conditions on the interface are imposed, the staggered 

schemes can be cast into 4 algorithms, namely, sequential Neumann-Dirichlet, sequential 

Dirichlet-Neumann, parallel Neumann-Neumann and parallel Dirichlet-Dirichlet algorithm.  

François et al. (2015) investigated the effect of these algorithms and the relaxation parameter on 

the convergence of the coupling iteration.  

The direct coupling is conceptually simpler and easy to implement, while it yields non-

symmetric and non-positive definite system matrix that requires the development of special 

solution strategies (Rizos and Wang 2002).   The staggered scheme avoids the assembly and 

solution of a global system of coupled equations and enable the possibility to model large structural 

systems, and it allows the use of different time step sizes for the two subdomains.  The downside 

of the staggered schemes is that they incorporate iterations within each step to achieve convergence 

which make the computation much less efficient.  To enable and speed up the convergence, a 
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relaxation operator is applied to the interfacial conditions, the choice of which are unfortunately 

rather empirical (Liu et al. 2011).     

Although time domain BEMs and its coupling with FEMs has been extensively studied in 

the last few decades, most of them incorporate full-space green’s function, i.e. the Stokes’ solution, 

while the number of researches on BEM with half-space Green’s functions remains limited.  The 

reason is mostly attributed to the complexity of half-space Green’s function in aspect of theoretic 

derivation, numerical implementation as well as the computation.    Comparing with the full-space 

Green’s functions, the half-space Green’s functions satisfy the free-surface condition and hence 

the BEMs with half-space Green’s functions bypass the need of discretizing the free-surface in 

soil-structure interaction problems.  It reduces the errors related to the discretization, leads to a 

smaller matrix system for BEMs and eliminates the limitation of the duration of valdiity of the 

computed solution.   

Using Johnson (1974)’s solution on Lamb’s problem as the Green’s function for a 

homogenous half-space, Triantafyllidis (1991) presented a direct time-domain boundary element 

method and investigated its applications to various dynamic soil-structure interaction problems.   

Based on half-space Green’s functions for displacements elicited by Heaviside time-dependent 

surface point loads,  Bodes et al. (2002) proposed time-domain FEM-BEM direct coupling 

formulation and applied it to analyses the dynamic response of a railway track due to moving 

wheel set.  The Green’s functions in C. Bode et al. (2002) restrict that both source and receiver 

points to be located on the free surface and thus the FEM-BEM formulation cannot deal with the 

cases where structures are embedded into the soil.   Again, by virtue of Johnson (1974)’s 

fundamental solutions and some effective treatment on the singularities at the arrival time of the 

Rayleigh waves, Galvín and Romero (2014) implemented a direct FEM-BEM coupling toolbox 

for soil-structure interaction analysis.   Furthermore, to consider the influence of soil stratification, 

Romero and Galvín (2015) presented a coupled FEM-BEM formulation in time domain, where 
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layered half-space Green’s functions developed by Park and Kausel (2006) was adopted for the 

BEM.  

In this chapter the regularized time-domain BEM formulation that established in chapter 2 

is enhanced with the homogeneous and multi-layered half-space Green’s functions.   A direct 

coupling of BEM with FEM is presented then to proceed transient soil-structure interaction 

analysis.   

8.2 Time-domain BEM for half-space 

 
Figure 8.1: 3-D half-space problem 

As shown in Figure 8.1 is a half-space body    with several excavations, which may be 

in shape of foundations, cavities, rocks, underground structures, etc.  It is recalled here that, with 

the aid of Graffi’s reciprocal theorem and time-domain Green’s function pertaining to the half-

space, the displacement of a point 𝒙 inside   ξ  can be represented by a boundary integral, i.e., 

       ˆ ˆ, * , * ( , ; | )d ( , ; , | )* , d .k k

k i i i iu t g t t t U t g T t g u t
 

     ξ ξx ξ ξ x ξ n x ξ x  (8.1) 

where 𝒖 and t  respectively identifies the displacement and traction, ∗ stands for the Riemann 

convolution, Û  and T̂  designates the Green’s function of displacements and tractions, and  g t  

denotes time variation of the point load associated with the Green’s function. 
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To take the advantages of several properties of Green’s function, the close boundary    

of   ξ  is partitioned into four parts here, i.e., 

 :i  Boundaries of the inside excavations; 

 :t  Part of the surface of the half-space that is bearing external tractions; 

 :f  Free surface of the excavated half-space; 

       :  Outer surface of the half-space with an infinity radius. 

Consider firstly  .   The general regularity condition requires that 

     lim , * ˆ ( , ; | ) ( , ; , | )* , d 0,ˆ .k k

i i i it t U t g T t g u t






     ξξ ξ x ξ n x ξ x   (8.2) 

Noting that the traction t  vanishes on the surface f  , while T̂  vanishes on both f  and t , one 

can obtain from Eqn. (8.1) that 

        , * , * ( , ; | )d ( ,ˆ ; , | ) d ,ˆ * , .

t i i

k k

k i i i iu t g t t t U t g T t g u t
  

     ξ ξx ξ ξ x ξ n x ξ x  (8.3) 

Making use of the decomposition of the Green function as in Chapter 2, a regularized boundary 

integral equation can be established from Eqn. (8.3) as 

       

    

2

1

, * , * ( , ; | )d [ ( , ; , | )] * , d

[ ( , ; , | )] * , , d ,

ˆ ˆ

ˆ ,

t i i

i

k k

k i i i i

k

i i i

u t g t t t U t g T t g u t

T t g u t u t

  



   

   

 



ξ ξ

ξ

x ξ ξ x ξ n x ξ

ξ n x ξ x x
 (8.4) 

where the singular part of the Green’s function 1[ ( , ; ,ˆ | )]k

iT t gξ n x  and the regular part 

2[ ( , ; ,ˆ | )]k

iT t gξ n x  are defined through 

 
   1

2 1

[ ( , ; , | )] ; ,

[ ( , ; , | )] ( , ; , | ) [ ( , ; , | )

ˆˆ ˆ

ˆ ˆ ˆ ]

k k

i i

k k k

i i i

T t g g t

T t g T t g T t g

T

 

ξ n x ξ n x

ξ n x ξ n x ξ n x

.  (8.5) 

Here,  ,
ˆ

;ˆ k

iT ξ n x  is usually taken to be static Green’s functions that can capture the singularity 

of the time-domain Green’s functions.   For a homogeneous half-space,  ,
ˆ

;ˆ k

iT ξ n x  can be 
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Mindlin (1936)’s solution while for a multi-layered half-space,  ,
ˆ

;ˆ k

iT ξ n x  is the static Green’s 

function of a bi-material full-space (Guzina and Pak 1999).  It should be pointed out that, after the 

regularization by singularity extraction, the boundary integral equation (8.4) contains integrands 

that are at most weakly singular as the need to evaluate the Cauchy principal value of integrals  in 

the classical boundary element formulations is eliminated. 

From a temporal and spatial discretization of Eqn. (8.4), a recurrence relationship for step 

1n  

    1 1 1{ } { } { }n n n   H u G t R ,  (8.6) 

supposing everything is known till step n  as discussed in Chapter 2.   

8.3 Finite element formulation 

In the context of FEM, the semi-discrete equation of motion is usually written as 

             M u C u k u f   (8.7) 

where  M  stands for the mass matrix,  C  designates the viscous damping matrix, and  K  

denotes the stiffness matrix,  F  is the vector of external forces, and      , ,u u u  are the 

displacement, velocity and acceleration vectors respectively. 

One of the most widely used time integration algorithm for Eqn. (8.7) is the Newmark 

method, which consists of the following equations: 

 
 

 

2

1 1

1 1

{ } { } { } 1 2 { } 2 { } ,
2

{ } { } 1 { } { } ,

n n n n n

n n n n

t
t

t

 

 

 

 


      

     

u u u u u

u u u u

  (8.8) 

where the subscript n  denotes the time step, t  stands for the time step size,   and   are two 

parameters that determine the stability and accuracy characteristics of the algorithm. 
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Recall that the fundamental unknowns in BEM formulation are nodal traction and 

displacement.  In preparation for the coupling with BEM formulation, it is useful to represent all 

unknowns in Eqn. (8.7) in terms of displacement by virtue of Eqn. (8.8).  To this end, one may 

establish Newmark’s integration algorithm in the form of  

 
1 1{ } { } ,n n 

   K u f   (8.9) 

with 

      2

1
,

t t



 
       
K M C K   (8.10) 

and 

 
     

      

2

1 1 2

1
{ } { } { } { } 1 2 { }

2

1 { }

n n n n n

n n

t
t

t t

t








 

   
       

   

   

f f M C u u u

C u u

.  (8.11) 

Depending on the choice of the 2 paramaters, Newmark algorithm can be implicit or explicit.  A 

special case of Newmark’s family is the commonly used method of central difference with 

 

 

 

1 1

1 12

1
{ } { } { }

2

1
{ } { } 2{ } { }

n n n

n n n n

t

t

 

 

 


  


u u u

u u u u

.  (8.12) 

Invoking the central difference Eqn. (8.12), the finite element equation of motion (8.7) can be 

rewritten in the form of Eqn. (8.9) with 

    2

1 1

2t t
      
K M C ,  (8.13) 

and 

        1 12 2

2 1 1
{ } { } { } { }

2
n n n n

t t t
 

   
       

     
f f M K u C M u .  (8.14) 
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8.4 BEM-FEM coupling 

 
 

Figure 8.2: BE-FE coupling 

The compatibility and equilibrium condition across the FE-BE interface imply that 

 
/

/

FE BE BE

FE BE BE



 

u u

t t
.  (8.15) 

Note that the relationship between nodal forces and tractions is 

    / /{ } { } { }FE BE FE BE BE  f T t T t .  (8.16) 

Here the force-traction transformation matrix  T  can be computed through 

    
/

[ ]

FE BE

T d


 T N N ,  (8.17) 

where  N  stands for the matrix of shape functions. 

In the coupling of a finite element zone with a boundary element interface, the unknown 

displacements in Eqn. (8.9) are partitioned into two sets.  One contains the DOFs related to interior 

FE nodes, while the other contains the DOFs associated with the interfaces.  Consequently, Eqn. 

(8.9) becomes 

 

/

1 1

/ // /
1 1

T

FE FE BE FE FE

n n

FE BE FE BEFE BE BE BE
n n

 

 

      
     
       

f

f

K K u

uK K
.  (8.18) 
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Next, the nodal forces exerted upon the interfacial nodes by the BEM is superimposed to yield 

 
 

/

11

/// /
1 11

{ }
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Invoking the BEM Eqn. (8.6) to represent the traction on the interface in terms of displacements, 

one finds that 
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Appealing to the compatibility condition described in Eqn. (8.15), Eqn. (8.20) can be assembled  

yielding the final equation system of 
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8.5 Numerical examples 

8.5.1 Buried cavity 

 

Figure 8.3: 3-D buried cavity under internal pressure 



250 

 

Considered a spherical cavity of radius 1r m  buried in a homogenous half-space as 

illustrated in Figure 8.3.  The cavity is subjected to an internal blast loading, pressure of which is 

specified to be 

      20005436.56 tP t H t te Pa .  (8.22) 

The BEM formulation with half-space Green’s function as stated in Eqn. (8.4) is employed to do 

the analysis, and thus only the surface of the spherical cavity is needed to be discretized.  In this 

example, the cavity surface is meshed with 272 linear elements. 

A short-time analytical solution for the displacement history of point A in Figure 8.3 has 

been investigated by (Jiang, Baird, & Blair, 1994).  The analytical solution is only valid before the 

reflection waves hit the free-surface, while specifically in this example, the analytical solution is 

valid between time interval  0, validt , where 
35validt e s . 

 

 

 

Figure 8.4: Vertical displacement history of point A. 
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For comparison, the time history of the point A’s vertical displacement obtained from BEM 

solutions are plotted together with the analytical solution in Figure 8.4.  As can be seen from the 

display, the numerical result matches very well with the analytical solution between  0, validt . 

Beyond time validt , the displacement fluctuates due to the waves reflected back and forth between 

the free surface and the cavity surface, and eventually decays to 0  because of the radiation 

damping. 

This problem has also been investigated by BEM based on Convolution Quadrature 

Method in  Kager (2015).  Full-space Green’s function was utilized in Kager (2015)’s treatment, 

and a patch of the free-surface with dimension of 30m×30m centered at the origin of the coordinate 

system was discretized with several thousand triangular elements.  On contrast, the BEM 

formulation employing half-space Green’s function proposed here avoids such a discretization and 

yields better solution.  

8.5.2 Soil-structure interaction 

 
Figure 8.5: Soil-structure interaction model 

As shown in  Figure 8.5 is a building structure bonded on the free-surface of a half-space.  

The cuboid structure has dimensions of (0.4, 0.4, 2) meters in (𝑥, 𝑦, 𝑧) −directions respectively.  

The structure and the soil are made up of the same linear isotropic material with parameters of  
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2 7e Pa  , 31730 /Kg m   and 0.25  .  Uniform vertical traction is applied on top of the 

building, which can be expressed as 

 ( ) 2500 ( )P t H t .  (8.23) 

The structure is modeled by FEM, while the soil is by BEM, which are then coupled in the 

manner of Eqn. (8.21).  For the boundary element zone, 4-node quadratic surface elements are 

used.  For the finite element zone, 3-D 8-node cubic solid elements are employed.  For time 

integration of FEM, the Newmark method is employed with 
1

4
   and 

1

2
  .  Time step size t  

is chosen such that 𝛽 = Δ𝑡 ⋅
𝑐𝑑

𝑙𝑒
= 1 , where 𝑙𝑒  is the dimension of the elements and 𝑐𝑑  is the 

longitudinal wave speed. 

 

Figure 8.6: Time history of vertical displacement of points A and B 
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Figure 8.7: Time history of 

zz  at point B 

Figure 8.6 displays time history of the vertical displacement of both point A and B, which 

oscillates with a decaying amplitude and dies eventually due to the radiation damping.  The same 

phenomenon of decaying oscillation can be observed from the time history of traction at point B.  

The traction at point B approaches the static equilibrium stress as time goes on. 

8.5.3 Two-zone soil-structure interaction 

 

 

 

 

 

 

 

 

Figure 8.8: A two-zone FE-BE model 

Surface of 𝑧 =
0 

Inner zone, Finite elements 

𝜇1, 𝜈1 = 𝜈2, 𝜌1 = 𝜌2, 

Outer zone, Boundary elements 

𝜇2 = 20𝑀𝑃𝑎, 𝜈2 = 0.25, 𝜌2 = 1730𝑘𝑔/𝑚3, 

Point C 
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Considered in this example is a hemisphere buried in a homogeneous half-space as shown 

in Figure 8.8.  The radius of the hemisphere is 1meter, and its top surface aligns parallelly with the 

free-surface of the half-space.  The hemisphere is denoted as inner zone while the excavated half-

space is denoted as outer zone in Figure 8.8.  Geometrically, the inner and outer zone form a half-

space.  For the boundary element zone, 8-node quadratic surface elements are used.  For the finite 

element zone, 20-node cubic solid elements are employed.   

To study the dynamic response of the two-zone model under the uniform pressure on the 

top surface of the hemisphere, the inner zone is discretized with solid finite elements while the 

outer zone is discretized by boundary elements.   In this example, the finite element mesh conforms 

with the boundary element mesh on the interface.  For the sake of accuracy as well as numerical 

stability, the time step size t  is chosen such that  𝛽 = Δ𝑡 ⋅
𝑐𝑑

𝑙𝑒
= 1, where 𝑙𝑒 is the dimension of 

the elements and 𝑐𝑑 is the longitudinal wave speed.  The uniform pressure on the top surface is 

specified to be a sinusoidal pulse, i.e.,  

 
  0.03sin 2 0.03 ,

( )
se

0, 0. 3s c

c

0 e

t
p t

t

t








.  (8.24) 

To verify the FEM-BEM coupling algorithm described in this section, the elastic material 

parameters are set to the same as the half-space, which are 

3

1 2 1 2 1 20.25, 1730 /20 ,M mPa kg          .  In this case, the two-zone forms a 

single homogeneous half-space, and time history of vertical displacement of point C can be 

obtained analytically through the integration of Green’s function proposed in Chapter 5.  The 

numerical result of point C’s vertical displacement is compared against the analytical solution in 

Figure 8.9.  From Figure 8.9(a), one can see that the numerical solution is close to the analytical 

solution with residue oscillations at the early stage, while Figure 8.9(b) shows that the numerical 

results become unstable after a long-time run.   
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(a) Response at the early stage 

 

(b) Response over a long time 

Figure 8.9: Time history of vertical displacement of point C.  

 

To reduce the numerical oscillations and avoid the instability, a Rayleigh damping is 

introduced as 

 
dC K .  (8.25) 
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As shown in Figure 8.10, the Rayleigh damping with 
45d e   improves the response’s 

smoothness and its stability over a long-time run, although the damping also brings about some 

phase shift/delay as in step-by-step time integration in finite eelement methods.  To explore the 

issue further, the effect of damping is examined with the comparison among the cases of 

4 3 25 , 5 , 1d e e e    , and the results are shown in Figure 8.11.  One can see that a larger damping 

ratio for the finite element zone reduces the amplitude of the response and brings in more phase 

delay as expected.   

 

 

(a) Response at the early stage 
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(b) Response over a long time 

Figure 8.10: Time history of vertical displacement of point C in case of damping  

 

 

 

 

 

 

Figure 8.11: Effect of damping ratio 



258 

 

Another way to introduce some numerical damping is by adjusting the values of ,   in  

the Newmark-𝛽 integration scheme, e.g., see Hughes (2012).  For example, three combinations, 

namely, , ) (0.25,0.5), (0.3.0.6), (0.35, .( 0 7)    are tested, and the results are plotted in Figure 

8.12.  Among the three, one can see that the larger  leads to smoother results. 

 
Figure 8.12: Effect of Newmark-𝛽 parameters 

 

Similar to using the Newmark- 𝛽  parameters, the parameters of ( , ; , )u
a

t
b   in the 

proposed generalized boundary element time-marching scheme can also be used to control the 

numerical performance as described in Chapter 2 and 3.   As depicted in Figure 8.13, the result 

corresponding the choice of ( , ; , ) (2,1; 0.2,0.2)u t
a b    is found to be unstable, while a slight 

increase in a  helps to stabilize the result.  For completeness, the approximate stability zone of 

the ( , ) (2,1)u t  -scheme with respect to collocation weights  ,a b   is shown in Figure 

8.14.   

To check the influence of ( , ; , )u
a

t
b   on accuracy, three different combinations are 

examined in Figure 8.15.  One can observe that all three combinations leads to results that are close 
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to the analytical solution.  As the difference between them is not noticeable, this indicates that the 

choice of ( , ; , )u
a

t
b   is not too influential to the accuracy at least in this example.  

 

Figure 8.13: Effect of (𝛼𝑎 , 𝛼𝑏) on the stability. Δ𝑡 = 𝑙𝑒/𝑐𝑑.  

 

 

Figure 8.14: Stability zone of the  ( , ) (2,1)u t  -scheme with respect to collocation weights 

(𝛼𝑎 , 𝛼𝑏).  Δ𝑡 = 𝑙𝑒/𝑐𝑑  
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Figure 8.15: Effect of (𝛼𝑎 , 𝛼𝑏) on accuracy. Δ𝑡 = 𝑙𝑒/𝑐𝑑. 

 

For the two-zone model with identical homogenous elastic properties, it is demonstrated 

that the FEM-BEM coupling algorithm presented in this chapter can achieve accurate and stable 

results via a suitable choic of algorithmic parameters and mesh configuration. Using 

0.25, 0.5    for FEM’s Newmark-𝛽 time integration for the finite inner zone and  (2,1; 

0.4,0.2; 1,1) in the proposed generalized-BEM scheme for the exterior half-space, the two-zone 

model with different properties (and the same mesh configuration)  are investigated by the coupled 

FEM-BEM algorithm.    To examine further the physics of the problem, the interior and exterior 

zone’s parameters are also set to have three different shear modulus ratios of  
𝜇1

𝜇2
= 0.4, 1, 2 with 

the same mass density 𝜌,  Poisson’s ratio of 0.25, and a common reference 𝜇2 = 20MPa.  Two 

interior zones, one of which is much more softer and the other is much stiffer than exterior zone, 

are considered and the results are compared with the homogeneous case as shown in Figure 8.16.     

From the comparison, one can see, as expected, that the amplitude of the displacement at point C 

is larger in the case where the interior zone is softer.  For all cases, the displacements go back to 

zero eventually because the wave-transmitting effect offered by BEM representation of the half-

space.  
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Figure 8.16: Effect of shear modulus  
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8.5.4 Soil-foundation-structure interaction by FE-BE coupling 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.17: Three-dimensional soil-foundation-structure interaction model 

 

Going beyond testing the BEM-FEM coupling method for the test case of a two-zone 

representation of the halfspace, the performance of the formulation to a more general structure-

foundation-soil configurations is of interest.  One such soil-structure interaction problem is 

depicted in Figure 8.17.   In this case, the scenarios of an applied uniform vertical traction (a load 

with x-y plane symmetry) and a uniform horizontal traction (an asymmetric load)  at the top surface 

of the cylindrical structure are both considered.  As before, both the cylindrical structure and its 

foundation underneath are discretized with finite elements while the excavated half-space is 

modeled by boundary elements as shown in Figure 8.18.  For the BE zone, 4-node quadrilateral 

elements are used, while for the FE zone, 8-node cubic elements are used in this example.  

Cylindrical structure 

𝜇1,  𝜈1,  𝜌1 

Half-space with soil 

𝜇3,  𝜈3,  𝜌3 

Embedded foundation 

𝜇2,  𝜈2,  𝜌2 

𝑟 → ∞ 

Tractions on the top surface 
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For the configuration where 𝜇1 = 1𝑒7Pa, 𝜇2 = 𝜇3 = 2𝑒7Pa, 𝜈1 = 𝜈2 = 𝜈3 = 0.25, and 

𝜌1 = 1000kg/m3, 𝜌2 = 𝜌3 = 1730kg/m3 , the vertical displacement history of point A 

corresponding to a vertical traction is plotted in Figure 8.19, where time function of the vertical 

traction is 

 . (8.25) 

The computed time histories of the horizontal displacement of point A and B corresponding to a 

horizontal traction are plotted in Figure 8.20 and Figure 8.21 respectively.  From the results, one 

can see that the magnitude of the structure motion decays as time goes on, which reflects the energy 

radiation transmitted into the half-space.  One may also note that the decay of motion under vertical 

load is considerably faster than under horizontal loading, a well-known difference in the 

characteristics of radiation damping bertween the two cases. 
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Figure 8.18: FEM+BEM mesh for the soil-foundation-structure interaction model 

 

 

 
Figure 8.19: Time history of vertical displacement of Point A to a vertical pressure  

 

Free surface of 

the Half-space 

Point A Point B 
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Figure 8.20: Time history of lateral displacement of Point A to a horizontal traction  

 

 
Figure 8.21: Time history of lateral displacement of point B to a horizontal traction 
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Chapter 9  

                                                                 Conclusions    

     

Intended to establish a framework for the analysis of transient dynamic soil-structure 

interaction, several analytical and computational techniques for time-domain BEMs for transient 

problems especially for unbounded multi-layered media have been developed in this investigation.  

The developments include a regularization of the TD-BEM formulation, a generalized time-

marching solution scheme, time-domain multi-layer half-space Green’s functions and the coupling 

of BEM with FEM.  The key achievements can be summarized as follows. 

• Owing to the strong singularity of traction Green's functions in elastodynamics, one common 

feature among various classical time-domain BEM formulation is the presence of Cauchy 

principal value of integrals, the evaluation of which is sensitive and mathematical 

demanding.  To resolve this challenge, the time-dependent point-load Green’s functions are 

decomposed into a singular and regular part, with the former being the static bi-material full-

space Green’s function (Pak & Guzina, 1999) whose integration can be done analytically with 

the aid of static equilibrium and the latter being amenable to ordinary numerical quadrature.  

On basis of such a decomposition, a regularized boundary integral equation involving at most 

weakly singular kernels is derived for a simpler analytical framework and numerical 

implementation.    

• As noted in many past studies and observed in the present study, the elementary single-step 

time-marching scheme for TD-BEM often suffers from numerical instability.  To achieve a 

higher degree of control of both the stability and accuracy aspects, a generalized multi-step 

collocation scheme with variable weights and time projections to advance the solution in time 

is developed in this investigation.   The numerical performance of the proposed TD-BEM 
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formulation and time-marching scheme is illustrated via the benchmark problems of a finite 

1D-bar and a spherical cavity wave-propagation problem.  It is shown that using the proposed 

formulation with suitable combinations of displacement and traction projection orders as well 

as collocation weights can improve the accuracy as well as the stability of the solution.   

• As the numerical stability of direct time-domain boundary element methods (TD-BEM) has 

been a major challenge without a rigorous evaluation method, a compact but formal analytical 

framework for the stability evaluation of TD-BEM schemes is formulated in this study.  This 

is achieved by showing that a direct TD-BEM time-marching algorithm can, with appropriate 

arrangements, be framed as a linear multi-step time integration procedure with a hybrid 

amplification matrix whose spectral radius is directly related to the stability of the algorithm.  

Through a systematic variation of the key parameters of the proposed TD-BEM scheme which 

encompasses a number of past TD-BEM algorithms as degenerate cases, a definitive 

identification of the parametric space associated with a set of  stable TD-BEM schemes is 

achieved    With minor adaptations, the proposed approach to evaluate TD-BEM’s stability is 

apt to be also usable to evaluate or guide the development of better time-domain boundary 

integral-element methods.   

• For the usage in the BEMs for half-space problems, a synthesis of the time-domain Green's 

function of multilayer half-space subjected to a general interior point load with a cubic B-

spline time function is developed using a Fourier synthesis of existing frequency-domain 

multilayer half-space Green's functions.   As the Fourier transform of cubic B-Spline function 

decays strongly with increasing frequency, the kernel of the inverse Fourier transform 

representation for the time-domain Green’s function also has greatly reduced effective 

frequency spectrum, allowing the integration to be truncated at a finite value with minimal 

error while avoiding the difficult task of computing the frequency-domain Greens function at 

very high frequency.   
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• To improve the efficacy of TD-BEMs for problems involving unbounded domains with depth 

wise material variation, a new set of time-domain dynamic Green’s functions for a multilayer 

half-space are developed by integral transform methods whose inversion to the time domain is 

developed through an analytical extension of Cagniard’s basic idea in wave propagation theory 

and seismology.  By the proposed method, past needs and complications of computing variable 

branch line integrals, Cauchy principal values as well as residues in time-domina Green’s 

function methods are particularly alleviated.  Such reduction in complexities is apt to be helpful 

in many fields of applied sciences.  

• Incorporating the proposed half-space Green’s functions for both the homogeneous and 

multilayer half-space into the regularized time-domain boundary integral equation, a TD-BEM 

for dynamic analysis of half-space problems is established.   With the use of a half-space 

Green’s function, the BEM is free from the need to discretize the free-surface over a finite 

region, the action of which introduces extra approximation error while limiting the validity of 

the solution.  

• Using the theoretical and computational methodologies developed, the possibility of a more 

effective time-domain finite element-boundary element coupling formulation with attention to 

both accuracy and stability aspects is developed for dynamic soil-structure interaction 

problems.   Promising results have been obtained for a number of fundamental test cases.  

Apart from its direct application to geotechnical earthquake engineering and dynamic soil-

structure interaction problems, it is believed that the fundamental ideas explored and substantiated 

in this study are apt to be relevant to theoretical and computational modeling of not only transient 

elastodynamics but also acoustics, electromagnetics and seismology.  
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